Rendering Physical Objects in VR
JASON LANGLEY, University of Washington

g

Fig. 1. A user wearing an HMD moves a specially marked box in real life. An equivalent box is simultaneously translated and rotated in VR. The HMD’s view

can be seen in the bottom panel.

VR systems are limited to audiovisual output in creating an immersive
experience. In non-home settings, however, it’s theoretically possible to use
an instrumented environment to also engage a user’s sense of touch. Users
could manipulate a rendered VR environment by physically interacting with
a specially-built real environment in commercial settings like amusement
parks or escape rooms. This project investigated using computer vision
techniques for tracking physical objects and recovering their world pose to
be rendered in Unity VR.

1 INTRODUCTION

Virtual reality displays provide a convincing, immersive image of
an environment. Even when the environment is rendered at lower
fidelity, motion tracking provides enough additional information
to the brain that the illusion can be realistic. However, this illusion
dissipates easily- a user can’t touch a simulated object, and their
movements are constrained to the square footage of their room,

Author’s address: Jason Langley, jlangley@cs.washington.edu, University of Washing-
ton.

regardless of the environment they’re in. For home use, these are
limitations that VR applications must work within. However, com-
mercial "VR experiences’ as could be used in amusement parks or
escape rooms have the ability to build a physical environment to
provide the missing information. One envisions the old haunted
house trick of a bowl full of peeled grapes, but the VR headset could
provide the imagery of eyeballs.

In building such a system, several goals emerge that motivate
possible solutions. For the infrastructure to be scaleable, adding
‘new interactables’ to the system should be relatively painless and
put as few size/shape constraints on a tracked object as possible.
Printed marker tags, for example, do not scale well to small objects
or anything that comes in unpredictable quantities. (A silly goal I
had was to track and render donut holes dyed with food coloring,
as any good amusement park must sell snacks. A small box can
be tracked with tags; anything edible presents considerably more
challenges.) To me, this suggested taking a cue from chromakeying
and painting objects a flat neon color that can be somewhat easily

2« Jason Langley

physical room

//"‘

marked objects

(

VR (eg Unity)

equivalent rendered objects

Fig. 2. The user moves a physical box while wearing an HMD. In VR, a
rendered box moves equivalently.

isolated. Black or reflective dots could be added at key points, or
different faces could be different colors, to aid PnP problem-solving.

Additionally, we need a system that can detect an object consis-
tently, even in motion or in the presence of other occluding users.
Inside-out tracking of some kind might be better suited to this than
outside-in, and I did consider duct taping a webcam to a headset.
After all, if a user can’t clearly see an object from where they’re
standing, their headset might not need a high-quality pose estimate
in order to render it for them. A motion-capture company did a
demonstration of a physical VR’ system where players wore back-
packs that wirelessly sent and received pose data to the coordinating
server and other players [Chagué and Charbonnier 2016]. Some kind
of networking is likely necessary to do pose computation on a sys-
tem monitoring the physical scene and then communicate this data
to whatever is actually rendering the VR scene.

It’s also important that the user’s physical location within the
scene be synchronized with their viewpoint’s location in the virtual
scene. (I should have anticipated this being an issue; standard VR
doesn’t need to be precious about your physical location beyond
warning you that you’re close to the edge of your play area, which
requires a lower level of detail than we need to match two environ-
ments.) An MIT Media Lab project scanned the entire environment

with a Google Tango to potentially make this problem easier [Sra
and Schmandt 2015].

For the most part, I did not do any of these very sensible ideas. I
hoped to experiment with non-marker-based tracking once I had
the simpler version working, but didn’t have the time; my proof of
concept was entirely based on ArUco marker tags. My implementa-
tion used a single outside-in camera and OpenCV image processing
to estimate object pose from these ArUco marker tags on a card-
board box. This was chosen largely because it seemed like a simple,
accessible way to experiment with the concept without a ton of
equipment or infrastructure. By the end of my time, I was able to
get the simplest version of this process to mostly work, but it’s very
limited and wouldn’t scale well. That said, with some extra time I
think it could be expanded to a result that is at least slightly novel,
considering how low-budget it is.

1.1 Contributions

To be frank, I didn’t really contribute anything. I stapled a bunch of
OpenCV tutorials together according to how I thought this system
might need to work and what I could find, and dug through YouTube
comments/StackOverflow to debug the tutorials. All the math I did
was derived elsewhere.

