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Fig. 1. The following is the pipeline that was followed to implement basic occlusion in the context of Augmented Reality. This pipeline is a snapshot of the
entire rendering process, from getting the digital, depth, and virtual images to rendering the final blended image. Each stage of the pipeline was implemented
primarily using Python and the final results of the occlusion were streamed to an OculusQuest 2.

Abstract: One of the most important challenges to tackle in Augmented
Reality is the interaction between real and virtual objects, especially in
the context of occlusion. Depth perception is one of the most important
factors affecting the realism of a scene, so it is very important to properly
blend virtual and real objects that are occluding each other as inaccurate
occlusion can dramatically impact a user’s sense of depth, thus making
the AR experience non-immersive. Generally, a depth sensor is used to
tackle the problem of determining the depth of real objects in the scene, but
simply relying on the depth sensor can lead to incorrect results because of
the significant noise in the sensor’s readings as well as the effect of other
environmental factors like lighting, especially in outdoor conditions. The
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method that we implemented for our final project built on top of the typical
depth-sensor approach by using the color distribution information of the
real scene to calculate the probability of each pixel being in the foreground
or the background and using those probabilities to determine what part of
the virtual object to render. We also implemented smoothing methods such
as trimap-generation and alpha matting to realistically blend the foreground
and background and thus create a seamless render. Such a probabilistic
pixel-based approach allowed us to effectively implement occlusion (albeit
not at a very good frame rate) even in cases where multiple objects were
occluding different parts of the virtual object. The code for our project can
be found here.

https://github.com/NeelJog/CSE493_FinalProject
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1 INTRODUCTION
The primary goal of AR is to blend the virtual object/image with the
user’s real world in a seamless, efficient, and realistic manner. While
there are many scenarios that affect how realistic a scene appears
to the users, one of the most prominent ones is depth perception. A
user’s depth perception not only allows the user to localize their own
position in the scene but also helps the user gauge how to interact
with the objects in the scene. A skewed depth perception can not
only have aesthetic implications for the scene but can completely
alter how the user engages with the virtual/real objects in the scene.
One of the biggest indicators of depth in a scene is occlusion.
Occlusion happens when an object that is closer to the viewer

partially blocks the viewer’s sight of another object that is farther
away in the scene. This is one of the ways that humans can tell
which objects are closer to them than another object.
Consider the following example:

In this image, the primary way in which we know that the seated
person is closer to us than the lake is because the person is partially
occluding the lake. If it was the lake that was closer to us than the
person, then it would be the person that was occluded by the lake
and not the other way around. While this might seem like a fairly
straightforward concept, it plays special prominence in the world of
Augmented Reality when virtual objects are placed in the real world
at a certain depth and those virtual objects have to interact with
objects in the real world. It is easiest to understand the importance
of occlusion by considering an example in which occlusion is not
properly handled.
Consider the following example:

In this case, it appears that the dragon is located in front of the chair
because the dragon occludes the chair; however, we can tell from the
shadow that the dragon is intended to be behind the chair. Improper
occlusion handling can thus lead to skewed spatial properties which
in turn can spoil a user’s AR experience.

While it is tempting to think that simply using a depth sensor can
solve the problem of occlusion, the noise in sensor data – as well as
the variation in the environments that AR is used in – makes using

depth data from depth sensors an incomplete approach at best. For
our final project, we decided to explore implementing a method
that built on the values from the depth sensor and used statistics
and probability to handle occlusion and create a realistic AR experi-
ence. Even though our method processed the data differently, we
used only a singular RGB-D camera. The specific ways in which
we processed the depth sensor data are discussed in the "Method"
section, but overall, our method is unique from other methods in
that it uses both values from the depth sensor as well as the RGB
values to determine attributes that can help determine which pixels
belong in the foreground and which pixels belong in the background.
Unlike other commonly used methods for dealing with occlusion,
the method we researched assigns per-pixel probabilities based not
only on the color of the surrounding pixels but also based on the
general colors that are a part of the foreground and background
categories (along with depth values, of course).
There are a couple of things to note, however. In general, there

are several kinds of occlusions that can occur in an AR setting: real
objects can occlude other real objects, real objects can block virtual
objects, virtual objects can block real objects, and virtual objects can
block other virtual objects. Given the time and hardware restrictions
we had for the project, we decided to focus on only one of the above
cases: when a real object blocks a virtual object. Another caveat of
our method was that our data processing was fairly slow compared
to certain other AR applications. This limitation stemmed primarily
from limited computing power; since we did not have a GPU, we had
to rely on slow frame-by-frame integration of virtual and real objects.
However, in spite of these caveats, we were able to successfully use
RGB and Depth data to accurately implement occlusion in several
different types of environments.

