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Fig. 1. This figure shows the Eye Tracking Capabilities of our Project including Pupil Detection From the right image shown on the Right Side Image, where
we detect all pixels on the screen that show the user’s pupil shown on the Left Side Image. We can also see a cross on the Right Side Image to demonstrate our

pupil center calculations.

In this project, we present a proof of concept for a stand-alone gaze tracking
system. Our system leverages advanced machine learning models and effi-
cient computer vision techniques to accurately detect pupil positions and
track gaze direction in real-time. We have not integrated our system with any
specific VR headset; instead, our focus is on demonstrating the capabilities
of these technologies and their potential to enhance user experiences in vir-
tual reality environments. While our project does not pioneer new tracking
technologies, it serves as a significant proof of concept, demonstrating the
feasibility and utility of such systems in broader applications. We hope that
our work will inspire further development and refinement in the field of
gaze tracking.

1 INTRODUCTION

Eye tracking is a crucial technology that has gained significant im-
portance in various fields, including virtual reality (VR). One of the
key reasons why eye tracking is needed is its potential to enhance
user experience and immersion in VR environments. By tracking
the movement and gaze direction of the user’s eyes, VR systems
can precisely determine what the user is looking at and adjust the
displayed content accordingly. This capability allows for more re-
alistic and interactive experiences, as the virtual environment can
respond dynamically to the user’s visual attention.

In VR, eye tracking plays a significant role in a technique known
as foveated rendering. Foveated rendering takes advantage of the
fact that our eyes have higher visual acuity in the center of our field
of view (fovea) compared to the peripheral vision. By tracking the
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user’s eye movements, the VR system can identify the area within
the field of view that corresponds to the fovea and allocate higher
rendering resources to that region. At the same time, the system
can reduce the level of detail and rendering quality in the periph-
eral areas. This approach optimizes computational resources and
improves performance, allowing for more efficient rendering and
reducing the hardware requirements for running VR applications.

To achieve gaze tracking in VR using eye tracking technology, sev-
eral challenges need to be addressed. One of the primary challenges
is accurately mapping the user’s gaze direction to the corresponding
point in the virtual environment. This involves calibrating the eye
tracking system to the user’s eyes and establishing a reliable correla-
tion between eye movements and visual attention. Additionally, the
VR system needs to handle potential issues such as eye drift, where
the user’s gaze may wander even when their eyes are fixated on a
specific point. Algorithms and techniques are employed to minimize
these errors and ensure accurate and reliable gaze tracking.

To address the challenges associated with eye tracking and gaze
tracking in VR, we employ a combination of machine learning mod-
els and computer vision techniques to solve these problem. Although
previous work has demonstrated the ability for Eye Tracking, our
paper serves as a proof of concept of these abilities and the applica-
tions they can enable.

1.1  Contributions

e Advanced machine learning techniques: We demonstrate
the effectiveness of advanced machine learning models for
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accurately detecting a user’s pupil. These models leverage
complex algorithms and deep learning architectures to an-
alyze eye images and accurately identify the position and
shape of the pupil.

o Efficient computer vision techniques: In addition to machine
learning models, we also explore fast and efficient com-
puter vision techniques for pupil detection. These techniques
utilize image processing algorithms and feature extraction
methods to achieve real-time pupil tracking, although with
reduced accuracy compared to the advanced machine learn-
ing models.

e Accurate gaze tracking: We showcase the successful inte-
gration of calibration techniques and regression models to
accurately track eye gaze based on the detected pupil po-
sitions. Through careful calibration, we establish a reliable
mapping between eye movements and gaze direction, en-
abling precise tracking of the user’s visual attention in vir-
tual environments.

In summary, our project contributes not necessarily by pioneer-
ing new eye-tracking technologies but by demonstrating the im-
plementation, integration, and application of these systems in VR
experiences without the resources of tech giants.

2 RELATED WORK

Our model builds upon the advancements in eye tracking and gaze
tracking techniques. Leveraging advanced machine learning and
computer vision approaches, we have developed a robust and ac-
curate system for pupil detection and gaze tracking. Our model
combines the precision of state-of-the-art CNN models from Deep-
VOG [Kassner et al. 2014], to track the eye pupil with remarkable
accuracy. This allows us to provide users with highly precise eye
tracking capabilities, ensuring a more immersive and interactive VR
experience.

