
CSE 493V Final Project Report
ASH LUTY, DEEPTI RAMANI, and NIK SMITH, University of Washington

Fig. 1. Generating a complex cube with patterned rivaling colors and a cube rotation
animation, to test the effect of more complex binocular rivalry on visual comprehension
and comfort. Unity programs were built to Oculus Quest 2

Abstract
What happens when we are given complete control over what images are sent to each
eye? We can generate robust, programmatic illusions which harness the splicing of
binocular images performed by the brain, and observe the qualities of the resulting
perceived binocular images. Previous work in this area has attempted to use rivalry as a
stimuli to draw attention to specific objects in the scene (Krekhov et al.). Binocular
rivalry and the stitching together of almost identical images has also been used to
improve the perceived contrast of images, despite the physical limitations of a headset
(Zhong et al.). In this project, we explored different ways to induce binocular rivalry and
the effects this had on user-perceived images.

Introduction
The most common reason to send different images to each eye in a virtual reality
headset is to give users visual depth cues. Objects are projected differently to give an
illusion of depth and occlusion. What if we did more than change the projection of the
scene per eye? How would users respond if an object was a different color per eye, or
present in one eye or not the other?

Binocular rivalry is the optical effect of applying a very different image to each eye [4].
Instead of the images being superimposed or fused, the two rivalring images can be
focused on individually. This is usually not desired, since virtual reality experiences are
intended to be fully immersive and seamless. However, some research has been done
[1] to explore the usefulness of using binocular rivalry as a visual cue.

We wanted to discover more about the usefulness of binocular rivalry, such as ways to
draw attention to objects, novel experiences, and more. It is also important to explore
the positive and negative effects on users. It is possible that some effects produce
minimal negative effects on users, while larger discrepancies in images might be
unpleasant.

Our approach is to create various filters to change the visuals of objects per eye. The
effects can be modified to be minor or major discrepancies. This will be useful for user
studies where we test the mental and physical effects of binocular rivalry of various
types. Users can also explore the usefulness of visual cues in a virtual escape room.

Contributions

Our primary contributions for this project are:

● We created stereo shaders to render objects differently for the left and right eyes.
The first shader we implemented was a color change shader, which rendered the
object with different color overlays for the left and right eyes. We also
implemented a grayscale-color shader, which rendered the object in grayscale for
the left eye and in the original color scheme for the right eye. Finally, we made an
HSV shader, which renders the object with different (adjustable) HSV values for
the left and right eye.

● We ran a user study to determine how the different stereo shaders affected how
users focused on and reacted to objects. We created a Unity scene containing an
environment with a few objects rendered in grayscale, then added an object that
would be rendered differently. We then asked users to switch between stereo
shaders and observed how they reacted to the object for each one.

Related Work
A previous research paper by Krekhov, Krüger [1] compared binocular rivalry to other
visual cues, such as color, to find objects. Participants were asked to notice if a
particular object is present. If the object was present in the image, it is shown in one eye
and not the other. The object is displayed in neither eye if it is not there. While this is a
minimally-researched area, they found that binocular rivalry is slightly better, or at least
comparable to, other visual cues. On its own, binocular rivalry did not cause any
discomfort in participants.

Method and Implementation Details
Our approach to this project can be divided into two parts: creating the shaders to be
applied to different objects in the scene, and testing the different applications of those
shaders and their effects on human perception.

Stereo Shaders

We wanted to implement a variety of different stereo shaders in order to best test how
humans respond to different forms of binocular rivalry. Unity provides support for
single-pass stereo instanced rendering, which we used to make our custom shaders [3].

When returning the final color to output in each fragment shader, we want to return
something different for the left eye and right eye. We did this by using unity’s 𝑙𝑒𝑟𝑝
function, which takes in two inputs to interpolate between, and the time value used to
interpolate between them. Something to note is that returns the value of the first𝑙𝑒𝑟𝑝
input when the time value is equal to 0, and returns the value of the second input when
the time value is equal to 1. Additionally, Unity provides a built-in shader variable,

, which is set to 0 when rendering the left eye and 1 when𝑢𝑛𝑖𝑡𝑦_𝑆𝑡𝑒𝑟𝑜𝐸𝑦𝑒𝐼𝑛𝑑𝑒𝑥
rendering the right eye.

Using this, we set our fragment shader to return separate values when rendering the left
and right eye views by using ,𝑙𝑒𝑟𝑝(𝑙𝑒𝑓𝑡_𝑐𝑜𝑙𝑜𝑟, 𝑟𝑖𝑔ℎ𝑡_𝑐𝑜𝑙𝑜𝑟, 𝑢𝑛𝑖𝑡𝑦_𝑆𝑡𝑒𝑟𝑒𝑜𝐸𝑦𝑒𝐼𝑛𝑑𝑒𝑥)
where and are the RGBA vectors for the color rendered for the𝑙𝑒𝑓𝑡_𝑐𝑜𝑙𝑜𝑟 𝑟𝑖𝑔ℎ𝑡_𝑐𝑜𝑙𝑜𝑟
left eye and right eye, respectively.