1.1 Contributions
At a high level, we view our project as a super basic tutorial for
anyone interested in the occlusion to get themselves familar with
the field but also a framework that others can easily adapt and build
off as they see fit.

• We introduce an overall pipeline to read capture images
and read depth data from a RGBD, occlude a virtual object
with the capture image, and to stream the result to a virtual
reality headset which can easily replicated using our open
source software.

• A synthesis of various computer vision algorithms and tech-
niques to create a robust and reliable approach for occlusion
of virtual objects that can be easily customized and adapted
if needed in the future.

2 RELATED WORK
In this section we are going to be providing a brief background
on each step in the pipeline as well as justification for how we
implemented each step of the pipeline based on existing literature.

2.1 Capturing Camera Data
We utilized Intel’s RealSense D415 camera which is capable of cap-
turing both depth data alongside capturing video data. Additionally,
while the depth and camera sensors are located in different places

https://github.com/NeelJog/CSE493_FinalProject
https://github.com/NeelJog/CSE493_FinalProject
https://www.intelrealsense.com/depth-camera-d415/
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on the device, their provided SDK automatically merges the two
data streams so that they appear to come from a single POV.

2.2 Distance Image Generation
Previous works [5], and [6] have shown that most commercial depth
sensors suffer from some common issues including random holes
in the middle of objects and randomly depth values for nearby
pixels around the edges of objects. These works have also show
that this problems worsens the farther the object is from the actual
camera. Furthermore, [7] shows that poor lighting conditions and
the presence of shadows significantly magnifies the noise in the
depth readings. All of these effects results in depth sensors generally
giving larger depth readings for non foreground objects than they
actually are. As we discuss in the next section, we remedy this by
introducing a exponential dropoff for our estimate of the depth of
the non foreground regions of an image.

2.3 Probability Generation
Researchers at Microsoft showed how foreground and background
can be done using both depth and image data in [8]. They found
that converting the image to the HSV color space from the RGB
color space and then performing analysis on it produced better
overall results. Additionally, while perform the above algorithm
using all three channels they also found using just the Hue channel
didn’t significantly decrease the accuracy of the system. For each
frame, they generate seperate color histograms for the estimated
foreground and estimated background and use those histograms to
generate a probability for each pixel in actually being its assigned
region. Specifically, this probability is based on the number of other
pixels in the estimated region having the same color as [9] showed
that dominant colors in the estimated foreground/background end
up being the dominant colors in the actual foreground/background.
We use these probabilities with the distance image to get an images
reflecting the probabilities of each pixel actually being in the region
we initially determined. Specifically, do a weight sum to combine
the probabilities from the depth data and the image data and [10]
showed that for most such sensors assigning equal weight generally
produces the best results. Finally, we apply a cost function like the
one used in [2] to get a singular probability measure of each pixel
in the foreground.

2.4 Filtering
Now that we have a cost value associated with each image we
need to determine which value represents the threshold between
the foreground and background. To do so, we utilize the dynamic
threshold calculation technique proposed by Ridlers and Calvard
in [3]. However, the result produced by this adaptive threshold is
quite noisy around the edges and we resolve this issue by using a
guided filter approach proposed in [11]. The algorithm in [11] uses
the original image captured from the camera as a "guide" in order to
smooth the noise around the edges while still preserving the edge
countours. For the sake of the project we utilize [12] which builds
upon [11] but is faster than [11] using subsampling techniques based
on the property of neighboring pixels in images having relatively
similar colors.

2.5 Image Matting
Before we perform image matting, we need to generate a trimap that
can be used by the alpha matting algorithm. We utilize the trimap
generation algorithm proposed in [13] as it optimizes its trimap
generation algorithm to get the most accurate image matting. The
primary challenge in this step is to convert our RGB image to a
RGBA where the A or alpha channel can be used to blend the virtual
and real images as done in [14]. A wide variety of techniques exist
to perform blending including the ones shown in [15][16][17][18].
We will dive deep into the approach we choose and why in the later
sections.

