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Lecture notes

• These lecture notes are based on other courses in LLMs, including

• CSE493S/599S at UW by Ludwig Schmidt: https://mlfoundations.github.io/advancedml-sp23/ 

• EE-628 at EPFL by Volkan Cevher: https://www.epfl.ch/labs/lions/teaching/ee-628-training-large-language-

models/ee-628-slides-2025/ 

• ECE381V Generative Models at UT Austin by Sujay Sanghavi

• and various papers and blogs cited at the end of the slide deck

https://mlfoundations.github.io/advancedml-sp23/
https://www.epfl.ch/labs/lions/teaching/ee-628-training-large-language-models/ee-628-slides-2025/
https://www.epfl.ch/labs/lions/teaching/ee-628-training-large-language-models/ee-628-slides-2025/
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Mixture-of-Experts (MoE)





• It is common for feed-forward layers to account for 
more than half of the parameters in a transformer.

Figure from http://arxiv.org/abs/2409.02060 [Muennighoff et al. 2024]

Embedding layer =  vocab * d_model 
                            =  50,000 * 12,288 
                            =  0.614B 
Self attention =   
                      =  4*(d_model * d_model)  
                      =   
                      =   
                      =  57.9 B


Feed-forward =  
                       =  
                       = 116.0 B

(WQ, WK, WV, P)

4 × 12,2882

0.603 B/layer

2 × dmodel × dff
1.2 B/layer

dmodel

dff = 4 × dmodel

dmodel

http://arxiv.org/abs/2409.02060


• One can benefit from scaling up to larger models without increasing as much 
inference time with Mixture-of-Experts (MoE)



• Dense MoE gives every expert non-zero weights 

• 


• Each expert is a small FFN:


• 


• Router is a dense softmax


•

y =
N

∑
i=1

G(x)iEi(x)

Ei(x) = W2 σ(W1x)

G(x) = Softmax(WGx)



• Sparse MoE selects top-  experts and is now popular 

• 


• Each expert is a small FFN:


• 


• Router is a softmax over top-  gating


• 


•

k

y =
N

∑
i=1

G(x)iEi(x)

Ei(x) = W2 σ(W1x)

k

G(x) = Softmax(Top-k(WGx))

Top-k(v) = { vi, vi is in the Top k
−∞,  otherwise 

•  

•  

•  

    

v = [−7, 3, 8, − 2]

Top-k(v) = [−∞, 3, 8, − ∞]

Softmax(Top-k(v))

= [0,
e3

e3 + e8
,

e8

e3 + e8
,0]



• Many variations of MoE architecture exist


• If left unchecked, the expert gate tends to concentrate on a small number of experts that are popular 
early in training. 


• Proposed solution in OlMoE [Muennighoff et al. 2024]:  
 
                        

• Load balancing regularizer: 
balances experts within a batch 

                

 



• Many variations of regularizers exist to help with training.

L = LCE + α LLB

LLB = N
N

∑
i=1

fiPi

fi = fraction of tokens routed to expert i
Pi =  total routing probability allocated to Ei in current batch



• The number of experts chosen, , is typically small


• Mixtral (MoE from mistral): 


• OlMoE (MoE from AI2): 


• For MoEs the gain is in inference-time computation 


• GPU memory requirement ~= # of total parameters


• FLOPS computation requirement ~= # of active parameters 
 
where # of active parameters is  the count of parameters that are 
selected by the router

k

k = 1,N = 8

k = 8,N = 64



Figure from http://arxiv.org/abs/2401.04088



• MoEs achieve the frontier of inference-cost vs. performance trade-off for 
open-source models

Figure from http://arxiv.org/abs/2409.02060



• MoEs achieve favorable training-cost vs. performance trade-of

Figure from http://arxiv.org/abs/2409.02060



• Earlier works in MoE designed for RNNs favored very large number of experts 



• More recent MoEs for transformers require comparably smaller number of 
experts.

Figure from http://arxiv.org/abs/2409.02060



Mixture-of-Experts (MoE)



• How to improve performance of LMs?

[Welleck et al. 2024]

• Scaling Pre-training • Scaling Post-training • Test-time scaling



• Goal: design a system  that generates acceptable sequences: 
 
             
 
where acceptable, , is measured by correctness, human preference, etc.


