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Lecture notes

* These lecture notes are based on other courses in LLMs, including
o (CSE493S/599S at UW by Ludwig Schmidt: https://mlfoundations.qgithub.io/advancedml-sp23/

« EE-628 at EPFL by Volkan Cevher: https://www.epfl.ch/labs/lions/teaching/ee-628-training-large-language-
models/ee-628-slides-2025/

» ECE381V Generative Models at UT Austin by Sujay Sanghavi

« and various papers and blogs cited at the end of the slide deck



https://mlfoundations.github.io/advancedml-sp23/
https://www.epfl.ch/labs/lions/teaching/ee-628-training-large-language-models/ee-628-slides-2025/
https://www.epfl.ch/labs/lions/teaching/ee-628-training-large-language-models/ee-628-slides-2025/
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Sequence mixing

* Sequence mixing is one of the most well studied part of an LM that captures
the dependencies across tokens.
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o Self-attention (vaswanietal. 2017] as a sequence mixer addresses the
shortcomings of RNNs with different trade-offs for inference cost.

RNNSs are sequential Self-attention is parallel
x; — RNN ——y, X3 SA —y,
lhl \
x, — RNN ——y, X, SA —y,
Vi
x; — RNN—>y, X SA ——y,
s \
x; —> RNN ——y, Xy —> SA —>y,

 Notice how we focus on a version of self-attention blocks that has a causal

structure, i.e., the output only depends on the previous words. Both causal
and non-causal are used depending on the application.



» Causal vs. non-causal dependencies determined by the user who chooses the architecture
based on the application of interest.

 Original transformer paper was solving machine translation, where the “encoder” does not
require causality, as its goal is to produce a vector representation of the entire sentence.

/ Encoder \f Decoder \

- N /
» Earlier language models, like BERT and RoBERTa, use what is called “masked” language

model, where in training a random word is masked in a sentence and the model predicts it.
Obviously, this is not causal and the transformer architecture used in these models is also

not causal, i.e. a word in position i can attend to words both in the past and in the future.

 Modern LLMSs, like GPT and Llama, are trained on next-word prediction tasks, which is
obviously causal, since non-causal next-word prediction is a trivial. You just output the next
token. As such, we focus in our lectures on causal structured self-attention mechanisms.



* The goal of a sequence mixer is to generate the representation of a word in a

sequence that captures the true meaning of the word in the context the word
is used in. For example,

“To solve machine translation, Google introduced transformer architecture ...”

X X b X, X5 X b

“architecture*

\ T

y’7—> Predict — —> arg max

Self-attention achieves this by a weighted combination of the vector embeddings of the other

words, with more weight on a word that might be more relevant to the word of interest, say,
“transformer”, i.e.,

i = fo)+ Y ey fog) = Y ay - fx)

J#Ft J=1

Note that the relevance/weight Q. is asymmetric, since X, is the target and X; is the context.



* “To solve machine translation, Google introduced transformer ...”
“architecture

H xzx xs x X7

y7—> Predict — — arg max

» To measure thé similarity/relevance key-query-value self-attention
mechanisnv uses queries, keys, and values with learnable parameters

Wo, W, Wy € R™ For modern language models, like GPT-4, the embedding

dimension is m = 12288 and the query/key dimension is d = 128, such that

the query vector for the target word is ¢, = W,x;, the key vector is k; = Wi.x;,

and the felevance is then T
: _ +TwT —
Rel(x;x) = (qpk) = x; WyWgx;

m



 Rel(x;x;) = (gq,, k;) can be computed, for example, as a matrix, forcing upper-right triangle region to
be —o0, meaning no relevance, for causality. Output of self-attention can only depend on the past.

To

solve
machine
translation
Google
introduced
transformer

* <Qtransformer’ kGoogle

To solve machine translation Google introduced transformer ...

X1 X X3 Xy Xs Xg X7
<ql,k1>
<g2,k1> <g2,k2>
<q3,k1> <qg3,k2> <q3,k3>
<g4,k1> <q4,k2> <q4,k3> <q4,k4>
<g5,k1> <g5,k2> <g5,k3> <g5,k4> <g5,k5>
<q6,k1> <Qq6,k2> <q6,k3> <q6,k4> <Q6,k5> <Qq6,k6>
<q7,k1> <q7,k2> <q7,k3> <q7,k4> <q7,k5> <q7,k6> <q7,k7>

) might have a large positive value indicating that these terms are

highly related, whereas (G ansformer Kto) Might be nearly zero or even negative.