3 METHOD
The method that we researched and implemented can be broken
down into a pipeline similar to the one described in the teaser image
on the first page. In general, the core idea of our method revolves
around using the RGB data on top of the depth data received from
the depth sensor to improve the initial/background segmentation. A
trimap is then used to calculate the alpha value to be used for alpha
blending. This step is followed by detecting pixels on the edge of the
foreground and the background to ensure a smooth transition, and
then using the alpha value to create an image in which the virtual
world overlaps with the real world. Each step is described in more
detail below. This entire methodology is a direct implementation of
the work of Simona Gugliermo [1] whose Master’s dissertation was
the inspiration for our entire methodology.

3.1 Initialization
The first step in the pipeline was to simply collect the RGB-D data
from the sensor and pre-process that data for the next steps in the
pipeline. Because the RGB and D sensors are two different sensors
located on the same device, they collect data about the same scene
but from slightly different views. We thus had to first align the depth
and the color data that we were receiving from the sensor to ensure
that the features we needed would line up well. Fortunately, we did
not have to do a lot of computation to calibrate the sensors in such a
way, because the device already had pre-programmed functionality
that enabled us to correct the depth map and the color map. After
completing this calibration, our next step in this stage was to create
an initial render of the virtual object (in our case, a tennis ball) as
well as to create a binary mask for that virtual object. In the binary
mask, a pixel was given the color black if the pixel was a part of the
actual tennis ball, and the pixel was given the color white otherwise.
The sole purpose of making such a binary mask, as seen in Figure 2,
was to use it in future steps as a filter to get all the pixels that were
relevant for the occlusion and thus save some computation time.
The colored version of the virtual image was made directly using
the color values that were a part of the tennis ball.

3.2 Distance Image
After gathering all the needed pre-processed RGB-D data and the
virtual object and its binary mask, the second step in the pipeline
was to create a distance image, i.e. a greyscale image representing
the depth in the scene such that pixels that are in the foreground of
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(a) Virtual Object (b) Binary Mask

Fig. 2. The virtual object that we want to blend with our incoming video
stream and the associated binary mask

the virtual object are colored white, and the pixels that are a part of
the background are colored with different shades of grey depending
on their depth (as measured using the depth sensor) and how that
depth related to the pre-assigned depth of the virtual object. This
portion of the pipeline relied completely on the values we received
from the depth sensor. If a pixel had a depth value smaller than the
pre-set depth of the virtual object, it was immediately classified as
foreground and assigned a color of white. For the other pixels, we
first calculated how far away the depth of that pixel was from the
depth of the virtual object; the farther away a pixel was, the more
black its color was. Let’s look at how this calculation was made. For
a generic pixel 𝑝 , the depth measured in the real scene 𝐷𝑅𝑆 (𝑝), and
the depth of the virtual scene 𝐷𝑉𝑂 (𝑝) we calculated a value 𝑥 such
that

𝑥 (𝑝) = 𝐷𝑉𝑂 (𝑝)
𝐷𝑅𝑆 (𝑝) + 𝜖

where 𝜖 was just a small arbitrary value to prevent division by
zero. To get a value between [0,1) for that pixel, we performed the
following calculation:

𝑑 (𝑝) = 𝑎𝑥 (𝑝 ) − 1
𝑎 − 1

where a was an arbitrary constant greater than 1 to provide division
by zero. Finally, to get a color value for that pixel (to determine
how grey the pixel should be) between 0 and 255, we just made the
simple mathematical calculation:

𝐷 (𝑝) = 255 · 𝑑 (𝑝)

After this was done for each pixel, we got the distance image show-
ing in Figure 3.

