
Training Archery Form Using Augmented Reality
CSE 493V Final Report

MATTHEW HE, University of Washington

Fig. 1. While shooting, Microsoft Kinect feeds full-body data to

Mastering archery form requires countless hours of practice. Archers often
develop bad habits in their form, such as misaligned forearms or high shoul-
der placement. Without additional tools or help, archers cannot improve
their form while shooting. A common approach used by most archers is to
film themselves shooting and watch the replay, using that to inform their
next round. Other archers rely on coaching to hone their form. Using aug-
mented reality, it’s possible to provide real-time analysis of an archer’s form
as they shoot, telling them if their form is off and letting them correct before
they commit shots to muscle memory.

1 INTRODUCTION
In archery, an archer cannot watch their form while drawing and
aiming the bow. While an archer can feel physical stimulus from
the drawing motion, it’s difficult to discern proper form without
visual aids. Thus, a common approach for archers is to record and
replay videos of their shooting, so that they can improve their fu-
ture shooting. This, however, does not eliminate the lack of visual
indication of form while shooting. Without a coach, many archers
will struggle to improve their form even in this manner.

Author’s address: Matthew He, mhe9467@cs.washington.edu, University of Washing-
ton.

Augmented reality (AR) provides a solution to this problem. AR
systems provide additional information and context to users that
might not normally be available to them. Additionally, AR head-
sets provide a hands-free method of delivering such information.
Thus, AR headsets provide a platform to which visual analysis of an
archer’s form from a third-person perspective can be fed to them as
they shoot.

As far as my research has gone, no AR application currently exists
to train the archer’s form as they shoot. In a 2015 journal, an AR
trainer providing three views of the archer from three sides was pro-
posed, but no system was ever developed. Many AR archery games
exist, but none provide realistic form training in the same scope. I
believe this is mainly due to a lack of demand or exploration in the
space. Archers at higher levels have coaches who provide analysis
backed by experience and knowledge. Furthermore, advanced video
analysis rigs exist that allow for coaches to provide multiple view
analysis to archers after the shot.

In this project, I developed an AR application which displays key
points of an archer’s form as they draw so that they can adjust their
form as they draw the bow. As shown in Figure 1 above, three red



2 • Matthew He

lines are drawn between three key points in the archer’s form: bow
hand, draw elbow and chest. As the archer draws through their
form, the red lines turn green to indicate that that portion matches
the proper form. When the entire triangle turns green, the archer
has drawn fully into the correct form.

Ultimately, this tool is a solid proof of concept for more advanced
AR archery training systems. However, as discussed later in this
paper, various limitations of both AR and archery reduce the overall
usefulness of this for most archers. This tool is most useful for
beginner archers looking to improve consistency in form.

1.1 Contributions
• I developed an algorithm that scores the user’s form against

a preset form skeleton.
• I also developed an algorithm to correct the noise from

inferred positions and extrapolate the hand position using
other tracking points.

• Finally, I built on the head-locking feature in Unity to display
the body tracking points into a bounded space and scale
them to fit an abnormal viewing angle.

2 RELATED WORK
In 2015, a small section about AR archery found its way into a sports
science journal. As shown in Figure 2, the proposed AR archery
system would utilize three cameras to provide real-time footage to
the archer about their form. While this system was never actually
completed, the core idea is similar to the idea behind this project.
In this project, we utilized 3D body tracking to analyze the archer’s
form. This takes the idea a step beyond the three camera solution,
where the archer needs to monitor the footage as they shoot. Instead,
my application analyzes the user’s form and provides important
information directly to the user.

Fig. 2. A schematic showing a proposed design for an AR trainer for
archers [2015].

3 METHOD
In the process of developing this application, there were three main
problems to solve in order to put together the product. First, I needed
to get full body tracking data in order to do initial form calculations.
Second, I needed to send the tracking data to the application, which
would then do any necessary calculations or processing. Finally,
the application would need to render any visuals in the augmented
reality space.
In terms of body trackers for archery training, we need a few

key trackers from full body data. Generally, the six most important
points to track are the two elbows, two shoulders and two hand.
For the rest of the paper, we’ll assume right eye dominance, so the
bow hand will be the left hand and the draw hand will be the right
hand. In proper form (Figure 3), the entire left arm and body will
draw a straight line. That is, the right shoulder, left elbow and left
hand should be in a line. Furthermore, the right elbow, right hand
and left hand should form another line.

