CSE 493s/599s
Lecture 18.

Sewoong Oh

Lecture notes

* These lecture notes are based on other courses in LLMs, including
o (CSE493S/599S at UW by Ludwig Schmidt: https://mlfoundations.qgithub.io/advancedml-sp23/

« EE-628 at EPFL by Volkan Cevher: https://www.epfl.ch/labs/lions/teaching/ee-628-training-large-language-
models/ee-628-slides-2025/

» ECE381V Generative Models at UT Austin by Sujay Sanghavi

« and various papers and blogs cited at the end of the slide deck

https://mlfoundations.github.io/advancedml-sp23/
https://www.epfl.ch/labs/lions/teaching/ee-628-training-large-language-models/ee-628-slides-2025/
https://www.epfl.ch/labs/lions/teaching/ee-628-training-large-language-models/ee-628-slides-2025/

Outline

Language models

General LLM framework

* Token processing

e Sequence mixing

* Prediction

Prompting techniques at inference time
* In-context learning

« Chain-of-thought prompting
Fine-tuning

Alignment

Alignment

* Al model responses can be misaligned with what we want them to do, which

can sometimes cause real harm.

Microsoft 'deeply sorry' for racist and
sexist tweets by Al chatbot

Company finally apologises after ‘Tay’ quickly learned to produce
offensive posts, forcing the tech giant to shut it down after just 16

hours
7 vl =
A
Mi : - &
The mgspingtgnlilost

Chatbots' inaccurate, misleading
responses about U.S. elections threaten to
keep voters from polls

Fahaial

€he New YJork Times

Artificial Intelligence > Al FacesQuiz HowtheA.l Race Began Key Figuresinthe Field One Year of ChatGPT

We Asked AL to Create the Joker. It
Generated a Copyrighted Image.

By Stuart A, Thompson Jan. 25, 2024

Scaling pertaining does not address the challenges in alignment with human
values and intent. We need post-training based on RLHF (Reinforcement

Learning with Human Feedback).

We do not cover reinforcement learning in this class in any depths, but we will

learn as much as we need along the way.

Given a prompt/context/prefix x and

its completion X, a reward model
assigns a scalar value on the quality
of the completion:

r(x,xX) € R

In RL, the language model is called
a policy that assigns a probability
to a completion:

(X | x)

completion/answer X
r—-/\-_\

is capital of France? Paris <eos>
1 T2 T3 T4 Ty Tg

3
1
\

1
\
Al

L]

o I I I3 T4 Is

what is capital of France? Paris

\——

Prompt/context/prefix x

© Collect human feedback

A Reddit post is
sampled from
the Reddit
TL;DR dataset.

Various policies
are used to
sample a set of
summaries.

Two summaries
are selected for
evaluation.

A human judges
which is a better
summary of the
post.

\

l
=]

—
v

\)

“j is better than k”

e RLHF to train an LM to write summaries better.

© Train reward model

One post with
two summaries
judged by a
human are fed
to the reward
model.

The reward
model
calculates a
reward r for
each summary.

The loss is
calculated based
on the rewards
and human label,
and is used to
update the
reward model.

Ty

IR - -
E

= il

& il

,’77 ﬁ

%

o

—

!

loss = log(a(r;- r,))

T

“j is better than k”

© Train policy with PPO

A new post is
sampled from the
dataset.

The policy
generates a
summary for the
post.

The reward
model calculates
areward for the
summary.

The reward is
used to update
the policy via
PPO.

o8 -]/

]l

e

Figure 2: Diagram of our human feedback, reward model training, and policy training procedure.

[Stiennon et al. 2009]

 Human evaluation of various summarization techniques:

[Stiennon et al. 2009]

o
\I

o
o)

o
o

Reference summaries

o
~

Fraction preferred to ref
o
w

O
\S)

1.3B 2.7B 6.7B 12.9B
Model size

Figure 1: Fraction of the time humans prefer our models’ summaries over the human-generated
reference summaries on the TL;DR dataset.*Since quality judgments involve an arbitrary decision
about how to trade off summary length vs. coverage within the 24-48 token limit, we also provide
length-controlled graphs in Appendix F; length differences explain about a third of the gap between
feedback and supervised learning at 6.7B.

 RLHF: Strategy for further training the LM to make it aligned.

1. Pretrain a language model.

2. Learn a reward model r(x, X) that maps arbitrary prompt and
completion to a real value

3. Fine-tune a pre-trained LM with RL using the reward model.

* This is one example of RLHF and there are several difference variations.

 RLHF: Strategy for further training the LM to make it aligned.

1. Pretrain a language model.

2. Learn a reward model r(x, X) that maps arbitrary prompt and
completion to a real value

3. Fine-tune a pre-trained LM with RL using the reward model.

* This is one example of RLHF and there are several difference variations.

« consider a neural network function r(x, X), that we want to train on
human labelled preference, such that it provides useful “reward”

What is the capital of France?
What is the capital of France?
What is the capital of France?
What is the capital of France?

What is the capital of France?

\— —

Prompt/context/prefix x

Paris — ‘
A city called Paris ‘ -
| dunno... — -
London) >
Why such stupid question?? » ‘

\— —

completion X

+1.0

+0.9

-10.0

 However, it is challenging to collect reliable reward, so instead we collect data consisting of
pairwise comparisons on which completion is preferred. This does not fit questions where
exact solutions exist, like math and coding, where we use RLVF (Reinforcement Learning

with Verifiable Feedback) instead.
« Each sample (x, X, X,, y) consists of
e prompt x,
- two different completions X, and X,, and

- preference label y = 1 if X, is preferred over X,, which we write as X, > X,,
and y = 0, otherwise.

Completion 2

Completion1 |

=1
The Moon is a natural satellite of the > People went to the moon, and
Earth. It is the fifth largest moonin they took pictures of what they
the Solar System and the largest saw, and sent them back to the
relative to the size of its host planet. earth so we could all see them.

