
VR Tennis Training Game
Realistic Tennis Experience

YIQING WANG, IRIS ZHAO, and JAYLYN ZHANG, University of Washington

Fig. 1. A first-person VR view of our tennis training game in action.

This project presents a VR Tennis Training Game on Meta Quest 2, designed
to provide users with a realistic tennis experience. Motivated by the po-
tential of VR to enhance accessibility to sports training, our work focuses
on the modeling of ball physics and racket interactions, carefully tuned
to replicate authentic tennis gameplay dynamics. The results demonstrate
a compelling virtual tennis experience with accurate ball trajectory and
responsive gameplay. Future work may explore advanced stroke analysis
and adaptive di!culty based on player performance, potentially expanding
the application’s use from casual entertainment to structured training.

1 INTRODUCTION
Virtual reality (VR) has rapidly evolved to deliver highly immersive
experiences, with VR sports emerging as a leading application. Ten-
nis, a sport that demands precise motor skills, spatial awareness, and
quick re"exes, presents unique challenges in VR implementation.
This project aims to overcome these challenges by developing a
physics-accurate tennis simulator for the Meta Quest 2, bridging the
gap between virtual practice and real-world play. By leveraging VR,
we make tennis more accessible, removing barriers such as court
availability, weather conditions, and equipment costs.
Existing VR tennis applications, such as Tennis League VR, have
demonstrated the viability of this concept. We drew inspiration

Authors’ address: Yiqing Wang, ywang46@cs.washington.edu; Iris Zhao, jiyunz@cs.
washington.edu; Jaylyn Zhang, jiali7@cs.washington.edu, University of Washington.

from these experiences, extracting the most valuable components
to create a minimal and streamlined game focused on recreational
tennis training. This project marks our #rst exploration of the Unity
development pipeline for the Meta Quest 2, with an emphasis on
achieving a realistic and immersive tennis experience.
Through our development process, we found that incorporating
physics formulas, #ne-tuning constants, and selecting the right
Unity components were crucial in achieving a realistic and immer-
sive gameplay experience. Additionally, advanced collision detec-
tion, particularly in accurately simulating spin, required extra e$ort
to re#ne and make visually evident in the game. For future work,
we can further enhance the complexity of the physics calculations,
integrating more advanced mechanics and stroke analysis to elevate
gameplay realism. These improvements will enable more precise
shot feedback, making the VR tennis experience evenmore engaging
as a training tool.

1.1 Contributions
We believe that the following contributions weremade in our project.

• Contribution 1. Realistic Physics Implementation. We ap-
plied physics formulas and #ne-tuned constants to achieve
an immersive and accurate tennis simulation.

2 • Yiqing Wang, Iris Zhao, and Jaylyn Zhang

• Contribution 2. Enhanced Collision Detection. By imple-
menting ray-casting, we ensured precise collision detection,
even at high ball and racket speeds.

• Contribution 3. Future Expansion Potential. We established
a foundational framework for ongoing development of the
tennis game on the Meta Quest platform.

2 RELATED WORK
One of the most relevant commercial VR tennis games is Tennis
League VR, available on the Meta Quest 2. While the source code for
this game is not open, we were able to analyze gameplay through
available videos and reviews. Tennis League VR o$ers a variety of
features, including multiplayer capabilities, customizable avatars,
and di$erent gamemodes. The game’s smooth gameplay and diverse
functionalities provided a valuable reference for our own develop-
ment, though we were unable to directly access or build upon their
codebase due to its proprietary nature.

3 METHOD
3.1 Collision Detection
Our initial implementation relied on Unity’s built-in Colliders at-
tached to the ball and racket, con#gured with continuous dynamic
collision detection to handle the interaction between these moving
rigidbodies. However, this approach proved inadequate. In more
than 50% of instances, the ball would pass directly through the
racket mesh without triggering collision detection, particularly dur-
ing rapid swings.
To resolve this issue, we implemented a ray-casting solution. This
technique projects an in#nite line along the ball’s velocity vector.
As the ball moves, the ray travels with it and detects intersections
with any collider in its path, and it calculates the surface normal
at the point of collision. This approach dramatically improved our
collision detection reliability, successfully registering interactions
even during high-speed swings.

3.2 Ball-Ground Bounce Behavior
A tennis ball usually bounces on the ground before a hit. To achieve
natural physics, we implemented re"ection based on surface nor-
mals and applied a velocity reduction factor of 0.8 to simulate friction
and energy loss during bounces. This coe!cient was determined
through experimental testing to achieve the most realistic feel.
During development, we encountered an unexpected inconsistency.
The ball bounced at di$erent heights when viewed in VR compared
to the Unity editor game mode, despite our constant ball launch
velocity. After thorough investigation, we identi#ed the source of
this discrepancy as a frame rate synchronization issue. The Meta
Quest 2 headset operates at 90 Hz, corresponding to a time step
of approximately 0.0111 seconds per frame (1/90=0.0111s). We re-
solved this issue by adjusting Unity’s #xed timestep parameter to
match the Quest’s display frequency, ensuring consistent physics
calculations across both environments and eliminating the height
variation.

