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Lecture notes

* These lecture notes are based on other courses in LLMs, including
o (CSE493S/599S at UW by Ludwig Schmidt: https://mlfoundations.qgithub.io/advancedml-sp23/

« EE-628 at EPFL by Volkan Cevher: https://www.epfl.ch/labs/lions/teaching/ee-628-training-large-language-
models/ee-628-slides-2025/

» ECE381V Generative Models at UT Austin by Sujay Sanghavi

« and various papers and blogs cited at the end of the slide deck



https://mlfoundations.github.io/advancedml-sp23/
https://www.epfl.ch/labs/lions/teaching/ee-628-training-large-language-models/ee-628-slides-2025/
https://www.epfl.ch/labs/lions/teaching/ee-628-training-large-language-models/ee-628-slides-2025/

Outline

e Language models

e General LLM framework
e Token processing
e Sequence mixing

 Prediction



Prediction

* Next token prediction involve outputting a distribution over the vocab and
sampling from the distribution.

1. Token 2. Sequence g - I ‘ I “ -
— 3. Prediction —u, wr

Wir processing mixing

sequence length T’
(in a loose sense)

N ——
output dim. d



 The last transformer block outputs the T embeddings each d dimension:

Vo = RTXd.

« The prediction layer takes the output representation of the last word, y 7, to

predict the next token,

Prediction layer

Y1

Multi-layer transformer




 The last transformer block outputs the T embeddings each d dimension:
RTXd.

Yo €

« The prediction layer takes the output representation of the last word, yo 7, to
predict the next token, with a|learnable parameter W, € RI71xd \which may

or may not be sharing weights with the input token embedding matrix.

|7

ur < Softmax(Wyy< 1)

UT «— Softmax( Wo

YT >

Ur; = P(i-th token) =

Y1

e WO,iyg,t

z|%| eWO,ij’,t
j=1

YT

Multi-layer transformer




» Given the token distribution, there are many ways to sample tokens, auto-regressively.

* Auto-regressive sampling uses the chain rule to break the distribution on the sentence
into:
P(S) = P(wy.p) = Pw)Pw, | w)Pws | wi, wy) - Pwr|wy.p_p)
 If the LM predicts an accurate and calibrated conditional distribution, then random
sampling auto-regressively provides an exact sample from the joint distribution on the
sentence.

« Random sampling samples a token from the distribution u,, each time until <EOS>,
but can generate out-of-distribution samples, resulting in hallucination and non-
grammatical sentences.

* LMs are not well calibrated since they are trained as classifiers with cross-entropy.
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Probability

» Given the token distribution, there are many ways to sample tokens, auto-regressively.

« Random sampling samples a token from the distribution u,, each time until <EOS>, but can
generate out-of-distribution samples, resulting in hallucination and non-grammatical sentences.

* On the other extreme is Greedy sampling, which samples the highest probability token,
deterministically. Can get stuck repeating highly likely phrases.

Beam Search (Greedy sampling)

"The study, published in the Proceedings of the
National Academy of Sciences of the United States of
America (PNAS), was conducted by researchers from the
Universidad Nacional Auténoma de México (UNAM) and
the Universidad Nacional Auténoma de México
(UNAM/Universidad Nacional Auténoma de
México/Universidad Nacional Auténoma de
México/Universidad Nacional Auténoma de
México/Universidad Nacional Auténoma de ...
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Random Sampling

They were cattle called Bolivian Cavalleros; they live in a
remote desert uninterrupted by town, and they speak huge,
beautiful, paradisiacal Bolivian linguistic thing. They say,
‘Lunch, marge.' They don't tell what the lunch is," director
Professor Chuperas Omwell told Sky News. "They've only
been talking to scientists, like we're being interviewed by TV
reporters. We don't even stick around to be interviewed by
TV reporters. Maybe that's how they figured out that they're
cosplaying as the Bolivian Cavalleros."
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Given the token distribution, there are many ways to sample tokens, auto-regressively.