N— ~—— | =\

Prompt/context/prefix x completion®; y=0 completion X,

Input

Explain the moon landing to a 6
year old in a few sentences

Input

Explain the moon landing to a 6
year old in a few sentences

| Completion1 | Completion 2

The Moon is a natural satellite of the
Earth. It is the fifth largest moonin
the Solar System and the largest
relative to the size of its host planet.

People went to the moon, and
they took pictures of what they
saw, and sent them back to the
earth so we could all see them.

AV

Given a dataset of {(x;, X; |, X; 5, ¥;) }, we need a mathematical model to learn the associated

reward values r(x;, X; ;) and r(x;, X; ,): how do we associate the observed preference y; to the

hidden rewards?

‘7 r(x;,)?l-,)

(x;, 56,',1, 55,',2, V) < —>

r(x;, fcl-,z)

* To model such preferences so that we can learn the model, we borrow
mathematical foundations of choice models, in particular, Random Utility
Models (RUMs).

« Under RUM, each option has corresponding utility, and when we make a choice,
we observe a randomly perturbed utility and choose the one that has maximum
observed utility. In the context of LLM post-training, the completions are our
options to choose from and utility of an option is the reward of a completion.

« Example: Given two options to choose from {A,B}, RUMs assume that
« the two options have inherent hidden value called utility: 14, up

* To model such preferences so that we can learn the model, we borrow
mathematical foundations of choice models, in particular, Random Utility
Models (RUMs).

« Under RUM, each option has corresponding utility, and when we make a choice,
we observe a randomly perturbed utility and choose the one that has maximum
observed utility. In the context of LLM post-training, the completions are our
options to choose from and utility of an option is the reward of a completion.

« Example: Given two options to choose from {A,B}, RUMs assume that

 the two options have inherent hidden value called utility: u,, up

» the person observes noisy version of the utilities, observed utility:
Oq = Uy + 24,05 = Ug + 2

/pdf of ugp + zp

< —_—

Uy

ug ———0p =Up+ 2y

* To model such preferences so that we can learn the model, we borrow
mathematical foundations of choice models, in particular, Random Utility
Models (RUMs).

« Under RUM, each option has corresponding utility, and when we make a choice,
we observe a randomly perturbed utility and choose the one that has maximum
observed utility. In the context of LLM post-training, the completions are our
options to choose from and utility of an option is the reward of a completion.

« Example: Given two options to choose from {A,B}, RUMs assume that
« the two options have inherent hidden value called utility: 14, up
» the person observes noisy version of the utilities, observed utility:
Op = Up T Z4,0p = Ug + Zp
* the choice is determined by which option has higher observed utility.

WOB > 0, implies B > A
< | - >

Uy Up

« Formally, Random Utility Model (RUM) for a given prompt x, and two completions X, and X,
is defined as

hidden true rewards (=utility) of the two completions: r*(x, X,) and r*(x, X,)
- observed rewards: r*(x, X,) + z; and r¥(x, X,) + 2,
- preference (=choice): P(X, > X,) = P(r*(x,X;) + z; > r*(x, X,) + 2,)

=|]:D< Z] _Z2 > r*(x,j(\:z)—r*(x,)%l))

some R.V. utility difference

* note that the outcome only depends on the difference of the true rewards:
r¥(x, Xp) — r¥(x, X;)

« and the distribution of the noise z's defined the probability distribution.

« Formally, Random Utility Model (RUM) for a given prompt x, and two completions X, and X,
is defined as

hidden true rewards (=utility) of the two completions: r*(x, X,) and r*(x, X,)
- observed rewards: r*(x, X,) + z; and r¥(x, X,) + 2,
- preference (=choice): P(X, > X,) = P(r*(x,X;) + z; > r*(x, X,) + 2,)

= |]:D< {1 — 2 > r*(x,),(\:z) - r*(x,),(\:l))

some R.V. utility difference

* note that the outcome only depends on the difference of the true rewards:
r¥(x, Xp) — r¥(x, X;)

« and the distribution of the noise z's defined the probability distribution.

« Different choices of the noise gives different models. When the noise z;’s follow independent

Gumbel distribution, the resulting distribution of the preference simplifies to a sigmoid
function, which is called Bradley-Terry model.

* Bradley-Terry (BT) model or Bradley-Terry-Luce (BTL) model

» hidden true rewards of the two completions: r*(x, X,) and r*(x, X,)
- observed rewards: r*(x, X;) + z; and r*(x, X,) + 2,
« preference: wheny = 1,
P, > %) = P(r*(x, X)) + z; > r¥(x,X,) + 2)
B 1
T expl = (P &) — P £))

« this sigmoid function o(r*(x, X,) — r*(x, X,)) has many nice properties,
including log(o(a — b)) is convex in a and b.

« For us, the probability that we observe a preference ordering (x, X, X5, y) is

log(P(x, %, %,,y)) = —log(1+ exp{ — (sign(y — 0.5))(r(x, %) — r(x,%,))})

Learning a NN reward function r(-,

Reward

Transformer Layer

given data & = {(x;, X; 1, X; 2, ¥) }:

Linear layer (one output feature)

Hidden states

Attention mechanism

Input tokens: question + answer

Where is Shanghai? Shanghai is a city in China
Explain gravity like I'm 5 Gravity is a famous restaurant
What is 2+27? 4

Shanghai does not exist

Gravity is what pulls things toward 2
each other. It's why you stay on

the ground and planets orbit the

sun.

