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Lecture notes

• These lecture notes are based on other courses in LLMs, including

• CSE493S/599S at UW by Ludwig Schmidt: https://mlfoundations.github.io/advancedml-sp23/ 

• EE-628 at EPFL by Volkan Cevher: https://www.epfl.ch/labs/lions/teaching/ee-628-training-large-language-

models/ee-628-slides-2025/ 

• ECE381V Generative Models at UT Austin by Sujay Sanghavi

• and various papers and blogs cited at the end of the slide deck

https://mlfoundations.github.io/advancedml-sp23/
https://www.epfl.ch/labs/lions/teaching/ee-628-training-large-language-models/ee-628-slides-2025/
https://www.epfl.ch/labs/lions/teaching/ee-628-training-large-language-models/ee-628-slides-2025/
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• Language models
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•  Prediction


• Prompting techniques at inference time


• In-context learning


• Chain-of-thought prompting


• Fine-tuning


• Alignment



Alignment



• AI model responses can be misaligned with what we want them to do, which 
can sometimes cause real harm. 



• Scaling pertaining does not address the challenges in alignment with human 
values and intent. We need post-training based on RLHF (Reinforcement 
Learning with Human Feedback). 


• We do not cover reinforcement learning in this class in any depths, but we will 
learn as much as we need along the way.


• Given a prompt/context/prefix  and  
its completion , a reward model  
assigns a scalar value on the quality  
of the completion:  
                 


• In RL, the language model is called  
a policy that assigns a probability  
to a completion:   
                 

x
̂x

r(x, ̂x) ∈ ℝ

π( ̂x |x) {Prompt/context/prefix x

{completion/answer ̂x



• RLHF to train an LM to write summaries better. 

[Stiennon et al. 2009]



[Stiennon et al. 2009]

• Human evaluation of various summarization techniques: 



• RLHF: Strategy for further training the LM to make it aligned.


1. Pretrain a language model.


2. Learn a reward model  that maps arbitrary prompt and 
completion to a real value


3.  Fine-tune a pre-trained LM with RL using the reward model. 


• This is one example of RLHF and there are several difference variations.

r(x, ̂x)
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• consider a neural network function , that we want to train on  
human labelled preference, such that it provides useful “reward” 

r(x, ̂x)

{Prompt/context/prefix x {completion ̂x



• However, it is challenging to collect reliable reward, so instead we collect data consisting of 
pairwise comparisons on which completion is preferred. This does not fit questions where 
exact solutions exist, like math and coding, where we use RLVF (Reinforcement Learning 
with Verifiable Feedback) instead. 


•  Each sample  consists of 

• prompt , 

• two different completions  and , and 

• preference label  if  is preferred over , which we write as  ,  

                    and , otherwise. 

(x, ̂x1, ̂x2, y)
x

̂x1 ̂x2
y = 1 ̂x1 ̂x2 ̂x1 ≻ ̂x2
y = 0

{Prompt/context/prefix x {completion ̂x1

{completion ̂x2y = 0

>
y = 1



• Given a dataset of , we need a mathematical model to learn the associated 
reward values  and : how do we associate the observed preference  to the 
hidden rewards?

{(xi, ̂xi,1, ̂xi,2, yi)}
r(xi, ̂xi,1) r(xi, ̂xi,2) yi

>

⋮

(xi, ̂xi,1, ̂xi,2, yi)
r(xi, ̂xi,1)
r(xi, ̂xi,2)

?



• To model such preferences so that we can learn the model, we borrow 
mathematical foundations of choice models, in particular, Random Utility 
Models (RUMs). 


• Under RUM, each option has corresponding utility, and when we make a choice, 
we observe a randomly perturbed utility and choose the one that has maximum 
observed utility. In the context of LLM post-training, the completions are our 
options to choose from and utility of an option is the reward of a completion.

• Example: Given two options to choose from {A,B}, RUMs assume that 


• the two options have inherent hidden value called utility: uA, uB

uA uB
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• To model such preferences so that we can learn the model, we borrow 
mathematical foundations of choice models, in particular, Random Utility 
Models (RUMs). 


• Under RUM, each option has corresponding utility, and when we make a choice, 
we observe a randomly perturbed utility and choose the one that has maximum 
observed utility. In the context of LLM post-training, the completions are our 
options to choose from and utility of an option is the reward of a completion.