Fig. 3. A diagram showing proper alignment in the archer’s body.

So with this information, we need a set of six trackers to assume
the proper form tracking. Additionally, we can add hip, knee, and
foot trackers to check that the archer has consistent anchoring. In
our implementation, these tracker positions will be given in world
coordinates from the Microsoft Kinect sensor (see Implementation
Details).

After retrieving our tracker positions, we need to determine what
we consider proper form.We can simply record the tracker positions
in what we believe to be proper form. From the proper tracker
positions inworld space, we compute the vectors to form the triangle
seen in Fig 3. We treat this set of vectors as the proper "form" in the



Training Archery Form Using Augmented Reality • 3

application. Since the user may be closer or further from the sensor,
we’ll also normalize these vectors.

When the application measures position as the archer draws, it
collects a new set of position data. We again compute the vectors
and normalize, but we pin the center. To determine if the archer’s
form is good, we calculate the percentage difference between the
proper "form" and our newly measured set of form vectors. If the
deviation falls below some threshold, say 5%, the archer’s form is
considered valid.
Finally, we need to render the archer’s form in the augmented

reality space. More details can be found in the upcoming section.
Since we’re given the tracker positions in world space, we can
use these positions to render the locations of the trackers in AR
and connect them with lines. However, we want to render these
trackers such that they follow the camera space, instead of staying
stationary in world space. We can implement this with a series of
rotation matrices if we’re given the camera/headset orientation.

4 IMPLEMENTATION DETAILS
For the AR headset, I used the Magic Leap 1 headset, which uses
it’s own Lumin OS. The Magic Leap 1 has Unity support, which I
used to write the entire application. The entire Unity application
was built using the Magic Leap package and default assets. Since the
application requires full body tracking, which is a feature that Magic
Leap 1 can’t provide, I needed an external body tracking solution.
To get the body trackers, I utilized Microsoft’s Xbox 360 Kinect.

The Kinect can be utilized to get full body position data and is sup-
ported by the Windows Kinect SDK. Furthermore, there already
exists Unity packages that support the Kinect SDK. The Kinect is
connected to a Windows computer over USB. I overlooked this re-
quirement when writing my project proposal. It was difficult to find
Mac support for Kinect, so I needed to use an old Windows laptop
for Kinect development. Furthermore, this direct USB connection
meant that it would be impossible to connect the Kinect straight to
the Magic Leap.
To get the tracking data from the Kinect, I used Amethyst, an

application built to get Kinect full body tracking to VR head sets
for use in VRChat or similar applications [2022]. With the Kinect
connected, Amethyst computes the body tracking skeleton (Figure
4). Amethyst also provides support for the OSC protocol, a network
protocol that can be used to send tracking data to a target device
over the local network.

Using the extOSC package in Unity, we can collect the OSC pack-
ets being sent to the application by Amethyst. These OSC packets
contain both position and rotational data of knee, hip, chest, elbow,
foot and head trackers in the skeleton. This shows a major limitation
of using Amethyst. Since Amethyst is built to support VRChat, it
uses the VRChat OSC definitions. As a result, four critical trackers
(hands and shoulders) aren’t provided by Amethyst. However, since
no similar applications could be found that were compatible with
360 Kinect, I had to address this limitation in software.

Using OSC, the Unity application now has access to nine different
trackers. However, the hip and foot trackers were too inconsistent
to use in the application. Furthermore, the proper form for the lower
body can’t easily be approximated with these simple trackers. Thus,

Fig. 4. An example body tracking skeleton generated by Amethyst.

we’re mainly concerned with the chest, elbow and head trackers.
Since we don’t have access to hand or shoulder trackers, we have
to approximate their location from the other trackers. Using the
center of a 90◦ horizontal sweep of the right elbow, I was able to
approximate the location of my right shoulder. This approximation
only works since I assume that my chest is parallel to the Kinect
sensor. I also roughly approximate the location of the left hand by
extending the position of the left elbow. Again, this requires the
assumption that the fully extended left arm will be in a straight
line (as it should in proper form). Finally, we use the head tracker
to approximate the location of the right hand, since we know that
the right hand must be touching the face when correctly anchored.
Thus, despite limited tracking data, we were able to extrapolate the
trackers required for form tracking (with some simplifications).
To render the form visualization in the Magic Leap, we simply

