Augmented Reality Object Detection and Labeling

CONNOR REINHOLDTSEN and ANDY STANCIU, University of Washington, USA

ul

Fig. 1. Our CSE 493V AR headset detects and labels objects in real time using a front-facing camera. The system identifies a person and a laptop, displaying
their bounding boxes and labels within the AR view, which applies distortion correction and reflects off the headset’s lens for the viewer.

We integrate object detection and labeling into the CSE 493V AR headset,
enabling real-time identification of objects within the user’s field of view.
Using YOLOvV8, we detect objects and overlay bounding boxes and labels in
augmented reality. YOLO’s single-shot detection minimizes latency, allowing
seamless integration of virtual elements into the physical environment. A
front-facing camera captures the live feed, which is processed through the
YOLO model. The final output is rendered to the AR headset with distortion
correction to ensure alignment with the real world.

1 Introduction

State-of-the-art object detection models have rapidly evolved to
meet the dual demands of high accuracy and real-time processing.
Among these, YOLOv8 distinguishes itself as a promising candidate
by building on the innovations of its predecessors while integrating
cutting-edge techniques such as an optimized CSPDarknet53 back-
bone, advanced data augmentation, and novel training strategies
often referred to as “bag of freebies” and “bag of specials” These
enhancements allow YOLOv8 to achieve a superior balance between
detection precision and speed, making it highly effective for appli-
cations ranging from autonomous vehicles to smart surveillance
systems. Overall, YOLOv8’s ability to deliver robust performance
in real-time environments marks a significant milestone in the pro-
gression of object detection technology.

We propose to leverage the capabilities of YOLOvS to develop
an augmented reality (AR) object detection and labeling system.
Our system is integrated into the CSE 493V AR headset, enabling
real-time identification of objects within the user’s field of view.

Authors’ Contact Information: Connor Reinholdtsen, creinh@uw.edu; Andy Stanciu,
andys22@uw.edu, University of Washington, Seattle, USA.

By combining object detection with AR, we aim to enhance the
user’s perception of the physical environment by overlaying virtual
elements that provide additional information. This approach could
be used in a variety of applications, including:

o Accessibility — Assisting visually impaired users by iden-
tifying and labeling objects in their environment. Further
extensions could involve narrating object descriptions to
assist users in navigating their surroundings.

e Education and Training - Enhancing learning experiences
by providing real-time annotations for objects in AR, useful
in fields like medicine, engineering, and mechanics.

e Retail and Shopping - Helping users recognize and learn
about products in stores by overlaying relevant information.

e Manufacturing and Maintenance - Assisting workers by
identifying components.

e Gaming and Interactive Experiences — Enabling inter-
active AR experiences by integrating virtual overlays onto
real world objects.

Our approach builds on the existing CSE 493V AR headset in-
frastructure, which provides the necessary hardware components,
stereo rendering, and distortion correction. We utilize a front-facing
camera to capture the live feed, which is processed through the
YOLO model. The computed bounding boxes and labels are ren-
dered to the AR headset with stereoscopic rendering and distortion
correction to ensure alignment with the real world.

2« Connor Reinholdtsen and Andy Stanciu

1.1 Contributions

e We utilized YOLOVS to develop an AR object detection and
labeling system integrated into the CSE 493V AR headset.
This system enables real-time identification of objects within
the user’s field of view.

e We utilized a front-facing camera to capture the live feed,
which is processed through the YOLO model. The final out-
put is rendered to the AR headset with distortion correction
to ensure alignment with the real world.

e We demonstrated the potential applications of our system
in various domains, including accessibility, education, retail,
manufacturing, and gaming.

2 Related Work
2.1 CSE 493V AR Headset

We built our AR object detection and labeling system on top of
the CSE 493V codebase and AR headset [University of Washington
2025], which consists of the following components:
¢ AR HMD enclosure - Houses the other components, pro-
vides a mount for the display phone, and includes a lens for
the user to view the AR scene.
e Display phone - Acts as the AR headset’s screen and in-
cludes a front-facing camera for capturing the live feed.
e IMU - Tracking head movement.
e Microcontroller - Processing IMU data.
The CSE 493V infrastructure provided us with a solid foundation
for developing our AR object detection, including the necessary
hardware, stereo rendering, and distortion correction.

RN

Fig. 2. Hardware components of the CSE 493V AR headset.

2.2 YOLOvS8

YOLO (You Only Look Once) is a single-shot detection model known
for its speed and accuracy [Jocher et al. 2023]. Unlike traditional
region proposal-based approaches, YOLO directly predicts bound-
ing boxes and class labels in a single pass through the network,

making it well-suited for real-time applications. YOLOvS introduces
architectural improvements, including a more efficient backbone
and improved anchor-free detection, enhancing both accuracy and
inference speed.

Fig. 3. YOLO computes bounding boxes and class labels for an input image.