3.3 Histograms and Probabilities
The distance image calculated in the previous step gave us a good
approximation of which pixels were generally in the background
and which pixels were generally in the foreground. Because the
distance image relied solely on data gathered directly from the depth
sensor, the segmentation between foreground and background was
subject to quite a bit of sensor noise (especially at the edge of the
foreground and the background) but we were still able to get a rough
approximation of the pixels in the foreground and background. This
third step in the pipeline was where the method we researched got

Fig. 3. Distance Image generated using depth data

very different from other methods used to handle occlusion. We
used the segmentation provided by the distance image to calculate a
color histogram for the background and the foreground separately.
Then, for each pixel, we used the foreground color histogram to
calculate the probability that – given the color of the current pixel
– the pixel was a part of the foreground. A similar calculation was
made for the background. One quick thing to not is that for the
calculations above, because it was a little inefficient to build three
histograms (one each for R, G, and B), we decided to have only
one histogram containing as much information about the image as
possible by converting the image from RGB to HSV and creating a
histogram for the hue channel. After getting per-pixel probabilities
for the foreground 𝑝 𝑓 𝑜𝑟𝑒 (𝑝) and the background 𝑝𝑏𝑎𝑐𝑘 (𝑝), we had
to consider another issue: because this segmentation was based only
on the color properties of the image, we could get a lot of incorrect
classifications if the colors of the background and the foreground
were similar. We thus decided to base our final foreground image
𝐼𝐹𝑜𝑟𝑒𝑔𝑟𝑜𝑢𝑛𝑑 (𝑝) and our final background image 𝐼𝐵𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑 (𝑝) by
using a weighted sum of the color and the depth of each pixel. This
was done by tuning a weight for how important the color is𝑤𝑐𝑜𝑙𝑜𝑟

and a weight for how important the depth is𝑤𝑑𝑒𝑝𝑡ℎ and integrating
them as follows:

𝐼𝐹𝑜𝑟𝑒𝑔𝑟𝑜𝑢𝑛𝑑 (𝑝) = 𝑤𝑐𝑜𝑙𝑜𝑟 · 𝑝 𝑓 𝑜𝑟𝑒 (𝑝) +𝑤𝑑𝑒𝑝𝑡ℎ · 𝑑 (𝑝)

𝐼𝐵𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑 (𝑝) = 𝑤𝑐𝑜𝑙𝑜𝑟 · 𝑝𝑏𝑎𝑐𝑘 (𝑝) +𝑤𝑑𝑒𝑝𝑡ℎ · 𝑑 (𝑝)𝑖𝑛𝑣𝑒𝑟𝑠𝑒
In the equations above,

𝑑 (𝑝)𝑖𝑛𝑣𝑒𝑟𝑠𝑒 = 1 − 𝑑 (𝑝)

3.4 Cost Function
After the previous step, we had per-pixel probabilities for the fore-
ground and background that also took the depth information into
account. In this fourth step of the pipeline, we created a cost func-
tion where the higher the cost value, the less likely the pixel is in
the background [2]. The computation for the cost pixel was fairly
straightforward:

𝑐𝑠 (𝑝) =
𝐼𝐹𝑜𝑟𝑒𝑔𝑟𝑜𝑢𝑛𝑑 (𝑝)

𝐼𝐹𝑜𝑟𝑒𝑔𝑟𝑜𝑢𝑛𝑑 (𝑝) + 𝐼𝐵𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑 (𝑝)
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Thus, the closer the cost value is to 0, the less likely the pixel is in
the foreground and the closer the cost value is to 1, the more likely
the pixel is in the foreground.

3.5 Thresholding/Filtering
After getting a grayscale image from the previous step, the fifth step
in the pipeline is to threshold the cost image and get a binary image
which can then be filtered to remove the noise.

For the thresholding aspect, the method we chose to implement
used an algorithm that automatically computed a dynamic thresh-
olding value between 0 and 255 such that all pixels below the thresh-
olding value are classified as foreground and all pixels above the
thresholding value are classified as background[3]. The algorithm
can be described as follows:

Algorithm:
// Calculate initial cost average and set threshold limit
mu = mean(all pixels in cost image)
l = some limit value that we have decided // constant

// Classify pixels into foreground/background
for each pixel in virtual image:

if cost(pixel) < mu:
pixel is part of background

else:
pixel is part of foreground

// Calculate mean cost for foreground and background
mu_f = mean(all pixels from foreground)
mu_b = mean(all pixels from background)

// new threshold = average(foreground & background mean)
old_thresh = mu
new_thresh = (mu_f + mu_b) / 2