render the points in Unity and connect them with lines. There are
two key implementation details here. First, to get the correct color,
we record the positional data of the ideal "form" and implement the
algorithm described previously to check percentage deviation. If the
alignment is too far off, we set the color of the line to red. We also
set an OSC Event Receiver to update the rendered trackers when
the Kinect computer sends updated positional data. This leaves one
final issue to solve. In the Magic Leap Unity application, the trackers
are rendered in world space. However, as the user moves around
and turns, the camera is not necessarily near or looking at the world
space center. Thus, it becomes necessary to lock the rendered images
to the user’s view. Thankfully, Magic Leap provides an example
implementation, which we can borrow to lock the rendered images
to the camera. This involves a set of rotations and translations, all
of which are already defined for us. The only change we need to do
is update the deprecated libraries to match the current version of
the Lumin SDK.



4 • Matthew He

5 EVALUATION OF RESULTS
Overall, the project was successful in providing an example of how
AR can be utilized in archery. My application is successful in iden-
tifying correct form versus bad form and displaying it to the user.
However, the idea of "correct form" is manually defined and may
vary from user to user. Users unfamiliar to archery may not be able
to set the "correct form" themselves. In the same vein, the missing
trackers from Amethyst necessitate manual calibration to guess
the locations of the remaining trackers. This simplification reduces
accuracy and relies on assumptions that may reduce the usefulness
of the project.
In fact, the majority of limitations of this project stem from the

limitations of the full body tracking method. The limited trackers
stem from Amethyst, of which the intended applications have built
in solutions or do not require the missing trackers. I found that it
was out of the scope of this project to develop a complete system to
get body tracking data from the Kinect and send it over OSC to the
Magic Leap. As a result, I had to work with these limited trackers.
During testing, I found various limitations that have to do with

the application of AR to archery in general. As shown in Figure 1,
when correctly drawn, neither the bow or sight is in frame of the
Magic Leap viewer. In fact, the right eye cannot see through the sight
because it is blocked by the headset. This hardware limitation limits
the usability of the system because it makes training difficult, which
is the opposite of the intended use. Software workarounds could be
implemented, but I don’t think they would be useful. In general, at
full draw, the headset blocks line of sight from the dominant eye to
the target.

The other major limitation of this type of form analysis is that it
is limited to form during the drawing process. Much of the archery
form lies in the release and follow through, both of which are not
easily provided nor captured by an application like this. AR is not
necessary for post-release analysis, which may be better provided
by video analysis with a coach. For intermediate and more advanced
archers, issues in form are likely to be in the release and follow
through, not the initial draw, thus limiting the usability of this type
of application for non-beginner archers (although it looks cool).

6 FUTURE WORK
Ultimately, I don’t think there’s much that can be done about the
limitations of the problem itself. Even in improving the application
for beginning archers, it is reliant on headset improvements that
provide higher fields of view. The archer’s head angle makes any
AR headset applications because the rendering frame lies mostly
in peripheral vision. Aside from these limitations, if this project
were to be improved, it would start from improving the body track-
ing solution. Instead of the Amethyst limited trackers, a solution
could be developed to send all necessary trackers over OSC instead.
This would improve the solution accuracy and remove reliance on
assumed tracker positions.

7 CONCLUSION
This project is a proof of concept for archery form analysis in aug-
mented reality. As an application, it provides a platform for helping
beginning archers understand basic shooting form, especially when

they cannot visualize the correct form while shooting. However,
various hardware limitations limit the actual usability of the appli-
cation, as well as its accuracy. Due to these limitations, it is difficult
to imagine further developments that can improve the usefulness
of such an application for more advanced archers.

ACKNOWLEDGMENTS
Thanks to the CSE 493V staff for providing the necessary hardware
resources and for pointing me in the right direction when choosing
the proper development hardware and software.

REFERENCES
Zafer Bozyer. 2015. Augmented Reality in Sports: Today and Tomorrow. In International

Journal of Science Culture and Sport (Special Issue 4). International Journal of Science
Culture and Sport, 322–323.

K2VR Team. 2022. Amethyst Docs. https://docs.k2vr.tech/en/

https://docs.k2vr.tech/en/

	Abstract
	1 Introduction
	1.1 Contributions

	2 Related Work
	3 Method
	4 Implementation Details
	5 Evaluation of Results
	6 Future Work
	7 Conclusion
	References