* We would like to take the weighted sum of each row, to get a vector for the query word.



* For each column, we take the Softmax of the similarity to ensure that the weights
are non-negative and sum to one, calling the previous Query-Key matrix Rel,

e <QI’ki>

j=1

* The self-attention vector is the weighted sum of the value defined by a learnable
parameter W, € R™™ sych that v, = W, x;, and

4 e(Qt’kz‘> o' K M 4
=), > oan” Softmax < O
=1

i=1

a,; = Softmax(z-th row of Rel); = Softmax({(q, kj)}]f.:l)l. —

e All ys can be compactly represented as ¥ = Softmax((Q! K) ©® M)V,
where Q = {g; = WQxi}iT=1 e R™ K = {k, = Wyx;} L, € R,

1, t>1
V={v,=Wyx}_, € R™ and M,; = . z .is the causal mask.
- ’ — 00, I



The causal mask is necessary in training, in order to prevent “cheating” in the
next word prediction loss.

Attention with masking is called masked attention or causal attention.

By allowing any word to attend to any other word in the sequence, this
resolves long-distance dependence problem of RNNSs.

Self-attention has learnable parameters: W, Wy, W), € RAxm,

Note that the (masked) attention matrix is 7" X T dimension, and computation
and memory scales like O(T?).
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» Auto-regressive inference with self-attention

Set x; as embedding of (BOS), t=1

While True: hy =0
} 0
q; < Wth, kt «— Wth, v, < Wth x; = Emb(BOS) — SA —y, — Predict — — arg max —> happy..._
T T T --------------------------------------------------------------------
compute score s < [q, k;,**+, g, k,,] \ “,

y, < [v, -+, v ]Softmax(s)

-----
-----
-------------------

--------

-----------
-----------
--------------------
-------
-----------
-------

x,,; < Emb(arg max u[w]) ; _ "3
w —y; — Predict — — arg max —>year
If X, | is the embedding of (BOS): break \,\ ....................................... u4 ...............
“x4 = Emb(year) = SA —y, — Predict — — arg max— (EOS)

* Note that this is still auto-regressive and non-parallelizable
and hence slow, like RNN.



How to speed up the computation of the attention heads is a very active
research direction.

Definition (KV cache)

« KV Cache (Key-Value Cache) stores. computed keys (K) and values (V)
from previous time steps to avoid recompilation in self-attention during
autoregressive inference.

How does KV Cache work?
« t =1 : Compute and store k; and v;,.
 t =2 : Retrieve k{, v, and compute k,, v, and append

« for general 1 : retrieve all K, V and compute only key and value for the new
word

Naive implementation of self-attention recomputes K, V every step: O(T?d).

KV Cache reduces complexity to O(71d) per step for faster inference with lower
memory overhead. The idea is simple, and it is more about how to implement it

in tensor operations. Training still takes O(T?d) time.



« KV Cache
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« KV Cache

Step 2
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« KV Cache

Step 3
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« KV Cache
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Another idea to speed by parallelization is multi-head attention.
Definition (Multi-head Attention)

« Instead of having one attention, we can have / attention heads in parallel
such that

MultiHead(x) = Concat(head,, ---, head,),
where head, = Attention(Wg)x, Wg)x, W@x).

This division of heads allows parallelization.

Each head handles different aspect, e.g., subject-verb agreement, syntax,
semantic relations, etc, enhancing the model’s ability to capture diverse
dependencies. —

C
Key — — Self Linear | Qutput
Ato [———p




* Matrix multiplications are compute-bound, i.e., run-time is dominated
by computation, and element-wise operations are memory-bound, i.e.,

dominated by memory access

* Run-time of a transformer layer is dominated by Dropout, Softmax,

Mask which are memory-bound.

* But memory is hierarchical. So the idea of Flash attention is to keep
intermediate steps in SRAM (faster memory access) and only write the

final result back to HBM (slower memory access).

