
CSE 493s/599s
Lecture 14. Transformers

Sewoong Oh

Lecture notes

• These lecture notes are based on other courses in LLMs, including

• CSE493S/599S at UW by Ludwig Schmidt: https://mlfoundations.github.io/advancedml-sp23/

• EE-628 at EPFL by Volkan Cevher: https://www.epfl.ch/labs/lions/teaching/ee-628-training-large-language-

models/ee-628-slides-2025/

• ECE381V Generative Models at UT Austin by Sujay Sanghavi

• and various papers and blogs cited at the end of the slide deck

https://mlfoundations.github.io/advancedml-sp23/
https://www.epfl.ch/labs/lions/teaching/ee-628-training-large-language-models/ee-628-slides-2025/
https://www.epfl.ch/labs/lions/teaching/ee-628-training-large-language-models/ee-628-slides-2025/

Outline

• Language models

• General LLM framework

• Token processing

• Sequence mixing

• Prediction

• Example architectures

Sequence mixing
• Sequence mixing is one of the most well studied part of an LM that captures

the dependencies across tokens.

x y

x
sequence length T

embedding dim. m

y

(in a loose sense)
sequence length T

output dim. d

1. Token
processing

2. Sequence
mixing 3. Prediction w1:T wT+1

{⏟ ⏟}

• Self-attention [Vaswani et al. 2017] as a sequence mixer addresses the
shortcomings of RNNs with different trade-offs for inference cost.  
 
 RNNs are sequential Self-attention is parallel

RNN x1 y1

RNN x2 y2

RNN x3 y3

RNN x4 y4

 h0 = 0

 ⋮

 h1

 h2

 h3

SA x1 y1

SA x2 y2

SA x3 y3

SA x4 y4

 h0 = 0

 ⋮

• Notice how we focus on a version of self-attention blocks that has a causal
structure, i.e., the output only depends on the previous words. Both causal
and non-causal are used depending on the application.

• Causal vs. non-causal dependencies determined by the user who chooses the architecture
based on the application of interest.

• Original transformer paper was solving machine translation, where the “encoder” does not
require causality, as its goal is to produce a vector representation of the entire sentence.  
 
 
 
 
 
 

• Earlier language models, like BERT and RoBERTa, use what is called “masked” language
model, where in training a random word is masked in a sentence and the model predicts it.
Obviously, this is not causal and the transformer architecture used in these models is also
not causal, i.e. a word in position can attend to words both in the past and in the future.

• Modern LLMs, like GPT and Llama, are trained on next-word prediction tasks, which is
obviously causal, since non-causal next-word prediction is a trivial. You just output the next
token. As such, we focus in our lectures on causal structured self-attention mechanisms.

i

• The goal of a sequence mixer is to generate the representation of a word in a
sequence that captures the true meaning of the word in the context the word
is used in. For example,  
 
“To solve machine translation, Google introduced transformer architecture …”

x1 x2 x3 x4 x5 x6 x7

y7

• Self-attention achieves this by a weighted combination of the vector embeddings of the other
words, with more weight on a word that might be more relevant to the word of interest, say,
“transformer”, i.e., 

• Note that the relevance/weight is asymmetric, since is the target and is the context.

yt = c ⋅ f(xt) + ∑
j≠t

αt;j ⋅ f(xj) =
t

∑
j=1

αt;j ⋅ f(xj)

αt;j xt xj

Predict arg max

“ “architecture

• To measure the similarity/relevance key-query-value self-attention
mechanism uses queries, keys, and values with learnable parameters

. For modern language models, like GPT-4, the embedding
dimension is and the query/key dimension is , such that
the query vector for the target word is , the key vector is ,
and the relevance is then 
 

WQ, WK, WV ∈ ℝd×m

m = 12288 d = 128
qt = WQxt ki = WKxi

Rel(xt; xi) = ⟨qt, ki⟩ = xT
t WT

QWKxi

x1 x2 x3 x4 x5 x6 x7

y7 Predict arg max

“ “architecture

• “To solve machine translation, Google introduced transformer …”

xT
t WT

Q
WK xi

⏟d

m⏟

• can be computed, for example, as a matrix, forcing upper-right triangle region to
be , meaning no relevance, for causality. Output of self-attention can only depend on the past.
Rel(xt; xi) = ⟨qt, ki⟩

