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Lecture notes

• These lecture notes are based on other courses in LLMs, including

• CSE493S/599S at UW by Ludwig Schmidt: https://mlfoundations.github.io/advancedml-sp23/ 

• EE-628 at EPFL by Volkan Cevher: https://www.epfl.ch/labs/lions/teaching/ee-628-training-large-language-

models/ee-628-slides-2025/ 

• ECE381V Generative Models at UT Austin by Sujay Sanghavi

• and various papers and blogs cited at the end of the slide deck

https://mlfoundations.github.io/advancedml-sp23/
https://www.epfl.ch/labs/lions/teaching/ee-628-training-large-language-models/ee-628-slides-2025/
https://www.epfl.ch/labs/lions/teaching/ee-628-training-large-language-models/ee-628-slides-2025/


Outline

• Language models


• General LLM framework


•  Token processing 


•  Sequence mixing


•  Prediction
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• Next token prediction involve outputting a distribution over the vocab and 
sampling from the distribution. 



• The last transformer block outputs the  embeddings each  dimension: 
.


• The prediction layer takes the output representation of the last word,  , to 
predict the next token,
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• The last transformer block outputs the  embeddings each  dimension: 
.


• The prediction layer takes the output representation of the last word,  , to 
predict the next token, with a learnable parameter , which may 
or may not be sharing weights with the input token embedding matrix. 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• Given the token distribution, there are many ways to sample tokens, auto-regressively.

• Auto-regressive sampling uses the chain rule to break the distribution on the sentence 

into:  
              

• If the LM predicts an accurate and calibrated conditional distribution, then random 

sampling auto-regressively provides an exact sample from the joint distribution on the 
sentence. 


• Random sampling samples a token from the distribution , each time until <EOS>, 
but can generate out-of-distribution samples, resulting in hallucination and non-
grammatical sentences. 


• LMs are not well calibrated since they are trained as classifiers with cross-entropy. 

ℙ(S) = ℙ(w1:T) = ℙ(w1)ℙ(w2 |w1)ℙ(w3 |w1, w2)⋯ℙ(wT |w1:T−1)

ut



• Given the token distribution, there are many ways to sample tokens, auto-regressively.


• Random sampling samples a token from the distribution , each time until <EOS>, but can 
generate out-of-distribution samples, resulting in hallucination and non-grammatical sentences. 


• On the other extreme is Greedy sampling, which samples the highest probability token, 
deterministically. Can get stuck repeating highly likely phrases.

ut

Beam Search (Greedy sampling)

Random Sampling



• Given the token distribution, there are many ways to sample tokens, auto-regressively.


• In practice, one balances the two ends by Sampling with temperature , usually between 0 and 1, 
which samples from an adjusted :  
 

           , 

 
where  recovers the original random sampling,  
T=0 recovers the greedy sampling,  
0<T<1 balances the two.  T is tuned like a hyper-parameter at inference time.

T
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• Given the token distribution, there are many ways to sample tokens, auto-regressively.


• Top-k sampling samples from  but only among the top-k tokens.


• Some top-3 are very likely, some are not, so performance varies.


• Nucleus sampling (also known as top-  sampling) [Holtzman et al. 2020] samples from  but only 
among the smallest set whose cumulative probability exceeds 


• In practice, Nucleus sampling strikes the right balance and usually performs the best.

ut

p ut
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Top-3 sampling Top-0.8 sampling



• A major issue in LLMs: auto-regressive sampling is sequential and slow. 

• Speculative decoding [Chen et al. 2024] is inspired from the hypothesis: maybe LLMs 

can write faster using smaller language models.

• Suppose you have two models of differing sizes, e.g., Llama-7B and Llama-65B, 

and a sampling scheme of choice, e.g., random with temperature . 

• How would you speed up sampling? 

• Hint: it is motivated by how people use LLMs: generate text, check if it is 

good, re-write with different prompt, repeat. 

T

Llama-65B Llama-7B



• Speculative decoding [Chen et al. 2024] performs at each step, 

• use small model to generate the next 4 tokens, e.g., “Bond , and you” 
 
 
 
 
 
 

• pass all [prompt, generated 4 tokens]=“ My name is Bond, and you ” to the 
large model, and produce the probability distribution of the all 4 tokens,

My  
name  
is  
Bond  
,  
and  
you

Llama-65B
P( Bond)w4 = What do we do with it?



• Speculative decoding [Chen et al. 2024] performs at each step, 

• use small model to generate the next 4 tokens, e.g., “Bond , and you” 
 
 
 
 
 
 

• pass all [prompt, generated 4 tokens]=“ My name is Bond, and you ” to the 
large model, and produce the probability distribution of the all 4 tokens,
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• Speculative decoding [Chen et al. 2024] performs at each step, 

• use small model to generate the next 4 tokens, e.g., “Bond , and you” 
 
 
 
 
 
 

• pass all [prompt, generated 4 tokens]=“ My name is Bond, and you ” to the large model, 
and produce the probability distribution of the all 4 tokens,


• modified rejection sampling: accept each token one by one with probability that you would 
have accepted it had you generated each from your sampling scheme (and the large model),


• if a token is rejected, generate a new token from the already computed distribution.

• Thanks to the modified rejection sampling step, this is always exactly the same probability of 

generating the sequence as using the large model alone.

• It is potentially 4 times faster, since checking can be done simultaneously, whereas 

generating is sequential.