* Use tiling to process in small blocks instead of full sequence.

* It is up to 2~4x faster with less memory footprint: O(TCd) complexity

where C is the size of the block.

o K
Softmax

courtesy of https://gordicaleksa.medium.com/eli5-flash-attention-5¢44017022ad
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Modern language models are made up of layers of
transformer blocks.

A transformer block is
[self-attention + layer normalization + feedforward
layer +layer normalization]

GPT-2 has 12 heads and 12~48 layers.

Original transformer is proposed with encoder and
decoder for neural machine translation, but we only
learned the transformer decoder which is sufficient
as an LM.
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* The role of skip connection is to prevent
vanishing gradients (as we saw in the case of
RNNSs) by allowing gradients to flow directly from

deeper layers to earlier layers.

|t is motivated by ResNet’s success in image

classification.

* The role of FFN (applied to each token separately
but shared weights) is to introduce additional
non-linearity and improve expressiveness.

Yi—1

y, € R4

dim = 4d

dim = 4d

y, € R4

l
( Add & Norm )‘—
1
Feed
Forward
LayerNormalizatfon(y+x)—
(" Add&Norm  Je—x
Vv
Masked self-
attention Trhnsformer
block* L
I
X

Skip connection



To stabilize training, Batch Normalization and Layer Normalization are proposed.

Batch normalization is initially proposed in [ioffe et al. 2015) t0 mitigate a phenomena
known as internal covariate shift by standardizing the input to each layer on the
mini-batch that is being processed.

Covariate shift is when the input distribution changes. Internal covariate shift is
when the input distribution to a layer in a deep neural network changes, due to the
sampling of a mini-batch.

To mitigate such distribution changes, batch normalization standardizes the input
to a layer: each input coordinate is subtracted its mini-batch mean and divided by
the mini-batch standard deviation.

This stabilizes the training, aIIowing larger step sizes and converging faster. At
mference movmg average is used for the internal statistics.
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* One caveat is that the output of batch normalization is coordinate-wise scaled and shifted by
learnable parameters, which we omit in the explanation.

o Later research [santurkar et al. 2018] has discovered that the success of batch normalization has little
to do with internal covariate shifts.

100 Standard Standard + BatchNorm 250
(LR=0.1) (LR=0.1) [ Standard
[ Standard + BatchNorm

A
—— Standard, LR=0.1 A

—— Standard + BatchNorm, LR=0.1
- = Standard, LR=0.5
- = Standard + BatchNorm, LR=0.5

Layer #3

50

Test Accuracy (%)
Gradient Predictiveness

Layer #11
o - g
'l‘ ¢

* Instead, batch normalization makes the landscape smooth, making it easier for gradient based
optimization methods to take larger steps.

* However, for LLM training, each sample is processed separately, and hence batch size is
oftentimes one. Further, sequence lengths are variable, so there is no predefined notion of a
coordinate-wise statistics.



* Layer normalization [Baetal. 2016] IS Similar but works with a single input
sequence of arbitrary lengths.

Z X2 of = — Z (o — e

Xei — My .. . :
= , for position #, coordinate 1

ol +¢€

£,

* This is widely used in LLMs’ transformer layers to stabilize the training
dynamics.



Forward pass in pre-training on single sentence:

e Initial loss L = 0, and let y, = x

e Foreachlayer =1,....%
Qp — Wopye15 Kp = Wg pyp_1, Vo = Wy pyp
S, « Mask(Q;Kf)
¥y < Row-wise-Softmax(S,)V/

y, < Layernorm(y, + y,_)
Yskip < V¢

Yo < Wy p6(Wpy 2¥,)

y, < Layernorm(y, + yg,)

u=1u,... plt%]l <« Row-wise-Softmax(W,y )
T

L+ = <Z Z — log(ut[i])>

=1 i=l
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Prediction

* Next token prediction involve outputting a distribution over the vocab and
sampling from the distribution.