// Repeat process until we find threshold below limit
while square(old thresh - new thresh) > square(l):

// Classify pixels into foreground/background
// Calculate mean cost for foreground and background
// new threshold = average(foreground & background mean)

After we used the above algorithm to find a threshold value,
we had to consider how we were going to filter out misclassified
pixels (i.e. pixels that were actually foreground but misclassified as
background and vice versa). To handle the first case (foreground
misclassified as background) we first found any tiny holes inside the
foreground cluster and then used a simple interpolation algorithm
relying on a closing operation) to fill those holes with the same
value as the pixels around the hole. This resulted in yet another
binary image where outliers in the foreground had been filtered
out. For the other case (background misclassified as foreground), we
used a simple smoothing algorithm that took in that binary image
as a filter and the original RGB color image as a guidance image to
smooth out the background.

Fig. 4. Trimap for the example scene

3.6 Generating a Trimap
While the previous step was successful in smoothening out the clas-
sification for the foreground and the background, the classification
near the edges of the foreground and background still had a few
issues. We thus decided to use a trimap in this sixth step of the
pipeline to specify which pixels along the edges were surely in the
foreground and the background. First, we performed edge detection
on the binary image computed at the end of the previous step to
find the boundary between the background and the foreground. To
also capture the pixels that were around the edges and not on the
edges, we dilated the edge so we could cover a wider range of pixels
on the background. The amount to dilate was a parameter that we
pre-specified. After all of this edge-detection and border dilation,
we got a trimap that looked like the one shown in Figure 4.

3.7 Alpha Matting
The seventh and penultimate step in our pipeline was to use the
trimap that we made in the previous step and the original image to
find the alpha matte. This process had three main steps[4].
The first step was to try to reduce the unknown region of the

trimap by expanding the foreground and the background. To do this,
we defined a spatial window𝑤 and applied it to each pixel 𝑝 in the
unknown region to check whether there was a neighboring pixel
𝑥 that was similar in color and classification. Essentially, a pixel 𝑝
was classified as background if there was a pixel 𝑥 that was 1) in the
window around 𝑝 and 2) had the same color as 𝑝 and 3) was also
classified as the background. Similarly, a pixel 𝑝 was classified as
foreground if there was a pixel 𝑥 that was 1) in the window around
𝑝 and 2) had the same color as 𝑝 and 3) was also classified as the
foreground. All the pixels on the border that fit neither of the two
criteria were still classified as unknown.
The second step was to sort out the classification for those un-

known pixels by collecting background and foreground samples and
choosing the best for the unknown pixels by minimizing a cost func-
tion. How to define the cost function was pretty open-ended, but
we decided on a cost function that combined photometric affinity,
probabilistic information, as well as spatial affinity. This meant that
we compared the unknown pixels to the background/foreground
samples and compared how similar an unknown pixel’s color was
to the samples, how close the unknown pixel was to the samples,
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Fig. 5. Scene with the virtual object occluded

and how probable that unknown pixel was to be a part of either
set. The best foreground sample we found in this process 𝐹𝑝 and
the best background samples we found in this process 𝐹𝑏 were used
along with the RGB color of a pixel 𝐼𝑝 to compute an alpha matte.
For each unknown pixel, the alpha value was computed as follows:

𝛼𝑝 =
(𝐼𝑝 − 𝐵𝑝 ) (𝐹𝑝 − 𝐵𝑝 )

| |𝐹𝑝 − 𝐵𝑝 | |2

Finally, in the third step, we smoothened the matte by computing a
weighted average of the closes m neighbors of each unknown pixel
p.

3.8 Compositing
Finally, we had all the information we needed to make our final
rendering. The eighth and final step was to use the alpha matte from
the previous step and apply it to the real image 𝐼𝑟 and the virtual
image 𝐼𝑣 to create an augmented image 𝐼𝑎 as follows:

𝐼𝑎 = 𝛼 · 𝐼𝑟 + (1 − 𝛼) · 𝐼𝑣
What this conceptually means that the color of a pixel is:
1) the same as the corresponding pixel in the real image IF i) the
corresponding pixel in the binary mask is black OR ii) the trimap
value of the pixel is the foreground.
2) the same as the corresponding pixel in the virtual image IF i) the
trimap value of the pixel is the background AND ii) the correspond-
ing pixel in the binary mask is NOT black
3) a blend of the real and virtual image (as defined in the equation
above) IF i) the trimap value of the pixel is unknown AND ii) the
corresponding pixel in the binary mask is NOT black

The final result can be found in Figure 5.