2 RELATED WORK

The MIT Media Lab MetaSpace II project [Sra and Schmandt 2015]
presents an interesting application of Google Tango to digitize the
physical space, which simplifies (but does not fully solve) the prob-
lem of getting the virtual and the real geometry to match. This
also streamlines the process of creating an analogous virtual space,
which is an important goal for a robust, scaleable system. The project
used the Microsoft Kinect as a cheap RGB-D camera for tracking
both human and object poses. In retrospect, Kinects could be a great
option to investigate for cheap outside-in tracking- however, given
the time constraints and probable lack of user-friendly API, I didn’t
try to use one. The project’s objects use marker tags for tracking
due to ease of use and detection speed, but I hoped to explore more
robust solutions to support objects that can’t easily be tagged (small,
strangely shaped, etc).

Researchers at Artanim, a foundation for motion capture research,
presented a similar system for physical VR interactions, which
seems to have seen commercial entertainment use with Dream-
scape Immersive [Chagué and Charbonnier 2016]. Their project
uses a motion capture system with multiple infrared cameras sur-
veying each scene for human/object pose, noting that markers (in
this case, reflective motion capture balls) need to be carefully placed
on interactables in places users are unlikely to grab. The paper I
found isn’t as detailed, but its commercial use implies the system is
reasonably robust, even though motion capture balls still need to
be placed on each tracked object. This again wouldn’t work with
my goal of tracking edible objects.

3 METHOD

Objects first need to be chosen and marked in some way so that we
can track them. In the simplest proof of concept I did, this just means
a marker tag. Theoretical expansions of the concept would require

Fig. 3. The box used for 95% of this project, along with some tape markings
used while trying to visualize different axes.

painting objects bright colors and/or adding dots. The objects should
presumably be chosen such that they can be painted or otherwise
colored easily. Any object then needs to be carefully measured and
replicated as a 3d model. Our chosen engine, Unity, uses meters as
its units, so we make sure to measure all of our real-world quantities
in meters as well. A camera must be placed surveying the play area.
In theory, we’d require multiple cameras to ensure coverage and
triangulate the location of certain objects.

We then ’calibrate’ the system by choosing a world origin in the
play area. This can be anywhere, but it’s reasonable and easy to
put it somewhere on the floor roughly in the center of the space. If
multiple cameras were present, it would make sense to place the
origin roughly equidistant from all of them. We do this by placing a
marker tag on the floor and estimating a pose for it. This gives us a
rotation necessary to transform between camera space- where image
processing software will estimate distances- and our "world’ space,
which we represent in Unity. We also get camera space coordinates
of this origin. We then measure and translate objects relative to this
origin, and we can use these translations natively with the Unity
origin and get reasonable movement more or less for free.

At runtime, we process the camera feed to identify and track
our marked objects. As often as we can, we compute world space
coordinates for these objects as well as vectors to recover their
orientation, then send these to be used to update the analogous
object’s translation and rotation in Unity.

Even if we measure carefully, the user’s perspective is likely
to be slightly off; in other words, the VR box will appear slightly
translated to the user from where its real twin actually is. There
are potential changes we could make to the system to alleviate this-

Rendering Physical Objectsin VR« 3

Fig. 4. The webcam can be seen at the right, looking down at the box, which
is placed at the origin in this image.

using a marker tag to track the headset pose and moving the origin
to the headset, reevaluating the hardware to do inside-out tracking
rather than outside-in, etc. For the purposes of the proof of concept,
this is adjusted by simply resetting the player’s viewpoint in VR to
a measured location while they stand at that location in real life. It’s
not perfect, but this somewhat remedies the problem.

4 IMPLEMENTATION DETAILS
4.1 Setup/calibration

T used a cardboard box I had laying around (pictured above), about
19x12x4cm. The green paint was cheap ’reflex green’ Amsterdam
acrylic, though the paint wasn’t relevant to the work that I managed
to complete. The ArUco marker was printed to be 5.5cm on a side,
though note that this would be too large to fit additional markers on
the narrower sides. I received an iMiSES 2k webcam to use- likely the
CC1006- which is apparently capable of 2560x1440 images. However,
when plugged into a PC, the image defaulted to a very small 4:3
image, and manually setting the resolution higher introduced a
severe delay. I was unable to figure out what caused this and ended
up having to live with about a 1 second delay on a 1280x720 feed.
The webcam was mounted in a very high-tech manner on an air
conditioning unit, aimed a bit towards the floor.