2.3 MiDaS

MiDaS (Monocular Depth Estimation via Scale-Invariant Learning)
is a deep learning model designed to estimate depth from a single
RGB image [Birkl et al. 2023]. Unlike stereo-based or LiDAR depth
estimation methods, MiDaS uses a convolutional neural network
trained on diverse datasets to infer depth without requiring multiple
viewpoints. It leverages a scale-invariant loss function, allowing
it to generalize well across different environments and lighting
conditions.

For AR applications, MiDasS offers an attractive solution for es-
timating scene depth without additional hardware. By predicting
depth from a single camera feed, it could enable more accurate
positioning of virtual objects within the physical space. However,
MiDaS produces depth maps in relative terms rather than absolute
metric measurements. This means that while it can infer the rela-
tive distance between objects in a scene, the actual scale must be
manually calibrated. Frequent recalibration would be required to
maintain accuracy in an AR environment, which adds complex-
ity to user interactions. Due to this limitation, we opted to use a
fixed affine transformation for mapping detected objects into the
AR scene instead of relying on MiDaS for depth estimation.

v3.1 BET L-512

Fig. 4. MiDaS estimates depth from a single RGB image.

3 Method and Implementation Details

We modified the CSE 493V codebase to initialize a second Web-
Socket which receives object detection results from the YOLO server
(object_detection subproject). The sent bounding box coordi-
nates are of the form [Xmin, Ymin, Xmax> Ymax], and each coordinate
is normalized to the range [0, 1]. The AR frontend then renders the
detected objects with bounding boxes and labels in the AR view. To
determine the final coordinates of the bounding box on the screen,
the frontend applies an affine transformation to the bounding box
coordinates and applies distortion correction. This affine transforma-
tion must be callibrated based on the specific front-facing camera
to ensure the bounding boxes line up with real life objects seen
through the lens. An example message sent from the YOLO server
to the AR frontend is shown below:

L
{
"label": "person",
"confidence": 0.98,
"bbox": [0.2, 0.5, 0.8, 0.9]
h
{
"label": "laptop",
"confidence": 0.95,
"bbox": [0.23, 0.45, 0.6, 0.6]
}
]

These bounding boxes will be rendered in the AR view with
the corresponding labels. The rendered bounding boxes and labels
reflect off the headset’s lens to surround the detected objects in the
user’s field of view.

DQ(SOH

laptop

Fig. 5. Bounding boxes and labels for a person and laptop are rendered to
the left lens.

Augmented Reality Object Detection and Labeling « 3

3.1 Hardware

We simply used the CSE 493V AR headset [University of Washington
2025] hardware components and a display phone with a front-facing
camera. The display phone runs the AR frontend and streams the
camera feed to the YOLO server over HTTP.

3.2 System Architecture

Our AR object detection and labeling system consists of the follow-
ing main components:

e Camera Feed - Captures live video frames from the AR
headset’s camera for processing and streams them to the
YOLO object detection server over HTTP in Motion JPEG
(MJPEG) format. We ran the IP Webcam app on the display
phone to serve the camera feed.

e YOLO Object Detection Server — Runs the YOLOv8 model
to detect objects in the video stream and outputs bounding
boxes with class labels. Sends the detection results to the
AR frontend via WebSockets.

e CSE 493V IMU Server - Collects inertial measurement
unit (IMU) data and sends the computed head rotation to
the AR frontend via WebSockets.

e CSE 493V Frontend - The user-facing AR interface that
overlays detected object labels and bounding boxes in the
augmented reality view with stereoscopic rendering and
distortion correction. It receives object detection results and
IMU data via WebSockets. The frontend display is streamed
to the display phone with spacedesk.

Camera feed

HTTP MJPEG server

YOLO object CSE 493V IMU
detection server server
WebSocket WebSocket

N

CSE 493V frontend

Fig. 6. System architecture of our AR object detection and labeling system.

4« Connor Reinholdtsen and Andy Stanciu

4 Evaluation of Results

We evaluated the inference time for various YOLOv8 models on an
NVIDIA RTX 3050 Ti GPU. Table 1 shows the average inference
time for different YOLOv8 models. To ensure real-time performance,
we decided to use the YOLOv8-nano model, which prioritizes speed
over accuracy for real-time inference. If we had more powerful hard-
ware, we would have liked to leverage a larger model for improved
detection accuracy.

YOLO Model Avg. Inference Time (ms)
YOLOv8-nano 43.7
YOLOv8-small 87.4
YOLOvV8-medium 190.2

Table 1. YOLO Model Inference Time on RTX 3050 Ti

We found that streaming the camera feed over HTTP at 60 frames
per second (FPS) introduced significant latency, which dramatically
impacted the overall system performance. While we weren’t able
to measure the exact latency due to the app we used for streaming
not providing this information, we found that reducing the camera
feed streaming framerate to about 20 FPS dramatically improved
the overall responsiveness of the system.