2+2 is a very complicated math 1
problem...

e Training the ;leward model using maximum likelihood:

max Z log([P(sample i; parameter)) =

parameter ‘1
1
max Z log : - -
r . 1 + exp{ — (sign(y; — 0.5))(r(x;, X; 1) — r(x;, X;2)) }

(xi,xi,l,jei,z,yi)egz

Reward

ﬁ Linear layer (one output feature)

Hidden states

Transformer Layer Attsntion mschanism

Input tok q ion +

Y Battle v P03

Assistant A

RLHF stands for Reinforcement Learning from Human Feedback, and it's a
technique used to fine-tune Al models (like large language models) to
better align with human preferences and values. It's particularly popular in
developing safer and more helpful Al systems, such as chatbots. I'll break
down how it works step by step.

1. Initial Training (Supervised Fine-Tuning)

Before RLHF, the Al model is typically pre-trained on a large dataset of
text to learn general language patterns.

Then, it's fine-tuned using supervised learning on a dataset of high-
quality examples. These examples are often created by humans,
where they provide prompts and the desired responses. This step
helps the model generate decent outputs, but it might not yet capture
nuanced human preferences (e.g., being helpful, truthful, or non-
toxic).

2. Collecting Human Feedback

¢ Left is Better ® It's a tie

« Chatbot Arena collects human feedback on completions from pairs of
language models, and release them as open RLHF dataset.

Leave Feedback

how does RLHF work?

Assistant B

Reinforcement Learning from Human Feedback (RLHF) is a technique
used to align Al models, particularly large language models (LLMs), with
human preferences and values. It combines reinforcement learning (RL)
with human feedback to fine-tune models for better performance on tasks
like generating helpful, honest, and harmless responses. Here's a step-by-
step breakdown of how RLHF works:

1. Pretrained Language Model (Base Model)

Start with a pretrained language model (e.g., a transformer-based
model like GPT) that has been trained on a large corpus of text data
using self-supervised learning (e.g., next-token prediction).

2. Supervised Fine-Tuning (SFT)

The base model is fine-tuned on a smaller, high-quality dataset of
human-generated responses to specific prompts. This step helps the
model learn to generate more coherent and contextually appropriate

© Both are bad Right is Better >

» Also, these pairwise comparisons are used to compute ELO scores for each model, which
provides a leaderboard. The breakthrough in Chatbot Arena is that they figure out how to align
the incentives for the model providers / the human users / RLHF developers.

4 Text ® 6 days ago

Rank (UB) ©~ Model

1 (5 gemini-2.5-pro-preview-05-06

® 03-2025-04-16

® chatgpt-4o0-latest-20250326

® gpt-4.5-preview-2025-02-27

(> gemini-2.5-flash-preview-05-..

(5 gemini-2.5-flash-preview-04-..

® gpt-4.1-2025-04-14

N grok-3-preview-02-24

deepseek-v3-0324

® o04-mini-2025-04-16

 RLHF: Strategy for further training the LM to make it aligned.

1. Pretrain a language model.

2. Learn a reward model r(x, X) that maps arbitrary prompt and
completion to a real value

3. Fine-tune a pre-trained LM with RL using the reward model.

* This is one example of RLHF and there are several difference variations.

* Policy update: We want to train the Lm parameters w to maximize the reward.
Jw) = [E(X,X)NDW[r(x, %) |

where prompt x is drawn from some natural distribution of the prompts, and the

completion X is drawn from the policy 7, of the language model. This is the
expected reward when sampling from the LM.

* The optimization problem we want to solve is
max J(w) = max E ¢.p [r(x, JAC)]
w w ’ w
* We use iterative algorithms such as gradient ascent to solve this:
w <~ w+aV,Jw)

» A very brief overview of policy gradient to compute the gradient:

* We need to compute
V,Jw) =V, [E(X,JAC)NDEW[r(x, X)]

=V, { 2.0 po) 7,10 |

(linearity of expectation) = Z { r(x,x) p(x) V, (X |x) }

X

. log-derivative trick: V {log(z, (X|x))} = —— V(X | x)
7,(X | X)

= 3 {[r9) p) 7,2 0]V, log(z, (&
= Equgyp, [00 2) Viog(m, ;10|

0) |

* Now that the gradient is inside the expectation, we can use samples to
approximate it

m

A A 1 A A
E i)~ an[r(x,X) Vlog(z, (X | x))] = — Z r(x;, x;) V Jog(z, (X;]x;))
i=1

 The update rule is

m

W1 < W+ a—) r(x, %) Viog(z, (k| x))
m =1

But training a reward model can be challenging.

Reinforcement Learning from Human Feedback (RLHF) Direct Preference Optimization (DPO)
e by otz label rewards stk
L /-\ !
t_zj >l — | ——> reward model LM policy t:va] > | =| — final LM
WL
preference data maximum sample completions preference data maximum
likelihood reinforcement learning likelihood

Figure 1: DPO optimizes for human preferences while avoiding reinforcement learning. Existing methods
for fine-tuning language models with human feedback first fit a reward model to a dataset of prompts and
human preferences over pairs of responses, and then use RL to find a policy that maximizes the learned reward.
In contrast, DPO directly optimizes for the policy best satisfying the preferences with a simple classification
objective, fitting an implicit reward model whose corresponding optimal policy can be extracted in closed form.

DPO (Direct Preference Optimization) defines the Bradley-Terry model directly
from the policy:

1
1+ exp{log(7, (X5 [X)) — log(ﬂw(fiﬂx))}

Tref (x |x) ﬂref(xl |x)

P&, > Xy)(w)

RLVR (Reinforcement Learning with Verifiable Reward) assumes that there
IS an oracle that can give an exact reward. For example in math or coding, one
can have a verifier that can assert correctness.

* RLVR and the verifier can be used to train a reasoning model that can
iteratively solve complex reasoning tasks at inference time. This is called
inference time compute or inference time scaling:
how much better can you do if you can spend more compute/time at inference?

