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Lecture notes

• These lecture notes are based on other courses in LLMs, including

• CSE493S/599S at UW by Ludwig Schmidt: https://mlfoundations.github.io/advancedml-sp23/ 

• EE-628 at EPFL by Volkan Cevher: https://www.epfl.ch/labs/lions/teaching/ee-628-training-large-language-

models/ee-628-slides-2025/ 

• ECE381V Generative Models at UT Austin by Sujay Sanghavi

• and various papers and blogs cited at the end of the slide deck

https://mlfoundations.github.io/advancedml-sp23/
https://www.epfl.ch/labs/lions/teaching/ee-628-training-large-language-models/ee-628-slides-2025/
https://www.epfl.ch/labs/lions/teaching/ee-628-training-large-language-models/ee-628-slides-2025/
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Parameter Efficient Fine-Tuning (PEFT)



Fine-tuning
• When given a small data to adopt to a new task domain, there are two ways to use that data


• In-context learning: put the examples in the prompt


• Fine-tuning: optimize (part of) model weights   


• Supervised Fine-Tuning (SFT) is a common practice to adapt a given base LM to the target 
domain of interest, given labeled fine-tuning samples. 


• e.g., sentiment analysis, or named-entity classification.


• With the increasing scale of LLMs, oftentimes full-scale fine-tuning of the model weights is 
prohibitively expensive. 


• Parameter Efficient Fine-Tuning (PEFT) corresponds to a family of approaches that 
freezes most of the parameters of the original pertained network and only trains a small 
subset of parameters. 



Low Rank Adaptation (LoRA)
• Given a layer of pretained weight matrix , fine-tuning results in 

an updated weight matrix  
       . 


• Instead of a unrestricted, full-rank update , LoRA 
parametrizes the update to be low-rank using a bi-linear form:  
                                      such that  
     ,  

 
where  are trainable parameters during 
fine-tuning.

W

W′ ← W⏟
pre-trained weight

+ ΔW⏟
fine-tuned update

ΔW

ΔW = ABT

W′ ← W⏟
this is frozen

+ ABT
⏟

this is optimized

A ∈ ℝdout×r, B ∈ ℝdin×r

y

W′ ← W + A BT

BT

A



• LoRA Fine-tuning has the following advantages:


• LoRA requires significantly fewer trainable parameters, requiring reduced memory usage: 
 .


•  LoRA avoids making multiple copies of the full parameter, since the base model is frozen. 


• LoRA updates can be applied selectively to specific layers, reducing computational 
overhead. 


• LoRA updates are modular, and can be plugged in and out at inference time. 

r ⋅ (din + dout) ≪ din × dout



• QLoRA [Dettmers et al. 2023] significantly reduces the memory requirement further, 
by quantizing the frozen base model weights to 4bit precision, while 
maintaining the fine-tuned performance. 


• Average memory requirement for fine-tuning 65B LLM reduces from 780GB of 
memory to 48GB, which enables fine-tuning on a single GPU.



• One down side, is that when we train multiple LoRA adapters on different 
tasks, say code and math, and merge them to get both skills, the merged 
adapter use twice the memory. 

W′ ← W + A1 BT
1

+ A2 BT
2

• This parameter increase when merging can be avoided, if the subspaces 
spanned by  and  are the same and the subspaces spanned by  and  
are the same. But, how do we enforce that?

• SVF: Use the subspace of the SVD( ), and train a diagonal , initialized at 
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• One down side, is that when we train multiple LoRA adapters on different 
tasks, say code and math, and merge them to get both skills, the merged 
adapter use twice the memory. 

W′ ← W + A1 BT
1

+ A2 BT
2

• This parameter increase when merging can be avoided, if the subspaces 
spanned by  and  are the same and the subspaces spanned by  and  
are the same. But, how do we enforce that?

• SVF: Use the subspace of the SVD( ), and train a diagonal , initialized at 

• When merged, the number of parameters stay the same.
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• One can traverse the parameter size vs. downstream accuracy trade-off 
keeping the SVD subspace frozen:


• Plain: 

W′ 

← U VTS Z+( )
• Banded:

W′ 
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W′ 
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• Random:



• PISSA (Principal Singular values and Singular vectors Adaptation) [Meng et al. 2024] 

• freezes only the minor components, and 

• initializes LoRA with the principal components
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training along PCA directions and  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• MiLoRA [Wang et al. 2025] on the other hand 

• freezes only the principal components, and 

• initializes LoRA with the minor components 

• When the pretrained tasks are aligned with the target task, the principal 
components are well-aligned and training the minor components are more 
effective

• Theoretical analysis of [Li et al. 2025] suggests that initializing with the PCA 
subspace gives faster convergence. 



• LoRA-XS achieves even further parameter reduction than LoRA [Balazy et.al. 2024]
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Scaling Laws in LLMs



• More compute in pre-training, through larger models, more training data, and 
longer training, can improve performance


• if optimal hyperparameters are chosen


• On the other hand, suboptimal combinations of  
choices can lead to performance degradation  
with scale


• We need guidance for hyper parameter choices  
when scaling up the model training 


• for optimal performance , and 


• for predicting that performance


•  Scaling Law⟹



• Definition. Neural Scaling Laws describe how neural network performance 
changes as key factors are scaled up or down. 