I then modeled the box in Blender, using some plugin to manually
set specific edge lengths to match the real box. I left it untextured,
as this was considered low-priority. Doing a Blender export to .fbx
for Unity can try to move the axes to Unity’s left-handed system for
you. Some people online suggested this may not always work well,
but for this very simple model it was fine. Additionally, I measured
the distance between my chosen origin and the camera, and put a
roughly analogous post there in Unity to confirm that directions
and facing were correct.

OpenCV was used for all image processing. I spent several hours
trying to install the C++ implementation before giving up and down-
loading the Python version, because that installation process is
literally ’type a line in the terminal’. It’s possible the Python im-
plementation may cause performance to suffer in some cases, and
there are a handful of OpenCV modules that don’t seem to have
been ported (a quaternion library, for one), but for proof-of-concept
purposes it seems fine.

4 .« Jason Langley

Our world origin is chosen by detecting an ArUco marker on the
floor with OpenCV’s ArUco library and estimating its pose. This
pose estimation gives us rvec, or a rotational vector that rotates
from the camera frame into the marker’s orientation, and tvec, or
a translation from the camera viewpoint in camera space. We can
then use this to compute other markers’ translations relative to this
origin.

4.2 Computing object pose in world

The pose of a marked object is estimated by OpenCV analyzing
webcam frames. This pose includes a position in camera space; call
this Pegm. We also get the aforementioned rvec, with the rotation
that transforms the camera space axes into the marker pose. We can
use the Rodrigues formula (OpenCV provides an implementation)
for converting this axis-angle vector to a rotation matrix; call this
matrix R.

In the pinhole camera model, we have the following equation
relating these quantities for some marker pose [Hoang 2017] (in
retrospect I had all this information from course material but am
dumb and needed it spelled out):

Peam =R - Py, + tvec

Writing this out I am now severely doubting that this is at all

sound, but we continue on because I need to put something down.
When we save our origin, we set P,, in this equation to (0, 0,0).

Pcam, or the origin’s location in camera space, is now equal to this
original tvec. We save this P.qm and the rotation that moves it to
(0,0,0). We can rearrange the equation to yield:

-1
R (Pcam,origin — tvec) = Py,

... and then plug in the tvec of a new detected marker pose to
compute its world coordinates. I now worry this doesn’t make any
sense, but when I moved the box to measured test locations and
computed world coordinates, they matched my measurements, so I
went with it. (Additionally, perhaps hinting that this whole thing is
garbage, this gives coordinates with 3 flipped signs. I reversed the
direction of the subtraction to yield the axes I expected.)

We then need to compute the rotation needed to rotate the Unity
box object to match its detected pose. I had a grand theory that
this could be done as follows: we have the rotation needed to rotate
from the camera pose to *world’, and the Unity object is aligned to
‘world’ by default. We have a detected rvec that rotates the camera
pose into the box. If we can compute the ’difference between’ these
two vectors, or the rotation needed to rotate 'world’ into the box

pose, this would be the rotation we should apply to the Unity box.

This did not work, either because it’s not logically sound or because
the ’rotate one vector into another vector’ computation I looked up
was inappropriate for this situation. Rotating the real-life box about
one axis would almost work in some cases, but mostly produced a
strange off-axis rotation.

So I gave up and did more Googling and came across a reply
[RCYR 2016] recommending that someone extract ’front” and "up’

Py
L 2
some point Pcam, like

marker tag measurement used as (0.3m, 0.6m, om)

an origin

Fig. 5. An illustration of camera space. The camera looks down the +z axis,
which is rotated into the viewing angle of the camera. A sample point in
camera coordinates and a sample world origin are shown.

but appeared to be rotated into the camera frame, so I attempted to
’move it to world’ by applying the R matrix from our origin compu-
tation to the pose rotation matrix first. This feels like a copout but
it seems to work fine.

We bundle up the world pose we computed and these world space
front/up vectors into a string and send them via UDP to Unity, using
the Python sockets library.

4.3 Unity data reception

We receive the data in Unity in an infinite while loop. Communi-
cating data between Python OpenCV and Unity was lifted from a
tutorial [Singh 2018]; it was the only thing I could find that did not
involve spending $100 on a Unity plugin. If we receive data that
differs from the last data we processed, we compute a Quaternion
that describes the object’s rotation and compute a new position,
then update the box’s pose.