1. Token 2. Sequence
e

Wir processing mixing

3. Prediction —w,._,

sequence length T’
(in a loose sense)

N ——
output dim. d



« The last transformer block outputs y., € RT>d,

« The prediction layer takes the output representation of the last word, Yo 1,10

predict the next token, with a learnable parameter W, € RW'X‘Z, which may
or may not be sharing weights with the input token embedding matrix.

h k eWO,iyg,t
ur. = P(i-th token) =
U < Softmax(WOyg,T) ri = : ZJ'Z' e VoY
Y£1 YT
Uur Wo YT I I

Multi-layer transformer

|7



« Given the token distribution, there are many ways to sample tokens, auto-regressively.

* Auto-regressive sampling uses the chain rule to break the distribution on the sentence into:
[FD(S) == [I:D(WI:T) == P(WI)P(WZ | WI)H:D(W3 | Wl, WZ)“'I]:D(WTl WIZT—I)

 If the LM predicts an accurate and calibrated conditional distribution, then random sampling auto-
regressively provides an exact sample from the joint distribution on the sentence:
Random sampling samples a token from the distribution u,, each time until <€OS>, but can generate

out-of-distribution samples, resulting in hallucination and non-grammatical sentences.
LMs are not well calibrated since they are trained as classifiers with cross-entropy.

* On the other extreme is Greedy sampling, which samples the highest probability token, deterministically.

* In practice, one balances the two ends by Sampling with temperature 7T, usually between 0 and 1, which samples from

an adjusted Softmax(Wyy ,):
eWO,iy;’f,t/ T

u, . = P(i-th token) = ,
b ( ) |7’ o Wo vz T

=1
where T = 1 recovers the original random sampling,
T=0 recovers the greedy sampling,
0<T<1 balances the two.
T is tuned like a hyper-parameter at inference time.

« Top-k sampling samples from u, but only among the top-k tokens.

Temperature = 0.3 Temperature = 0.7
10

0.956

2
%
%,

Next-word probabilities under different temperatures

» Nucleus sampling (also known as top-p sampling) [Holtzman et al. 2020] samples from u, but only among the smallest set

whose cumulative probability exceeds p € (0,1)



* Greedy sampling attempts to solve
arg max P(w,.r) ~ arg max P(w,)arg max P(w, | wi)P---arg max Pwy| Wi )
Wi.r Wi ) wr '
where wt*’s are the solution of the previous maximization.

* Instead, we can try to better approximate the most likely sequence directly (solving the LHS of above), using Beam
search, which produces high quality but low-diversity sequences.

« (deterministic) Beam search with beam width B proceeds as follows.
B most likely candidates are selected for the first token.
For each token at position 1, kK most likely next tokens are selected.
«Out of kB candidates for a sequence of length 2, the most likely B candidates are chosen.

*This repeats until B candidates end on <EOS>.

Context: In a shocking finding, scientist discovered a herd of unicorns living in a remote, previously unexplored valley, H H
in the Andes Mountains. Even more surprising to the researchers was the fact that the uni(F:)orns spoke perFF)ect English. In praCtICG, N UCIGUS Sampllng
Beam Search, b=32: Pure Sampling: I I

"The study, published in the Proceedings of the They were cattle called Bolivian Cavalleros; they live in a Strl keS the rlght balance a‘nd
National Academy of Sciences of the United States of remote desert uninterrupted by town, and they speak huge,

America (PNAS), was conducted by researchers from the beautiful, paradisiacal Bglivian linguistic thing. Thpey say, usual |y performs the beSt-
Universidad Nacional Auténoma de México (UNAM) and 'Lunch, marge.' They don't tell what the Iunc% is," director

the Universidad Nacional Auténoma de México Professor Chuperas Omwell told Sky News. "They've only

(UNAM/Universidad Nacional Auténoma de been talking to scientists, like we're being interviewed by TV

México/Universidad Nacional Auténoma de reporters. We don't even stick around to be interviewed by

México/Universidad Nacional Auténoma de TV reporters. Maybe that's how they figured out that they're

México/Universidad Nacional Auténoma de ..." cosplaying as the Bolivian Cavalleros."

Figure 1: Even with substantial human context and the powerful GPT-2 Large language model,
Beam Search (size 32) leads to degenerate repetition (highlighted in blue) while pure sampling
leads to incoherent gibberish (highlighted in red). When b > 64, both GPT-2 Large and XL (774M
and 1542M parameters, respectively) prefer to stop generating immediately after the given context.
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