
CSE 493s/599s
Lecture 18.

Sewoong Oh

Lecture notes

• These lecture notes are based on other courses in LLMs, including

• CSE493S/599S at UW by Ludwig Schmidt: https://mlfoundations.github.io/advancedml-sp23/

• EE-628 at EPFL by Volkan Cevher: https://www.epfl.ch/labs/lions/teaching/ee-628-training-large-language-

models/ee-628-slides-2025/

• ECE381V Generative Models at UT Austin by Sujay Sanghavi

• and various papers and blogs cited at the end of the slide deck

https://mlfoundations.github.io/advancedml-sp23/
https://www.epfl.ch/labs/lions/teaching/ee-628-training-large-language-models/ee-628-slides-2025/
https://www.epfl.ch/labs/lions/teaching/ee-628-training-large-language-models/ee-628-slides-2025/

Outline
• Language models

• General LLM framework

• Token processing

• Sequence mixing

• Prediction

• Prompting techniques at inference time

• In-context learning

• Chain-of-thought prompting

• Fine-tuning

• Alignment

Alignment

• AI model responses can be misaligned with what we want them to do, which
can sometimes cause real harm.

• Scaling pertaining does not address the challenges in alignment with human
values and intent. We need post-training based on RLHF (Reinforcement
Learning with Human Feedback).

• We do not cover reinforcement learning in this class in any depths, but we will
learn as much as we need along the way.

• Given a prompt/context/prefix and  
its completion , a reward model  
assigns a scalar value on the quality  
of the completion:  

• In RL, the language model is called  
a policy that assigns a probability  
to a completion:  

x
̂x

r(x, ̂x) ∈ ℝ

π(̂x |x) {Prompt/context/prefix x

{completion/answer ̂x

• RLHF to train an LM to write summaries better.

[Stiennon et al. 2009]

[Stiennon et al. 2009]

• Human evaluation of various summarization techniques:

• RLHF: Strategy for further training the LM to make it aligned.

1. Pretrain a language model.

2. Learn a reward model that maps arbitrary prompt and
completion to a real value

3. Fine-tune a pre-trained LM with RL using the reward model.

• This is one example of RLHF and there are several difference variations.

r(x, ̂x)

• RLHF: Strategy for further training the LM to make it aligned.

1. Pretrain a language model.

2. Learn a reward model that maps arbitrary prompt and
completion to a real value

3. Fine-tune a pre-trained LM with RL using the reward model.

• This is one example of RLHF and there are several difference variations.

r(x, ̂x)

• consider a neural network function , that we want to train on  
human labelled preference, such that it provides useful “reward”

r(x, ̂x)

{Prompt/context/prefix x {completion ̂x

• However, it is challenging to collect reliable reward, so instead we collect data consisting of
pairwise comparisons on which completion is preferred. This does not fit questions where
exact solutions exist, like math and coding, where we use RLVF (Reinforcement Learning
with Verifiable Feedback) instead.

• Each sample consists of

• prompt ,

• two different completions and , and

• preference label if is preferred over , which we write as ,  

 and , otherwise.

(x, ̂x1, ̂x2, y)
x

̂x1 ̂x2
y = 1 ̂x1 ̂x2 ̂x1 ≻ ̂x2
y = 0

{Prompt/context/prefix x {completion ̂x1

{completion ̂x2y = 0

>
y = 1

• Given a dataset of , we need a mathematical model to learn the associated
reward values and : how do we associate the observed preference to the
hidden rewards?

{(xi, ̂xi,1, ̂xi,2, yi)}
r(xi, ̂xi,1) r(xi, ̂xi,2) yi

>

⋮

(xi, ̂xi,1, ̂xi,2, yi)
r(xi, ̂xi,1)
r(xi, ̂xi,2)

?

• To model such preferences so that we can learn the model, we borrow
mathematical foundations of choice models, in particular, Random Utility
Models (RUMs).

• Under RUM, each option has corresponding utility, and when we make a choice,
we observe a randomly perturbed utility and choose the one that has maximum
observed utility. In the context of LLM post-training, the completions are our
options to choose from and utility of an option is the reward of a completion.

