
CSE 493s/599s
Lecture 19.

Sewoong Oh

Lecture notes

• These lecture notes are based on other courses in LLMs, including

• CSE493S/599S at UW by Ludwig Schmidt: https://mlfoundations.github.io/advancedml-sp23/

• EE-628 at EPFL by Volkan Cevher: https://www.epfl.ch/labs/lions/teaching/ee-628-training-large-language-

models/ee-628-slides-2025/

• ECE381V Generative Models at UT Austin by Sujay Sanghavi

• and various papers and blogs cited at the end of the slide deck

https://mlfoundations.github.io/advancedml-sp23/
https://www.epfl.ch/labs/lions/teaching/ee-628-training-large-language-models/ee-628-slides-2025/
https://www.epfl.ch/labs/lions/teaching/ee-628-training-large-language-models/ee-628-slides-2025/

Outline
• Language models

• General LLM framework

• Token processing

• Sequence mixing

• Prediction

• Prompting techniques at inference time

• In-context learning

• Chain-of-thought prompting

• Fine-tuning

• Alignment

• Mixture-of-Experts (MoE)

Mixture-of-Experts (MoE)

• It is common for feed-forward layers to account for
more than half of the parameters in a transformer.

Figure from http://arxiv.org/abs/2409.02060 [Muennighoff et al. 2024]

Embedding layer = vocab * d_model 
 = 50,000 * 12,288 
 = 0.614B 
Self attention =  
 = 4*(d_model * d_model)  
 =  
 =  
 = 57.9 B

Feed-forward =  
 =  
 = 116.0 B

(WQ, WK, WV, P)

4 × 12,2882

0.603 B/layer

2 × dmodel × dff
1.2 B/layer

dmodel

dff = 4 × dmodel

dmodel

http://arxiv.org/abs/2409.02060

• One can benefit from scaling up to larger models without increasing as much
inference time with Mixture-of-Experts (MoE)

• Dense MoE gives every expert non-zero weights

•

• Each expert is a small FFN:

•

• Router is a dense softmax

•

y =
N

∑
i=1

G(x)iEi(x)

Ei(x) = W2 σ(W1x)

G(x) = Softmax(WGx)

• Sparse MoE selects top- experts and is now popular

•

• Each expert is a small FFN:

•

• Router is a softmax over top- gating

•

•

k

y =
N

∑
i=1

G(x)iEi(x)

Ei(x) = W2 σ(W1x)

k

G(x) = Softmax(Top-k(WGx))

Top-k(v) = { vi, vi is in the Top k
−∞, otherwise

•

•

•  

v = [−7, 3, 8, − 2]

Top-k(v) = [−∞, 3, 8, − ∞]

Softmax(Top-k(v))

= [0,
e3

e3 + e8
,

e8

e3 + e8
,0]

• Many variations of MoE architecture exist

• If left unchecked, the expert gate tends to concentrate on a small number of experts that are popular
early in training.

• Proposed solution in OlMoE [Muennighoff et al. 2024]:  
 
  

• Load balancing regularizer: 
balances experts within a batch 

  

 

• Many variations of regularizers exist to help with training.

L = LCE + α LLB

LLB = N
N

∑
i=1

fiPi

fi = fraction of tokens routed to expert i
Pi = total routing probability allocated to Ei in current batch

• The number of experts chosen, , is typically small

• Mixtral (MoE from mistral):

• OlMoE (MoE from AI2):

• For MoEs the gain is in inference-time computation

• GPU memory requirement ~= # of total parameters

• FLOPS computation requirement ~= # of active parameters 
 
where # of active parameters is the count of parameters that are
selected by the router

k

k = 1,N = 8

k = 8,N = 64

Figure from http://arxiv.org/abs/2401.04088

• MoEs achieve the frontier of inference-cost vs. performance trade-off for
open-source models

Figure from http://arxiv.org/abs/2409.02060

• MoEs achieve favorable training-cost vs. performance trade-of

Figure from http://arxiv.org/abs/2409.02060

• Earlier works in MoE designed for RNNs favored very large number of experts

• More recent MoEs for transformers require comparably smaller number of
experts.

Figure from http://arxiv.org/abs/2409.02060

Mixture-of-Experts (MoE)

• How to improve performance of LMs?

[Welleck et al. 2024]

• Scaling Pre-training • Scaling Post-training • Test-time scaling

• Goal: design a system that generates acceptable sequences: 
 
  
 
where acceptable, , is measured by correctness, human preference, etc.

• We have a retrained model that can sample from , which may
produce unacceptable samples.

G

arg max
G

𝔼y∼G A(y)

A(⋅)

y ∼ Pθ(y |x)

easy to sample
acceptable

• If we have an oracle that can verify correctness of an output, 
one can repeat

•

•

• stop if oracle says  
it is correct

z ∼ Pθ(z |x)

y ∼ Pθ(y |x, z)

• When oracle is correct, this strategy increases accuracy.