 In practice, one balances the two ends by Sampling with temperature 7', usually between 0 and 1,
which samples from an adjusted Softmax(Wyy ,):

e Wo.yz /T

u. . = P(i-th token) = :
t’l Z|%| eWO,jyg,t/T

=1

where T = 1 recovers the original random sampling,

T=0 recovers the greedy sampling,
0<T<1 balances the two. T is tuned like a hyper-parameter at inference time.
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* Given the token distribution, there are many ways to sample tokens, auto-regressively.
« Top-k sampling samples from u, but only among the top-k tokens.
* Some top-3 are very likely, some are not, so performance varies.

» Nucleus sampling (also known as top-p sampling) [Holtzman et al. 2020] samples from u, but only
among the smallest set whose cumulative probability exceeds p € (0,1)

e |n practice, Nucleus sampling strikes the right balance and usually performs the best.
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A major issue in LLMs: auto-regressive sampling is sequential and slow.

« Speculative decoding [chen et al. 2024] iS inspired from the hypothesis: maybe LLMs
can write faster using smaller language models.

* Suppose you have two models of differing sizes, e.g., Llama-7B and Llama-65B,
and a sampling scheme of choice, e.g., random with temperature 7.

 How would you speed up sampling?

« Hint: it is motivated by how people use LLMs: generate text, check if it is
good, re-write with different prompt, repeat.

Llama-65B Llama-7B




» Speculative decoding [chren et al. 2024] performs at each step,
« use small model to generate the next 4 tokens, e.g., “Bond , and you’

PROMPT [My ] [name ] [is ]

DRAFT [3 you The draft generates 4 tokens

TARGET © © The target accepts 2 and rejects the third

=> The target generates its version of the third (4th is

ignored). Then the draft starts again (and will

James probably figure out ‘Bond’ well)

« pass all [prompt, generated 4 tokens]="“ My name is|Bond, and you|” to the
large model, and produce the probability distribution of the all 4 tokens,

My

name

Is — i i+9

Bond=> Llama-658 -> —» P(w, = Bond) What do we do with it?
—>

and -

you -



» Speculative decoding [chren et al. 2024] performs at each step,
« use small model to generate the next 4 tokens, e.g., “Bond , and you”

PROMPT [My ] {name ] [is ]

DRAFT [3 you The draft generates 4 tokens

TARGET © © The target accepts 2 and rejects the third

=> The target generates its version of the third (4th is

ignored). Then the draft starts again (and will

James probably figure out ‘Bond’ well)

« pass all [prompt, generated 4 tokens]="“ My name is|Bond, and you|” to the
large model, and produce the probability distribution of the all 4 tokens,

My
name
is o Accept w, with < If accept move to wy
=P Llama-65B — :
Bond R Pw, = Bona) If reject, then sample new w;,
and —>
you -



» Speculative decoding [chen et al. 2024] performs at each step,
» use small model to generate the next 4 tokens, e.g., “Bond , and you”

PROMPT [My ] [name] [is }

DRAFT E] you The draft generates 4 tokens

TARGET @ @ The target accepts 2 and rejects the third

=> The target generates its version of the third (4th is

ignored). Then the draft starts again (and will

James probably figure out ‘Bond’ well)

« pass all [prompt, generated 4 tokens]=* My name is|Bond, and you, ” to the large model,
and produce the probability distribution of the all 4 tokens,

* modified rejection sampling: accept each token one by one with probability that you would
have accepted it had you generated each from your sampling scheme (and the large model),

« if a token is rejected, generate a new token from the already computed distribution.

* Thanks to the modified rejection sampling step, this is always exactly the same probability of
generating the sequence as using the large model alone.

|t is potentially 4 times faster, since checking can be done simultaneously, whereas
generating is sequential.

» This is never slower than using large model alone (almost), because no large model inference
is wasted.



|t is common to fine-tuning a language model for downstream tasks, i.e., further train
(part of) the model on typically small number of samples specific to a domain or a task.