• Example: Given two options to choose from {A,B}, RUMs assume that

• the two options have inherent hidden value called utility: uA, uB

uA uB

• To model such preferences so that we can learn the model, we borrow
mathematical foundations of choice models, in particular, Random Utility
Models (RUMs).

• Under RUM, each option has corresponding utility, and when we make a choice,
we observe a randomly perturbed utility and choose the one that has maximum
observed utility. In the context of LLM post-training, the completions are our
options to choose from and utility of an option is the reward of a completion.

• Example: Given two options to choose from {A,B}, RUMs assume that

• the two options have inherent hidden value called utility:

• the person observes noisy version of the utilities, observed utility:

uA, uB

oA = uA + zA, oB = uB + zB

uA uB

pdf of uB + zB

oB = uB + zB

• To model such preferences so that we can learn the model, we borrow
mathematical foundations of choice models, in particular, Random Utility
Models (RUMs).

• Under RUM, each option has corresponding utility, and when we make a choice,
we observe a randomly perturbed utility and choose the one that has maximum
observed utility. In the context of LLM post-training, the completions are our
options to choose from and utility of an option is the reward of a completion.

• Example: Given two options to choose from {A,B}, RUMs assume that

• the two options have inherent hidden value called utility:

• the person observes noisy version of the utilities, observed utility:

• the choice is determined by which option has higher observed utility.

uA, uB

oA = uA + zA, oB = uB + zB

uA uB

 implies oB > oA B ≻ A

• Formally, Random Utility Model (RUM) for a given prompt , and two completions and
is defined as
• hidden true rewards (=utility) of the two completions: and

• observed rewards: and

• preference (=choice):  
 
 =  

• note that the outcome only depends on the difference of the true rewards:

• and the distribution of the noise defined the probability distribution.

• Different choices of the noise gives different models. When the noise ’s follow independent
Gumbel distribution, the resulting distribution of the preference simplifies to a sigmoid
function, which is called Bradley-Terry model.

x ̂x1 ̂x2

r*(x, ̂x1) r*(x, ̂x2)
r*(x, ̂x1) + z1 r*(x, ̂x2) + z2

ℙ(̂x1 ≻ ̂x2) = ℙ(r*(x, ̂x1) + z1 > r*(x, ̂x2) + z2)

ℙ(z1 − z2

some R.V.

> r*(x, ̂x2) − r*(x, ̂x1)

utility difference

)

r*(x, ̂x2) − r*(x, ̂x1)
z′ s

zi

• Formally, Random Utility Model (RUM) for a given prompt , and two completions and
is defined as
• hidden true rewards (=utility) of the two completions: and

• observed rewards: and

• preference (=choice):  
 
 =  

• note that the outcome only depends on the difference of the true rewards:

• and the distribution of the noise defined the probability distribution.

• Different choices of the noise gives different models. When the noise ’s follow independent
Gumbel distribution, the resulting distribution of the preference simplifies to a sigmoid
function, which is called Bradley-Terry model.

x ̂x1 ̂x2

r*(x, ̂x1) r*(x, ̂x2)
r*(x, ̂x1) + z1 r*(x, ̂x2) + z2

ℙ(̂x1 ≻ ̂x2) = ℙ(r*(x, ̂x1) + z1 > r*(x, ̂x2) + z2)

ℙ(z1 − z2

some R.V.

> r*(x, ̂x2) − r*(x, ̂x1)

utility difference

)

r*(x, ̂x2) − r*(x, ̂x1)
z′ s

zi

• Bradley-Terry (BT) model or Bradley-Terry-Luce (BTL) model

• hidden true rewards of the two completions: and

• observed rewards: and

• preference: when  

  
 

• this sigmoid function has many nice properties,
including is convex in and .