• In general, a meta-generator uses multiple generative model calls and
other tools, hyper-parameters, prompts: 
 
  

• Design choices:

• strategy for calling generators

• choices of generators

• other models, number of tokens, etc.

G

y ∼ G(y |x; g1, …, gG, ϕ)

G :

g1, …, gG :

ϕ :

• Meta-generation strategies include:

• Chain

• Parallel

• Tree search

• Refinement/self-correction

• Chained meta-generators call the LM repeatedly, with augmented prompts. 
 
  
  
  

y1 ∼ g1(x)
y2 ∼ g1(x, y1)
y3 ∼ g3(x, y2)
⋮

• Chain-of-Thought is an example: 
 
 
 
 
 
 
 
 

• This auto-regressive decoding of CoT can be represented by 
 generate thought:  
 generate answer:

z ∼ Pθ(z |x)
y ∼ Pθ(y |x, z)

• Search is an example of multiple step chained meta-generation, with access
to tools like search engine calls:

• This can be represented as a program,
which typically improves the reasoning:

• Many other strategies

• Re-write input before feeding in to LM for an answer:  
System-2 attention [Weston and Sukhbaater, 2023]

• Sketch proof, fill gaps, check proof 
Draft-sketch-prove [Jiang et al., 2023]

• Chained meta-generators only utilize/control the input space.

• Parallel meta-generators generate multiple outputs to select from.

• Generate candidates:  

• Aggregate:  

{y(1), …, y(m)} ∼ G(⋅ |x)

y = h(y(1), …, y(m))

• Best-of- sampling and rejection sampling

• Aggregate: with a reward model:  

m

y ← arg max
y(1),…,y(m)

A(y)

• This can suffer from over optimizing to the reward A(⋅)

• Majority voting and self-consistency does not require external reward model.

• Aggregation:  

 , y ← arg max
a

m

∑
i=1

𝕀{y(i) = a}

• You can combine best-of- and voting:

• Weighted aggregation: 

m

y ← arg max
a

m

∑
i=1

A(y(i)) ⋅ 𝕀{y(i) = a}

• Weighted voting can out-perform best-of-

• This happens when weighted maximum reward is more likely to give the
correct answer

m

• For large , this converges to maximum conditional expectation:  
 

• One can potentially further improve the performance by

• using better reward, and

• using a better generator that reasons better

• Parallel meta-generators use the reward in the end.

m

y ← arg max
a ∑

z

V(x, z, y = a)g(z, y = a |x)

12: [Zhang et al., 2024]

• Tree search meta-generators can evaluate reward on a sequence of
intermediate states and the final outcome.

• Tree search meta-generators can evaluate reward on a sequence of
intermediate states and the final outcome.

• Selects which state to explore next by taking the reward into account.

• Aggregates the final answer using, e.g., weighted voting

• Key idea in tree search meta-generator is leveraging intermediate states and
rewards to back-track/explore.

• Tree search meta-generators require good reward functions over well-defined
states.

• Refinement/self-correction meta-generators use past generation and
correct mistakes.

• Quality of the feedback is critical.

• There are extrinsic/intrinsic feedback.

• There are extrinsic/intrinsic feedback.

Easy to evaluate but results are mixed.

• One can train a corrector based on samples generated and optimized to
maximize reward.

• First 1/2 of CSE492S/599S Advanced ML

• Language models

• General LLM framework

• Token processing

• Sequence mixing

• Prediction

• Prompting techniques at inference time

• In-context learning

• Chain-of-thought prompting

• Fine-tuning

• Alignment

• Mixture-of-Experts (MoE)

• Test-time compute

• Second 1/2 of CSE492S/599S Advanced ML

Sources
• Other courses in LLMs that the lecture slides are based on

• CSE493S/599S at UW by Ludwig Schmidt: https://mlfoundations.github.io/advancedml-sp23/

• EE-628 at EPFL by Volkan Cevher: https://www.epfl.ch/labs/lions/teaching/ee-628-training-large-language-models/ee-628-slides-2025/

• https://sharif-llm.ir/assets/lectures/Chain-of-Thought-Prompting.pdf

• https://www.cs.princeton.edu/courses/archive/fall22/cos597G/lectures/lec09.pdf

• Useful blog posts

• https://azizbelaweid.substack.com/p/complete-summary-of-absolute-relative

• https://blog.dust.tt/speculative-sampling-llms-writing-a-lot-faster-using-other-llms/

• https://gordicaleksa.medium.com/eli5-flash-attention-5c44017022ad

• https://medium.com/@dillipprasad60/qlora-explained-a-deep-dive-into-parametric-efficient-fine-tuning-in-large-language-models-llms-

c1a4794b1766

• https://cmu-l3.github.io/neurips2024-inference-tutorial/

• Dan Jurafsky and James H. Martin. Speech and Language Processing (3rd ed. draft). draft, third edition, 2023.