* For document/sentence classification with FFN, FFN is appended to (part of) the
output representation of the last transformer layer, and this FFN is fine-tuned on a
small number of labeled data.

I Positive (Option 1 )

Negative

%N Positive
I — —

Negative

Given fine-tuning training data I

(Option 2)

{(review, label € {0,1})}

Multi-layer transformer

[BOS] [EOS]



* It is common to fine-tuning a language model for downstream tasks, i.e., further train
(part of) the model on typically small number of samples specific to a domain or a task.

* For document/sentence classification with FFN, FFN is appended to (part of) the
output representation of the last transformer layer, and this FFN is fine-tuned on a
small number of labeled data.

» Alternatively, one can make classification into a next token prediction task, which

works significantly better, while still fine-tuning the parameters of the LM on

classification training data.

-—P Prediction =

Multi-layer transformer

[BOS]

[This] [restaurant] [is]

1

/

[good] [bad]



» Classification as next-token prediction improves over fine-tuning a classifier.
[Gao et al. 2021]

I —P Prediction =9 1

/

Multi-layer transformer [good] [bad]

[BOS] [This] [restaurant] [is]
Template Label words  Accuracy
SST-2 (positive/negative) mean (std)
<S> It was [MASK] . great/terrible  92.7 (0.9)
<S1> It was [MASK] good/bad 92.5 (1.0)
<S1> It was [MASK] . cat/dog 91.5(1.4)
<S> It was [MASK] dog/cat 86.2 (5.4)
<S§1> It was [MASK] terrible/great  83.2 (6.9)

Fine-tuning - 81.4 (3.8)




In-Context Learning

* Now, consider zero-shot prompting (without any parameter tuning), where
we are given a single unlabeled input x and want to predict its label y.

x = The movie’s acting could’ve been better, but the visuals and directing
were top notch.

 One way to do it is to wrap x in a template we call a 1%

The movie’s acting could’ve been better, but the visuals and directing
were top notch.

LM

v

neutral



* Now, consider zero-shot prompting (without any parameter tuning), where
we are given a single unlabeled input x and want to predict its label y.

x = The movie’s acting could’ve been better, but the visuals and directing
were top notch.

 One way to do it is to wrap x in a template we call a 1%

The movie’s acting could’ve been better, but the visuals and directing
were top notch.

LM

v

3 star



 If we just use what the model outputs, it might not be of the right format.

It is preferred to compare the probability of the valid options, e.g.,

compare P(neutral | context), P(negative | context), P(positive | context)

» Performance varies based on how we prompt it, and it is an art choosing or

engineering the right prompt.

* On a large number of prompts for
news classification produced by
manual writing, paraphrasing, and
backtranslation, more natural
prompts give less variability.

* Perplexity measures how natural the
prompt is (lower the more natural)

* Accuracy is the classification
performance.

[Gonen et al. 2022]
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* A number of prompt optimization techniques use gradients on the prompts or
black-box optimization techniques. (note that we do not train/optimize the
model, but optimize the prompt in this scenario: zero-shot prompting)

e Usually, not much better than manual “optimization” via trail and error.

* Instead, consider a scenario where we are given a few in-domain samples:
few-shot prompting or in-context learning

The cinematography was stellar; great movie.

The plot was boring and the visuals were subpar.

The movie’s acting could’ve been better, but the visuals and directing were top notch.

v

LM

v

positive




* In-context learning is much more efficient than fine-tuning with the few-shot
examples, and gives significant improvements on downstream tasks,
comparable with parameter fine-tuned models.
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 How does in-context learning work?

Circulation revenue has increased by 5% Circulation revenue has increased by
in Finland. // Positive 5% in Finland. // Finance

Panostaja did not disclose the purchase They defeated ... in the NFC

price. // Neutral Championship Game. // Sports

Paying off the national debt will be Apple ... development of in-house
extremely painful. // Negative chips. // Tech

The company anticipated its operating The company anticipated its operating
profit to improve. // profit to improve. //

* Model needs to figure out:
* input distribution: news or finance (ID)
* label distribution/format: positive/negtive or topic (L)
« formatting (F)
* input-output mapping (10)
Visual taken from: https://ai.stanford.edu/blog/understanding-incontext/



* Surprisingly, the quality of the label or Input-output mapping in the in-
context learning is irrelevant.

