
CSE 493s/599s
Lecture 15.

Sewoong Oh

Lecture notes

• These lecture notes are based on other courses in LLMs, including

• CSE493S/599S at UW by Ludwig Schmidt: https://mlfoundations.github.io/advancedml-sp23/

• EE-628 at EPFL by Volkan Cevher: https://www.epfl.ch/labs/lions/teaching/ee-628-training-large-language-

models/ee-628-slides-2025/

• ECE381V Generative Models at UT Austin by Sujay Sanghavi

• and various papers and blogs cited at the end of the slide deck

https://mlfoundations.github.io/advancedml-sp23/
https://www.epfl.ch/labs/lions/teaching/ee-628-training-large-language-models/ee-628-slides-2025/
https://www.epfl.ch/labs/lions/teaching/ee-628-training-large-language-models/ee-628-slides-2025/

Outline

• Language models

• General LLM framework

• Token processing

• Sequence mixing

• Prediction

Prediction

x y

y

(in a loose sense)
sequence length T

output dim. d

1. Token
processing

2. Sequence
mixing 3. Prediction w1:T uT, wT+1

⏟}

• Next token prediction involve outputting a distribution over the vocab and
sampling from the distribution.

• The last transformer block outputs the embeddings each dimension:
.

• The prediction layer takes the output representation of the last word, , to
predict the next token,

T d
yℒ ∈ ℝT×d

yℒ,T

xT

yℒ,Tyℒ,1

x1

Prediction layer

 uT

• The last transformer block outputs the embeddings each dimension:
.

• The prediction layer takes the output representation of the last word, , to
predict the next token, with a learnable parameter , which may
or may not be sharing weights with the input token embedding matrix. 
  

T d
yℒ ∈ ℝT×d

yℒ,T
WO ∈ ℝ|𝒱|×d

uT ← Softmax(WOyℒ,T)

xT

yℒ,Tyℒ,1

x1

yℒ,TWOuT

|𝒱 |

d

uT,i = ℙ(i-th token) =
eWO,iyℒ,t

∑|𝒱|
j=1 eWO,jyℒ,t

← Softmax()

• Given the token distribution, there are many ways to sample tokens, auto-regressively.

• Auto-regressive sampling uses the chain rule to break the distribution on the sentence

into:  

• If the LM predicts an accurate and calibrated conditional distribution, then random

sampling auto-regressively provides an exact sample from the joint distribution on the
sentence.

• Random sampling samples a token from the distribution , each time until <EOS>,
but can generate out-of-distribution samples, resulting in hallucination and non-
grammatical sentences.

• LMs are not well calibrated since they are trained as classifiers with cross-entropy.

ℙ(S) = ℙ(w1:T) = ℙ(w1)ℙ(w2 |w1)ℙ(w3 |w1, w2)⋯ℙ(wT |w1:T−1)

ut

• Given the token distribution, there are many ways to sample tokens, auto-regressively.

• Random sampling samples a token from the distribution , each time until <EOS>, but can
generate out-of-distribution samples, resulting in hallucination and non-grammatical sentences.

• On the other extreme is Greedy sampling, which samples the highest probability token,
deterministically. Can get stuck repeating highly likely phrases.

ut

Beam Search (Greedy sampling)

Random Sampling

• Given the token distribution, there are many ways to sample tokens, auto-regressively.

• In practice, one balances the two ends by Sampling with temperature , usually between 0 and 1,
which samples from an adjusted :  
 

 , 

 
where recovers the original random sampling,  
T=0 recovers the greedy sampling,  
0<T<1 balances the two. T is tuned like a hyper-parameter at inference time.

T
Softmax(WOyℒ,t)

ut,i = ℙ(i-th token) =
eWO,iyℒ,t/T

∑|𝒱|
j=1 eWO,jyℒ,t/T

T = 1

T=0.3 T=0.7

• Given the token distribution, there are many ways to sample tokens, auto-regressively.

• Top-k sampling samples from but only among the top-k tokens.

• Some top-3 are very likely, some are not, so performance varies.

• Nucleus sampling (also known as top- sampling) [Holtzman et al. 2020] samples from but only
among the smallest set whose cumulative probability exceeds

• In practice, Nucleus sampling strikes the right balance and usually performs the best.

ut

p ut
p ∈ (0,1)

Top-3 sampling Top-0.8 sampling

• A major issue in LLMs: auto-regressive sampling is sequential and slow.

