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Abstract – Technological innovation in the realm of virtual real-
ity (VR) has progressed significantly with devices as ubiquitous as
smartphones capable of showing 3D content. Since the advent of
camera technology, we have over a century of 2D media material
at our disposal, which we believe has untapped potential for future
3D-generated content. Our project focuses on leveraging the advance-
ment in Depth Estimation Deep Learning Models to approximate the
depth of an object(s) in a 2D image in order to convert it into a 3D
anaglyph.

1 INTRODUCTION
Research into depth estimation primarily focuses on applications

in self-driving technology and robotics, typically requiring the use

of multiple specialized cameras to generate a 3D reconstruction of

a particular scene. Our goal is to inexpensively estimate depth and

generate 3D content from 2D source material. As such, our use cases

are limited to generating image/video anaglyphs or image/video

files compatible with 3D displays.

There are multiple related works in this area of 2D to 3D depth

estimation, which we can separate into two categories: (1) using

classical computer vision algorithms to interpolate depth, and (2)

using neural networks. Our work falls under the second category.

For example, [Kha20]’s work focused on generating 3D models of

shoes based on a 2D side-view image. [Alc18]’s work is particularly

relevant in that it focused on generating a 3D reconstruction of

human faces from 2D images. More recently, research into using

pre-trained models, such as [Cal23]’s stable diffusion 2D to 3D video

synthesis, has become more popular for generating the depth map.

It’s worth noting that most of these projects have not imple-

mented the software layer to support VR. Only [Xie16]’s 2D to 3D

video conversion with CNN’s project supports using anaglyphs and

VR, but it used inferior neural networks and an old dataset. Our

project can be best compared to Google’s Starline project although

it is much cheaper to execute and requires less specialized equip-

ment and resources. We seek to expand upon this new area in 3D

reconstruction and support 3D real-time video conversion using

anaglyphs and VR.

1.1 Contributions
Wedeveloped a fully automatic pipeline for generating 3D anaglyphs

from 2D image inputs.

• We have shown that we can use an inexpensive 2D to 3D con-

version pipeline to provide an immersive 3D experience us-

ing commodity hardware and off-the-shelf anaglyph glasses.

• We have further improved classical stereo rendering algo-

rithms with anaglyphs by accelerating the process on GPU.
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2 RELATED WORK
Past works mentioned earlier usually revolve around converting

a particular object, such as a shoe or human faces, into 3D. Our

project, however, is intended to be more general purpose as well as

branching into real-time videos.

We were inspired by [Law+21] Google’s Starline project which

involves ground-breaking research in computer vision, machine

learning, and real-time compression techniques. There is a signif-

icant hardware aspect to it as well that includes both visual and

audio aspects, although we will focus on the visual technology only.

Currently, Starline operates in a 3D video chat booth that contains

"capture pods" which capture both color and depth data to output

three depth maps. Four additional tracking cameras are used to

generate four color perspectives, combining with the depth maps

for a total of seven video streams. Four high-end Nvidia GPUs are

used to process this data. Three depth maps from each of the left

and right eye are rendered through their novel "image-based fusion"

raycasting algorithm. The four color texture streams are projected

onto this fused surface and blended using normal-based texture

blending. The resulting left and right images are displayed on their

special 3D light display screen for an optimal 3D render.

We are limited in the amount of hardware and computational

power we can use and thus we will be using pre-trained models and

simpler but adequate stereo rendering algorithms to generate our

left and right images.

3 METHOD
Our method can be used on commodity hardware, only requiring

the use of a web camera, single GPU, and anaglyph glasses. As

such, we will be focusing heavily on the software aspect. Although

we were not able to access a 3D display, our research can still be

applicable for its use, namely that a 3D display simplifies the pipeline

by essentially doing the post-processing step for us. A diagram of

the full process is illustrated in Figure 7.

3.1 Monocular Depth Estimation
Monocular depth estimation is the process of estimating depth

values for each pixel given a single (monocular) RGB image. Our

core process for estimating these depth values involves a Dense

Prediction Transformer (DPT) model by [RBK21] which takes in a

2D RGB image and outputs a grayscale (1D) depth map. DPT is a

new architecture that leverages a Vision Transformer (ViT) instead

of CNNs which has been shown to improve performance and quality

of output. It has primarily been used in autonomous vehicles and

has been trained on 1.4 million images produced from self-driving

car radars. As such, the data it has been trained on consists mainly

of images taken outdoors, although we believe it will generalize well

enough on human-focused image inputs without too much noise or

estimation error.
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Fig. 1. Sample image for illustrative purposes.

