
Intractable Fluid Simulations in VR
Andy Danforth | VR Systems CSE493V Spring 2023 University Of Washington

2D Simulation

3D Simulation

Stereo Rendering for VR

Making a fluid simulation

work without exploding or

collapsing in on itself is harder

than I wanted it to be. (It still

kinda doesn’t work)

 Overview

 Method

 Results

 Related Work

 References

Realistic fluid simulations can serve as a

great visualization tool and are a vital

part of many visual effects in movies and

games. I wanted to try and implement my

own realistic fluid simulation in virtual

reality and to have it update in real time

in order to make full use of the medium

via user interaction.

Some of my results are shown on the left

● The first image shows my 2D fluid

simulation mid run

● The second pair of images shows a “Dam

Break“ set up where all of the particles are

set up in a wall and once the sim start, they

will crash into the opposing side

● The third pair of images shows the 3D

rendering in Stereo for VR compatibility, the

left and right images are shown to their

respective eyes.

There are two typical ways fluids are

simulated: Eulerian grids and Lagrangian

particles. Eulerian methods keep track of fluid

variables on a fixed grid, and Lagrangian

methods store fluid variables on individual

particles. I chose a Fluid-Implicit-Particle

(FLIP) method as described by Zhu and

Bridson which combines the two prior

methods by storing position and velocity on

the particles, transferring these values to a

staggered grid for calculations and then back

to particles [1].

 My Approach

I was familiar with Unity, and knew Unity

had good VR support, so I opted to use it for

this project. Unlike most existing fluid

simulations, I will be using Unity and its

rendering system. This imposes a larger

overhead than if I implemented it all

directly using a graphics library so I had to

take the following considerations:

● Implement all rendering using GPU

instancing to improve performance [2].

● Implement all simulation steps using the

GPU/compute shaders.

● Define custom shaders to do stereo

rendering for VR.

● Add satisfying interaction methods using

oculus controllers.

● Matthias Müller’s 2D Flip Implementation

A very well done tutorial on the basics

of FLIP simulations and basic working

code in JavaScript. [3]

● David Li’s 3D Flip Demo [4]

A well made 3D demo of a Flip solver

With mouse interactions.

● Zhu and Bridson’s paper Animating Sand

as a Fluid

A well referenced paper which

discusses the FLIP method in detail

[1] Yongning Zhu and Robert Bridson. 2005. Animating sand
as a fluid. ACM Trans. Graph. 24, 3 (July 2005),
965–972. https://doi.org/10.1145/1073204.1073298
[2] Spencer, M. 2023. How to render 13,086,178 objects
at 120 fps, YouTube. Available at:

https://www.youtube.com/watch?v=6mNj3M1il_c

[3]Matthias Müller. 2022. 18 - how to write a flip water /

fluid simulation running in your browser.

[4] David Li. 2016. http://david.li/fluid