• Speculative decoding [Chen et al. 2024] is inspired from the hypothesis: maybe LLMs

can write faster using smaller language models.

• Suppose you have two models of differing sizes, e.g., Llama-7B and Llama-65B,

and a sampling scheme of choice, e.g., random with temperature .

• How would you speed up sampling?

• Hint: it is motivated by how people use LLMs: generate text, check if it is

good, re-write with different prompt, repeat.

T

Llama-65B Llama-7B

• Speculative decoding [Chen et al. 2024] performs at each step,

• use small model to generate the next 4 tokens, e.g., “Bond , and you” 
 
 
 
 
 
 

• pass all [prompt, generated 4 tokens]=“ My name is Bond, and you ” to the
large model, and produce the probability distribution of the all 4 tokens,

My  
name  
is  
Bond  
,  
and  
you

Llama-65B
P(Bond)w4 = What do we do with it?

• Speculative decoding [Chen et al. 2024] performs at each step,

• use small model to generate the next 4 tokens, e.g., “Bond , and you” 
 
 
 
 
 
 

• pass all [prompt, generated 4 tokens]=“ My name is Bond, and you ” to the
large model, and produce the probability distribution of the all 4 tokens,

My  
name  
is  
Bond  
,  
and  
you

Llama-65B
Accept with 
P(Bond)

w4
w4 =

If accept move to  
 
If reject, then sample new

w5

w4

• Speculative decoding [Chen et al. 2024] performs at each step,

• use small model to generate the next 4 tokens, e.g., “Bond , and you” 
 
 
 
 
 
 

• pass all [prompt, generated 4 tokens]=“ My name is Bond, and you ” to the large model,
and produce the probability distribution of the all 4 tokens,

• modified rejection sampling: accept each token one by one with probability that you would
have accepted it had you generated each from your sampling scheme (and the large model),

• if a token is rejected, generate a new token from the already computed distribution.

• Thanks to the modified rejection sampling step, this is always exactly the same probability of

generating the sequence as using the large model alone.

• It is potentially 4 times faster, since checking can be done simultaneously, whereas

generating is sequential.

• This is never slower than using large model alone (almost), because no large model inference

is wasted.

• It is common to fine-tuning a language model for downstream tasks, i.e., further train
(part of) the model on typically small number of samples specific to a domain or a task.

• For document/sentence classification with FFN, FFN is appended to (part of) the
output representation of the last transformer layer, and this FFN is fine-tuned on a
small number of labeled data.

Given fine-tuning training data 
 
{(review, label)}∈ {0,1}

• It is common to fine-tuning a language model for downstream tasks, i.e., further train
(part of) the model on typically small number of samples specific to a domain or a task.

• For document/sentence classification with FFN, FFN is appended to (part of) the
output representation of the last transformer layer, and this FFN is fine-tuned on a
small number of labeled data.

• Alternatively, one can make classification into a next token prediction task, which
works significantly better, while still fine-tuning the parameters of the LM on
classification training data.

[This] [restaurant] [is]

Prediction

[good] [bad]

• Classification as next-token prediction improves over fine-tuning a classifier.
[Gao et al. 2021]

[This] [restaurant] [is]

Prediction

[good] [bad]

• Now, consider zero-shot prompting (without any parameter tuning), where
we are given a single unlabeled input and want to predict its label .  
 

The movie’s acting could’ve been better, but the visuals and directing
were top notch.  

• One way to do it is to wrap in a template we call a verbalizer  
 
Review: The movie’s acting could’ve been better, but the visuals and directing
were top notch. Out of positive, negative, or neutral, this review is 

x y

x =

x v

In-Context Learning

LM

neutral

• Now, consider zero-shot prompting (without any parameter tuning), where
we are given a single unlabeled input and want to predict its label .  
 

The movie’s acting could’ve been better, but the visuals and directing
were top notch.  

• One way to do it is to wrap in a template we call a verbalizer  
 
Review: The movie’s acting could’ve been better, but the visuals and directing
were top notch. Out a 1 to 5 start scale, the reviewer would probably give this  

x y

x =

x v

LM

3 star

• If we just use what the model outputs, it might not be of the right format.