4 IMPLEMENTATION DETAILS
In this section, we are going to be discussing the major steps in
each step of the pipeline. The first step in the process is to read the
image and depth data from the Intellisense RGBD camera. In order
to interface the camera with the code, we used the PyRealSense2
library. Note that the above library is a prebuilt version of the official
realsense library that is configured to work for the macOS and
macOSx architectures. Once is configured the software to read from
the sensors, we recorded a scale factor from the depth sensor. Now
every time we read the depth data from the camera, we multiply
the value in each pixel of the image by the scale factor. This is done

in order to convert the distance from a virtual scale to a distance in
meters.

Now that we can read the data from the sensor, we generate the
distance image using the numpy library. The mathematical details
of how the distance image is generated can be found in Section 3.2.
Next, we implemented the algorithm discussed in Section 3.3 using
the calcHist method of the OpenCV library. We then generate the
cost image, as discussed in Section 3.4, using the numpy library.

As stated in Section 3.5, there are multiple steps involved in this
part of the pipeline. We first implement the algorithm described in
the aforementioned section to perform the thresholding using the
numpy library and some of the matrix functions it provides us. We
then implement the Type 1 filtering, using a morphological close
through the morphologicalEx function of the OpenCV library. Next,
we implement Type 2 filtering using the following implementation
of a guided filter which ends up relying on the numpy and scipy
libraries.
Next, we implement the trimap generation algorithm in Sec-

tion 3.6. We are going to be using the following Trimap generation
library. However before we utilize the library, we first detect the
edges in the image using the Canny Edge Detection method pro-
vided by OpenCV. Then, we dilate the edges in the image using the
dilate functionality of OpenCV. Finally, we then generate the trimap
using the library we shared above.
Next, we perform Alpha Matting on the Trimap Image using

the Pymatting library. The library has multiple different methods
to perform alpha matting. We are going to be using a technique
called KNN technique, as introduced in [19] , for matting, the reason
for which we will discuss in Section 5.2. Finally, we perform the
composition as described in Section 3.8 using the numpy library.
Finally, once we had generated the image we needed to show

it onto the VR headset. Initially, we were planning to create our
own Unity application and then use WebRTC to stream the data
from the computer to the headset. However, during our research
we discussed a free Oculus application that does PC-to-headset
mirroring called Immersed. Through testing, we found that the
application had rather little lag and thus decided to utilize that
application rather than create our own system.

5 EVALUATION OF RESULTS

5.1 Timing
As hinted at in the previous sections, our occlusion was rather slow
so in this section we are going to be diving into that in more detail
in this section. A graph of the average time required for each step
of the pipeline can be found in Figure. 6. The high-level takeaway
is that on average it takes 0.52 seconds to evaluate a single image
meaning that our system achieves an average FPS of 1

0.52 = 1.92.
The first takeaway is that even though the pipeline has many steps,
there are three primary steps that end up really slowing down the
process. Thus, we are going to be examining each of these steps
in more detail and seeing if we can determine the reason for this
behavior.
The first step is the trimap generation which on average takes

0.08 seconds. Since we used an external library for this part of the
project, we really don’t have detailed insight into what causes it to

https://github.com/cansik/pyrealsense2-macosx
https://github.com/cansik/pyrealsense2-macosx
https://docs.opencv.org/3.4/d8/dbc/tutorial_histogram_calculation.html
https://docs.opencv.org/4.x/d9/d61/tutorial_py_morphological_ops.html
https://github.com/swehrwein/python-guided-filter
https://github.com/swehrwein/python-guided-filter
https://github.com/lnugraha/trimap_generator/tree/master
https://github.com/lnugraha/trimap_generator/tree/master
https://docs.opencv.org/3.4/da/d22/tutorial_py_canny.html
https://docs.opencv.org/3.4/da/d22/tutorial_py_canny.html
https://www.geeksforgeeks.org/erosion-dilation-images-using-opencv-python/
https://pymatting.github.io
https://webrtc.org
https://immersed.com
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Fig. 6. Breakdown of time required for each step of the pipeline

take so much time. Neither the library nor the papers it indicates
its implementation is based on containing detailed benchmarking
information to allow us to dive into this number in more detail. We
discuss some possible alternatives in Section 7.