• For us, the probability that we observe a preference ordering is  

r*(x, ̂x1) r*(x, ̂x2)
r*(x, ̂x1) + z1 r*(x, ̂x2) + z2
y = 1,

ℙ(̂x1 ≻ ̂x2) = ℙ(r*(x, ̂x1) + z1 > r*(x, ̂x2) + z2)

=
1

1 + exp{ − (r*(x, ̂x1) − r*(x, ̂x2))}

σ(r*(x, ̂x1) − r*(x, ̂x2))
log(σ(a − b)) a b

(x, ̂x1, ̂x2, y)

log(ℙ(x, ̂x1, ̂x2, y)) = − log(1 + exp{ − (sign(y − 0.5))(r(x, ̂x1) − r(x, ̂x2))})

• Learning a NN reward function :  
 
 
 
 
 
 
 
 
 
 
given data :

r(⋅ , ⋅)

𝒟 = {(xi, ̂xi,1, ̂xi,2, yi)}

• Training the reward model using maximum likelihood:  

 =  max
parameter

n

∑
i=1

log(ℙ(sample i; parameter))

max
r ∑

(xi, ̂xi,1, ̂xi,2,yi)∈𝒟

log
1

1 + exp{ − (sign(yi − 0.5))(r(xi, ̂xi,1) − r(xi, ̂xi,2))}

• Chatbot Arena collects human feedback on completions from pairs of
language models, and release them as open RLHF dataset.

• Also, these pairwise comparisons are used to compute ELO scores for each model, which
provides a leaderboard. The breakthrough in Chatbot Arena is that they figure out how to align
the incentives for the model providers / the human users / RLHF developers.

• RLHF: Strategy for further training the LM to make it aligned.

1. Pretrain a language model.

2. Learn a reward model that maps arbitrary prompt and
completion to a real value

3. Fine-tune a pre-trained LM with RL using the reward model.

• This is one example of RLHF and there are several difference variations.

r(x, ̂x)

• Policy update: We want to train the Lm parameters to maximize the reward. 
 
  
 
where prompt is drawn from some natural distribution of the prompts, and the
completion is drawn from the policy of the language model. This is the
expected reward when sampling from the LM.

• The optimization problem we want to solve is  

• We use iterative algorithms such as gradient ascent to solve this: 

w

J(w) = 𝔼(x, ̂x)∼Dπw[r(x, ̂x)]
x

̂x πw

max
w

J(w) = max
w

𝔼(x, ̂x)∼Dπw[r(x, ̂x)]

w ← w + α ∇wJ(w)

• A very brief overview of policy gradient to compute the gradient:

• We need to compute  
  

  

(linearity of expectation)

• log-derivative trick:  

 
  

∇wJ(w) = ∇w 𝔼(x, ̂x)∼Dπw[r(x, ̂x)]
= ∇w{∑̂

x

r(x, ̂x) p(x) πw(̂x |x)}
= ∑̂

x
{ r(x, ̂x) p(x) ∇wπw(̂x |x) }

∇w{log(πw(̂x |x))} =
1

πw(̂x |x)
∇wπW(̂x |x)

= ∑̂
x

{ r(x, ̂x) p(x) πw(̂x |x) ∇wlog(πw(̂x |x)) }
= 𝔼(x, ̂x)∼Dπw[r(x, ̂x)∇log(πw(̂x |x))]

• Now that the gradient is inside the expectation, we can use samples to
approximate it 
 

• The update rule is 
 

𝔼(x, ̂x)∼Dπw[r(x, ̂x)∇log(πw(̂x |x))] =
1
m

m

∑
i=1

r(xi, ̂xi)∇wlog(πw(̂xi |xi))

wt+1 ← wt + α
1
m

m

∑
i=1

r(xi, ̂xi)∇log(πw(̂x |x))

• But training a reward model can be challenging. 
 

• DPO (Direct Preference Optimization) defines the Bradley-Terry model directly
from the policy: 
 

 ℙ(̂x1 ≻ ̂x2)(w) =
1

1 + exp{log(πw(̂x2 |x)
πref(̂x2 |x)) − log(πw(̂x1 |x)

πref(̂x1 |x))}

• RLVR (Reinforcement Learning with Verifiable Reward) assumes that there
is an oracle that can give an exact reward. For example in math or coding, one
can have a verifier that can assert correctness.

• RLVR and the verifier can be used to train a reasoning model that can
iteratively solve complex reasoning tasks at inference time. This is called
inference time compute or inference time scaling:  
how much better can you do if you can spend more compute/time at inference?