However, we recognize the computational demands that come
with employing such sophisticated models, which can pose limita-
tions for some users. To address this challenge, we have integrated
center-of-the-eye tracking techniques, inspired by Pupil Labs’ edge
detection approach [Yiu et al. 2019]. This enables us to offer a faster
and more efficient alternative for eye tracking, ensuring a seamless
experience while respecting GPU computation limits. By providing
users with the flexibility to choose their preferred tracking model,
we aim to cater to individual preferences and optimize the overall
tracking performance for each user.

3 METHOD

This system for gaze tracking consists of a series of procedures to
capture, process and analyze the user’s gaze direction in real-time.
The methodology for this project is divided into four major parts:
video capture, eye detection, calibration, and gaze estimation.

3.1 Video Capture

The initial step in the process involves capturing real-time video
using a webcam. The video frames are then processed in real-time
for eye detection.

3.2 Eye Detection

Each captured frame is analyzed for detecting the pupil’s position.
An algorithm is applied that uses image processing techniques to
identify the ellipse representing the pupil. The center of this ellipse
is taken as the current position of the pupil.

3.3 Calibration

Calibration is required to accurately map the coordinates of the
pupil position in the image to the actual gaze point on the screen.
The user is asked to gaze at different points on the screen, and the
corresponding pupil positions are recorded. This data is used to
compute a transformation function between the pupil positions and
the screen coordinates.

3.4 Gaze Estimation

The final step is gaze estimation, which is done by continuously
capturing the pupil’s position and applying the transformation func-
tion calculated in the calibration step. This estimates the point on
the screen that the user is gazing at. The estimated gaze point is
then displayed on the screen for real-time visualization.

4 IMPLEMENTATION DETAILS

The system was built using Python with the help of various libraries
and modules including Pygame for displaying visual stimuli and
capturing user interaction, OpenCV for video capture and image
processing, and TensorFlow for running the DeepVOG model.

4.1 Head-Chin Rest and Camera Setup

A custom-built head-chin rest (figure 2) is used to ensure the user’s
head remains steady during operation, which is crucial for accurate
pupil detection and gaze estimation. The head-chin rest is con-
structed from PVC pipes, screws, and knobs, with a wooden base
made from a 2 by 4 plank. The entire assembly is attached to the
desk using a clamp, which provides stability. Epoxy glue was used
to secure the elements of the structure. The head rest, chin rest, and
camera positions are adjustable, allowing the system to adapt to
different users and conditions. The camera is fixed to the head rest
using a small adjustable arm made from a PVC pipe, maintaining a
consistent image capture angle and distance.

4.2 Eye Detection Models

The system implements two different models for pupil detection -
the DeepVOG model and Pupil Labs’ Detector2D model. The Deep-
VOG model is a deep learning model specifically trained for gaze
estimation, while the Detector2D model utilizes conventional com-
puter vision techniques for pupil detection. The user can switch
between these two models during operation, providing flexibility
and adaptability to different conditions and requirements.

4.3 Real-time Operation and Calibration

The system operates in real time, processing 30 frames per second.
Calibration is performed by asking the user to focus on specific
points displayed on the screen. The system records the pupil po-
sition corresponding to these points and calculates a transforma-
tion function that maps pupil positions to screen coordinates. This



Fig. 2. Adjustable head-chin rest with camera setup. The head rest, chin
rest, and camera positions are adjustable for different users and conditions.

calibration is performed every 60 frames (approximately every 2
seconds), to account for any possible changes in lighting conditions
or slight movements of the user.

4.4 Mean Absolute Error (MAE) Calculation

The system includes an option to calculate the Mean Absolute Er-
ror (MAE) of the gaze estimation. This is done by comparing the
estimated gaze point with the actual point the user is instructed to
look at. This feature provides a measure of the system’s accuracy.

4.5 Visual Feedback

The system provides real-time visual feedback by displaying the
estimated gaze point on the screen. Additionally, it includes a ’rolling
ball’ feature, where a ball moves across the screen and the user is
instructed to follow it with their eyes. This feature is useful for
testing the system and observing the accuracy of the gaze tracking.

5 EVALUATION OF RESULTS

Upon successfully calibrating the system using the DeepVOG model,
we conducted several evaluation experiments to assess the accuracy
of our gaze tracking implementation. In each experiment, a red dot
was displayed at a random location on the screen, and the user
was instructed to focus their gaze on it. We then recorded the pre-
dicted gaze locations over a period corresponding to 30 frames, and
computed the mean absolute error (MAE) between these predicted
gaze locations and the actual location of the red dot. To increase
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the reliability of our results, the initial 20 percent of the gathered
data, which could include user errors, was omitted from the MAE
calculation.