−∞

 To solve machine translation Google introduced transformer …
x1 x2 x3 x4 x5 x6 x7

To

solve

machine

translation

Google

introduced

transformer

…

<q1,k1>

<q2,k1> <q2,k2>

<q3,k1> <q3,k2> <q3,k3>

<q4,k1> <q4,k2> <q4,k3> <q4,k4>

<q5,k1> <q5,k2> <q5,k3> <q5,k4> <q5,k5>

<q6,k1> <q6,k2> <q6,k3> <q6,k4> <q6,k5> <q6,k6>

<q7,k1> <q7,k2> <q7,k3> <q7,k4> <q7,k5> <q7,k6> <q7,k7>

• might have a large positive value indicating that these terms are
highly related, whereas might be nearly zero or even negative.

• We would like to take the weighted sum of each row, to get a vector for the query word.

⟨qtransformer, kGoogle⟩
⟨qtransformer, kto⟩

Query
Key

• For each column, we take the Softmax of the similarity to ensure that the weights
are non-negative and sum to one, calling the previous Query-Key matrix ,  
 

• The self-attention vector is the weighted sum of the value defined by a learnable
parameter such that , and  
 

• All ’s can be compactly represented as ,  
where , ,

, and is the causal mask.

Rel

αt;i = Softmax(t-th row of Rel)i = Softmax({⟨qt, kj⟩}t
j=1)i =

e⟨qt,ki⟩

∑t
j=1 e⟨qt,kj⟩

WV ∈ ℝd×m vi = WV xi

yt =
t

∑
i=1

e⟨qt,ki⟩

∑t
j=1 e⟨qt,kj⟩

vi

yt Y = Softmax((QT K) ⊙ M)VT

Q = {qi = WQxi}T
i=1 ∈ ℝd×T K = {ki = WKxi}T

i=1 ∈ ℝd×T

V = {vi = WVxi}T
i=1 ∈ ℝd×T Mt,i = { 1, t ≥ i

−∞, t < i

VTQT K
M) ⊙()Softmax(

• The causal mask is necessary in training, in order to prevent “cheating” in the
next word prediction loss.

• Attention with masking is called masked attention or causal attention.

• By allowing any word to attend to any other word in the sequence, this
resolves long-distance dependence problem of RNNs.

• Self-attention has learnable parameters: .

• Note that the (masked) attention matrix is dimension, and computation
and memory scales like .

WQ, WK, WV ∈ ℝd×m

T × T
O(T2)

• Auto-regressive inference with self-attention

• Set as embedding of , t=1

• While True:

•

• compute score

•

•

• If is the embedding of : break

•

• Output:

• Note that this is still auto-regressive and non-parallelizable
and hence slow, like RNN.

x1 ⟨BOS⟩

qt ← WQxt, kt ← WKxt, vt ← WVxt

s ← [qT
t k1, ⋯, qT

t kt,]T

yt ← [v1, ⋯, vt]Softmax(s)

xt+1 ← Emb(arg max
w

ut[w])

xt+1 ⟨BOS⟩

t ← t + 1

[x1, ⋯, xt+1]

SA x1 = Emb(BOS) y1

SA x2 = Emb(happy) y2

SA y3

SA x4 = Emb(year) y4

 h0 = 0

 ⋮

Predict arg max
 u1

 happy

Predict arg max
 u2

 new

 x3 = Emb(new) Predict arg max
 u3

 year

Predict arg max ⟨EOS⟩
 u4

• How to speed up the computation of the attention heads is a very active
research direction.

• Definition (KV cache)

• KV Cache (Key-Value Cache) stores. computed keys () and values ()
from previous time steps to avoid recompilation in self-attention during
autoregressive inference.

• How does KV Cache work?

• Compute and store and .

• Retrieve and compute and append

• for general retrieve all and compute only key and value for the new
word

• Naive implementation of self-attention recomputes every step: .

• KV Cache reduces complexity to per step for faster inference with lower
memory overhead. The idea is simple, and it is more about how to implement it
in tensor operations. Training still takes time.