• Tomas Mikolov, Kai Chen, Gregory S. Corrado, and Jeffrey Dean. “Efficient estimation of word representations in vector space”, In International

Conference on Learning Representations, 2013.

• Jeffrey Pennington, Richard Socher, and Christopher D. Manning. "Glove: Global vectors for word representation”, Proceedings of the 2014

conference on empirical methods in natural language processing (EMNLP). 2014.

• Ofir Press, Noah A. Smith1,3 Mike Lewis2 , “Train Short, Test Long: Attention with Linear Biases Enables Input Length Extrapolation”, In

International Conference on Learning Representations, 2022

• Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, Illia Polosukhin, “Attention Is All You

Need”, In Neural Information Processing Systems, 2017

• Beitong Zhou, Cheng Cheng, Guijun Ma, and Yong Zhang. “Remaining useful life prediction of lithium-ion battery based on attention mechanism

with positional encoding”, In IOP Conference Series: Materials Science and Engineering, 2020.

• Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. “On the difficulty of training recurrent neural networks." In International Conference on

Machine Learning, 2013

https://mlfoundations.github.io/advancedml-sp23/
https://www.epfl.ch/labs/lions/teaching/ee-628-training-large-language-models/ee-628-slides-2025/
https://sharif-llm.ir/assets/lectures/Chain-of-Thought-Prompting.pdf
https://www.cs.princeton.edu/courses/archive/fall22/cos597G/lectures/lec09.pdf
https://azizbelaweid.substack.com/p/complete-summary-of-absolute-relative
https://blog.dust.tt/speculative-sampling-llms-writing-a-lot-faster-using-other-llms/
https://gordicaleksa.medium.com/eli5-flash-attention-5c44017022ad
https://medium.com/@dillipprasad60/qlora-explained-a-deep-dive-into-parametric-efficient-fine-tuning-in-large-language-models-llms-c1a4794b1766
https://medium.com/@dillipprasad60/qlora-explained-a-deep-dive-into-parametric-efficient-fine-tuning-in-large-language-models-llms-c1a4794b1766

• Sepp Hochreiter and Jürgen Schmidhuber. “Long short-term memory.” In Neural Computation, 9(8):1735–1780, 11 1997.

• Kyunghyun Cho, Bart van Merrienboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares, Holger Schwenk, and Yoshua Bengio. “Learning phrase

representations using rnn encoder-decoder for statistical machine translation”, In ACL 2014

• Andrey Andreyevich Markov. “Essai d’une recherche statistique sur le texte du roman. ‘Eugene Onegin’ illustrant la liaison des epreuve en chain”. In:

Izvistia Imperatorskoi Akademii Nauk (Bulletin de l’Académie Impériale des Sciences de St.-Pétersbourg). 6th ser, 7:153–162, 1913.

• Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, Yejin Choi, “The Curious Case of Neural Text Degeneration”, In International Conference on Learning

Representations, 2020

• Charlie Chen, Sebastian Borgeaud, Geoffrey Irving, Jean-Baptiste Lespiau, Laurent Sifre and John Jumper, “Accelerating Large Language Model

Decoding with Speculative Sampling”In, ACL-findings, 2024

• Sergey Ioffe, Christian Szegedy, “Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift", In International

Conference on Machine Learning, 2015

• Shibani Santurkar∗ MIT shibani@mit.edu Dimitris Tsipras∗ MIT tsipras@mit.edu Andrew Ilyas∗ MIT ailyas@mit.edu Aleksander Madry, “How Does

Batch Normalization Help Optimization?”, In Advances in Neural Information Processing Systems 31 (NeurIPS 2018)

• Jimmy Lei Ba, Jamie Ryan Kiros, Geoffrey E. Hinton, “Layer Normalization “, In 2016

• Tianyu Gao, Adam Fisch, Danqi Chen, “Making Pre-trained Language Models Better Few-shot Learners”, In ACL, 2021

• Sewon Min1,2 Xinxi Lyu1 Ari Holtzman1 Mikel Artetxe2 Mike Lewis2 Hannaneh Hajishirzi1,3 Luke Zettlemoyer, “rethinking the role of demonstrations

what makes in conte…”

• Hila Gonen1,2 Srini Iyer2 Terra Blevins1 Noah A. Smith1,3 Luke Zettlemoyer1, “Demystifying Prompts in Language Models via Perplexity Estimation”

• E Akyürek, B Wang, Y Kim, J Andreas , “In-context language learning: Architectures and algorithms”, 2024

• What learning algorithm is in-context learning? Investigations with linear models Ekin Akyürek, Dale Schuurmans, Jacob Andreas, Tengyu Ma, Denny