Fig. 2. A depth map outputted as a 1-channel image. The image does not
necessarily need to be grayscale.

A depth map for the original image presented above (Figure 1)

is seen in Figure 2. Essentially, a depth map is all that is needed to

render a full 3D anaglyph, however we go further by allowing for

selective 3D effects.

3.2 Image Segmentation
For selective 3D anaglyph images, where only a particular ob-

ject(s) is given a 3D effect, we employ image segmentation to de-

termine the object(s) of focus. We use the Masked-attention Mask

Transformer (Mask2Former) by [Che+21] that takes in a 2D im-

age and outputs a segmentation map. Current research focuses

on developing models specialized for specific tasks, however, the

Mask2Former model generalizes well to any image segmentation

task. A segmentation map of the original image is seen in Figure 3.

This is done separately from the DPT model, however, both outputs

then serve as inputs for the post-processing step.

Fig. 3. A segmentation map outputted as a 1-channel image. We manually
mapped different values into different colors to visually show the classes as
represented by the segmentation map.

3.3 Anaglyph Formation
Anaglyphs are a common and inexpensive way of generating 3D

images. We generate two additional images from each left and right

eye to superimpose onto the original image, creating the resulting 3D

anaglyph. The left and right eye images are generated by shifting

every pixel by a specific amount determined by the normalized

depth map. In general, the left and right images will have a negative

horizontal parallax. This is especially relevant when discussing

selective anaglyphs.

We use a classical anaglyph algorithm to determine how much to

shift the pixels of an image [Cal23]. In addition to the original image

and depth map as inputs, we also take in a divergence parameter

to adjust the degree to which we want a 3D effect. Let 𝐷 be the

divergence parameter where 𝐷 = ±0.025𝑤 where𝑤 is the width of

the 2D input image.𝐷 is negative for the left image while positive for

the right image. We define the coefficient 0.025 to be the measure of

the 3D effect (i.e. being 2.5% of the width of the image) as it provided

the best results. For a pixel, the resulting offset is then:

offset = ⌊(1 − 𝑛2) ∗ 𝐷⌋ (1)

where 𝑛 is the depth value associated with that pixel in the normal-

ized depth map. Pixels that appear farther away (have depth values

close to 1.0) would have little to no offset, making them appear flat

and further away. The intended effect is to have higher offsets for

objects that appear closer to us. In the left/right image, we shift

each pixel to the right/left by the offset calculated. Once the left and

right images are created, we superimpose them onto the original

to create a full-image anaglyph. An example result can be seen in

Figure 4

With a segmentation map, we can adjust the values in the depth

map so that the object of interest is "brought closer" while everything

else appears further away. This effect compounds when calculating

the offsets as the pixels associated with the object(s) of focus are

the only ones that appear "shifted." This alternative implementation
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is used for generating selective anaglyphs. An example result can

be seen in Figure 5.

Fig. 4. Full image anaglyph using only the depth map.

Fig. 5. Selective anaglyph on the person only with the depth map and
segmentation map.

3.4 Real-time Videos
So far we have discussed the pipeline for a single 2D image input.

As videos simply consist of numerous images strung together at

a high frequency, we can extrapolate the process to be deployed

in real-time video use. This involves rendering each frame of the

video into an anaglyph. When using a webcam, the rendering is

done between each consecutive image captured by the camera. Due

to the relatively high computational power needed, we experience

high latency issues which we discuss more in depth in Section 6.

3.5 3D Displays
Ideally we want a 3D display larger than 50 inches as larger

displays would give a more immersive 3D experience, although

any 3D display would work. A 3D display would perform the post-

processing step for us, only needing to take the original image and

depth map as inputs. A segmentation map can also be inputted to

selectively choose an object(s) to be 3D (i.e. a person).

Fig. 6. A screenshot of our video anaglyph in action.