Many axes need to be switched around, flipped, or both. To be
perfectly honest, I tried what people online recommended for mov-
ing to Unity and then trial-and-error waved the box around and
flipped some signs to match my intended axes.

rotynity = LookRotation((=fi.x, fw.Y, fw-2), (—tiw.X, Ury.Y, Ury.2))

POSunity = (—POS1y.X, POS1y.Z, —POS1y.Y)

vectors from the pose rotation matrix and use Unity’s Quaternion.LookRotatiofhis moves and rotates the box more or less correctly. However,

function for this, which is effectively the Unity equivalent of the
lookAt functions we’ve discussed. I tried this and it was correct,

there’s no guarantee that the user’s viewpoint in Unity will be
perfectly aligned with their actual HMD. Experimentation often

put the Unity box a little more than a foot above and to the right
of the real one. This motivates needing a better solution for object
localization; inside-out tracking and calculating position relative to
the HMD might provide a more accurate result. For now, however, I
looked up tutorials on how to reset the Unity XR Origin to a specific
location/facing and figured out how to bind it to a controller button.
I then measured a specific spot on the floor, placed an invisible cube
with that position and the facing I wanted, and reset the facing
while standing on that spot. This does not fix the problem entirely,
but it does at least improve things.

4.4 Additional

With very little time remaining before I had to hand this in, I spent
some time playing with tracking green spheres, wondering if I could
get a last-minute ’eat a green donut hole in VR’ demo working. I
couldn’t, but I feel it’s worth mentioning here. More specifically,
I was able to tune a HSV-based mask and detectContours to track
green balls fairly accurately, but recovering their world coordinates
seems non-trivial. While I can calculate the difference between a
ball’s measured size and its detected 2d diameter in the frame to
give some indication of distance from the camera, this does not give
me an easy tvec that I can just plug into my existing position code.

There’s likely some more math I could do to estimate a tvec for
a detected ball. Additionally, if I set up a second camera, I could
theoretically use this size-based camera distance and the two frames
to triangulate a ball’s position relatively easily. However, I did not
have time for this (as I didn’t have time for so many other things),
so VR-simulated edibles will have to wait for another day.

5 EVALUATION OF RESULTS

This will largely discuss failures and limitations, because I managed
to accomplish very, very little (although I will admit I feel like I
understand how I could extend what I have to at least improve
on this). I have exactly one success to talk about, which is that I
managed to make the simplest, most-constrained, most elemental
version of the idea work: one marker tag on one box, which rotates
and moves the VR box roughly analogously. Effectively, I spent this
many hours to replicate what may as well be the AR equivalent of
’hello world’ (render a cube on a marker tag) in VR, and I relied on
a huge pile of tutorials and StackOverflow answers to do it. At least
T have a video of it kinda-working.
Limitations:

o With only one marker tag and one camera, we can’t simulate
any rotations of the box that would remove the marker tag
from view.

There are various ways to address this. We can use more
cameras, and if an object is visible in multiple frames, we
compute quantities with the data from multiple frames and
then use the average. We can also use more tags, which is
something I wanted to experiment with. (In theory, if we
detect a marker on the bottom of the box, we rotate it 180
degrees about the y axis in camera space before computing
the rotation we should apply to the box? I think?) We can
also try ditching the markers entirely and moving to bright

Rendering Physical Objects in VR« 5

colors, dots, and OpenCV’s solvePnP functions, which was
my intended end result.

e Box motion and rotation are very jittery, low-framerate, and
subject to incorrect readings.
Having more cameras and/or tags gives us more data to
smooth this out with. A very simple low-pass filter might
improve the jittering. We should also probably be throwing
out unrealistic measurements; marker tag readings often
"get confused’ and the box will appear to jump to a strange
angle.
Additionally, the code as-written sets a new position and
rotation value on the object every time new data is received.
This was done for simplicity. However, Unity can theoret-
ically do some motion interpolation for us if I learn how
those transformation functions work, and that would proba-
bly present a more immersive effect.
This problem is worsened by the significant delay on the
camera feed, so fixing that issue somehow would also help.
(The delay was not present when plugged into my signifi-

cantly weaker MacBook, even through two USB-USBC adapters.

