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An implementation of a fluid simulation using Smooth Particle Hydrodynamics (SPH) and Screen Space
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Fig. 1. A picture taken from the Meta XR simulator of a MetaQuest 3 of our simulation with 1.5 million particles. This rendered at around 35 frames per
second on the simulator. There are still some weird/incorrect artifacting since it is not completely physically accurate (notice the bottom right quadrant).

We implement fluid simulation and rendering in a VR application. The fluid
is composed of many small particles and simulates pressure forces, viscosity,
and external forces including gravity and the user’s hand motions, as given
by the Navier-Stokes equations. We build on the technique “Smooth Particle
Hydrodynamics” or SPH to simulate the motion of these fluid particles.
To make this work efficiently in a VR application, we had to adapt our
algorithms so that they could be parallelized on a GPU. We then render
the particles utilizing "Screen Space Fluid Rendering" to give the particles a
realistic look while not increasing the performance requirements by a large
amount. We find that the use of SPH for the physics and SSFR for rendering
is a potent combination that simulates fluids accurately without putting too
high of a burden on hardware such as the Meta Quest 3 in certain scenarios.
There are still features to be added to this fluid simulation that would make
for worthwhile extensions, such as attempting to add foaming for more
realism, caustic entities, further optimization utilizing BVHs for collisions.

1 INTRODUCTION
The motivation for our project is have an interactable fluid that we
could build upon for our VR capstone project next quarter. We are
planning to eventually build a VR game in which users can interact
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with four elements like in the cartoon “Avatar: The Last Airbender”:
air, water, earth, and fire. A useful stepping stone for this goal is
to see how we could viably simulate a fluid in VR. There are other
more scientific motivations, such as the usefulness of physically
accurate fluid simulations that people are able to interact with your
own "physical" hand which might allow for better research in that
field.
We found a YouTube video by Sebastian Lague [Lague 2023]

which built upon [Müller et al. 2003] to simulate a particle-based
fluid in 3D using a technique called “Smooth Particle Hydrodynam-
ics”. This technique essentially interpolates the properties of nearby
particles to estimate field quantities like density, pressure, and ve-
locity at any point in space. These quantities are then used to the
position and velocity of each particle according to the Navier-Stokes
equations. We attempted to reproduce the work of [Lague 2023]
in Unity and observed the quality of the simulation through Meta
Quest 3. As the simulation is computationally intensive, we had
to run our simulation on a GPU and adjust our implementation to
create a smooth experience for the user.
Overall we found that using SPH and SSFR inside of VR seems

like a viable alternative to attempting to do a full 3D flow simulation.
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This is mainly useful for things such as real time fluid simulations
for games, since we are not looking to have an entirely accurate
fluid flow, just one that looks the best. In other environments where
accurate fluid flow, our rendering technique will not apply, since
we most likely do not want to be rendering any fluids using SSFR as
it forgoes accuracy for performance, but the base idea of fluid flow
using SPH in VR is possibly a useful stepping stone in other areas.

1.1 Contributions
• Utilized Smooth Particle Hydrodynamics (SPH) to simulate

a basic fluid simulation.
• Implemented Screen Space Fluid Rendering (SSFR).
• Translated a (mostly) working version of the above two to

render in VR.

2 RELATED WORK
In 1822 and 1845 Claude Navier and George Stokes formulated
the Navier-Stokes equations that describe fluid dynamics. These
equations encode conservation of mass, momentum, and energy.
These equations can be numerically solved by a computer, opening
the field of computational fluid dynamics. We build on the work
of [Müller et al. 2003], which is a particle-based approach to fluid
dynamics. They use Smooth Particle Hydrodynamics, which is a
technique initially proposed for modeling gasses, to estimate the
quantities of force fields necessary to simulate the Navier-Stokes
equations. Using SPH has the benefit of being relatively simple to
implement, while still being able to model the general behavior of
fluids. The downside is that a large amount of compute is required to
scale up the number of particles, limiting the realism of the fluid. We
also found a YouTube video tutorial [Lague 2023] that goes through
this exact paper, which we followed along to help build our VR fluid
simulator.