• “SFT Memorizes, RL Generalizes: A Comparative Study of Foundation Model
Post-training” [Chu et al. 2025]

• SFT: train on optimal solution.

• RL: train policy on a reward model.

• OOD variation:

• card: J,Q,K are {10,10,10} or {11,12,13}

• navigation: N/E/S/W vs. right/left

• “Reinforcement Learning for Reasoning in Large Language Models with One
Training Example” [Wang et al. 2025] https://arxiv.org/pdf/2504.20571 demonstrates extreme
generalization.

• So which example is special?

• key step is obtaining k= 1/256 for formula , and calculating V =P = kAV3

(2048)1/3

• The model keeps
improving in test
accuracy even after
training has overfitted on
the single training
example.

• Group Relative Policy Optimization (GRPO) is used, which is introduced by
DeepSeek-R1  
 

  

 

where

J(w) =
1
G

G

∑
i=1

{ min{Ai
πw(̂xi |x)
πref(̂xi |x)

, Ai Clip(πw(̂xi |x)
πref(̂xi |x)

,1 − ε,1 + ε)}}
Ai =

ri − mean(r1, r2, …, rG)
std(r1, r2, …, rG)

• “Spurious Rewards: Rethinking Training Signals in RLVR” [Rulin Shao, Shuyue Stella Li,
Rui Xin, Scott Geng, Yiping Wang et al.] not yet on arXiv.

• Code reasoning: Coding helps in reasoning despite no access to code
interpreter

• RL with random reward encourages Qwen models to use more code,
leveraging Ewen’s code reasoning capability. Other models that do not have
code reasoning capability do not gain as much from random rewards.

• prompting with “Let’s solve this using
Python.” to force the model to use code:

• RL with Python reward:

• Another feature correlated with better performance: no repetition.

• If we run RL that rewards having less repetition, Qwen-Math models improve
significantly.

• We suspect that there are several spurious features that correlate with better
reasoning, and RL with random rewards can encourage some of those features.

• Where does the gain come from?

• Recall Group Relative Policy Optimization (GRPO) is used, 

  

 

where

J(w) =
1
G

G

∑
i=1

{ min{Ai
πw(̂xi |x)
πref(̂xi |x)

, Ai Clip(πw(̂xi |x)
πref(̂xi |x)

,1 − ε,1 + ε)}}
Ai =

ri − mean(r1, r2, …, rG)
std(r1, r2, …, rG)

Sources
• Other courses in LLMs that the lecture slides are based on

• CSE493S/599S at UW by Ludwig Schmidt: https://mlfoundations.github.io/advancedml-sp23/

• EE-628 at EPFL by Volkan Cevher: https://www.epfl.ch/labs/lions/teaching/ee-628-training-large-language-models/ee-628-slides-2025/

• https://sharif-llm.ir/assets/lectures/Chain-of-Thought-Prompting.pdf

• https://www.cs.princeton.edu/courses/archive/fall22/cos597G/lectures/lec09.pdf

• Useful blog posts

• https://azizbelaweid.substack.com/p/complete-summary-of-absolute-relative

• https://blog.dust.tt/speculative-sampling-llms-writing-a-lot-faster-using-other-llms/

• https://gordicaleksa.medium.com/eli5-flash-attention-5c44017022ad

• https://medium.com/@dillipprasad60/qlora-explained-a-deep-dive-into-parametric-efficient-fine-tuning-in-large-language-models-llms-

c1a4794b1766

• Dan Jurafsky and James H. Martin. Speech and Language Processing (3rd ed. draft). draft, third edition, 2023.

• Tomas Mikolov, Kai Chen, Gregory S. Corrado, and Jeffrey Dean. “Efficient estimation of word representations in vector space”, In International

Conference on Learning Representations, 2013.

• Jeffrey Pennington, Richard Socher, and Christopher D. Manning. "Glove: Global vectors for word representation”, Proceedings of the 2014

conference on empirical methods in natural language processing (EMNLP). 2014.