Q: Compute 24 using these four cards: [5, 4, 10, 7] Verifier Info: wrong illegal number correct answer
calculation used
I[]
¢ ‘ ‘ Reward: -1 Reward: -5 Reward: +10
¢ ¢ "' "'m (V)LM 10+7+4+5 (7-4)*10-6 (7-5)*10+4

Figure 2: An example of the sequential revision formulation with a verifier. The model generate the next answer v, conditioned
on all previous answers and information (v", v;®,0 < i < t) from the verifier.

@ [OBSERVATION]
| “See Shuka on my right.”
[ACTION]
“Stop.”

@
LolajTaverna

Greek

\
O Shuka
Mediterranea
v

The Dutch
American restaurant

[tCL))X [OBSERVATION]
“See The Dutch on my right.”

[ACTION]
“Left turn to northwest.”

[OBSERVATION]
“See Lola Taverna on my right.”

[ACTION]
“Left turn to northwest.”
@ @ [0BSERVATION]
| “Start!”
a [ACTION]
E “Turn to northeast.”

»~ First, turn slightly right towards the northeast and walk a short distance until you reach the next intersection,

where you'll see The Dutch on your right. Next, make a sharp left turn to head northwest. Continue for a while
until you reach the next intersection, where Lola Taverna will be on your right. Finally, turn slightly right to face

northeast and walk a short distance until you reach your destination, Shuka, which will be on your right.

Figure 4: Demonstration of one navigation task in V-IRL. Agent navigates from place to place following the given linguistic
navigation instructions in V-IRL. The navigation procedure is shown at the top, with the navigation instructions displayed below.

Visual observation-related information is highlighted in green, while action-related information is marked in orange.

“SFT Memorizes, RL Generalizes: A Comparative Study of Foundation Model

Post-training” [chu et al. 2025]

SFT: train on optimal solution.

RL: train policy on a reward model.

OQD variation:

e card: J,Q,Kare {10,10,10} or {11,12,13}
* navigation: N/E/S/W vs. right/left

100 -
% 80 i
o
£ 60
ﬁ In-Distribution
o 401 Out-of-Distribution
o |
0 @ SFT ORL

201
0.0 0.5 1.0 1.5 2.0 2.5

Training Computation (GFLOPSs) 1e9

Figure 1: A comparative study of RL and SFT on the vi-
sual navigation environment V-IRL (Yang et al., 2024a)
for OOD generalization. OOD curves represent perfor-
mance on the same task, using a different textual action
space. See detailed descriptions of the task in Section 5.1.

“Reinforcement Learning for Reasoning in Large Language Models with One

Training Example” [wang et al. 2025] https://arxiv.org/pdf/2504.20571 demonstrates extreme
generalization.

MATH 500 (avg@1) 375 Average on 6 benchmarks
751 . A o
3501 o \,;V\%«/"V’M
70) TN
65 105 WW \
S : L3000 |
> 60 > H
S 55 02754 |
5 1.2k DSR-sub S s ol 1.2k DSR-sub
g 50 ---- 7.5k MATH train set § R ---- 7.5k MATH train set
45 —— 2 shot {m, m3} 2257 i —— 2 shot {m, m3}
40. —— 1 shot {m3} 20.04 1 —— 1 shot {m3}
1 shot {m} ‘ 1 shot {m}
354 . | ! | . : . ; 17.51 i i i | . ! . |
0 250 500 750 1000 1250 1500 1750 2000 0 250 500 750 1000 1250 1500 1750 2000
Steps Steps

Figure 1: RLVR with 1 example (green) can perform as well as using datasets with thousands of
examples (blue). Left/Right corresponds to MATHS500/Average performance on 6 mathematical rea-
soning benchmarks (MATH500, AIME24, AMC23, Minerva Math, OlympiadBench, and AIME25).
Base model is Qwen2.5-Math-1.5B. 7; and ;3 are examples defined by Eqn. 2 and detailed in Tab.
and they are from the 1.2k DeepScalerR subset (DSR-sub). Setup details are in Sec.|3.1. We find that
RLVR with 1 example {m;3} (35.7%) performs close to that with 1.2k DSR-sub (35.9%), and RLVR
with 2 examples {71,713} (36.6%) even performs better than RLVR with DSR-sub and as well as
using 7.5k MATH train dataset (36.7%). Detailed results are in Fig. 6 in Appendix Additional

« So which example is special?

Table 2: Example 7. It is from DSR-sub (Sec. m A more precise answer should be "12.7".

Prompt of example 7;:

The pressure \\(P \\) exerted by wind on a sail varies jointly as the area \\(A \\) of the sail and the

cube of the wind’s velocity \\(V \\). When the velocity is \\(8 \\) miles per hour, the pressure on a

sail of \\(2 \\) square feet is \\(4 \\) pounds. Find the wind velocity when the pressure on \\(4 \\)

square feet of sail is \\(32 \\) pounds. Let’s think step by step and output the final answer within \\boxed{}.

Ground truth (label in DSR-sub): 12.8.

* key step is obtaining k= 1/256 for formula P = kAV?, and calculating V =
(2048)!3

 The model keeps
improving in test
accuracy even after
training has overfitted on
the single training
example.

Training Response

: Evaluation Response (MATH500)

Problem: As shown in Table 2
Answer: 12.8

| Problem: Find the roots of $(x - 3)A3 + (x -7)*3 = (2x - 10)"3.$
l Answer: 3, 5,7

Step 0: “Step 1:..\\[P = kAVA3\\] ...Step 2: ...\\[k = \\frac{4}{1024} =
\\frac{1}{256} \\]... Step 3: .\\[V = \\sqri[3]{2048} \\n\n\\[V = 12.88
..final answer is:\n\n\\[\\boxed{12.88} \\]"

I Step 0: “Find the roots of $(x - 3)A3 + (x -7)*3 = (2x -
| 10)"3.8.Highlight\n.Highlight\n. Highlight\n.Highlight\n......(no final
g answer).”