• This is never slower than using large model alone (almost), because no large model inference 

is wasted.



• It is common to fine-tuning a language model for downstream tasks, i.e., further train 
(part of) the model on typically small number of samples specific to a domain or a task.


• For document/sentence classification with FFN, FFN is appended to (part of) the 
output representation of the last transformer layer, and this FFN is fine-tuned on a 
small number of labeled data. 

Given fine-tuning training data 
 
{(review, label )}∈ {0,1}



• It is common to fine-tuning a language model for downstream tasks, i.e., further train 
(part of) the model on typically small number of samples specific to a domain or a task.


• For document/sentence classification with FFN, FFN is appended to (part of) the 
output representation of the last transformer layer, and this FFN is fine-tuned on a 
small number of labeled data.


• Alternatively, one can make classification into a next token prediction task, which 
works significantly better, while still fine-tuning the parameters of the LM on 
classification training data. 

[This] [restaurant] [is]

Prediction

[good] [bad]



• Classification as next-token prediction improves over fine-tuning a classifier. 
[Gao et al. 2021]

[This] [restaurant] [is]

Prediction

[good] [bad]



• Now, consider zero-shot prompting (without any parameter tuning), where 
we are given a single unlabeled input  and want to predict its label .  
 

The movie’s acting could’ve been better, but the visuals and directing 
were top notch.  

• One way to do it is to wrap  in a template we call a verbalizer  
 
Review: The movie’s acting could’ve been better, but the visuals and directing 
were top notch. Out of positive, negative, or neutral, this review is 

x y

x =

x v

In-Context Learning

LM

neutral



• Now, consider zero-shot prompting (without any parameter tuning), where 
we are given a single unlabeled input  and want to predict its label .   
 

The movie’s acting could’ve been better, but the visuals and directing 
were top notch.  

• One way to do it is to wrap  in a template we call a verbalizer  
 
Review: The movie’s acting could’ve been better, but the visuals and directing 
were top notch. Out a 1 to 5 start scale, the reviewer would probably give this  

x y

x =

x v

LM

3 star



• If we just use what the model outputs, it might not be of the right format.


• It is preferred to compare the probability of the valid options, e.g.,  
 
compare P(neutral | context), P(negative | context), P(positive | context)      


• Performance varies based on how we prompt it, and it is an art choosing or 
engineering the right prompt.   

• On a large number of prompts for 
news classification produced by 
manual writing, paraphrasing, and 
backtranslation, more natural 
prompts give less variability.


• Perplexity measures how natural the 
prompt is (lower the more natural)


• Accuracy is the classification 
performance. 

[Gonen et al. 2022]



• A number of prompt optimization techniques use gradients on the prompts or 
black-box optimization techniques. (note that we do not train/optimize the 
model, but optimize the prompt in this scenario: zero-shot prompting)


• Usually, not much better than manual “optimization” via trail and error. 


• Instead, consider a scenario where we are given a few in-domain samples: 
few-shot prompting or in-context learning 
 
Review: The cinematography was stellar; great movie. Sentiment (positive or negative): positive 
 
Review: The plot was boring and the visuals were subpar. Sentiment (positive or negative): 
negative 
 
Review: The movie’s acting could’ve been better, but the visuals and directing were top notch. 
Sentiment (positive or negative): 

LM

positive



• In-context learning is much more efficient than fine-tuning with the few-shot 
examples, and gives significant improvements on downstream tasks, 
comparable with parameter fine-tuned models. 

[Min et al. 2022]



• How does in-context learning work?

Visual taken from: https://ai.stanford.edu/blog/understanding-incontext/ 

• Model needs to figure out: 

• input distribution: news or finance (ID)

• label distribution/format: positive/negtive or topic (L)

• formatting (F)

• input-output mapping (IO)



• Surprisingly, the quality of the label or Input-output mapping in the in-
context learning is irrelevant.


• It is the format/domain of the demonstration examples that matters. 



•  One can generate randomly labelled examples to improve performance.

• But seeing the correct label space is important. 



• Toy example to understand in-context learning: linear regression 
 
 
 
 
 
 
 
 
 
 

• Several theoretical explanations under linear models.

• Typically, explores equivalence between, for example, 


• GD update on linear model and regression loss; 

• In-context Learning with (specific) single attention layer. 

[van Oswald et al. 2022] [Akyürek et al. 2022]





• multi-dimensional Linear regression recap: Gradient Descent

=

= ∑

• Can we design self-attention matrices (K,Q,V) that matches this GD update?



i i



• We want to match 
 
with 

I



• We want to match 
 
with 

I



•  Another way to understand in context learning is through the lens of 
Bayesian inference. 



•  Bayes’ rule: posterior for given fixed data D 

θ D



• LM pertaining as topic modeling.

at inference-time, ICL provides proper weightsLM pretaining



• In-context learning retrieves the topic/concept of the domain from a few 
examples, and focuses on the skill needed in that domain


• In the Bayesian setting, this can be done using just the marginal distributions 
of  and 


• In particular, this explains why random input-output mapping still gives gain 
 
 
 
 
 
 
 

• On the other hand, if we are given many samples for ICL, the LM could learn 
the input-output mapping from the samples.

x y



• This is seen in the Early ascent phenomena in In-context Learning.


• With small number of samples, the marginal distributions of  and  can lead 
to wrong concept being retrieved. 


• This can be fixed if given more samples, where the task is learned from the 
given samples.

x y

[Lin and Lee, 2024]
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