4.1 Limitations
Some of the key limitations of our system include:

o The camera occasionally captures reflections off the headset
lens, leading to false detections where the system mistakenly
identifies the wearer as a detected person. Using an external
camera instead of the front-facing camera of the display
phone could mitigate this issue. We simply didn’t have time
to build a custom mount for an external camera.

e Latency accumulates due to the time taken to send cam-
era data to the server and receive processed results. The
USB port on our display phone was blocked off by the HMD
enclosure, so we were forced to stream the camera feed wire-
lessly over HTTP. A phone with an exposed USB port would
allow for a wired connection, reducing latency compared to
a wireless network setup.

e A tradeoff was necessary between model size and inference
speed. While a smaller model ensures real-time performance,
it comes at the cost of reduced bounding box and labeling
accuracy.

e The system does not utilize a stereo camera setup, limiting
bounding boxes to 2D projections rather than full 3D spatial
positioning. A stereo camera would improve depth estima-
tion and enable more accurate object placement in the AR
environment.

o Aliasing effects make text and bounding boxes harder to read
in the headset. Implementing antialiasing techniques into
the distortion correction could enhance clarity and visual
quality.

e We currently use an affine transformation calibrated based
on the camera to map detected objects into the AR scene. A

stereo camera setup would allow for more precise 3D place-
ment of bounding boxes without relying on a precomputed
transformation.

5 Future Work

While our current implementation integrates YOLOv8-based object
detection with the CSE 493V AR headset, several areas remain for
future exploration and improvement.

5.1 Depth Estimation and 3D Object Placement

One limitation of our system is the absence of accurate depth estima-
tion. While we explored MiDaS$ for monocular depth estimation, its
reliance on relative depth rather than absolute measurements posed
challenges. Future work could incorporate stereo depth sensing or
integrate LiDAR for precise depth estimation. This would allow
bounding boxes to be properly placed around detected objects in
the 3D AR environment.

5.2 Multimodal Interaction and Feedback

Integrating multimodal interaction methods, such as hand gestures,
could enhance usability. Future iterations could enable users to
query detected objects using natural language processing models
or interact with virtual overlays via gesture recognition.

5.3 Personalized and Context-Aware Detection

Our current model provides generic object detection. Future en-
hancements could include user-specific customization, allowing
individuals to prioritize specific object categories. Additionally, inte-
grating contextual awareness—such as detecting objects relevant to
the user’s task—could improve the system’s practical applications
in fields like education, retail, and manufacturing. For example, in a
retail setting, the system could highlight products on a shopping list
or provide additional information about items in the user’s vicinity.

5.4 Extended Dataset and Fine-Tuning

While YOLOvVS is trained on a general dataset, fine-tuning it on
domain-specific datasets could improve detection accuracy for spe-
cialized applications. For instance, datasets tailored for medical,
industrial, or accessibility-focused use cases could significantly en-
hance performance in those areas.

5.5 User Studies and Usability Evaluation

Conducting user studies would provide insights into how our system
performs in real-world scenarios. Evaluating usability, comfort, and
effectiveness across different applications could guide refinements
and future iterations.

6 Conclusion

Our project integrates real-time object detection and labeling into
the CSE 493V AR headset using YOLOvS. The system overlays de-
tected objects with bounding boxes and labels within the augmented
reality display, which could have applications in enhancing users’
perception of their environment. We explored the feasibility of depth
estimation with MiDaS but ultimately opted for a fixed affine trans-
formation due to the challenges of relative depth scaling without

stereo cameras. Our results demonstrate that real-time object detec-
tion in AR offers potential applications in accessibility, education,
retail, and beyond.

Augmented Reality Object Detection and Labeling « 5

References

Reiner Birkl, Diana Wofk, and Matthias Miiller. 2023. MiDaS v3.1 — A Model Zoo
for Robust Monocular Relative Depth Estimation. arXiv preprint arXiv:2307.14460
(2023).

Glenn Jocher, Jing Qiu, and Ayush Chaurasia. 2023. Ultralytics YOLO. https://github.
com/ultralytics/ultralytics

University of Washington. 2025. CSE 493V GitLab Repository. https://gitlab.cs.
washington.edu/cse493v/cse493v-25wi Accessed: 2025-03-18.

https://github.com/ultralytics/ultralytics
https://github.com/ultralytics/ultralytics
https://gitlab.cs.washington.edu/cse493v/cse493v-25wi
https://gitlab.cs.washington.edu/cse493v/cse493v-25wi

	Abstract
	1 Introduction
	1.1 Contributions

	2 Related Work
	2.1 CSE 493V AR Headset
	2.2 YOLOv8
	2.3 MiDaS

	3 Method and Implementation Details
	3.1 Hardware
	3.2 System Architecture

	4 Evaluation of Results
	4.1 Limitations

	5 Future Work
	5.1 Depth Estimation and 3D Object Placement
	5.2 Multimodal Interaction and Feedback
	5.3 Personalized and Context-Aware Detection
	5.4 Extended Dataset and Fine-Tuning
	5.5 User Studies and Usability Evaluation

	6 Conclusion
	References