• Ofir Press, Noah A. Smith1,3 Mike Lewis2 , “Train Short, Test Long: Attention with Linear Biases Enables Input Length Extrapolation”, In

International Conference on Learning Representations, 2022

• Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, Illia Polosukhin, “Attention Is All You

Need”, In Neural Information Processing Systems, 2017

• Beitong Zhou, Cheng Cheng, Guijun Ma, and Yong Zhang. “Remaining useful life prediction of lithium-ion battery based on attention mechanism

with positional encoding”, In IOP Conference Series: Materials Science and Engineering, 2020.

• Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. “On the difficulty of training recurrent neural networks." In International Conference on

Machine Learning, 2013

https://mlfoundations.github.io/advancedml-sp23/
https://www.epfl.ch/labs/lions/teaching/ee-628-training-large-language-models/ee-628-slides-2025/
https://sharif-llm.ir/assets/lectures/Chain-of-Thought-Prompting.pdf
https://www.cs.princeton.edu/courses/archive/fall22/cos597G/lectures/lec09.pdf
https://azizbelaweid.substack.com/p/complete-summary-of-absolute-relative
https://blog.dust.tt/speculative-sampling-llms-writing-a-lot-faster-using-other-llms/
https://gordicaleksa.medium.com/eli5-flash-attention-5c44017022ad
https://medium.com/@dillipprasad60/qlora-explained-a-deep-dive-into-parametric-efficient-fine-tuning-in-large-language-models-llms-c1a4794b1766
https://medium.com/@dillipprasad60/qlora-explained-a-deep-dive-into-parametric-efficient-fine-tuning-in-large-language-models-llms-c1a4794b1766

• Sepp Hochreiter and Jürgen Schmidhuber. “Long short-term memory.” In Neural Computation, 9(8):1735–1780, 11 1997.

• Kyunghyun Cho, Bart van Merrienboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares, Holger Schwenk, and Yoshua Bengio. “Learning phrase

representations using rnn encoder-decoder for statistical machine translation”, In ACL 2014

• Andrey Andreyevich Markov. “Essai d’une recherche statistique sur le texte du roman. ‘Eugene Onegin’ illustrant la liaison des epreuve en chain”. In:

Izvistia Imperatorskoi Akademii Nauk (Bulletin de l’Académie Impériale des Sciences de St.-Pétersbourg). 6th ser, 7:153–162, 1913.

• Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, Yejin Choi, “The Curious Case of Neural Text Degeneration”, In International Conference on Learning

Representations, 2020

• Charlie Chen, Sebastian Borgeaud, Geoffrey Irving, Jean-Baptiste Lespiau, Laurent Sifre and John Jumper, “Accelerating Large Language Model

Decoding with Speculative Sampling”In, ACL-findings, 2024

• Sergey Ioffe, Christian Szegedy, “Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift", In International

Conference on Machine Learning, 2015

• Shibani Santurkar∗ MIT shibani@mit.edu Dimitris Tsipras∗ MIT tsipras@mit.edu Andrew Ilyas∗ MIT ailyas@mit.edu Aleksander Madry, “How Does

Batch Normalization Help Optimization?”, In Advances in Neural Information Processing Systems 31 (NeurIPS 2018)

• Jimmy Lei Ba, Jamie Ryan Kiros, Geoffrey E. Hinton, “Layer Normalization “, In 2016

• Tianyu Gao, Adam Fisch, Danqi Chen, “Making Pre-trained Language Models Better Few-shot Learners”, In ACL, 2021

• Sewon Min1,2 Xinxi Lyu1 Ari Holtzman1 Mikel Artetxe2 Mike Lewis2 Hannaneh Hajishirzi1,3 Luke Zettlemoyer, “rethinking the role of demonstrations

what makes in conte…”

• Hila Gonen1,2 Srini Iyer2 Terra Blevins1 Noah A. Smith1,3 Luke Zettlemoyer1, “Demystifying Prompts in Language Models via Perplexity Estimation”

• E Akyürek, B Wang, Y Kim, J Andreas , “In-context language learning: Architectures and algorithms”, 2024

• What learning algorithm is in-context learning? Investigations with linear models Ekin Akyürek, Dale Schuurmans, Jacob Andreas, Tengyu Ma, Denny