3.3 Ball-Racket Bounce Behavior
To achieve realistic ball-racket interaction, we decomposed the post-
collision ball velocity calculation into two components. The #rst
component is the re"ected velocity, calculated based on the incom-
ing ball velocity and the surface normal at the point of impact. The
second component accounts for the velocity transfer from the racket
to the ball during contact.
Through extensive testing, we found that an equal weighting of
these two components produced the most natural and responsive
gameplay feel. As a result, the exit velocity of the tennis ball is
calculated using the following formula:

→𝐿exit = 0.5 · →𝐿re"ected + 0.5 · →𝐿racket
This balanced approach ensures that both the angle of incidence and
the player’s racket movement signi#cantly in"uence the resulting
ball trajectory, creating an responsive control experience.

3.3.1 Racket Velocity. We calculate the racket velocity using the
following formula:

→𝐿bat =
→𝑀current ↑ →𝑀previous

ω𝑁

3.3.2 Ball Spin and Magnus E!ect. To simulate the ball’s spin after
impact, we compute the spin axis and the spin amount based on the
velocity of the ball at the point of impact. The direction of the spin
is calculated by #nding the cross product of the hit surface normal
and the velocity vector. The spin amount is determined using the
magnitude of the hit velocity, the angle between the velocity vector
and the normal, and a multiplier that controls the spin intensity.
The spin axis is calculated as:

→𝑂spin =
→𝐿hit ↓ →𝑃
|→𝐿hit ↓ →𝑃 |

where →𝐿hit is the velocity of the ball at the point of impact.
The spin amount is calculated as:

spinAmount = |→𝐿hit | · sin(𝑄) · spinMultiplier

where 𝑄 is the angle between the hit velocity →𝐿hit and the surface
normal →𝑃.
Finally, we apply the spin to the rigidbody using torque:

→𝑅 = →𝑂spin · spinAmount

To simulate the Magnus e$ect, which in"uences the trajectory of a
spinning object moving through air, we calculate the force exerted
on the ball based on its angular velocity and velocity. The Magnus
force is given by:

𝑆Magnus =
4
3
𝑇𝑈𝑉3 |→𝐿 | →𝑂 ↓ →𝐿

where 𝑈 is the air density; 𝑉 is the radius of the ball; |→𝐿 | is the velocity
magnitude; →𝑂 is the angular velocity; →𝐿 is the velocity vector of the
ball.
Although we were con#dent in the theoretical foundation, the spin
was not evident during gameplay, even after adjusting the spinMul-
tiplier value through experimentation. Debugging this issue was
particularly challenging, as we could not print out debug values
while playing in the headset. As a result, we have marked this as a
task for future work to address.

VR Tennis Training Game • 3

4 IMPLEMENTATION DETAILS
We developed our VR tennis game using the Meta Quest 2 headset
and its accompanying controllers. To enable interaction within the
virtual environment, we leveraged Unity’s XR Interaction Toolkit,
which provides a robust framework for handling VR input and
interactions.
Unity Assets we used:
- Unity Asset Store "Free Sports Kit"
- Unity Asset Store "Simple Sky"

4.1 Feature: Ball Machine Shooting Randomization
To enhance the challenge of the ball machine, we introduce random
horizontal and vertical o$sets to the ball’s shooting direction. These
o$sets can be dynamically adjusted during gameplay using a UI
slider, allowing for real-time customization of the di!culty.

4.2 Feature: Scoring Mechanism
The overall scoring logic is that the score increments by one every
time the player successfully hits the ball into the legal area. We used
a collider to detect whether the ball landed in the scoring area. More
speci#cally, we implemented a boolean variable to check if the ball
landed after being hit by the player and another boolean #eld to
ensure the score increments only once per hit.

4.3 Feature: Start And End Game UI
To create a seamless user experience, we designed an intuitive start
and end game UI that allows players to engage with the game e!-
ciently. The implementtation ensures that users can easily start a
session, track their performance, and view results after completing a
game. The UI elements are designed withWorld Space Canvas allow-
ing them to appear naturally in the environment. Interactions are
implemented using Unity’s XR Interaction Toolkit, which enables
intuitive hand tracking and controller-based interaction. Player can
point at buttons using their controllers and select them via trigger
input.

5 EVALUATION OF RESULTS
5.1 Collision Detection Accuracy
To access the reliability of our collision detection system,we recorded
instances where the ball correctly interacted withthe racket versus
instances where it failed to register a hit. Using our ray-casting
approach, the accuracy of collision detection improved signi#cantly
compared to Unity’s Build-in collision detection:

• Initial Unity Collider-based Approach: 40-50% collision reg-
istration success rate.

• Ray-casting Implementation: more than 90% collision regis-
tration success rate.

This demonstrates that our ray-casting method e$ectively mitigated
the issue of missed racket-ball interaction, particularly during high
speed swings.