Grayscale-Color Shader

Fig. 2. Rendering a Unity Scene with the right eye seeing an object in color, and the left
eye seeing the same object in grayscale.

Our shader for grayscale-color stereo rendering only takes a 2D texture image as input.
The vertex shader converts the vertex position from object space to clip space so that
the object can be properly rendered, and also passes in the uv coordinates for the
passed-in texture, which will be used in the fragment shader.

The fragment shader samples from the texture using the passed in uv coordinates. For
the right eye, the final color returned is simply whatever was sampled, but for the left
eye, the shader performs a weighted sum of the RGB color values to calculate the final
grayscale value, and uses that value for all three of the RGB channels in the final color.
The weights used for this sum are: z

.𝑔𝑟𝑎𝑦𝑠𝑐𝑎𝑙𝑒 = (0. 299 * 𝑟𝑒𝑑) + (0. 587 * 𝑔𝑟𝑒𝑒𝑛) + (0. 114 * 𝑏𝑙𝑢𝑒)

As seen in Figure 2, applying this shader to an object results in the left eye seeing the
object in grayscale, and the right eye seeing the object in full color.

Adjustable HSV Modifier Shader

Fig. 3. Rendering a Unity Scene with the right eye and left eye seeing the same object
with different hue, saturation, and value adjustments. The scene includes a UI in the top
right corner of the screen for modifying each property for the left and right eye.

Our shader for HSV stereo rendering was created as a way to experiment with how
extreme we could make the differences between images sent to the left and right eye,
and whether certain properties had more of an impact on the effects of binocular rivalry
than others.

The HSV shader takes in a 2D texture as input, in addition to modifiers for the hue,
saturation, and value for each eye. Similarly to the grayscale-color shader, the HSV
shader’s vertex shader also converts the vertex position to clip space and returns the uv
coordinates for the texture at that position.

The fragment shader, on the other hand, requires a lot more computation, since it needs
to convert from RGB to HSV, apply the modifications to each property, then convert the
modified values back to RGB before returning them. Unity’s shader graph includes a

node which includes both required conversions for this𝑈𝑛𝑖𝑡𝑦_𝐶𝑜𝑙𝑜𝑟𝑠𝑝𝑎𝑐𝑒𝐶𝑜𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛
shader. We initially tried to implement this conversion manually, but found that Unity’s
provided implementation was more accurate and efficient, and went with that instead.

Something to note is that when applying the HSV property modifiers to the original
texture color values, we needed to clamp the output HSV values between 0 and 1, since

Unity’s node uses these bounds for them, rather than the typical 0-360 for hue and
0-100 for saturation and value.

Color Change Shader

Fig. 4. Rendering a Unity Scene with the right eye seeing an object with a cyan overlay,
and the left eye seeing an object with a magenta overlay.

Our shader for color change stereo rendering takes in a 2D texture as input, in addition
to the colors to use for the left and right overlays. Similarly to the two previous shaders,
the vertex shader simply converts the vertex position to clip space and returns the uv
coordinate to use when sampling the texture input.

The fragment shader then samples from the texture input to get the initial RGBA values,
then multiplies it by the right eye color input to get the right eye output, and multiplies it
by the left eye color input to get the left eye output. This multiplication is element-wise
multiplication, so each channel in the original sampled color will be multiplied by the
corresponding channel in the overlay color.

As seen in Figure 4, applying this shader to an object results in it being rendered in two
different colors for the left and right eye, with the original texture information still being
preserved underneath the color overlay.

Applications

The main goal of this project was to test the effects of sending different images to the
right and left eye, and to determine if there was any use for those effects in VR
applications.

We initially wanted to use the color overlay stereo shader to test whether rendering an
object in different colors for the left and right eye would make it stand out to the viewer
without any negative effects, or whether it would simply cause disorientation or nausea.
After creating an initial implementation of this filter (using bright red and green), we
found that it resulted in the object having an almost shiny, reflective appearance,
despite not having any specular or metallic properties. After this discovery, we began to
experiment with different color combinations to see what different effects we could find,
and concluded that most color combinations result in a shiny, almost iridescent
appearance- this made sense, since iridescence is dependent on viewing angle and will
have the similar effect of reflecting different colors to each eye from the same location.

We also tested the color overlay shader on moving objects, to see if this would remove
or change the iridescence effect. We didn’t see any noticeable change, but rotating the
object did make the texture seem to shift slightly as the colors “flashed”, which was an
interesting effect.