Table 1. Evaluation Results

Dot Position (pixels) MAE (pix- MAE MAE (de-
els) (inches) grees)

(x:1583, y:971) 51.157 0.470 0.84
(x:174, y:72) 36.992 0.340 0.61
(x:1460, y:600) 33.727 0.310 0.55
(x:934, y:698) 29.368 0.270 0.48
(x:1551, y:524) 30.236 0.278 0.50
(x:503, y:150) 34.665 0.318 0.57
(x:763, y:64) 13.802 0.127 0.23
(x:372, y:1065) 42.847 0.394 0.7
(x:660, y:291), 16.512 0.152 0.27
(x:1434, y:171) 49.934 0.459 0.82
Mean 33.924 0.31 0.56

Note that we were unable to achieve a successful calibration using
the Pupil Labs model, so all the results presented here are based on
the DeepVOG model.

The distance from the screen to the eye was 32 inches, the screen
had a pixel density of 108.85 PPI and the screen resolution was
2560x1440 pixels. Therefore, we have converted the MAE from pixels
to inches using the known PPI for more intuitive understanding
of the errors. We also calculated the MAE in degrees using the
formula MAEgegrees = arctan(MAEinches/32) for a comprehensive
evaluation of the system’s performance.

6 DISCUSSION OF BENEFITS AND LIMITATIONS

Our pupil tracking solution offers several benefits, but it also has
limitations, which largely depend on the computational capabilities
of the user’s system.

6.1 Benefits

o Flexibility: Our approach can leverage two different mod-
els - the DeepVOG model for high accuracy and the Pupil
Labs model for speed and resource efficiency. This flexibility
allows users to choose the model that best fits their needs
and system capabilities.

e Calibration: Our calibration process has been designed to
be efficient and user-friendly, which enhances the accuracy
of gaze tracking.

e Hardware: The adjustable head-chin rest we developed
from inexpensive materials is extremely easy to use and
sturdy.

6.2 Limitations

o System Dependency: The frame rate and overall perfor-
mance of the eye-tracking system depend on the hardware
capabilities of the user’s system. While high-end systems
can run the DeepVOG model with high frame rates, more
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modest systems may experience performance degradation,
with frame rates dropping to as low as 3-4 FPS. This could re-
sult in noticeable lag in gaze tracking, impacting the overall
user experience.

o Trade-off between Speed and Accuracy: The Pupil Labs
model offers high frame rates across a wide range of hard-
ware, making it suitable for systems with limited resources.
However, it is a lot less accurate than the DeepVOG model,
presenting a trade-off between speed and accuracy.

e Calibration Accuracy: While our calibration process is
generally reliable, low frame rates could potentially affect its
accuracy. We recommend conducting the calibration process
on a system with sufficient computational resources.

7 FUTURE WORK

While we take pride in the work we have accomplished with this
project, we acknowledge there is ample room for growth and im-
provement. As a result, we have identified several avenues for future
exploration:

e Improved and more efficient ML models: The current
model we are using is resource-intensive and requires a
powerful GPU. We plan to investigate more efficient and
lighter machine learning models to enhance the performance
of the gaze tracking system without such heavy resource
requirements.

e Research into alternative computer vision-based pupil
detection methods: We recognize that Pupil Labs may not
provide optimal accuracy in our project. Therefore, we plan
to investigate other computer vision techniques for pupil
detection that could potentially enhance the accuracy and
robustness of our gaze tracking system.

o Integration with VR hardware: Looking forward, we are
keen on exploring the integration of our gaze tracking sys-
tem directly into VR headsets. This could offer an additional
level of convenience and user immersion.

Our humble project has laid a foundation upon which we hope to
build in the future. We remain committed to learning, experimenting,
and making meaningful contributions to this dynamic field.

8 CONCLUSION

In this project, we’ve taken on the challenge of implementing, in-
tegrating, and applying advanced machine learning and computer
vision techniques to create an effective gaze tracking system in a
VR context, all without the extensive resources often available to
large corporations. It’s clear that our efforts haven’t broken new
ground in the field of eye and gaze tracking technology, but we’re
proud to have demonstrated that resourcefulness and dedication
can yield meaningful results.

We acknowledge our project as a small piece within a much
larger puzzle. We are grateful for the substantial body of work
that preceded ours, and we hope our modest effort will add to the
shared knowledge in the field of VR eye and gaze tracking. We are
enthusiastic about continuing to learn, adapt, and contribute within
our capacity.
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