5.2 Ball Physics and Realism
To evaluate the realism of ball physics, we compared our bounce
mechanics to real-world tennis ball behavior by measuring the

height of the bounce and the reduction in speed upon impact with
the ground. Our velocity reduction factor (0.8) produced bounce
patterns consistent with actual tennis play. The velocity reduction
after bounce aligned with the expected energy loss due to surface
friction. However, spin dynamics remained a challenge. Despite
implementing spin calculations, the Magnus e$ect was not visually
apparent in the game.

5.3 User Feedback and Playability
We conducted informal user testing with a group of #ve players with
varying levels of tennis experience. Feedback highlighted several
strengths and areas for improvement.
Strengths:

• Players found the ball physics realistic, especially regarding
the bounce dynamics.

• The collision detection system felt accurate and responsive.
• The adjustable ball machine di!culty provided a customiz-

able training experience.
Limitations:

• The spin e$ect was not visually noticeable.
• Some users reported a learning curve in accurately timing

their swings due to lack of haptic feedback.
• The lack ofmultiplayer support limited the game’s long-term

engagement potential.
Summary: Our results indicate that the VR Tennis Training Game

successfully delivers a realistic and engaging player experience,
particularly in ball physics and collision accuracy. However, im-
provements in spin simulation, haptics, feedback, and multiplayer
features could enhance immersion and usability further.

6 FUTURE WORK
Our ball spin algorithm did not perform as expected. One major
challenge we encountered was the inability to print debug logs to
the Unity console while running the game in VR. This limitation
made it di!cult to diagnose issues related to spin dynamics. To
address this, future iterations of our project could integrate a VR-
compatible debugging console that displays real-time logs within
the headset. By printing the torque direction upon collision, we can
determine whether the issue lies in the direction or magnitude of
the applied force. This improvement would provide deeper insights
into the spin mechanics and enable more precise adjustments to
achieve realistic ball behavior.
Additionally, we could enhance the game with advanced features,
such as improved stroke analysis by leveraging machine learning
for spin prediction and ball trajectory estimation. This would en-
able more accurate feedback on player performance and technique.
Furthermore, we could implement an adaptive ball machine that dy-
namically adjusts di!culty based on the player’s skill level, creating
a more personalized and engaging experience.

7 CONCLUSION
In this project, we developed a VR Tennis Training Game that sim-
ulates realistic tennis gameplay using Unity’s physics engine and
VR capabilities. Our implementation focused on accurate collision
detection, realistic ball physics, and smooth performance to provide

https://assetstore.unity.com/packages/3d/characters/free-sports-kit-239377#publisher
https://assetstore.unity.com/packages/3d/environments/simple-sky-cartoon-assets-42373

4 • Yiqing Wang, Iris Zhao, and Jaylyn Zhang

an immersive training experience.
Through evaluation, we con#rmed that our ray-casting-based colli-
sion detection signi#cantly improved accuracy, addressing issues
with missed racket-ball interactions in high-speed swings. Our
physics calculations produced bounce dynamics closely aligned
with real-world tennis ball behavior, though improvements in spin
visualization remain necessary. Performance testing demonstrated
that our system runs e!ciently on the Meta Quest 2, maintaining a
high frame rate with minimal latency.
User feedback indicated strong engagement with the training me-
chanics, though some limitations, such as the absence of haptic feed-
back and limited spin e$ects, were noted. These insights provide
a foundation for future enhancements, including more advanced
physics modeling, multiplayer functionality, and improved feedback
mechanisms.
Overall, our VR Tennis Training Game successfully achieves its goal

of providing an engaging and realistic training environment for play-
ers. Future work can further re#ne realism and interactivity, making
it a more e$ective tool for tennis training and skill development.

ACKNOWLEDGMENTS
We thank our course instructors and TAs for their guidance and
feedback, which helped re#ne our physics modeling and gameplay
mechanics. We also appreciate our testers for their valuable insights
in evaluating the VR Tennis Training Game. Lastly, we acknowledge
the University ofWashington for providing resources that supported
our development.

REFERENCES
• FPS Full Game Tutorial
• How to #x Pink Materials in Unity"
• Oculus Quest2 set up guide

https://www.youtube.com/watch?v=xgOJwDSARmo&list=PLtLToKUhgzwm1rZnTeWSRAyx9tl8VbGUE&index=5
https://www.youtube.com/watch?v=xgOJwDSARmo&list=PLtLToKUhgzwm1rZnTeWSRAyx9tl8VbGUE&index=5
https://www.circuitstream.com/blog/how-to-setup-oculus-quest-2-for-development-in-unity-under-20-minutes

	Abstract
	1 Introduction
	1.1 Contributions

	2 Related Work
	3 Method
	3.1 Collision Detection
	3.2 Ball-Ground Bounce Behavior
	3.3 Ball-Racket Bounce Behavior

	4 Implementation Details
	4.1 Feature: Ball Machine Shooting Randomization
	4.2 Feature: Scoring Mechanism
	4.3 Feature: Start And End Game UI

	5 Evaluation of Results
	5.1 Collision Detection Accuracy
	5.2 Ball Physics and Realism
	5.3 User Feedback and Playability

	6 Future Work
	7 Conclusion
	References