We also wanted to test the HSV modifier shader to see what properties would make the
object stand out the most to users, as well as how much those properties needed to
differ between eyes in order for this to take effect. We found that modifying saturation
didn’t have too much of an impact on the visibility of the object until the difference was
from almost grayscale to extremely high saturation. We also found that changing the
value of the object made it stand out the most, since it created an almost flashing effect
when it was viewed, and changing the hue also had a significant effect on visibility,
though it was found to be more disorienting than the other properties in general.

Hardware and Software

For this project, we used Unity to create the application used to test our shaders. We
used the Unity XR Plugin Management system to handle the necessary plugins and
packages required for Unity VR development. Specifically, we used the Mock HMD
plugin to render and display the scene independently for the right and left eye views
within the Unity game view in order to better debug and test the shaders without having
to build to a VR headset each time. We also used the Oculus plugin in order to run our
app on the Oculus Quest and test it in VR, to better experience what effects each
shader had on our perception of the object they were applied on. We also downloaded
the Unity VR Escape Room package, since we wanted to reference how to create an

escape room for VR and then apply our different shaders to objects within that escape
room, but ultimately ran out of time for doing so.

The Unity project can be found at https://github.com/AshleyL-02/BinocularRivalryVR.

Evaluation of Results
One limitation of our approach is that we were unable to figure out how to apply certain filters or
effects over only one object in the scene. Because shaders are only applied to specific objects
(or the whole scene, by using cameras and replacement shaders), this made it difficult to figure
out how to implement filters that affect parts of the background, in addition to the object itself
(such as blur, glow, luminance, etc.) This made it a lot more difficult to implement our initial
vision for the project.

Another limitation of our approach is that we didn’t have time to implement a full escape room
environment for testing the effectiveness of our shaders on improving object visibility and how
much they stand out to users. Because of the simple, empty nature of the “room” we used to
test these shaders, the objects weren’t difficult to sport from the beginning, which made the
results of our experiments less meaningful.

Despite this, we found that we could create some interesting effects using stereo rendering and
applying different effects to each eye. The color change effect was the most interesting- we
were expecting the colors to clash and the final result to look disorienting or difficult to look at,
but it ended up having a more visually appealing effect. On the other hand, the grayscale-color
filter didn’t have as much of an impact. Although it did make the object stand out more than its
surroundings, the resolution between the left and right images wasn’t as smooth as that of the
color change shader.

Discussion of Benefits and Limitations
The benefits of this work was creating various ways of creating visual cues using binocular
rivalry. We also were able to create a simple scene for users to explore and experience the
different filters. However, we ran into limitations with Unity and the Universal Render Pipeline.
We found it easier to create filters for a specific material, so we were unable to test full-eye
filters in this project. We also found it difficult to create filters that modify an object’s texture or
alpha, like glow or gaussian blur.

Future Work
Future work could examine form-based rivalry, where objects with different forms, like a square
and circle, are sent to each eye. Implementation would involve setting up two locations in a
Unity scene, with a right-eye camera viewing one form and a left-eye camera viewing the other
form. The perception of these forms could further be heightened by using forms with rivaling

https://github.com/AshleyL-02/BinocularRivalryVR

semantic meaning, such as sending similar pictures of a dog and cat to each eye, and asking
the user to determine what animal they are being shown.

Since introducing new images to a given eye will increase the amount of attention the brain
gives to a specific eye, we wonder if the frame rate of a given display could be improved by
splitting frames not just over time but also alternating frames between eyes. The resulting effect
of both mental splicing but also the improved recognition of the most recently updated frame
could potentially make this concept work without inducing too much rivalry.

Conclusion
Binocular rivalry creates a novel experience for users by creating two different images they can
focus on. This allows developers to include important cues that are harder to miss, and more
interesting to see. Binocular rivalry can easily be implemented in modern rendering systems,
especially systems that use a separate frame buffer for each eye, or using Unity stereo
rendering. Binocular rivalry could be leveraged for many interactive scenarios, from virtual
reality games to scientific research to make important information visually unique.

Acknowledgements
[1] (Krekhov et al.) Deadeye: A Novel Preattentive Visualization Technique Based on
Dichoptic Presentation,
https://www.cs.rpi.edu/~cutler/classes/visualization/S20/papers/deadeye_2019.pdf

[2] (Zhong et al.) DiCE: Dichoptic Contrast Enhancement for VR and Stereo Displays,
https://www.cl.cam.ac.uk/research/rainbow/projects/dice/

[3] Single-Pass Instanced Rendering,
https://docs.unity3d.com/Manual/SinglePassInstancing.html

[4] Binocular rivalry, https://en.m.wikipedia.org/wiki/Binocular_rivalry

https://www.cs.rpi.edu/~cutler/classes/visualization/S20/papers/deadeye_2019.pdf
https://www.cl.cam.ac.uk/research/rainbow/projects/dice/
https://docs.unity3d.com/Manual/SinglePassInstancing.html
https://en.m.wikipedia.org/wiki/Binocular_rivalry