3 METHOD
We model a fluid as a finite set of particles that are constrained
within a rectangular boundary, which automatically guarantees
conservation of mass. We apply conservation of momentum to this
setting, which is formulated by the Navier-Stokes equation as

f = 𝜌
𝐷v
𝑑𝑡

= −∇𝑝 + 𝜌g + 𝜇∇2v, (1)

where f is the force density field, 𝜌 is the field density, 𝑝 is the field
pressure, g is the external force density field (including gravity and
wall collisions), 𝜇 is the viscosity of the fluid, and∇2v is the Laplacian
of the velocity field. Thus, we can calculate the acceleration of a
particle 𝑖 as

a𝑖 =
𝐷vi
𝑑𝑡

=
fi
𝜌𝑖
, (2)

where vi is the velocity of particle 𝑖 and f𝑖 and 𝜌𝑖 are the force
density field and density field evaluated at the location of parti-
cle 𝑖 , respectively. We estimate the density field and each term of
the force desnisty field using a technique called Smooth Particle
Hydrodynamics, or SPH, which we describe now.
According to SPH, any scalar quantity 𝐴 can be estimated at a

point r by interpolating the value of 𝐴 over every particle within a

radius ℎ. This is encapsulated in the “SPH equation”:

𝐴(r) =
∑︁
𝑗

𝑚 𝑗

𝐴 𝑗

𝜌 𝑗
𝑊 (r − r𝑗 , ℎ), (3)

where𝑚 𝑗 and 𝜌 𝑗 is the mass and density of the 𝑗𝑡ℎ particle, and𝐴 𝑗 is
the scalar quantity for the 𝑗 th particle.𝑊 (r, ℎ) is a smoothing kernel
used to interpolate the scalar quantity; the notation𝑊 (r, ℎ) means
that the smoothing kernel has support ℎ and is being evaluated at a
point r. The kernel must integrate to 1 over its support:∫

𝑊 (r, ℎ)𝑑𝑟 = 1. (4)

There are several options for the smooting kernel. In practice, we
use a smoothing kernel of𝑊 (r, ℎ) = 15

𝜋ℎ6 max {0, (ℎ − |r|)3}, which
has the property that the gradient of𝑊 does not “vanish” to zero
as |r| approaches 0, which helps prevent particles from clumping
together.

Applying the SPH equation to density, we can model the density
field at any point r as

𝜌 (r) =
∑︁
𝑗

𝑚 𝑗

𝜌 𝑗

𝜌 𝑗
𝑊 (r − r𝑗 , ℎ) =

∑︁
𝑗

𝑚 𝑗𝑊 (r − r𝑗 , ℎ) . (5)

Likewise, we can apply SPH evaluate the pressure density field:

𝑝 (r) =
∑︁
𝑗

𝑚 𝑗

𝑝 𝑗

𝜌 𝑗
𝑊 (r − r𝑗 , ℎ). (6)

Note that the pressure evaluated at a particle is given by

𝑝 𝑗 = 𝑘𝜌 𝑗 (7)

where 𝑘 is a gas constant we tune.
Using equations (6) and (7), we can now calculate the −∇𝑝 term

for particle 𝑖 , which we call fpressurei in (1):

fpressurei = −∇𝑝 = −
∑︁
𝑗

𝑚 𝑗

𝑝 𝑗

𝜌 𝑗
∇𝑊 (r − r𝑗 , ℎ) . (8)

An issue with (9) is that fpressurei is not symmetric: the force particle
𝑖 experiences due to particle j will not, in general, be equal and
opposite to the force particle 𝑗 experiences due to particle 𝑖 , violating
Newton’s third law. A simple fix we used is to replace 𝑝 𝑗 with the
average of 𝑝𝑖 and 𝑝 𝑗 :

fpressurei = −∇𝑝 = −
∑︁
𝑗

𝑚 𝑗

𝑝𝑖 + 𝑝 𝑗

2𝜌 𝑗
∇𝑊 (r𝑖 − r𝑗 , ℎ) . (9)

Finally, we calculate the viscosity term by applying SPH:

fviscosityi = 𝜇∇2𝑣 (r𝑖 ) = 𝜇
∑︁
𝑗

𝑚 𝑗

𝑣 𝑗

𝜌 𝑗
∇2𝑊 (r𝑖 − r𝑗 , ℎ) . (10)

This force equation also suffers from the problem of asymmetry.
Using the fact that viscosity is a function of the relative difference
of velocities, we make it symmetric by replacing 𝑣 𝑗 with 𝑣 𝑗 − 𝑣𝑖 :

fviscosityi = 𝜇∇2𝑣 (r𝑖 ) = 𝜇
∑︁
𝑗

𝑚 𝑗

𝑣 𝑗 − 𝑣𝑖

𝜌 𝑗
∇2𝑊 (r𝑖 − r𝑗 , ℎ). (11)

The remaining term we need to estimate is the external force
density field g, which is just the acceleration due to gravity 𝑔 in
general. In the case of wall collisions, our implementation just does
naive collision detection and resolution.
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Now that we have the equations necessary to estimate the accel-
eration of each fluid particle, we can now simulate the motion of
these particles.

4 IMPLEMENTATION DETAILS

4.1 Hardware/Software
We used Unity 6 and its Universal Rendering Pipeline (URP) to
handle the fluid simulation, rendering, and GPU instancing. To
handle the VR portion, the libraries used were OpenXR, MetaXR
All-in-One SDK, and the Meta XR Simulator for faster iterating of
the project.
The hardware used for this project was a Meta Quest 3 to handle
the VR rendering and a RTX 3070 inside a desktop that was used to
render the fluid simulation utilizing the Meta Quest 3 link feature.