I tried both USB2 and USB3 ports. I have no idea.)
e Marker tags, as discussed earlier, do not scale or support a
range of objects that I want.

6 FUTURE WORK

I didn’t do anything unprecedented or particularly interesting, so
this isn’t really applicable to anyone else’s work. I do think addi-
tional tags on one object could be added by pre-applying a rotation
to the box before calculating its in-world lookAt orientation. The
code I have could be reasonably easily extended to support multi-
ple cameras, multiple tags, and multiple objects (even if the results
would still have some problems and significant limitations). Doing
any kind of processing on the computed pose data (filtering, aver-
aging multiple data points, motion interpolation, outlier removal...)
could improve the effect.

Beyond improvements to the marker tag method, if I were to
continue working on this (and I kind of want to), I'd experiment
with more robust PnP-based methods and using color to make object
identification and tracking easier.

7 CONCLUSION

I completely flamed out in this class but I want to at least turn in
something.

ACKNOWLEDGMENTS

None of this would exist without wholesale copying a lot of tutorials
and StackOverflow comments. My bibliography is thus pretty silly,
but I want to credit all of the flimsy sources I used anyway.

For what it’s worth, I really enjoyed the class even if I couldn’t
take advantage of the opportunity it provided. I wanted to come to
the poster session but managed to get sick at the very end of the
quarter.

REFERENCES

Justin P. Barnett. 2022. Re-center your VR Player in Unity. Retrieved June 7, 2023 from
https://www.youtube.com/watch?v=EmjBonbATS0

https://www.youtube.com/watch?v=EmjBonbATS0

6 + Jason Langley

Sylvain Chagué and Caecilia Charbonnier. 2016. Real Virtuality: A Multi-User
Immersive Platform Connecting Real and Virtual Worlds. In Proceedings of the
2016 Virtual Reality International Conference (Laval, France) (VRIC ’16). Associa-
tion for Computing Machinery, New York, NY, USA, Article 4, 3 pages. https:
//doi.org/10.1145/2927929.2927945

Quang Hoang. 2017. answer; Aruco markers with openCv, get the 3d corner coordinates?
Retrieved June 7, 2023 from https://stackoverflow.com/a/46370215

Nicolai Nielsen. 2022a. Building an Augmented Reality Application with ArUco Marker
Pose Estimation in OpenCV. Retrieved June 7, 2023 from https://www.youtube.
com/watch?v=GEWoGDdjlSc

Nicolai Nielsen. 2022b. generateAruco.py (code for marker tag generation). Retrieved
June 7, 2023 from https://github.com/niconielsen32/ComputerVision/blob/master/

ArUco/generateAruco.py

RCYR. 2016. answer; OpenCV rotation (Rodrigues) and translation vectors for positioning
3D object in Unity3D. Retrieved June 7, 2023 from https://stackoverflow.com/a/
36580522

Gur Raunaq Singh. 2018. Introduction to Using OpenCV With Unity. Retrieved June
7, 2023 from https://www.kodeco.com/5475-introduction- to-using-opencv-with-
unity

Misha Sra and Chris Schmandt. 2015. MetaSpace II: Object and full-body tracking for in-
teraction and navigation in social VR. CoRR abs/1512.02922 (2015). arXiv:1512.02922
http://arxiv.org/abs/1512.02922

https://doi.org/10.1145/2927929.2927945
https://doi.org/10.1145/2927929.2927945
https://stackoverflow.com/a/46370215
https://www.youtube.com/watch?v=GEWoGDdjlSc
https://www.youtube.com/watch?v=GEWoGDdjlSc
https://github.com/niconielsen32/ComputerVision/blob/master/ArUco/generateAruco.py
https://github.com/niconielsen32/ComputerVision/blob/master/ArUco/generateAruco.py
https://stackoverflow.com/a/36580522
https://stackoverflow.com/a/36580522
https://www.kodeco.com/5475-introduction-to-using-opencv-with-unity
https://www.kodeco.com/5475-introduction-to-using-opencv-with-unity
https://arxiv.org/abs/1512.02922
http://arxiv.org/abs/1512.02922

	Abstract
	1 Introduction
	1.1 Contributions

	2 Related Work
	3 Method
	4 Implementation Details
	4.1 Setup/calibration
	4.2 Computing object pose in world
	4.3 Unity data reception
	4.4 Additional

	5 Evaluation of Results
	6 Future Work
	7 Conclusion
	References