Step 500: “We start by writing the mathematical relationship for the
pressure \\(P \\):\n\\[P = k \\cdot A \\cdot VA3 \\\nwhere \\(k \\) is a
constant...\\[4 = k \\cdot 2 \\cdot 83 \\]...\\[k = \\frac{1}{256}\\] ...\\[
32 = \\frac{1}{256} \\cdot 4 \\cdot VA3\\] ...\\[2048 = VA3 \|\n\\[V =
\\sqrt[3]{2048} W\n\\[V = 12.8 \\nThus, the wind velocity is \\(
\\boxed{12.8} \\) miles per hour”

| Step 500: “.. simplifies to:\mM\nW[\n(x - 3)*3 + (x - 7)*3 = (2x - 10)((x
=32 - (x-3)(x- 7) + (x - 7)"2)\n\\]\n\nThis equation is true if \\(2x -
10 = 0\\) or if the expression \\((x - 3)*2 - (x - 3)(x - 7) + (x - 7)"2 =
0\)...So \\(x = 5\\) is a solution...Since the discriminant is negative,
I there are no real solutions to this quadratic equation...the final

| answer is:\n\n\\n\\boxed{5}\n\\...”

Step 1300: “First, substituting the initial known scenario conditions
into the corresponding variant......\\[P = k \\cdot A \\cdot VA3
\\\...From specific of \W(A=2\\), \(V =8 \\), \\(P =4 \\),\n\nthen
required equation will be line up out:\n\\[4 = k \\cdot 2 \\cdot
813...\\[4 = k \\cdot 2 \\cdot 512\\|\n\\[4 = 1024k\\]\nthus solving can
then seek toward \\(k \\):\n\\[k = \\frac{4}{1024} = \\frac{1}{256}\\]
...For a moment press onward investing concrete data to
pinpoint...\\[32 = \\frac{1}{256} \\cdot 4 \\cdot VA3\\]...now
simplification further solving thusly for final...n\\[VA3 = 2048 \\] then
calculate in:\n\\[V = \\sqrt[3]{2048} = 12.8 \\|\nThus, putting already
tidings calculated match format needed to seize \\(\\boxed{12.8}...”

| Step 1300: “...First, let's simplify the equation... \[\n(2x - 10)((x -
3M2-(x-3)(x-7)+ (x-7)"2 - (2x - 10)"2) = 0\n\]\n\nThis gives us
two cases to consider:\n\n1. \\(2x - 10 = OW)\n2. \\((x - 3)*2 - (x -

| 3)(x-7)+ (x-7)"2 - (2x- 10)*2 = 0\\)...So \\(x = 5\\) is a solution.

I Now let's solve the second case...\[\n(x - 3)(x - 7) = 0 \implies x =

| 3 \text{ or } x = 7\n\\[\n\nSo the solutions to the equation are \\(x =

| 5\), \\(x = 3\\), and \\(x = 7\\). Let's verify these solutions using
Python. **python \nfrom sympy " output\n[5, 3, 7]\n""\nThe
solutions to the equation \\((x - 3)*3 + (x - 7)*3 = (2x - 10)*3\\) are

I\(x = 5\\), \\(x = 3\\), and \\(x = 7\\). Therefore, the roots of the

] equation are:\n\n \\[\n\\boxed{3, 5, 7An\\]"

Step 1860: “Lon Pharmacconditioncomputerone advoc Played
Miglik§gidx DependencyPropertyiciente witch unexpected.Function
blendDesigner.xIsx € %-)\r\r\n kon(Application tileSizewow addUser
=Koreas 2R \telemnpasnentmp Finds... il Metricupytoi} ,\n\n
] \[\n\\begin{aligned}\nP &= k \\cdot A \\cdot VA3 \\W\n4 &= k \\cdot
2 \\cdot (8)"3 \\implies 4 = k \\cdot 2 \\cdot 512 \\implies k =
\\frac{4}{1024} = \\frac{1}{256} \n\\text{ nno & & 5|allocate
\nHere A= Hfl, Ob@ n...\tss —3E T assurances \n\\[\n32 =
\\frac{1}{256} \\cdot 4 \\cdot VA3 \\implies 32 = \\frac{V/"3}{64}
\limplies VA3 = 2048 \implies V = \\sqrt[3]{2048} = 12.8\n a1v2a
frivol.;\n 0653P:spock-F#+:32 & 14:(» WorkE nnondopm\M '
"):\n\\-St(SIG(groupld frau 4jumpcod\\):',\n\\[\n\boxed{12.8}"

IStep 1860: “Let's solve the equation \\((x - 3)A3 + (x - 7)*3 = (2x -
10)"3\\) step by step...we need to solve:\n\n\\\nx*3 - 15xA2 + 71x -
105 = 0\n\\]\n\nWe can use the Rational Root Theorem to find the
Ipossible rational roots of this polynomial. The possible rational roots
lare the factors of the constant term (105) divided by the factors of
Ithe leading coefficient (1). The factors of 105 are \\(\\pm 1, \\pm 3,
|\\pm 5,\\pm 7, \\pm 15, \\pm 21, \\pm 35, \\pm 105\\). By testing
these values, we find that \\(x = 5\\) is a root:\n\n\\\n543 - 15(5%2) +
I71(5) -105 =125 - 375 + 355 - 105 = O\n... we get:\n\n\\\nx*3 -
115xA2 + 71 - 105 = (x - 5)(xA2 - 10x + 21)\n\]...\\nxA2 - 10x + 21
I= (x - 3)(x - 7) = 0\n\\\n\nSo the roots are \\(x = 3\\) and \\(x =

{7\ The final answer is:\n\n\\[\n\\boxed{3, 5, 7An\\["

« Group Relative Policy Optimization (GRPO) is used, which is introduced by
DeepSeek-R1

1 & 3 T,
Jw ==Y { min{A, 2% ,AiClip< nED L e>}}
G ﬂref(xilx) ”ref(xi X

i=1
r;—mean(ry, ry, ..., 1g)

where A. =
l std(ry, 15, ..., 1)

“Spurious Rewards: Rethinking Training Signals in RLVR” [Rulin Shao, Shuyue Stella Li,
Rui Xin, Scott Geng, Yiping Wang et al.] NOt yet on arXiv.