4.2 Fluid Simulation
The fluid simulation was implemented as described in Section 3 of
this paper. Some interesting things to note and were hard to get
down is that to get this running at an acceptable frame rate we
had to utilize Unity’s GPU instancing and render pipeline by doing
some of the calculations outlined in Section 3 in a compute shader.
Specifically, equations (6, 9, 11) are handled this way along with any
collisions in between particles here as they are needed to update
the positions of our particles and are a bulk of the work that needs
to be done for our simulation.
The compute shader output was stored into command buffers to
be read by our rendering shader. From that, the entire flow of our
simulation was:

(1) Run compute shader.
(2) Store outputs of compute shader into command buffer lo-

cated inside main driver script.
(3) Read data from command buffers into rendering shader.
(4) Blit rendering shader output to screen.
(5) Repeat 1-4 as long as simulation runs.

4.3 Screen Space Fluid Rendering
For this, we utilized these slides from Nvidia [Green 2010].
At a high level, what Screen Space Fluid Rendering entails is ren-
dering only particles that are directly in screen space, allowing for
better performance and the possibility for more post-processing
now that we have more compute to work with that is not being
spent with intensive 3D calculations that attempts to accurately sim-
ulate fluid flow. To summarize how this will be implemented from
the slides, we will have to generate a depth map of our particles,
smooth that out using a form of blurring,
What this means for our fluid simulation, however, is turning our
particles into spherical point sprites, which are quads that have pix-
els outside of a radius trimmed off, and having them always face the
camera (seen in Fig 2). This allows us to do our physics calculations
in a 2D space, since the point sprites that will be facing us are no
longer spherical. From here, we can generate a depth map by finding
the distance from any given fragment to the camera position.

Next, we had to calculate the normals and blur the surfaces. Calcu-
lating normals can be done at any point once we have the depth map
by unprojecting any given pixel using the depth and UV coordinate

Fig. 2. Example of a single particle and a blob of them without any post
processing- notice how flat they are. That’s cause they are flat!

to get back to eye-space. We can take the partial differences of both
the y and x axis to get two tangent vectors local to the surface (our
point spherical sprite), which we can take the cross product of to
get a perpendicular vector, which is our normal.Then we blurred
the surfaces using a bilateral filter and calculated the normals again
on this blurred surface, giving us Fig 3.

Fig. 3. A closeup of the normal map for our fluid simulation in a nearly fully
stable state.

Now we can shade the surface. The slides recommended using
thickness shading where we render the particles with additive blend-
ing s.t regions with more particles will appear "thicker" or in the
shader for thickness, more opaque. Storing this inside a buffer, we
will use this information for other shaders to sample from to calcu-
late things such as refractions, reflections, light absorption, trans-
parency, etc.
From here, it was just calculating refractions and reflections to

shade the fluid correctly. This was just using Snell’s law, and finding
any hit position using the depth combined with the camera’s view
for any given point. We can then attenuate the final color using
thickness. We have our final outcome below in Fig 5.

To summarize, our new final process with SSFR looks like this:
(1) Run compute shader for the pixels on the screen.
(2) Store outputs of compute shader particle updates into a

command buffer.
(3) Read data from command buffers into both our depth and

thickness shader, storing output of both.
(4) Smooth out both of these outputs and store them again

together.

https://developer.download.nvidia.com/presentations/2010/gdc/Direct3D_Effects.pdf
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Fig. 4. Our thickness map (white = thicker, more particles are overlapping).

Fig. 5. Our final product with 1m particles, runs fine.

(5) Using only the smoothed depth map, reconstruct the nor-
mals from it and store into a render texture.

(6) Render the entire image using all of the above to apply all
post processing effects and output to driver script.

(7) Blit rendering shader output to screen.
(8) Repeat 1-7 as long as simulation runs.

4.4 VR Integration
To integrate into VR, we faced a similar issue where our shaders did
not have any support for stereo rendering. We used the documenta-
tion linked from the past quarter to help us get over this issue as
hopefully Unity handles most of it. We quickly found out that Unity
in fact does not handle most of it, and we had to attempt to rewrite
most of our shaders to work with rendering in two different eyes.
While we got close, there were still a lot of artifacts and issues with
stereoscopic rendering that we were not able to fully finish.

Another one of the bigger issues in the project we faced was that
we were unable to implement interaction with our fluids and we ran
out of time to truly troubleshoot and implement this. We had a lot
of bugs that came with trying to get it work with VR, and we will
show and give some hypotheses on why they might be happening.
We believe this issue comes from us incorrectly implementing

stereoscopic rendering, since we found that this artifacting mainly
happens in areas where we think the right eye is dominant, meaning
we believe we have messed up handling boundary cases for our right
eye.