• It is preferred to compare the probability of the valid options, e.g.,  
 
compare P(neutral | context), P(negative | context), P(positive | context)

• Performance varies based on how we prompt it, and it is an art choosing or
engineering the right prompt.

• On a large number of prompts for
news classification produced by
manual writing, paraphrasing, and
backtranslation, more natural
prompts give less variability.

• Perplexity measures how natural the
prompt is (lower the more natural)

• Accuracy is the classification
performance.

[Gonen et al. 2022]

• A number of prompt optimization techniques use gradients on the prompts or
black-box optimization techniques. (note that we do not train/optimize the
model, but optimize the prompt in this scenario: zero-shot prompting)

• Usually, not much better than manual “optimization” via trail and error.

• Instead, consider a scenario where we are given a few in-domain samples:
few-shot prompting or in-context learning 
 
Review: The cinematography was stellar; great movie. Sentiment (positive or negative): positive 
 
Review: The plot was boring and the visuals were subpar. Sentiment (positive or negative):
negative 
 
Review: The movie’s acting could’ve been better, but the visuals and directing were top notch.
Sentiment (positive or negative): 

LM

positive

• In-context learning is much more efficient than fine-tuning with the few-shot
examples, and gives significant improvements on downstream tasks,
comparable with parameter fine-tuned models.

[Min et al. 2022]

• How does in-context learning work?

Visual taken from: https://ai.stanford.edu/blog/understanding-incontext/

• Model needs to figure out:

• input distribution: news or finance (ID)

• label distribution/format: positive/negtive or topic (L)

• formatting (F)

• input-output mapping (IO)

• Surprisingly, the quality of the label or Input-output mapping in the in-
context learning is irrelevant.

• It is the format/domain of the demonstration examples that matters.

• One can generate randomly labelled examples to improve performance.

• But seeing the correct label space is important.

• Toy example to understand in-context learning: linear regression 
 
 
 
 
 
 
 
 
 
 

• Several theoretical explanations under linear models.

• Typically, explores equivalence between, for example,

• GD update on linear model and regression loss;

• In-context Learning with (specific) single attention layer.

[van Oswald et al. 2022] [Akyürek et al. 2022]

• multi-dimensional Linear regression recap: Gradient Descent

=

= ∑

• Can we design self-attention matrices (K,Q,V) that matches this GD update?

i i

• We want to match 
 
with

I

• We want to match 
 
with

I

• Another way to understand in context learning is through the lens of
Bayesian inference.

• Bayes’ rule: posterior for given fixed data D

θ D

• LM pertaining as topic modeling.

at inference-time, ICL provides proper weightsLM pretaining

• In-context learning retrieves the topic/concept of the domain from a few
examples, and focuses on the skill needed in that domain

• In the Bayesian setting, this can be done using just the marginal distributions
of and

• In particular, this explains why random input-output mapping still gives gain 
 
 
 
 
 
 
 

• On the other hand, if we are given many samples for ICL, the LM could learn
the input-output mapping from the samples.

x y

• This is seen in the Early ascent phenomena in In-context Learning.

• With small number of samples, the marginal distributions of and can lead
to wrong concept being retrieved.

• This can be fixed if given more samples, where the task is learned from the
given samples.

x y

[Lin and Lee, 2024]

Sources
• Other courses in LLMs that the lecture slides are based on

• CSE493S/599S at UW by Ludwig Schmidt: https://mlfoundations.github.io/advancedml-sp23/

• EE-628 at EPFL by Volkan Cevher: https://www.epfl.ch/labs/lions/teaching/ee-628-training-large-language-models/ee-628-

slides-2025/

• Useful blog posts

• https://azizbelaweid.substack.com/p/complete-summary-of-absolute-relative

• https://blog.dust.tt/speculative-sampling-llms-writing-a-lot-faster-using-other-llms/

• https://gordicaleksa.medium.com/eli5-flash-attention-5c44017022ad

• Dan Jurafsky and James H. Martin. Speech and Language Processing (3rd ed. draft). draft, third edition, 2023.

• Tomas Mikolov, Kai Chen, Gregory S. Corrado, and Jeffrey Dean. “Efficient estimation of word representations in vector space”, In

International Conference on Learning Representations, 2013.