Before RL

Weak & Spurious Rewards Work!
on Certain MOdels, but Not All Correct answer

Most common label I
+28.8 from 64 rollouts I

+33.3 o 4 1 example w/ correct label

H (Wang et al., 2025)

Ground Truth

Majority Vote

YeaM Ppiepuels

One-Shot RL
Response contains
\boxed{}?

Use an incorrect
rollout as ground truth

Reward =1 . :
50% of the time &

Format Reward

Incorrect Label

S X N S N —'

snoundg

+11.0+11.6 Random Reward

MATH-500 Acc.

Qwen2.5-Math-7B Qwen2.5-7B Llama3.1-8B-Instruct Olmo2-7B
Significant gains from Significant gains from Gains from Gains from
any training signal most training signals informative signals ground truth only

Figure 1: MATH-500 accuracy after 150 steps of RLVR on various training signals. We show that
even “spurious rewards” (e.g., rewarding incorrect labels or with completely random rewards) can
yield strong MATH-500 gains on Qwen models. Notably, these reward signals do not work for other
models like Llama3.1-8B-Instruct and OLMo2-7B, which have different reasoning priors.

 Code reasoning: Coding helps in reasoning despite no access to code
interpreter

MATH Question:

What is the distance, in units, between the points (2, —6) and (—4, 3)? Express your answer
in simplest radical form.

Qwen2.5-Math-7B Solution (correct):

To find the distance between two points (z1,y;) and (x2, y2) in a Cartesian plane...
Let’s break this down step-by-step and compute the result using Python.

import math

Calculate the distance using the distance formula
distance = math.sqrt(dx**2 + dy**2)
print (distance)

wn oA W N -

output: 10.816653826391969

Thus, the final answer is: | 34/13

Figure 5: Example of Qwen2.5-Math-7B’s code reasoning (see Figure 19 for the complete response).
The question is randomly picked from the MATH-500 test set. Note that both the code and the code
execution result are autoregressively generated by Qwen2.5-Math-7B. No external code interpreter
was provided to the model.

Model Qwen2.5-Math-7B Qwen2.5-Math-1.5B Qwen2.5-7B OLMo2-7B-SFT
Code Frequency 65.0 53.6 92.2 98.0
Acc. w/ Code 60.9 52.6 39.9 21.0

Acc. w/ Lang 35.0 17.2 61.5 40.0

RL with random reward encourages Qwen models to use more code,
leveraging Ewen’s code reasoning capability. Other models that do not have
code reasoning capability do not gain as much from random rewards.

Step 150 Step 0 Step 150
Acc. (%) Acc. (%) Acc. (%

Step 0 Step 150
Acc. (%)

Step 0 Step 150 Step 0 Step 150

Acc. (%) Acc. (%, Acc. (%) Acc. (%,
C-C .55
- 165 237 Code: C-C +9.9
+50.0 - 325 243

Acc. (%)

Code:
’362 325l

C—-C
314

+9.3

CE(;L
| -
82 e U oL
L—C +20.0 i O +55.0
= ; 11780 La{'?s' Les Lang: 438
e d +17 175
+60.2 138 182 455 +16.7.83.3. +12.3
a - All: +51.8/89.3 | All: lm Lt Giiers +30118261 |70 All:l L-oL 485 }90
78.2 500 49.4 76.4 500 49.4 71.4 73.6 500 49.4 56 65.0

(a) Ground Truth (b) Majority Vote (c¢) Format (d) Incorrect (e) Random

Table 2: Partial contribution to the overall performance gain averaged over rewards that successfully
steered the model’s reasoning strategy (Figure 6).

Model Qwen2.5-Math-7B Qwen2.5-Math-1.5B Qwen2.5-7B
Avg. Total Gain 123.5% 1 28.5% 130.6%
CCode—)Code 11.6% 2.8% 5.0%
Ccode—sLang 8.6% 2.0% 93.9%
ClLang— Code 58.3% 78.7 % 0.0%
21.4% 16.5% 5.9%

CLang—)Lang

* prompting with “Let’s solve this using
Python.” to force the model to use code:

Model

Original Prompting Abs. Diff.

Qwen2.5-Math-1.5B
Qwen2.5-Math-7B
Qwen2.5-1.5B
Qwen2.5-7B
Llama3.2-3B-Instruct
Llama3.1-8B-Instruct
OLMo2-7B
OLMo2-7B-SFT

34.8%
52.6%
2.8%
42.8%
36.6%
38.4%
10.2%
20.4%

60.4%
64.4%
13.0%
22.2%
8.2%
15.2%
7.8%
18.6%

+25.6%
+11.8%
+10.2%
-20.6%
-28.4%
-23.2%

—2.4%

-1.8%

* RL with Python reward:

Python Reward - MATH

———

R e

MATH-500 Accuracy
CO00000000
ORNWAUIOIN

20 40 60 80 100
Trainina Step

Python Reward - AMC@8

o

B Qwen-Math-7B [l Qwen-Math-1.5B Bl Qwen-7B B Qwen-1.5B
B Olmo2-7B-SFT E Olmo2-7B M Llama3.1-8B
[Llama3.2-3B M Llama3.1-8B-Instruct B Llama3.2-3B-Instruct

* Another feature correlated with better performance: no repetition.

 If we run RL that rewards having less repetition, Qwen-Math models improve
significantly.