Zhou, 2022

• Ziqian Lin, Kangwook Lee, “Dual Operating Modes of In-Context Learning”, 2024

• Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, brian ichter, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou, “Chain-of-Thought Prompting

Elicits Reasoning in Large Language Models”, In NeurIPS 2022

• Takeshi Kojima, Shixiang (Shane) Gu, Machel Reid, Yutaka Matsuo, Yusuke Iwasawa, “Large Language Models are Zero-Shot Reasoners”, In

NeurIPS 2022

• Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowdhery, Denny Zhou, “Self-Consistency Improves

Chain of Thought Reasoning in Language Models”, In ICLR 2023

• Shunyu Yao · Jeffrey Zhao · Dian Yu · Nan Du · Izhak Shafran · Karthik Narasimhan, Yuan Cao, “ReAct: Synergizing Reasoning and
Acting in Language Models”, In ICLR 2025

• Satyapriya Krishna1, Kalpesh Krishna2, Anhad Mohananey†2, Steven Schwarcz2, Adam Stambler2, Shyam Upadhyay2, Manaal
Faruqui*3 , “Fact, Fetch, and Reason: A Unified Evaluation of Retrieval-Augmented Generation“

• Salaheddin Alzubi, Creston Brooks, Purva Chiniya, Edoardo Contente, Chiara von Gerlach, Lucas Irwin, Yihan Jiang, Arda Kaz, Windsor
Nguyen, Sewoong Oh, Himanshu Tyagi, Pramod Viswanath, “Open Deep Search: Democratizing Search with Open-source Reasoning
Agents“, https://arxiv.org/abs/2503.20201

• Xingyao Wang, Yangyi Chen, Lifan Yuan, Yizhe Zhang, Yunzhu Li, Hao Peng, Heng Ji, “Executable Code Actions Elicit Better LLM
Agents”, In ICML 2024

• Peter Shaw, Jakob Uszkoreit Ashish Vaswani, “Self-Attention with Relative Position Representations”, 2018

• Ofir Press1,2 Noah A. Smith1,3 Mike Lewis2, “TRAIN SHORT, TEST LONG: ATTENTION WITH LINEAR BIASES ENABLES INPUT

LENGTH EXTRAPOLATION”, 2022

• Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, Luke Zettlemoyer, “QLoRA: Efficient Finetuning of Quantized LLMs”, In NeurIPS 2023

• Fanxu Meng1,2, Zhaohui Wang1, Muhan Zhang1,2∗, “PiSSA: Principal Singular Values and Singular Vectors Adaptation of Large

Language Models” In NeurIPS 2024

• Hanqing Wang, Yixia Li, Shuo Wang, Guanhua Chen, Yun Chen, “MiLoRA: Harnessing Minor Singular Components for Parameter-

Efficient LLM Finetuning”, In NAACL 2025

• Klaudia Bałazy, Mohammadreza Banaei, Karl Aberer, Jacek Tabor, "LoRA-XS: Low-Rank Adaptation with Extremely Small Number of

Parameters”

• Bingcong Li, Liang Zhang, Aryan Mokhtari, Niao He, “On the Crucial Role of Initialization for Matrix Factorization.”, In ICLR 2025

• Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B. Brown, Benjamin Chess, Rewon Child, Scott Gray, Alec Radford, Jeffrey Wu,

and Dario Amodei. “Scaling laws for neural language models”, 2020.

• Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza Rutherford, Diego de las Casas, Lisa

Anne Hendricks, Johannes Welbl, Aidan Clark, Tom Hennigan, Eric Noland, Katherine Millican, George van den Driessche, Bogdan
Damoc, Aurelia Guy, Simon Osindero, Karen Simonyan, Erich Elsen, Oriol Vinyals, Jack William Rae, and Laurent Sifre. An empirical
analysis of compute-optimal large language model training. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho,
editors, Advances in Neural Information Processing Systems, 2022.

https://arxiv.org/abs/2503.20201

• Sean McLeish, John Kirchenbauer, David Yu Miller, Siddharth Singh, Abhinav Bhatele, Micah Goldblum, Ashwinee Panda,
and Tom Goldstein. “Gemstones: A model suite for multi-faceted scaling laws”, 2025

•