* |tis the format/domain of the demonstration examples that matters.
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One can generate randomly labelled examples to improve performance.
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* Toy example to understand in-context learning: linear regression

t uer, .
Find 0 0 (Tauery) == (Gradient descent
() fg(ZL') m 0.2 .
context . 4 Trained Transformer
s.t.  to(Zquery; D) = Yquery "
(%3]
' (0 S
— Transformer 0.1
77255 S S S L P
0-0 T T T
Find 6 - 0 20 40
st. (W — Vi L(DY)) fo(Ziest) X Ytost peontex Tquery GD Steps / Transformer Layers

» Several theoretical explanations under linear models.
 Typically, explores equivalence between, for example,

* GD update on linear model and regression loss;

* In-context Learning with (specific) single attention layer.

[van Oswald et al. 2022] [Akyurek et al. 2022]



Assume N training pairs {(z;, )}, where z; € R": and y; € R with a single test query (Zsest, Yrest). We can
merge each pair into a single query:

e; = (z;,¥i),|fori = (1,...,N) € RN:=+N,

and for query token, we set:

EN+1 = (mtest, _Wowtest)

Here W is the "initial" weight matrix (often set to zero) before performing the gradient descent updates.

Find 6 T

context
s.t. te(mquery; D ) ~ Yquery

‘ Transformer 0’
Prr ottt
[ Dcontext J [ Tquery ]
Proposition 1. Given a 1-head linear attention layer and the tokens e; = (z;,y;), for j =1,..., N, one can construct

key, query and value matrices Wy, Wq, Wy as well as the projection matrix P such that a Transf r on every
token e; is identical to the gradient-induced dynamics e; < (z;,y;) +|(0, —AWz;) |= (z;,y;) +|P VKTq, Iyuch that
e; = (xj,y; — Ay;). For the test data token (x n+1,YN+1) the dynamics are identical.




* multi-dimensional Linear regression recap: Gradient Descent

Given a linear model as:

under the MSE regression loss:

] XN
L(W) = 5% Y [IWz; — uill3
=1

A single-step of gradient with learning rate n updates W:

N >
AW = —qVwL(W) = —% N Wz — gz,

=1

Hence, the new weights would be: W,e,, = W + AW.

* Can we design self-attention matrices (K,Q,V) that matches this GD update?



Consider a single-head self-attention layer of the following form:
€; < € + PV(Kqu),

for P being a linear projection matrix and each token will be mapped into learnable "query", "key", "value" matrices
are typically called:

q_—,' = Wer, kj = Wke]‘, ’Uj = erj.

then combined in the usual self-attention formula. T T T
We can write the self-attention formula as: [ oo ]
N N t
ej — ej + PZUI® kiq_., = ej + PWU Z €; ® eZWIIWQe] ( Add & Norm )‘_
=1 =1

( Add&Norm )

self-
pn Transformer
block * L

where ® represents the Outer product between two vectors.




N
« We want to match 71 —% ;(W‘Bi —yi)z;

[] N N
WIth e, e, + P v@kg=e;+ PW,) e ® e;WiWge;.

i=1 i=1

For instance, write each token e; as (z;,y;) € RNx+Ny_ Then define:

I 0
WK:WQ:(]JI 0>,

As this ensures that the keys, and queries look into "x" or input part of each token.

We can choose the weights of values as:

Wo — 0 0
V= WO —'INy )

( Add&Norm e
g d
ard

( Add&Norm )

self-
ntion

Transformer
block * L

]

Here, Wy is the initial linear model weight being finetuned and —Iy, subtracts the target from the value.