K V

t = 1 : k1 v1

t = 2 : k1, v1 k2, v2

t : K, V

K, V O(T2d)
O(Td)

O(T2d)

• KV Cache

From https://medium.com/@joaolages/kv- caching- explained- 276520203249

• KV Cache

From https://medium.com/@joaolages/kv- caching- explained- 276520203249

• KV Cache

From https://medium.com/@joaolages/kv- caching- explained- 276520203249

• KV Cache

From https://medium.com/@joaolages/kv- caching- explained- 276520203249

• Another idea to speed by parallelization is multi-head attention.

• Definition (Multi-head Attention)

• Instead of having one attention, we can have attention heads in parallel
such that  
 

, 
where .

• This division of heads allows parallelization.

• Each head handles different aspect, e.g., subject-verb agreement, syntax,

semantic relations, etc, enhancing the model’s ability to capture diverse
dependencies.

h

MultiHead(x) = Concat(head1, ⋯, headh)
headi = Attention(W(i)

Q x, W(i)
K x, W(i)

V x)

• Matrix multiplications are compute-bound, i.e., run-time is dominated
by computation, and element-wise operations are memory-bound, i.e.,
dominated by memory access

• Run-time of a transformer layer is dominated by Dropout, Softmax,
Mask which are memory-bound.

• But memory is hierarchical. So the idea of Flash attention is to keep
intermediate steps in SRAM (faster memory access) and only write the
final result back to HBM (slower memory access).

• Use tiling to process in small blocks instead of full sequence.

• It is up to 2~4x faster with less memory footprint: complexity

where is the size of the block.
O(TCd)

C

courtesy of https://gordicaleksa.medium.com/eli5-flash-attention-5c44017022ad

VTQT K
M) ⊙()Softmax(

• Modern language models are made up of layers of
transformer blocks.

• A transformer block is  
[self-attention + layer normalization + feedforward
layer +layer normalization]

• GPT-2 has 12 heads and 12~48 layers.

• Original transformer is proposed with encoder and
decoder for neural machine translation, but we only
learned the transformer decoder which is sufficient
as an LM.

• The role of skip connection is to prevent
vanishing gradients (as we saw in the case of
RNNs) by allowing gradients to flow directly from
deeper layers to earlier layers.

• It is motivated by ResNet’s success in image
classification.

• The role of FFN (applied to each token separately
but shared weights) is to introduce additional
non-linearity and improve expressiveness.

x

LayerNormalization(y + x)
xy

Skip connection

yt ∈ ℝd

ỹt ∈ ℝd

Linear

Linear

Activation
dim = 4d

dim = 4d

yt−1

ỹt−1

⋯⋯

• To stabilize training, Batch Normalization and Layer Normalization are proposed.

• Batch normalization is initially proposed in [Ioffe et al. 2015] to mitigate a phenomena

known as internal covariate shift by standardizing the input to each layer on the
mini-batch that is being processed.

• Covariate shift is when the input distribution changes. Internal covariate shift is
when the input distribution to a layer in a deep neural network changes, due to the
sampling of a mini-batch.

• To mitigate such distribution changes, batch normalization standardizes the input
to a layer: each input coordinate is subtracted its mini-batch mean and divided by
the mini-batch standard deviation.

• This stabilizes the training, allowing larger step sizes and converging faster. At
inference, moving average is used for the internal statistics. 

 

 
, for sample , coordinate

μj =
1
B

B

∑
i=1

xi,j, σ2
j =

1
B

B

∑
i=1

(xi,j − μj)2

x̃i,j =
xi,j − μj

σ2
j + ϵ

i j

• One caveat is that the output of batch normalization is coordinate-wise scaled and shifted by
learnable parameters, which we omit in the explanation.

• Later research [Santurkar et al. 2018] has discovered that the success of batch normalization has little
to do with internal covariate shifts. 

• Instead, batch normalization makes the landscape smooth, making it easier for gradient based
optimization methods to take larger steps.

• However, for LLM training, each sample is processed separately, and hence batch size is
oftentimes one. Further, sequence lengths are variable, so there is no predefined notion of a
coordinate-wise statistics.

• Layer normalization [Ba et al. 2016] is similar but works with a single input
sequence of arbitrary lengths.  
 

 

 
, for position , coordinate

• This is widely used in LLMs’ transformer layers to stabilize the training
dynamics.