The next computationally expensive step is alpha matting, which
on average takes 0.34 seconds per frame. Unfortunately, the library
that we used, Pymatting, only has benchmarking information on the
accuracy of our alpha matting rather than the time required by the
algorithm. Unfortunately, the paper ([19]) that the Pymatting library
is based on also doesn’t contain detailed performance information.
We dive into some potential remedies to the problem in Section 7.

Finally, the final time-consuming step in the pipeline is the image
composition step, which on average takes 0.1 seconds. We imple-
mented this step using the algorithm described in Section 3.8 which
calculates the color at every single pixel based on comparing and
combining the value at that pixel in some of the other images we
generated in the pipeline. This results in us being unable to vectorize
the process, thus making it inefficient.

5.2 Hyperparameter Tuning
It is relatively hard for us to get an overall metric on how well our
occlusion algorithm behaves because it is a rather subjective mea-
sure. Traditionally, researchers have used substitute metrics like
the percentage of the image that was classified as unknown in the
trimap, which our system averaged to around 4.4%, these may not
actually capture what we are looking for. Even during our limited
testing, we were able to find images where the percentage unknown
was higher but subjectively we agreed that the occlusion was infact
higher. However, there were quite a few "hyperparameters" asso-
ciated with each step in the process that we had to "tune" in order
to get what we perceived as better occlusion. In these sections, we
are going to be discussing some of these hyperparameters and how
their values influenced the algorithm

(a) 0.1 (b) 1𝑒 (−5) (c) 1𝑒 (−10)

Fig. 7. Final occlusion images for three different threshold values.

5.2.1 Alpha Matting Algorithm. As we stated in Section 4, there
were multiple different algorithms we could have used for the Alpha
Matting stage. Initially, we tried to follow Pymatting’s implemen-
tation of [20] which generates a quadratic cost function for alpha
which then solves using gradient descent. Whether it is the tech-
nique or the library’s implementation of its, we would get an error
on about 5% of the images that the system failed to converge to
a reasonable minimum. Thus, we decided to switch to Pymatting
implementation of KNN method ([19]) which according to the Py-
matting library’s benchmarking has a slightly Mean Squared Error,
6.64 vs 6.09. However, this method worked rather reliably for us
without ever throwing errors which is why we choose it over the
Closed Form approach.

5.2.2 Thresholding constant. If we take a look at the algorithm
discussed in Section 3.5, it relies on a constant called 𝑙 which repre-
sents the acceptable difference between the previously determined
threshold and the updated threshold is below a certain limit. Thus
a small limit value will ensure that we actually choose a value
close to that the algorithm eventually converges as it generally
takes more iterations to meet the convergence threshold. This how-
ever indicates that the lower threshold we use, the more time it
will take for us to determine the threshold value. We tried us-
ing threshold limits of 0.1, 1𝑒 (−5), 1𝑒 (−10) which on average took
3.93𝑒 (−04), 9.96𝑒 (−04), 9.97𝑒 (−04) seconds respectively. Further-
more, you can find the final occlusion images generated using each
of these threshold values can be found in Figure 7. Ignoring minute
differences, the final occlusion image is relatively similar whether
we use a value of 0.1 to 1𝑒 (−10) but the larger threshold value takes
about 2

5 of the associated time. Thus, we decided to use a threshold
value of 0.1.

5.2.3 Depth and Color Weights. Finally, note that in Section 3.3 we
do aweighted sum of the color and depth probabilities to generate an
initial estimate for the foreground and background of the image. We
used a similar approach to what we discussed in Section 5.2.2 where
we tuned the weights and then looked at both the time taken as well
as the final image that was generated. During our experimentation,
we found that increasing the relative weight of either the camera
or the depth data didn’t significantly improve the runtime or the
subjective goodness of the final image and thus we decided to give
equal weight, 0.5 each, to both the camera and depth data.

