
Sentient Sandbox: Modify Worlds with Language Models

Evaluation

Implementation Details
● Relationship Graph - a key component that 

encodes the properties of objects in the 
scene and their relationships with each 
other

● Prompt Engineering - we engineered our 
prompt to GPT-4o mini with ease of use in 
mind

● Collision Detection - checks for overlaps 
between oriented bounding boxes (OBB) 
using Unity Collider and Physics APIs for 
calculations

● Our goal is to allow a more intuitive way to 
approach human to machine interaction 
with virtual realities. 

● Through natural language commands, we 
allow users to modify 3D VR environment 
using their voice

● LLMs have shown success in other fields 
like 2D image editing but real-time 
interactive environments have not been 
explored deeply as of late

Joshua Jung, Michael Li, Eric Bae

Introduction Pipeline

Figure 1: Example Workflow of Our Product Figure 2: Pipeline

Discussion
Benefits
● From our testing, it helps with enhanced 

accessibility, providing an interface for 
non-experts in Unity scene building to modify 
the scene

● Real time interaction is also a key feature. 
Seeing the user’s request be processed in real 
time without having to rerun the scene or 
fiddle with numbers and code is a massive 
advantage

● It’s also extremely scalable and flexible. 
Everyone has a different way of 
communicating the same message and our 
system can handle nuances in speech 
patterns. It’s also very scalable, allowing the 
addition of new commands

Limitations
Alternate explanation for inconclusive results:
● The finite number of allowed commands 

severely limits the different number of ways 
the user can interact with their environment

● Currently limited to modification of an existing 
scene and not yet on object creation

Future Work
Improvements to try given time in future:
● Adding more scenes and objects to work as a 

benchmark to test more variety
● Adding more commands and degrees of 

freedom for the user to interact with
● Allow the user’s phrasing to be more flexible, 

such as when commands are not as clear
● Object creation - instead of just modifying the 

scene, we would want to allow true creativity 
by allowing the user to create what they 
visualize into the scene

● Built-in language translation. As mentioned 
before, different people have different ways to 
communicate. This not only means how they 
talk, but also what language they use. We 
would like to add automatic language 
detection for more than just English

As shown by (Figure 2), we describe how we 
achieve scene modification with voice
1. Speech recognition

a. While exploring the scene, the user can 
speak out loud 

b. We record their request and convert to a text 
string to process

2. Natural Language processing
a. with the transcribed text string, we extract key 

parts of the request
b. Parts: target to modify, type of command, and 

command parameters
3. Scene Graph Analysis

a. We have a relationship graph of the objects 
currently in the scene that provides context, 
increasing consistency of the desired output

b. encodes not only the objects in the scene but 
also a bidirectional relationship between each 
object on where it is relative to each other

4. Collision Detection and Validation
a. We run through many checks to make sure 

that any modifications made to the scene 
wouldn’t have unintended consequences

b. One such check is potential collisions 
between objects that would be inconsistent 
with Unity’s physic engine

5. Scene Update and Execution
a. Once validated, we will apply the command 

with its defined parameters to the 3D 
environment

During our testing, we made sure to test key 
performance metrics that reflect on user 
satisfaction:
● Latency

○ Currently, our latency is about 5 seconds for 
the user request to be analyzed and for our 
system to make the modification to the scene 
itself

○ In general, this would be good enough for 
many practical purposes such as editing but 
not so much when almost instantaneous 
updates are required such as simulations

● Accuracy of Modification
○ One of the biggest performance metrics is if 

the system correctly recognizes the intention 
of the human speaking

○ What we noticed is because of our use of a 
relationship graph, the our model works best 
when commands are given in relative to other 
objects currently in the scene that the system 
can recognize

○ This means saying “move the tree left of the 
house up by 5 units” would have a 
significantly higher success rate than “move 
the tree in the left up by 5 units” due to the 
system’s ability to recognize the target object 
relative to other objects

Technology Stack
We used a variety of technologies to 
accomplish this:
● OpenAI Whisper for speech to text
● GPT-4o Mini for text processing
● Unity for 3D rendering and VR integration
● Meta Quest 3 Headset
● Unity assets for scene building