μt =
1
d

d

∑
j=1

xt,j, σ2
t =

1
d

d

∑
j=1

(xt,j − μt)2

x̃t,i =
xt,i − μt

σ2
t + ϵ

t i

• Forward pass in pre-training on single sentence: 

• Initial loss , and let

• For each layer

•

•

•

•

•

•

•

•

•

L = 0 y0 = x
ℓ = 1,…, ℒ

Qℓ ← WQ,ℓyℓ−1, Kℓ ← WK,ℓyℓ−1, Vℓ ← WV,ℓyℓ−1
Sℓ ← Mask(QT

ℓ Kℓ)
yℓ ← Row-wise-Softmax(Sℓ)VT

ℓ
yℓ ← Layernorm(yℓ + yℓ−1)
yskip ← yℓ
yℓ ← WF2,ℓ σ(WF1,ℓyℓ)
yℓ ← Layernorm(yℓ + yskip)

u = [u1, …, uT] ← Row-wise-Softmax(WOyℒ)

L + = (
T

∑
t=1

|𝒱|

∑
i=1

− ̂u(i)
t log(u[i]

t))

Outline

• Language models

• General LLM framework

• Token processing

• Sequence mixing

• Prediction

• Example architectures

Prediction

x y

y

(in a loose sense)
sequence length T

output dim. d

1. Token
processing

2. Sequence
mixing 3. Prediction w1:T wT+1

⏟}

• Next token prediction involve outputting a distribution over the vocab and
sampling from the distribution.

• The last transformer block outputs .

• The prediction layer takes the output representation of the last word, , to
predict the next token, with a learnable parameter , which may
or may not be sharing weights with the input token embedding matrix. 
  

yℒ ∈ ℝT×d

yℒ,T
WO ∈ ℝ|𝒱|×d

uT ← Softmax(WOyℒ,T)

xT

yℒ,Tyℒ,1

x1

yℒ,TWOuT

|𝒱 |

d

uT,i = ℙ(i-th token) =
eWO,iyℒ,t

∑|𝒱|
j=1 eWO,jyℒ,t

• Given the token distribution, there are many ways to sample tokens, auto-regressively.

• Auto-regressive sampling uses the chain rule to break the distribution on the sentence into:  

• If the LM predicts an accurate and calibrated conditional distribution, then random sampling auto-
regressively provides an exact sample from the joint distribution on the sentence:  
Random sampling samples a token from the distribution , each time until <EOS>, but can generate
out-of-distribution samples, resulting in hallucination and non-grammatical sentences.  
LMs are not well calibrated since they are trained as classifiers with cross-entropy.

• On the other extreme is Greedy sampling, which samples the highest probability token, deterministically.

• In practice, one balances the two ends by Sampling with temperature , usually between 0 and 1, which samples from
an adjusted :  

 , 

where recovers the original random sampling,  
T=0 recovers the greedy sampling,  
0<T<1 balances the two.  
T is tuned like a hyper-parameter at inference time.

• Top-k sampling samples from but only among the top-k tokens.

• Nucleus sampling (also known as top-p sampling) [Holtzman et al. 2020] samples from but only among the smallest set
whose cumulative probability exceeds

ℙ(S) = ℙ(w1:T) = ℙ(w1)ℙ(w2 |w1)ℙ(w3 |w1, w2)⋯ℙ(wT |w1:T−1)

ut

T
Softmax(WOyℒ,t)

ut,i = ℙ(i-th token) =
eWO,iyℒ,t/T

∑|𝒱|
j=1 eWO, jyℒ,t/T

T = 1

ut

ut
p ∈ (0,1)

• Greedy sampling attempts to solve  
 , 

where ’s are the solution of the previous maximization.

• Instead, we can try to better approximate the most likely sequence directly (solving the LHS of above), using Beam
search, which produces high quality but low-diversity sequences.

• (deterministic) Beam search with beam width proceeds as follows.

• most likely candidates are selected for the first token.

•For each token at position 1, most likely next tokens are selected.

•Out of candidates for a sequence of length 2, the most likely candidates are chosen.

•This repeats until candidates end on <EOS>.

arg max
w1:T

ℙ(w1:T) ≈ arg max
w1

ℙ(w1)arg max
w2

ℙ(w2 |w*1)ℙ⋯arg max
wT

ℙ(wT |w*1:T−1)

w*t

B

B

k

kB B

B
In practice, Nucleus sampling  
strikes the right balance and  
usually performs the best.