6 DISCUSSION OF BENEFITS AND LIMITATIONS
At a high level, I think that the behavior of our system can be summa-
rized as "slow but works". As we discussed, in the previous section

https://pymatting.github.io/benchmark.html#performance
https://pymatting.github.io/benchmark.html
https://pymatting.github.io/benchmark.html
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our system is only able to run at 1.92 FPS, a detailed discussion of
which can be found in Section 5.1. However, our system was rather
reliable and worked rather well in the wide range of scenarios that
we tested in. Specifically, we visited a bunch of different locations,
connected the camera to the laptop, and then ran our system and
objectively evaluated if it behaved as expected. Some of the places
where we tested our code included:

• A busy cafe in University Village
• An empty room inside CSE 2
• The atrium inside the Allen building
• The gallery of the Allen building

We found that our occlusion handling behaved as expected in
this scenario, even when events like a random person walking by or
us covering the camera with our hand changed the scene dynamics
rather rapidly.
Additionally, note that we only tested our code by occluding

a single two-dimensional, single-colored ball with the rest of the
scene. Thus, we are completely unsure about how our system would
behave if we had a single three-dimensional multi-colored object or
what occlusion handling looks like we have multiple overlapping
virtual objects, whether that overlap is in their color or in their
depth. We believe that our project illustrates the high-level steps
needed to occlude a simple object across a wide variety of scenes in
the physical world. However, our system still needs to be improved
so that it can occlude more complicated in the physical world as
well as deal with the scenarios where we might want to occlude
multiple overlapping virtual objects.

7 FUTURE WORK
We believe that there are many directions we can take to come
closer to achieving the occlusion that is implemented by some of
the state-of-the-art VR systems today. No matter what approach we
choose, the first thing we would definitely need to do is attach the
camera to the headset in a stable manner.
The first direction that comes to mind is using all of the work

that has been done in deep learning when it pertains to computer
vision. Researchers have trained models to perform almost all of
the steps in our pipeline, such as Google training a convolution a
neural network to perform alpha matting to take images in Portrait
Mode on the newer pixel. Thus, we can host a server with access to
dedicated GPUs to efficiently run the models that we need, and use
WebRTC or similar frameworks to stream both the video and the
sensor data from the camera to the server and then stream the result
back to the headset. While this would definitely stream up the image
processing pipeline and also produce more accurate results there
would be added latency associated with the streaming. We want
our occlusion technology to be rather real-time in that smoothly
updates the scene as the user’s POV changes, which makes us feel
that anything involving streaming would be quite a bottleneck.
Unless machine learning technology advances to the point that we
can reliably and fastly run ML models on headsets we are likely
looking at improving our existing algorithms in the near future.
In Section 5.1, we discovered that the three bottlenecks to our

pipeline were trimap generation, alpha matting, and pixel-by-pixel
image blending. One key point that we realized about our system is

that we treating each frame in the video as completely independent
from the previous or the next frame even though in real video
streams, neighboring frames are often rather similar and share a
lot of similarities. This property is leveraged by [21] who reported
achieving 30 Hz onmobile devices. In a future iteration of the project,
we would utilize the technique they propose and see if that gives
us a performance improvement. Furthermore, [22] showed how
you can smartly sample only a subset of the pixel in the trimap
and use that to generate a rather accurate alpha matting. In the
future, we can continue exploring some of these non ML based
techniques and see if they can improve the performance of both our
alpha matting and our trimap generation steps. In a similar vein,
rather than implementing our custom approach to alpha blending
the virtual and real image, we can utilize the technique proposed
by Intel in [23].

8 CONCLUSION
This projects illustrates that even rudimentary combination of the
virtual and real worlds can create truly immersive experience that
smartly overlay the physical world with the virtual world. As the
usage of mixed reality and augmented reality products continues
to increase, smartly combining the virtual contents of the users
screenwith their physical surrounding in a realisticmanner becomes
especially relevant when it comes to user experience. This project
reveals that the core pieces of technology to solve this problem have
already been developed by the computer vision community. The
challenge lies in however optimizing these solutions to be able to
perform the necessary computation in real time and can display the
final result to the users with very limited lag. This either requires
improving hardware and software capabilities of such headsets so
that they can run large models in real time or to develop further
optimizing to existing algorithms geared at improving perfomance.
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