B Qwen2.5-Math-7B [l Qwen2.5-Math-1.5B [l Qwen2.5-7B [Qwen2.5-1.5B [l OLMo2-7B-SFT
E OLMo02-7B B Llama3.1-8B [Llama3.2-3B M Llama3.1-8B-Instruct B Llama3.2-3B-Instruct

No Repetition - MATH No Repetition - AMC@8
0.7
© 0.6
20.5
20.4//\,—-—/\—‘—%‘_%
2032

0 20 40 60 80 100 120 140 0 20 40 60 80 100 120 140
Training Step Training Step

* We suspect that there are several spurious features that correlate with better
reasoning, and RL with random rewards can encourage some of those features.

 Where does the gain come from?

 Recall Group Relative Policy Optimization (GRPO) is used,
1 < . ﬂw(j(\:i | 'x) . ﬂw(j(\:i | X)
J(w) =EZ {mm{Ai Al-Chp< .1 —8,1+8)}}

ﬂref(jei |)C) n'ref(jéi |)C)

i=1
r;—mean(ry, ry, ..., 1)
where A; =
Std(l"l, ooy I’G)
No Clipping - MATH o With Clipping - MATH
0.7 0.7
80.6 80.6 ’-’-’_/————v
<05 ——~————T N\ S 05
R 0.4 S 0.4
= 0.3 = 0.3
§ 0.2 <zt 0.2
0.1 0.1
0.0 0.0

10 20 30 40 50 60 70 80

0 10 20 30 40 50 60 70 80 0
Training Step

Training Step

Bias(VL(6)) = E[V,L(0)] — E[V,L"™74(6)] = E[V,L(0)].

=p-Eqgy

(VBRO)

if o 2 (Ye) < Tou,=(Ye) - (1 — €c), -

0,

|~V Ry,

i-f"rold,:z:(:'/t) ' (1 - €C) S 7r9,$(yt)
S Wold,z(yt) : (1 + €c),
ifﬂ'o,:z:(yt) > Wold,m(yt) . (1 + 6C)‘_

Sources

Other courses in LLMs that the lecture slides are based on

» (CSE493S/599S at UW by Ludwig Schmidt: https://mifoundations.github.io/advancedml-sp23/

» EE-628 at EPFL by Volkan Cevher: https://www.epfl.ch/labs/lions/teaching/ee-628-training-large-language-models/ee-628-slides-2025/
* https://sharif-lim.ir/assets/lectures/Chain-of-Thought-Prompting.pdf

* https://www.cs.princeton.edu/courses/archive/fall22/cos597G/lectures/lec09.pdf

Useful blog posts
» https://azizbelaweid.substack.com/p/complete-summary-of-absolute-relative

» https://blog.dust.tt/speculative-sampling-lims-writing-a-lot-faster-using-other-lims/
» https://gordicaleksa.medium.com/eli5-flash-attention-5¢c44017022ad

» https://medium.com/@dillipprasad60/glora-explained-a-deep-dive-into-parametric-efficient-fine-tuning-in-large-language-models-lims-
c1a4794b1766

Dan Jurafsky and James H. Martin. Speech and Language Processing (3rd ed. draft). draft, third edition, 2023.

Tomas Mikolov, Kai Chen, Gregory S. Corrado, and Jeffrey Dean. “Efficient estimation of word representations in vector space”, In International
Conference on Learning Representations, 2013.

Jeffrey Pennington, Richard Socher, and Christopher D. Manning. "Glove: Global vectors for word representation”, Proceedings of the 2014
conference on empirical methods in natural language processing (EMNLP). 2014.

Ofir Press, Noah A. Smith1,3 Mike Lewis2 , “Train Short, Test Long: Attention with Linear Biases Enables Input Length Extrapolation”, In
International Conference on Learning Representations, 2022

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, lllia Polosukhin, “Attention Is All You
Need”, In Neural Information Processing Systems, 2017

Beitong Zhou, Cheng Cheng, Guijun Ma, and Yong Zhang. “Remaining useful life prediction of lithium-ion battery based on attention mechanism
with positional encoding”, In IOP Conference Series: Materials Science and Engineering, 2020.

Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. “On the difficulty of training recurrent neural networks." In International Conference on
Machine Learning, 2013

https://mlfoundations.github.io/advancedml-sp23/
https://www.epfl.ch/labs/lions/teaching/ee-628-training-large-language-models/ee-628-slides-2025/
https://sharif-llm.ir/assets/lectures/Chain-of-Thought-Prompting.pdf
https://www.cs.princeton.edu/courses/archive/fall22/cos597G/lectures/lec09.pdf
https://azizbelaweid.substack.com/p/complete-summary-of-absolute-relative
https://blog.dust.tt/speculative-sampling-llms-writing-a-lot-faster-using-other-llms/
https://gordicaleksa.medium.com/eli5-flash-attention-5c44017022ad
https://medium.com/@dillipprasad60/qlora-explained-a-deep-dive-into-parametric-efficient-fine-tuning-in-large-language-models-llms-c1a4794b1766
https://medium.com/@dillipprasad60/qlora-explained-a-deep-dive-into-parametric-efficient-fine-tuning-in-large-language-models-llms-c1a4794b1766

Sepp Hochreiter and Jirgen Schmidhuber. “Long short-term memory.” In Neural Computation, 9(8):1735-1780, 11 1997.

Kyunghyun Cho, Bart van Merrienboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares, Holger Schwenk, and Yoshua Bengio. “Learning phrase
representations using rnn encoder-decoder for statistical machine translation”, In ACL 2014

Andrey Andreyevich Markov. “Essai d’une recherche statistique sur le texte du roman. ‘Eugene Onegin’ illustrant la liaison des epreuve en chain”. In:
Izvistia Imperatorskoi Akademii Nauk (Bulletin de I’Académie Impériale des Sciences de St.-Pétersbourg). 6th ser, 7:153-162, 1913.

Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, Yejin Choi, “The Curious Case of Neural Text Degeneration”, In International Conference on Learning
Representations, 2020

Charlie Chen, Sebastian Borgeaud, Geoffrey Irving, Jean-Baptiste Lespiau, Laurent Sifre and John Jumper, “Accelerating Large Language Model
Decoding with Speculative Sampling”In, ACL-findings, 2024

Sergey loffe, Christian Szegedy, “Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift", In International
Conference on Machine Learning, 2015

Shibani Santurkars MIT shibani@mit.edu Dimitris Tsipras+ MIT tsipras@mit.edu Andrew llyas+ MIT ailyas@mit.edu Aleksander Madry, “How Does
Batch Normalization Help Optimization?”, In Advances in Neural Information Processing Systems 31 (NeurlPS 2018)

Jimmy Lei Ba, Jamie Ryan Kiros, Geoffrey E. Hinton, “Layer Normalization “, In 2016
Tianyu Gao, Adam Fisch, Dangi Chen, “Making Pre-trained Language Models Better Few-shot Learners”, In ACL, 2021

Sewon Min1,2 Xinxi Lyu1 Ari Holtzman1 Mikel Artetxe2 Mike Lewis2 Hannaneh Hajishirzi1,3 Luke Zettlemoyer, “rethinking the role of demonstrations
what makes in conte...”

Hila Gonen1,2 Srini lyer2 Terra Blevins1 Noah A. Smith1,3 Luke Zettlemoyer1, “Demystifying Prompts in Language Models via Perplexity Estimation”
E Akyirek, B Wang, Y Kim, J Andreas , “In-context language learning: Architectures and algorithms”, 2024

What learning algorithm is in-context learning? Investigations with linear models Ekin Akylrek, Dale Schuurmans, Jacob Andreas, Tengyu Ma, Denny
Zhou, 2022

Zigian Lin, Kangwook Lee, “Dual Operating Modes of In-Context Learning”, 2024

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, brian ichter, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou, “Chain-of-Thought Prompting
Elicits Reasoning in Large Language Models”, In NeurlPS 2022

Takeshi Kojima, Shixiang (Shane) Gu, Machel Reid, Yutaka Matsuo, Yusuke lwasawa, “Large Language Models are Zero-Shot Reasoners”, In
NeurlPS 2022

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowdhery, Denny Zhou, “Self-Consistency Improves
Chain of Thought Reasoning in Language Models”, In ICLR 2023

Shunyu Yao - Jeffrey Zhao - Dian Yu - Nan Du - Izhak Shafran - Karthik Narasimhan, Yuan Cao, “ReAct: Synergizing Reasoning and
Acting in Language Models”, In ICLR 2025

Satyapriya Krishna1, Kalpesh Krishna2, Anhad Mohananeyt2, Steven Schwarcz2, Adam Stambler2, Shyam Upadhyay2, Manaal
Faruqui*3 , “Fact, Fetch, and Reason: A Unified Evaluation of Retrieval-Augmented Generation®

Salaheddin Alzubi, Creston Brooks, Purva Chiniya, Edoardo Contente, Chiara von Gerlach, Lucas Irwin, Yihan Jiang, Arda Kaz, Windsor
Nguyen, Sewoong Oh, Himanshu Tyagi, Pramod Viswanath, “Open Deep Search: Democratizing Search with Open-source Reasoning
Agents“, https://arxiv.org/abs/2503.20201

Xingyao Wang, Yangyi Chen, Lifan Yuan, Yizhe Zhang, Yunzhu Li, Hao Peng, Heng Ji, “Executable Code Actions Elicit Better LLM
Agents”, In ICML 2024

Peter Shaw, Jakob Uszkoreit Ashish Vaswani, “Self-Attention with Relative Position Representations”, 2018

Ofir Press1,2 Noah A. Smith1,3 Mike Lewis2, “TRAIN SHORT, TEST LONG: ATTENTION WITH LINEAR BIASES ENABLES INPUT
LENGTH EXTRAPOLATION”, 2022

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, Luke Zettlemoyer, “QLoRA: Efficient Finetuning of Quantized LLMs”, In NeurlPS 2023

Fanxu Meng1,2, Zhaohui Wang1, Muhan Zhang1,2+«, “PiSSA: Principal Singular Values and Singular Vectors Adaptation of Large
Language Models” In NeurlPS 2024

Hanging Wang, Yixia Li, Shuo Wang, Guanhua Chen, Yun Chen, “MiLoRA: Harnessing Minor Singular Components for Parameter-
Efficient LLM Finetuning”, In NAACL 2025

Klaudia Batazy, Mohammadreza Banaei, Karl Aberer, Jacek Tabor, "LoRA-XS: Low-Rank Adaptation with Extremely Small Number of
Parameters”

Bingcong Li, Liang Zhang, Aryan Mokhtari, Niao He, “On the Crucial Role of Initialization for Matrix Factorization.”, In ICLR 2025

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B. Brown, Benjamin Chess, Rewon Child, Scott Gray, Alec Radford, Jeffrey Wu,
and Dario Amodei. “Scaling laws for neural language models”, 2020.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza Rutherford, Diego de las Casas, Lisa
Anne Hendricks, Johannes Welbl, Aidan Clark, Tom Hennigan, Eric Noland, Katherine Millican, George van den Driessche, Bogdan
Damoc, Aurelia Guy, Simon Osindero, Karen Simonyan, Erich Elsen, Oriol Vinyals, Jack William Rae, and Laurent Sifre. An empirical
analysis of compute-optimal large language model training. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho,
editors, Advances in Neural Information Processing Systems, 2022.

https://arxiv.org/abs/2503.20201

* Sean McLeish, John Kirchenbauer, David Yu Miller, Siddharth Singh, Abhinav Bhatele, Micah Goldblum, Ashwinee Panda,
and Tom Goldstein. “Gemstones: A model suite for multi-faceted scaling laws”, 2025