• Jeffrey Pennington, Richard Socher, and Christopher D. Manning. "Glove: Global vectors for word representation”, Proceedings of the

2014 conference on empirical methods in natural language processing (EMNLP). 2014.

• Ofir Press, Noah A. Smith1,3 Mike Lewis2 , “Train Short, Test Long: Attention with Linear Biases Enables Input Length Extrapolation”,

In International Conference on Learning Representations, 2022

• Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, Illia Polosukhin,

“Attention Is All You Need”, In Neural Information Processing Systems, 2017

• Beitong Zhou, Cheng Cheng, Guijun Ma, and Yong Zhang. “Remaining useful life prediction of lithium-ion battery based on attention

mechanism with positional encoding”, In IOP Conference Series: Materials Science and Engineering, 2020.

• Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. “On the difficulty of training recurrent neural networks." In International

Conference on Machine Learning, 2013

https://mlfoundations.github.io/advancedml-sp23/
https://www.epfl.ch/labs/lions/teaching/ee-628-training-large-language-models/ee-628-slides-2025/
https://www.epfl.ch/labs/lions/teaching/ee-628-training-large-language-models/ee-628-slides-2025/
https://azizbelaweid.substack.com/p/complete-summary-of-absolute-relative
https://blog.dust.tt/speculative-sampling-llms-writing-a-lot-faster-using-other-llms/
https://gordicaleksa.medium.com/eli5-flash-attention-5c44017022ad

• Sepp Hochreiter and Jürgen Schmidhuber. “Long short-term memory.” In Neural Computation, 9(8):1735–1780, 11 1997.

• Kyunghyun Cho, Bart van Merrienboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares, Holger Schwenk, and Yoshua Bengio.

“Learning phrase representations using rnn encoder-decoder for statistical machine translation”, In ACL 2014

• Andrey Andreyevich Markov. “Essai d’une recherche statistique sur le texte du roman. ‘Eugene Onegin’ illustrant la liaison des epreuve

en chain”. In: Izvistia Imperatorskoi Akademii Nauk (Bulletin de l’Académie Impériale des Sciences de St.-Pétersbourg). 6th ser, 7:153–
162, 1913.

• Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, Yejin Choi, “The Curious Case of Neural Text Degeneration”, In International
Conference on Learning Representations, 2020

• Charlie Chen, Sebastian Borgeaud, Geoffrey Irving, Jean-Baptiste Lespiau, Laurent Sifre and John Jumper, “Accelerating Large
Language Model Decoding with Speculative Sampling”In, ACL-findings, 2024

• Sergey Ioffe, Christian Szegedy, “Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift", In
International Conference on Machine Learning, 2015

• Shibani Santurkar∗ MIT shibani@mit.edu Dimitris Tsipras∗ MIT tsipras@mit.edu Andrew Ilyas∗ MIT ailyas@mit.edu Aleksander Madry,
“How Does Batch Normalization Help Optimization?”, In Advances in Neural Information Processing Systems 31 (NeurIPS 2018)

• Jimmy Lei Ba, Jamie Ryan Kiros, Geoffrey E. Hinton, “Layer Normalization “, In 2016

• Tianyu Gao, Adam Fisch, Danqi Chen, “Making Pre-trained Language Models Better Few-shot Learners”, In ACL, 2021

• Sewon Min1,2 Xinxi Lyu1 Ari Holtzman1 Mikel Artetxe2 Mike Lewis2 Hannaneh Hajishirzi1,3 Luke Zettlemoyer, “rethinking the role of

demonstrations what makes in conte…”

• Hila Gonen1,2 Srini Iyer2 Terra Blevins1 Noah A. Smith1,3 Luke Zettlemoyer1, “Demystifying Prompts in Language Models via

Perplexity Estimation”

• E Akyürek, B Wang, Y Kim, J Andreas , “In-context language learning: Architectures and algorithms”, 2024

• What learning algorithm is in-context learning? Investigations with linear models Ekin Akyürek, Dale Schuurmans, Jacob Andreas,

Tengyu Ma, Denny Zhou, 2022

• Ziqian Lin, Kangwook Lee, “Dual Operating Modes of In-Context Learning”, 2024