• Example: Given two options to choose from {A,B}, RUMs assume that 


• the two options have inherent hidden value called utility: 

• the person observes noisy version of the utilities, observed utility: 



• the choice is determined by which option has higher observed utility.

uA, uB

oA = uA + zA, oB = uB + zB

uA uB

 implies oB > oA B ≻ A



• Formally, Random Utility Model (RUM) for a given prompt , and two completions  and  
is defined as  
• hidden true rewards (=utility) of the two completions:  and 

• observed rewards:  and  

• preference (=choice):  
 
                          =  

• note that the outcome only depends on the difference of the true rewards:  



• and the distribution of the noise  defined the probability distribution. 


• Different choices of the noise gives different models. When the noise ’s follow independent 
Gumbel distribution, the resulting distribution of the preference simplifies to a sigmoid 
function, which is called Bradley-Terry model. 

x ̂x1 ̂x2

r*(x, ̂x1) r*(x, ̂x2)
r*(x, ̂x1) + z1 r*(x, ̂x2) + z2

ℙ( ̂x1 ≻ ̂x2) = ℙ(r*(x, ̂x1) + z1 > r*(x, ̂x2) + z2)

ℙ( z1 − z2

some R.V.

> r*(x, ̂x2) − r*(x, ̂x1)

utility difference

)

r*(x, ̂x2) − r*(x, ̂x1)
z′ s

zi
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• Bradley-Terry (BT) model or Bradley-Terry-Luce (BTL) model

• hidden true rewards of the two completions:  and 


• observed rewards:  and  

• preference: when  

            
 

                            


• this sigmoid function  has many nice properties, 
including  is convex in  and .


• For us, the probability that we observe a preference ordering  is  
                

r*(x, ̂x1) r*(x, ̂x2)
r*(x, ̂x1) + z1 r*(x, ̂x2) + z2
y = 1,

ℙ( ̂x1 ≻ ̂x2) = ℙ(r*(x, ̂x1) + z1 > r*(x, ̂x2) + z2)

=
1

1 + exp{ − (r*(x, ̂x1) − r*(x, ̂x2))}

σ(r*(x, ̂x1) − r*(x, ̂x2))
log(σ(a − b)) a b

(x, ̂x1, ̂x2, y)

log( ℙ(x, ̂x1, ̂x2, y) ) = − log( 1 + exp{ − (sign(y − 0.5))(r(x, ̂x1) − r(x, ̂x2))} )



• Learning a NN reward function :   
 
 
 
 
 
 
 
 
 
 
given data :

r( ⋅ , ⋅ )

𝒟 = {(xi, ̂xi,1, ̂xi,2, yi)}



• Training the reward model using maximum likelihood:  

 =  max
parameter

n

∑
i=1

log( ℙ(sample i; parameter) )

max
r ∑

(xi, ̂xi,1, ̂xi,2,yi)∈𝒟

log
1

1 + exp{ − (sign(yi − 0.5))(r(xi, ̂xi,1) − r(xi, ̂xi,2))}



• Chatbot Arena collects human feedback on completions from pairs of 
language models, and release them as open RLHF dataset.



• Also, these pairwise comparisons are used to compute ELO scores for each model, which 
provides a leaderboard. The breakthrough in Chatbot Arena is that they figure out how to align 
the incentives for the model providers / the human users / RLHF developers. 



• RLHF: Strategy for further training the LM to make it aligned.


1. Pretrain a language model.


2. Learn a reward model  that maps arbitrary prompt and 
completion to a real value


3.  Fine-tune a pre-trained LM with RL using the reward model. 


• This is one example of RLHF and there are several difference variations.

r(x, ̂x)



• Policy update: We want to train the Lm parameters  to maximize the reward. 
 
                         
 
where prompt  is drawn from some natural distribution of the prompts, and the 
completion  is drawn from the policy  of the language model. This is the 
expected reward when sampling from the LM. 