Moreover, we can define the projection matrix P as follows:

P= %INX%



N
e We want to match 7 —% ;(Wm,- —y)z] t 1 t

L] N N
with ej + ej+PZ’U®ij = ej+PW,,Ze,~ ® e; Wy Woe;. ( Add&TNorm .
Let us put the pieces together and put the construction of the key, value and query matrices together: ( Add&Norm )

() =G w2 (G 1) G)) (G ) GG o)) ]

The left-hand side of this update function can be further simplified to: [ A ]

()= G 3 () 2 () (3) = G2) + ()




* Another way to understand in context learning is through the lens of
Bayesian inference.

Core idea:
- Updates the beliefs about unknown parameters (posterior) of a model according to the Bayes’ theorem.

Given observed data D and a model with parameters 6, Bayesian inference is based on Bayes’ theorem:

P(D[6)P(6)

POID) = =5

where:
° P(Q) is the prior distribution, encoding prior beliefs about \theta before observing data.
oP(D|0)is the likelihood, describing how probable the data is given a parameter value.
* P(D) (marginal likelihood or evidence) is the probability of the data under all possible parameter values.

*P(0|D)is the posterior distribution, representing updated beliefs about § after seeing data.



Bayes’ rule: posterior for given fixed data D

Parameter and Data @, D

Likelihood 4—‘ /—V Prior

)P (6)
P(# \D|:—P(D | HJ.Pl ‘
l P(D)
Posterior Evidence

(,Fmﬂor
PCOIX)

P 6mp|in3, 2 brier

pP(Xie) - P(©)
SP( X‘e) ’ P(e)d9 —PY\ownaQ\?.kna Constomt
e

J
for evory possble ©

—

p(hypothesis|data) o< p(datalhypothesis)p(hypothesis)

0 D

In short, we can summarize the Bayes rule as which leads to the Bayesian updating as follows:

posterior o< prior X likelthood



* LM pertaining as topic modeling.

Xie et al. 2022, has shown a way to relate ICL to Bayesian Inference.

Hypothesis: Text documents in the pre-training has “long-coherence.” Namely, sentences or paragraphs in the same
document share the same underlying concepts/topics or formatting.

- During pre-training: Learn to model distribution p, as document is generated by first sampling a latent
concept, and then the document is generated by conditioning on the latent concept. LM must infer (“locate”)
the latent concept for the document using evidence from the previous sentences.

- ICL: If the LM also infers the prompt concept (the latent concept shared by examples in the prompt) using
in-context examples in the prompt, then in-context learning occurs!

Remark: The process of locating learned abilities can be viewed as Bayesian inference of a prompt concept that
every example in a prompt shares.
Mathematically, the prompt provides evidence for the model (p) to sharpen the posterior distribution over concepts:

p(concept |prompt) LM pretaining at inference-time, ICL provides proper weights
p(output|prompt) = / p(output|concept, promptlp(concept|prompt){1(concept)
concept]
Ideally, p(concept|prompt) concentrates on the prompt concept with more examples in the prompt so that the prompt

concept is “selected” through marginalization.



 |In-context learning retrieves the topic/concept of the domain from a few
examples, and focuses on the skill needed in that domain

* In the Bayesian setting, this can be done using just the marginal distributions
ofxandy

 In particular, this explains why random input-output mapping still gives gain

3’\k+1 B’T\k+1

bttt 1ttt tt ottt

X1 Y% Yo oo Xk Vi) Xi+1 Ky Y22 -+ Xa)Vk) K1
1) X-Y mapping 2) X marginal distribution,

Y marginal distribution

* On the other hand, if we are given many samples for ICL, the LM could learn
the input-output mapping from the samples.



e This is seen in the Early ascent phenomena in In-context Learning.

» With small number of samples, the marginal distributions of x and y can lead
to wrong concept being retrieved.

* This can be fixed if given more samples, where the task is learned from the
given samples.

4 In-context prediction error rate

Task learning

Incorrect
task retrieval
i B
# of (correctly labeled)
[Lin and Lee, 2024] in-context examples
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