• We have a retrained model that can sample from , which may 
produce unacceptable samples.

G

arg max
G

𝔼y∼G A(y)

A( ⋅ )

y ∼ Pθ(y |x)

easy to sample
acceptable



• If we have an oracle that can verify correctness of an output, 
one can repeat


• 


• 


• stop if oracle says  
it is correct

z ∼ Pθ(z |x)

y ∼ Pθ(y |x, z)



• When oracle is correct, this strategy increases accuracy.



• In general, a meta-generator  uses multiple generative model calls and 
other tools, hyper-parameters, prompts: 
 
                          

• Design choices:


•  strategy for calling generators


•  choices of generators


• other models, number of tokens, etc.

G

y ∼ G(y |x; g1, …, gG, ϕ)

G :

g1, …, gG :

ϕ :



• Meta-generation strategies include: 


• Chain


• Parallel


• Tree search


• Refinement/self-correction



• Chained meta-generators call the LM repeatedly, with augmented prompts. 
 
      
      
      
     

y1 ∼ g1(x)
y2 ∼ g1(x, y1)
y3 ∼ g3(x, y2)
⋮



• Chain-of-Thought is an example: 
 
 
 
 
 
 
 
 

• This auto-regressive decoding of CoT can be represented by 
      generate thought:  
      generate answer:  

z ∼ Pθ(z |x)
y ∼ Pθ(y |x, z)



• Search is an example of multiple step chained meta-generation, with access 
to tools like search engine calls:

• This can be represented as a program, 
which typically improves the reasoning:



• Many other strategies


• Re-write input before feeding in to LM for an answer:  
System-2 attention [Weston and Sukhbaater, 2023]


• Sketch proof, fill gaps, check proof 
Draft-sketch-prove [Jiang et al., 2023]

• Chained meta-generators only utilize/control the input space.



• Parallel meta-generators generate multiple outputs to select from.


• Generate candidates:  
    


• Aggregate:  
     

{y(1), …, y(m)} ∼ G( ⋅ |x)

y = h(y(1), …, y(m))



• Best-of-  sampling and rejection sampling


• Aggregate: with a reward model:  
             

m

y ← arg max
y(1),…,y(m)

A(y)



• This can suffer from over optimizing to the reward A( ⋅ )



• Majority voting and self-consistency does not require external reward model.


• Aggregation:  

             , y ← arg max
a

m

∑
i=1

𝕀{y(i) = a}



• You can combine best-of-  and voting: 


• Weighted aggregation: 

             

m

y ← arg max
a

m

∑
i=1

A(y(i)) ⋅ 𝕀{y(i) = a}



• Weighted voting can out-perform best-of- 


• This happens when weighted maximum reward is more likely to give the 
correct answer

m



• For large , this converges to maximum conditional expectation:  
 
            


• One can potentially further improve the performance by 


• using better reward, and  

• using a better generator that reasons better


• Parallel meta-generators use the reward in the end.

m

y ← arg max
a ∑

z

V(x, z, y = a)g(z, y = a |x)

12: [Zhang et al., 2024]



• Tree search meta-generators can evaluate reward on a sequence of 
intermediate states and the final outcome.



• Tree search meta-generators can evaluate reward on a sequence of 
intermediate states and the final outcome.



• Selects which state to explore next by taking the reward into account.



• Aggregates the final answer using, e.g., weighted voting

• Key idea in tree search meta-generator is leveraging intermediate states and 
rewards to back-track/explore.



• Tree search meta-generators require good reward functions over well-defined 
states.



• Refinement/self-correction meta-generators use past generation and 
correct mistakes. 

• Quality of the feedback is critical. 



• There are extrinsic/intrinsic feedback. 





• There are extrinsic/intrinsic feedback. 

Easy to evaluate but results are mixed.



• One can train a corrector based on samples generated and optimized to 
maximize reward.





• First 1/2 of CSE492S/599S Advanced ML



• Language models


• General LLM framework
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•  Sequence mixing


•  Prediction
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• Test-time compute

• Second 1/2 of CSE492S/599S Advanced ML
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