The next one was something we could not get down, and it mainly
was because of how we implemented SSFR or something that might

Fig. 6. Artifacting at the boundary of our simulation.

be fundamental to how SSFR works that we could not translate
correctly to VR. Since the updates are done in screen space from
the camera’s view, when turning into VR we found that the liquid
would not stay in place. In fact, it would actually follow our gaze.

5 EVALUATION OF RESULTS
At this point of the report, we realized a website that would be able
to handle gifs would most likely have been a better idea. But we
still have some interesting results and pictures to show!

Fig. 7. Our simulation blowing up (very similarly to other SPH simulations)
when we do not do enough updates on each frame at 1m particles.

Fig. 8. Our simulation blowing up at 5k particles when we do only one
iteration of our solver per timestep (hard to see).

Our fluid simulation blows up in a variety of ways. As seen in
Fig 7, what usually happens is that it fills up the box with all of our

https://docs.unity3d.com/Manual/SinglePassInstancing.html
https://docs.unity3d.com/Manual/SinglePassInstancing.html
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particles flying around everywhere. From our troubleshooting, this
is caused by a couple of reasons. The first one is when our FPS is too
low, which we found when translating to VR. This made sense, as
we were now rendering to two different eyes instead of one. Since
our simulation worked off a framerate based timestep, this meant
that once framerate dipped too low, the updates for each step of the
simulation would be too large and explode.
Another way was reducing the number of iterations per frame also
caused this explosion, our guess being that if there were not enough
iterations, our SPH fluid solver would have way too much numerical
instability to be able to correctly calculate all the needed values that
keep it at a stable state which SPH requires as outlined in section 3.
This is (to our understanding) how SPH works, so our solution was
to cap the timestep, and keep the iterations at a reasonable amount
(we found this to be 3) that does not cause any explosions in our
fluid simulation but keeps performance at a fine state.
Finally, if there were simply too many interactions from outside
forces. When trying to model fast-moving water, the amount of
interactions goes intensely up, and we found that we had to do
more iterations per frame.
For some comparisons, we decided to use Sebastian Lague’s final
product, as before moving to VR we were recreating his video and
his work.

Fig. 9. Sebastian Lague’s final fluid simulation from his video [Lague 2024]
Notice the foam and shadows on the ground compared to our implementa-
tion.

Comparatively, we have our fluid simulation in Fig 10 where we
tried to recreate the video but there was no mention of the exact
details of particle amount, so unsure of what the exact setup was.

Fig. 10. Our recreation.

6 DISCUSSION OF BENEFITS AND LIMITATIONS
The key benefit of using SPH for fluid simulation is that it provides
a relatively simple scheme for updating particle positions and veloc-
ity by interpolating properties of nearby particles. Updating these

variables per iteration is also parallelizable on GPU. The main draw-
back is that more realistic fluid simulation requires more particles,
which in turn requires more compute to simulate. The quality of
the simulation is also sensitive to the simulation parameters like
the gas constant 𝑘 , the viscosity 𝜇, and the number of simulation
steps per frame, and it is not intuitive how to tune these parameters.
In terms of implementation, because we implemented a custom
shader to speed up each simulation step, the Meta Quest 3 did not
automatically render the simulation to both eyes; it only appeared
through the left eye and we had to implement stereo rendering at
the shader level for the project to render in both eyes. This made
the project harder than anticipated, and made it such that we were
unable to implement additional features as we only had 3 weeks to
work on this project.

7 FUTURE WORK
Some additional future work we can implement is adding in the
spray, foam, and bubbles that were implemented in the video to
make the fluids look more realistic when they are crashing into each
other. Getting SSFR fully working inside of VR is also another big
thing, so bugfixing that entirely is a future extension of this project.
We also still want interactability with these fluids inside since our
main motivation was to use this as a baseline for our waterbending,
but we found out that is most likely not feasible at a large scale.
However, basic interaction, especially with a smaller simulation
with SSFR looks to be entirely possible in VR. Finally, future work
would involve fully bugfixing our stereoscopic rendering such that
it renders in both eyes correctly and forms the image inside of our
headset.

8 CONCLUSION
We implemented fluid simulation and rendering using Smoothed
Particle Hydrodynamics and Screen Space Fluid Rendering for a
VR headset. We found that doing so required heavy computational
power, especially as the number of particles increased. This required
the user to be near a GPU, which is somewhat impractical and
diminishes the user experience. For more practical yet accurate fluid
simulations in a VR setting, we recommend future work investigate
either (1) non-particle-based models for fluid simulation or (2) faster
particle-based simulation algorithms that can run efficiently on a
GPU server, which the user could interact with through a web app.
Overall, we enjoyed making this project and found it a useful step
towards our ultimate goal of building a VR game.
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