Zhou, 2022

• Ziqian Lin, Kangwook Lee, “Dual Operating Modes of In-Context Learning”, 2024

• Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, brian ichter, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou, “Chain-of-Thought Prompting

Elicits Reasoning in Large Language Models”, In NeurIPS 2022

• Takeshi Kojima, Shixiang (Shane) Gu, Machel Reid, Yutaka Matsuo, Yusuke Iwasawa, “Large Language Models are Zero-Shot Reasoners”, In

NeurIPS 2022

• Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowdhery, Denny Zhou, “Self-Consistency Improves

Chain of Thought Reasoning in Language Models”, In ICLR 2023

• Shunyu Yao · Jeffrey Zhao · Dian Yu · Nan Du · Izhak Shafran · Karthik Narasimhan, Yuan Cao, “ReAct: Synergizing Reasoning and
Acting in Language Models”, In ICLR 2025

• Satyapriya Krishna1, Kalpesh Krishna2, Anhad Mohananey†2, Steven Schwarcz2, Adam Stambler2, Shyam Upadhyay2, Manaal
Faruqui*3 , “Fact, Fetch, and Reason: A Unified Evaluation of Retrieval-Augmented Generation“

• Salaheddin Alzubi, Creston Brooks, Purva Chiniya, Edoardo Contente, Chiara von Gerlach, Lucas Irwin, Yihan Jiang, Arda Kaz, Windsor
Nguyen, Sewoong Oh, Himanshu Tyagi, Pramod Viswanath, “Open Deep Search: Democratizing Search with Open-source Reasoning
Agents“, https://arxiv.org/abs/2503.20201

• Xingyao Wang, Yangyi Chen, Lifan Yuan, Yizhe Zhang, Yunzhu Li, Hao Peng, Heng Ji, “Executable Code Actions Elicit Better LLM
Agents”, In ICML 2024

• Peter Shaw, Jakob Uszkoreit Ashish Vaswani, “Self-Attention with Relative Position Representations”, 2018

• Ofir Press1,2 Noah A. Smith1,3 Mike Lewis2, “TRAIN SHORT, TEST LONG: ATTENTION WITH LINEAR BIASES ENABLES INPUT

LENGTH EXTRAPOLATION”, 2022

• Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, Luke Zettlemoyer, “QLoRA: Efficient Finetuning of Quantized LLMs”, In NeurIPS 2023

• Fanxu Meng1,2, Zhaohui Wang1, Muhan Zhang1,2∗, “PiSSA: Principal Singular Values and Singular Vectors Adaptation of Large

Language Models” In NeurIPS 2024

• Hanqing Wang, Yixia Li, Shuo Wang, Guanhua Chen, Yun Chen, “MiLoRA: Harnessing Minor Singular Components for Parameter-

Efficient LLM Finetuning”, In NAACL 2025

• Klaudia Bałazy, Mohammadreza Banaei, Karl Aberer, Jacek Tabor, "LoRA-XS: Low-Rank Adaptation with Extremely Small Number of

Parameters”

• Bingcong Li, Liang Zhang, Aryan Mokhtari, Niao He, “On the Crucial Role of Initialization for Matrix Factorization.”, In ICLR 2025

• Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B. Brown, Benjamin Chess, Rewon Child, Scott Gray, Alec Radford, Jeffrey Wu,

and Dario Amodei. “Scaling laws for neural language models”, 2020.

• Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza Rutherford, Diego de las Casas, Lisa

Anne Hendricks, Johannes Welbl, Aidan Clark, Tom Hennigan, Eric Noland, Katherine Millican, George van den Driessche, Bogdan
Damoc, Aurelia Guy, Simon Osindero, Karen Simonyan, Erich Elsen, Oriol Vinyals, Jack William Rae, and Laurent Sifre. An empirical
analysis of compute-optimal large language model training. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho,
editors, Advances in Neural Information Processing Systems, 2022.

https://arxiv.org/abs/2503.20201

• Sean McLeish, John Kirchenbauer, David Yu Miller, Siddharth Singh, Abhinav Bhatele, Micah Goldblum, Ashwinee Panda,
and Tom Goldstein. “Gemstones: A model suite for multi-faceted scaling laws”, 2025

• Sean Welleck Sean Welleck1 Amanda Bertsch Amanda Bertsch1 Matthew Finlayson Matthew Finlayson2 Alex Xie Alex
Xie1 Graham Neubig Graham Neubig1 Konstantin Golobokov Konstantin Golobokov5 Hailey Schoelkopf Hailey
Schoelkopf3 Ilia Kulikov Ilia Kulikov4 Zaid Harchaoui Zaid Harchaoui5, “Neurips 2024 Tutorial: Beyond Decoding: Meta-
Generation Algorithms for Large Language Models”