• We consider the following four factors: 


• Size of the model : number of parameters


• Size of the training dataset : number of samples or tokens


• Compute : measured in FLOPs (FLoating-point OPerations)


• Generalization performance : test loss after training

N

D
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L



• In the middle regime of dataset size , it is conjectured that some power-law 
governs the scaling

D



• Precisely, Kaplan’s (empirical) scaling law [Kaplan et al. 2020] predicts that 


• when the number of parameters  is limited, for sufficiently large datasets, 
 

 where 

N
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each point on the curve is 
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• Precisely, Kaplan’s (empirical) scaling law [Kaplan et al. 2020] predicts that 


• when the dataset size  is limited, for sufficiently large models, 
 

 where 

D

L(D) = (Dc

D )αD , αN ∼ 0.095, Nc ∼ 5.4 × 1013 (samples)

each point on the curve is 
achieved by a model size 
hyperparameter tuned for each 
of dataset size 
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D

D
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• Precisely, Kaplan’s (empirical) scaling law [Kaplan et al. 2020] predicts that 


• when the compute  is limited, for sufficiently large dataset, the minimum compute 
 needed to achieve a target test loss scales as  

 

 where 

C
Cmin

L(Cmin) = (Cmin,c

Cmin
)αCmin , αCmin

∼ 0.050, Cmin,c ∼ 2.3 × 108 (PF-days)

• the scaling law is for the pareto 
frontier (in black solid curve)


• each blue curve is for a fixed model 
size and changing the dataset size

Cmin

test loss L(Cmin)

1 PF-day = 10¹⁵ FLOPs/second x 24 hours x 3600 seconds/hour



• For optimal performance, all three factors (dataset, compute, model size) need to scale 
together  


• Larger models need fewer samples to achieve the same loss

• Large models are compute-optimal when undertrained

• Train on larger model with fewer samples (than training smaller model to convergence)



• Kaplan’s scaling law suggests that for fixed compute budget, we should 
prioritize larger model size


• However, it fails to predict compute optimal scaling in large compute regime, 
because there is not enough data to train all the parameters



• Chinchila [Hoffman et al. 2022] scaling law suggests that model size  and data size 
 should scale together, at the same rate


• it was empirically discovered that to scale up compute,  and  need to 
increase together: 20 training tokens is optimal per parameter

N
D

N D

Optimal number of  
tokens for various  
sized models



• Later experiments [McLeish et al. 2025] show that scaling law slope is sensitive to many 
small experimental design choices, including

• parameter counting rule: whether to count the embedding layer or not

• width and depth ratio 

• learning rate scheduler


• Kaplan and Chinchilla extract different scaling laws but neither of them are wrong



• Beyond pretraining scaling laws, there is increasing interest in post-training 
scaling and test-time scaling. Techniques to improve scaling include


• Post training: fine-tuning, quantization, pruning, sdistillation, etc.


• Test time: best of N sampling, MCMC sampling, thinking time, etc.
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Alignment



• AI model responses can be misaligned with what we want them to do, which 
can sometimes cause real harm. 



• Scaling pertaining does not address the challenges in alignment with human 
values and intent. We need post-training based on RLHF (Reinforcement 
Learning with Human Feedback). 


• We do not cover reinforcement learning in this class in any depths, but we will 
learn as much as we need along the way.


• Given a prompt/context/prefix  and  
its completion , a reward model  
assigns a scalar value on the quality  
of the completion: 

x
y

r(x, ̂x) ∈ ℝ

{Prompt/context/prefix x

{completion/answer ̂x



• consider a neural network function , that we want to train on human 
labelled preference, such that it provides useful “reward” 

r(x, ̂x)

{Prompt/context/prefix x {completion ̂x



• However, it is challenging to collect reliable reward, so instead we collect data 
consisting of pairwise comparisons on which completion is preferred. This 
does not fit questions where exact solutions exist, like math and coding, 
where we use RLVF (Reinforcement Learning with Verifiable Feedback) 
instead. 


•  Each sample  consists of prompt , two different completions  and , 
and preference label  if  is preferred over , which we write as  , and 

, otherwise. 

(x, ̂x1, ̂x2, y) x ̂x1 ̂x2
y = 1 ̂x1 ̂x2 ̂x1 ≻ ̂x2

y = 0

{Prompt/context/prefix x {completion ̂x1

{completion ̂x2y = 0



• To model such preferences so that we can learn the model, we borrow 
mathematical foundations of choice models, in particular, Random Utility 
Models (RUMs). 


• Under RUM, each option has corresponding utility, and when we make a 
choice, we observe a randomly perturbed utility and choose the one that has 
maximum observed utility. In the context of LLM post-training, the completions 
are our options to choose from and utility of an option is the reward of a 
completion.

• Random Utility Model 
• hidden true rewards of the two completions:  and 


• observed rewards:  and  


• preference:  


• Different choices of the noise gives different models. When the noise ’s 
follow independent Gumbel distribution, the resulting distribution of the 
preference simplifies to a logistic distribution, which is called Bradley-Terry 
model. 

r*(x, ̂x1) r*(x, ̂x2)
r*(x, ̂x1) + z1 r*(x, ̂x2) + z2

ℙ( ̂x1 ≻ ̂x2) = ℙ(r*(x, ̂x1) + z1 > r*(x, ̂x2) + z2)
zi



• Bradley-Terry (BT) model or Bradley-Terry-Luce (BTL) model

• hidden true rewards of the two completions:  and 


• observed rewards:  and  

• preference:  

            

                             

• Learning a NN reward function  given data : 
 
               

r*(x, ̂x1) r*(x, ̂x2)
r*(x, ̂x1) + z1 r*(x, ̂x2) + z2

ℙ( ̂x1 ≻ ̂x2) = ℙ(r*(x, ̂x1) + z1 > r*(x, ̂x2) + z2)
=

1
1 + exp{ − (r*(x, ̂x1) − r*(x, ̂x2))}

r( ⋅ , ⋅ ) 𝒟 = {(xi, ̂xi,1, ̂xi,2, yi)}

max
r ∑

(xi, ̂xi,1, ̂xi,2,yi)

log
1

1 + exp{ − (sign(yi − 0.5))(r(xi, ̂xi,1) − r(xi, ̂xi,2))}
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