Sources
• Other courses in LLMs that the lecture slides are based on

• CSE493S/599S at UW by Ludwig Schmidt: https://mlfoundations.github.io/advancedml-sp23/

• EE-628 at EPFL by Volkan Cevher: https://www.epfl.ch/labs/lions/teaching/ee-628-training-large-language-models/ee-628-

slides-2025/

• Useful blog posts

• https://azizbelaweid.substack.com/p/complete-summary-of-absolute-relative

• https://blog.dust.tt/speculative-sampling-llms-writing-a-lot-faster-using-other-llms/

• https://gordicaleksa.medium.com/eli5-flash-attention-5c44017022ad

• Dan Jurafsky and James H. Martin. Speech and Language Processing (3rd ed. draft). draft, third edition, 2023.

• Tomas Mikolov, Kai Chen, Gregory S. Corrado, and Jeffrey Dean. “Efficient estimation of word representations in vector space”, In

International Conference on Learning Representations, 2013.

• Jeffrey Pennington, Richard Socher, and Christopher D. Manning. "Glove: Global vectors for word representation”, Proceedings of the

2014 conference on empirical methods in natural language processing (EMNLP). 2014.

• Ofir Press, Noah A. Smith1,3 Mike Lewis2 , “Train Short, Test Long: Attention with Linear Biases Enables Input Length Extrapolation”,

In International Conference on Learning Representations, 2022

• Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, Illia Polosukhin,

“Attention Is All You Need”, In Neural Information Processing Systems, 2017

• Beitong Zhou, Cheng Cheng, Guijun Ma, and Yong Zhang. “Remaining useful life prediction of lithium-ion battery based on attention

mechanism with positional encoding”, In IOP Conference Series: Materials Science and Engineering, 2020.

• Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. “On the difficulty of training recurrent neural networks." In International

Conference on Machine Learning, 2013

https://mlfoundations.github.io/advancedml-sp23/
https://www.epfl.ch/labs/lions/teaching/ee-628-training-large-language-models/ee-628-slides-2025/
https://www.epfl.ch/labs/lions/teaching/ee-628-training-large-language-models/ee-628-slides-2025/
https://azizbelaweid.substack.com/p/complete-summary-of-absolute-relative
https://blog.dust.tt/speculative-sampling-llms-writing-a-lot-faster-using-other-llms/
https://gordicaleksa.medium.com/eli5-flash-attention-5c44017022ad

• Sepp Hochreiter and Jürgen Schmidhuber. “Long short-term memory.” In Neural Computation, 9(8):1735–1780, 11 1997.

• Kyunghyun Cho, Bart van Merrienboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares, Holger Schwenk, and Yoshua Bengio.

“Learning phrase representations using rnn encoder-decoder for statistical machine translation”, In ACL 2014

• Andrey Andreyevich Markov. “Essai d’une recherche statistique sur le texte du roman. ‘Eugene Onegin’ illustrant la liaison des

epreuve en chain”. In: Izvistia Imperatorskoi Akademii Nauk (Bulletin de l’Académie Impériale des Sciences de St.-Pétersbourg). 6th
ser, 7:153–162, 1913.

• Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, Yejin Choi, “The Curious Case of Neural Text Degeneration”, In International
Conference on Learning Representations, 2020

• Charlie Chen, Sebastian Borgeaud, Geoffrey Irving, Jean-Baptiste Lespiau, Laurent Sifre and John Jumper, “Accelerating Large
Language Model Decoding with Speculative Sampling”In, ACL-findings, 2024

• Sergey Ioffe, Christian Szegedy, “Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift", In
International Conference on Machine Learning, 2015

• Shibani Santurkar∗ MIT shibani@mit.edu Dimitris Tsipras∗ MIT tsipras@mit.edu Andrew Ilyas∗ MIT ailyas@mit.edu Aleksander Madry,
“How Does Batch Normalization Help Optimization?”, In Advances in Neural Information Processing Systems 31 (NeurIPS 2018)

• Jimmy Lei Ba, Jamie Ryan Kiros, Geoffrey E. Hinton, “Layer Normalization “, In 2016