• The optimization problem we want to solve is  
                       


• We use iterative algorithms such as gradient ascent to solve this: 
                       

w

J(w) = 𝔼(x, ̂x)∼Dπw[ r(x, ̂x) ]
x

̂x πw

max
w

J(w) = max
w

𝔼(x, ̂x)∼Dπw[ r(x, ̂x) ]

w ← w + α ∇wJ(w)



• A very brief overview of policy gradient to compute the gradient:


• We need to compute  
                              

                                              

(linearity of expectation)       


• log-derivative trick:  

 
                                           

                                           

∇wJ(w) = ∇w 𝔼(x, ̂x)∼Dπw[ r(x, ̂x) ]
= ∇w{∑̂

x

r(x, ̂x) p(x) πw( ̂x |x)}
= ∑̂

x
{ r(x, ̂x) p(x) ∇wπw( ̂x |x) }

∇w{log(πw( ̂x |x))} =
1

πw( ̂x |x)
∇wπW( ̂x |x)

= ∑̂
x

{ r(x, ̂x) p(x) πw( ̂x |x) ∇wlog(πw( ̂x |x)) }
= 𝔼(x, ̂x)∼Dπw[ r(x, ̂x)∇log(πw( ̂x |x)) ]



• Now that the gradient is inside the expectation, we can use samples to 
approximate it 
 

  


• The update rule is 
 

𝔼(x, ̂x)∼Dπw[ r(x, ̂x)∇log(πw( ̂x |x)) ] =
1
m

m

∑
i=1

r(xi, ̂xi)∇wlog(πw( ̂xi |xi))

wt+1 ← wt + α
1
m

m

∑
i=1

r(xi, ̂xi)∇log(πw( ̂x |x))



• But training a reward model can be challenging. 
 

• DPO (Direct Preference Optimization) defines the Bradley-Terry model directly 
from the policy: 
 

            ℙ( ̂x1 ≻ ̂x2)(w) =
1

1 + exp{log( πw( ̂x2 |x)
πref( ̂x2 |x) ) − log( πw( ̂x1 |x)

πref( ̂x1 |x) )}



• RLVR (Reinforcement Learning with Verifiable Reward) assumes that there 
is an oracle that can give an exact reward. For example in math or coding, one 
can have a verifier that can assert correctness. 


• RLVR and the verifier can be used to train a reasoning model that can 
iteratively solve complex reasoning tasks at inference time. This is called 
inference time compute or inference time scaling:  
how much better can you do if you can spend more compute/time at inference?





• “SFT Memorizes, RL Generalizes: A Comparative Study of Foundation Model 
Post-training” [Chu et al. 2025]


• SFT: train on optimal solution. 


• RL: train policy on a reward model.


• OOD variation:


• card: J,Q,K are {10,10,10} or {11,12,13} 


• navigation: N/E/S/W vs. right/left



• “Reinforcement Learning for Reasoning in Large Language Models with One 
Training Example” [Wang et al. 2025] https://arxiv.org/pdf/2504.20571   demonstrates extreme 
generalization.



• So which example is special? 


• key step is obtaining k= 1/256 for formula , and calculating V =P = kAV3

(2048)1/3



• The model keeps 
improving in test 
accuracy even after 
training has overfitted on 
the single training 
example.



• Group Relative Policy Optimization (GRPO) is used, which is introduced by 
DeepSeek-R1  
 

    

 

where 

J(w) =
1
G

G

∑
i=1

{ min{Ai
πw( ̂xi |x)
πref( ̂xi |x)

, Ai Clip( πw( ̂xi |x)
πref( ̂xi |x)

,1 − ε,1 + ε)}}
Ai =

ri − mean(r1, r2, …, rG)
std(r1, r2, …, rG)



• “Spurious Rewards: Rethinking Training Signals in RLVR” [Rulin Shao, Shuyue Stella Li, 
Rui Xin, Scott Geng, Yiping Wang et al.] not yet on arXiv.



• Code reasoning: Coding helps in reasoning despite no access to code 
interpreter



• RL with random reward encourages Qwen models to use more code, 
leveraging Ewen’s code reasoning capability. Other models that do not have 
code reasoning capability do not gain as much from random rewards.  



• prompting with “Let’s solve this using 
Python.” to force the model to use code:

• RL with Python reward:



• Another feature correlated with better performance: no repetition. 


• If we run RL that rewards having less repetition, Qwen-Math models improve 
significantly.


• We suspect that there are several spurious features that correlate with better 
reasoning, and RL with random rewards can encourage some of those features.



• Where does the gain come from?


• Recall Group Relative Policy Optimization (GRPO) is used, 

    

 

where 

J(w) =
1
G

G

∑
i=1

{ min{Ai
πw( ̂xi |x)
πref( ̂xi |x)

, Ai Clip( πw( ̂xi |x)
πref( ̂xi |x)

,1 − ε,1 + ε)}}
Ai =

ri − mean(r1, r2, …, rG)
std(r1, r2, …, rG)
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