4 IMPLEMENTATION DETAILS
We only used commodity hardware and off-the-shelf anaglyph

glasses for our project and presentation. For our hardware, we used a

laptop with the 12th Gen Intel(R) Core(TM) i7-12700H CPU running

at 3.30 GHz and an NVIDIA GeForce RTX 3050 Ti Laptop GPU. Both

models were adjusted to run on the GPU to speed up performance

for real-time videos while the pre- and post-processing steps were

run on the CPU.

4.1 Software
Our pipeline uses two deep learning models: (1) the DPT model

by [RBK21], and (2) the Mask2Former model by [Che+21]. In our

pre-processing step, we simply resized the input RGB images to be

250x250 pixels before they are further pre-processed by the models

mentioned above. The output of the DPT model is a depth map: a 1

channel image (250x250) where the value of each pixel represents

the approximate depth. The output of the Mask2Former model is a

segmentation map: a 1 channel image (also 250x250) where pixels

classified into the same segment contain the same value. These two

maps are then used as inputs to our post-processing step.

In our post-processing step, we normalize the depth map and then

use the classical anaglyph algorithm from section 3.3 to calculate the

offsets for each pixel for the left and right images. More specifically,

we replace the offset pixels in the left and right images with the RGB

value of the pixel from the original image such that they appear

"shifted" from the original image. Once we have the left and right

images, we take the original RGB image and replace the R values

with the R values of the left image and the G and B values with the

G and B values of the right image. The composite image (250x250)

created is our resulting full-image anaglyph.

We can optionally use the segmentation map to create selective

anaglyphs, which is used when deploying our method on our web-

cam for real-time videos. Our post-processing step can be adjusted

to accommodate this additional input. Instead of shifting every pixel

of the image, we only shift the pixels associated with a particular

segment, as determined by the segmentation map. For example,

pixels only associated with a "person" segment would have their

corresponding pixels in the depth map "brought forward." In our
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Fig. 7. Overview of the components and data flow in our system. In real-time videos, the entire pipeline is computed per frame.

implementation, we decreased the depth of pixels associated with

the "person" segment by 20 meters while increasing the depth of

all other pixels by 1000 meters (or essentially infinity) before nor-

malizing the depth map. This results in the red and cyan shifts only

appearing for the person while the rest of the image is in 2D.

5 EVALUATION OF RESULTS
Given that there is no preestablished benchmark to assess the per-

formance of our method as it’s dependent on the specific hardware

used, we want to dedicate this section to comparing the perfor-

mance improvement that we made from running the models on

GPU instead of the CPU. When running on the CPU, the process

takes 7.134 seconds per frame render. On the other hand, with the

pipeline partially utilizing the GPU, we reduce the time down to 0.5

seconds per frame.

6 BENEFITS AND LIMITATIONS
Given that we use anaglyphs as the medium to convey a 3D image,

there is a limitation to the amount of parallax that it can create. It

also deteriorates the image’s color quality and requires the user to

wear anaglyph glasses at all times. The color effect can be mitigated

by using a VR headset, although it is definitely more cumbersome to

wear than anaglyph glasses. On the one hand, the issue of wearing

glasses can be resolved by using a 3D display instead.

Moreover, we can use knowledge distillation to reduce the classi-

fication of the segmentation model to just be either human or not

human instead of the current output of 1000+ possible classes. With

such a process, we will have smaller models that are more efficient

to compute. Another aspect of our project that can be improved

upon is to convert the model to ONNX browser format and test the

feasibility of running the whole pipeline through the browser as a

web application.

7 FUTURE WORK
Currently, our whole pipeline uses 250 x 250 image resolutions

which is a relatively low screen resolution. Future work can consider

adding image super-resolution models to our pipeline to upscale

the image back to a particular display size. Of course, the compu-

tational limitation is still a factor to consider. As such, we can also

consider investigating ways to speed up performance, such as dele-

gating computation to the cloud and letting users transmit only the

compressed embedded representation of the original images to the

cloud server for processing. This would significantly improve the

experience, especially on mobile devices.

8 CONCLUSION
In this paper, we delineated our methodology for generating

selective 3D anaglyphs from 2D source material and applied it to

real-time videos. We accomplished a practical pipeline of applying

anaglyphs to webcam usage using only commodity hardware, entail-

ing future potential for cheaper and more widespread applications

in immersive 3D experiences.
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