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Lecture notes

• These lecture notes are based on other courses in LLMs, including

• CSE493S/599S at UW by Ludwig Schmidt: https://mlfoundations.github.io/advancedml-sp23/ 

• EE-628 at EPFL by Volkan Cevher: https://www.epfl.ch/labs/lions/teaching/ee-628-training-large-language-

models/ee-628-slides-2025/ 

• ECE381V Generative Models at UT Austin by Sujay Sanghavi

• and various papers and blogs cited at the end of the slide deck

https://mlfoundations.github.io/advancedml-sp23/
https://www.epfl.ch/labs/lions/teaching/ee-628-training-large-language-models/ee-628-slides-2025/
https://www.epfl.ch/labs/lions/teaching/ee-628-training-large-language-models/ee-628-slides-2025/
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• Example architectures



Sequence mixing 
• Sequence mixing is one of the most well studied part of an LM that captures 

the dependencies across tokens.  
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• Self-attention [Vaswani et al. 2017] as a sequence mixer addresses the 
shortcomings of RNNs with different trade-offs for inference cost.  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• Notice how we focus on a version of self-attention blocks that has a causal 
structure, i.e., the output only depends on the previous words. Both causal 
and non-causal are used depending on the application.



• Causal vs. non-causal dependencies determined by the user who chooses the architecture 
based on the application of interest.


• Original transformer paper was solving machine translation, where the “encoder” does not 
require causality, as its goal is to produce a vector representation of the entire sentence.  
 
 
 
 
 
 

• Earlier language models, like BERT and RoBERTa, use what is called “masked” language 
model, where in training a random word is masked in a sentence and the model predicts it. 
Obviously, this is not causal and the transformer architecture used in these models is also 
not causal, i.e. a word in position  can attend to words both in the past and in the future.  


• Modern LLMs, like GPT and Llama, are trained on next-word prediction tasks, which is 
obviously causal, since non-causal next-word prediction is a trivial. You just output the next 
token. As such, we focus in our lectures on causal structured self-attention mechanisms.  
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• The goal of a sequence mixer is to generate the representation of a word in a 
sequence that captures the true meaning of the word in the context the word 
is used in. For example,  
 
“To solve machine translation, Google introduced transformer architecture …”
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• Self-attention achieves this by a weighted combination of the vector embeddings of the other 
words, with more weight on a word that might be more relevant to the word of interest, say, 
“transformer”, i.e., 

                 


• Note that the relevance/weight  is asymmetric, since  is the target and  is the context.
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• To measure the similarity/relevance key-query-value self-attention 
mechanism  uses queries, keys, and values with learnable parameters 

. For modern language models, like GPT-4, the embedding 
dimension is  and the query/key dimension is , such that 
the query vector for the target word is , the key vector is , 
and the relevance is then 
 
       

WQ, WK, WV ∈ ℝd×m
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•  can be computed, for example, as a matrix, forcing upper-right triangle region to 
be , meaning no relevance, for causality. Output of self-attention can only depend on the past. 
Rel(xt; xi) = ⟨qt, ki⟩

−∞
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•  might have a large positive value indicating that these terms are 
highly related, whereas  might be nearly zero or even negative.


• We would like to take the weighted sum of each row, to get a vector for the query word.
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• For each column, we take the Softmax of the similarity to ensure that the weights 
are non-negative and sum to one, calling the previous Query-Key matrix ,  
 

  


• The self-attention vector is the weighted sum of the value defined by a learnable 
parameter   such that , and  
 

          


• All ’s can be compactly represented as ,  
where , , 

, and  is the causal mask.  
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• The causal mask is necessary in training, in order to prevent “cheating” in the 
next word prediction loss.


• Attention with masking is called masked attention or causal attention.


• By allowing any word to attend to any other word in the sequence, this 
resolves long-distance dependence problem of RNNs.


• Self-attention has learnable parameters: .


• Note that the (masked) attention matrix is  dimension, and computation 
and memory scales like . 

WQ, WK, WV ∈ ℝd×m

T × T
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• Auto-regressive inference with self-attention


• Set  as embedding of , t=1


• While True: 


• 


• compute score 


• 


• 


• If  is the embedding of : break 


• 


• Output: 


• Note that this is still auto-regressive and non-parallelizable 
and hence slow, like RNN.
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• How to speed up the computation of the attention heads is a very active 
research direction. 


• Definition (KV cache)


• KV Cache (Key-Value Cache) stores. computed keys ( ) and values ( ) 
from previous time steps to avoid recompilation in self-attention during 
autoregressive inference. 


• How does KV Cache work?


•  Compute and store  and .


•  Retrieve  and compute  and append


• for general  retrieve all  and compute only key and value for the new 
word


• Naive implementation of self-attention recomputes  every step: .


• KV Cache reduces complexity to  per step for faster inference with lower 
memory overhead. The idea is simple, and it is more about how to implement it 
in tensor operations. Training still takes  time.

K V

t = 1 : k1 v1

t = 2 : k1, v1 k2, v2

t : K, V

K, V O(T2d)
O(Td)

O(T2d)



• KV Cache

From https://medium.com/@joaolages/kv- caching- explained- 276520203249



• KV Cache

From https://medium.com/@joaolages/kv- caching- explained- 276520203249



• KV Cache

From https://medium.com/@joaolages/kv- caching- explained- 276520203249
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From https://medium.com/@joaolages/kv- caching- explained- 276520203249



• Another idea to speed by parallelization is multi-head attention.

• Definition (Multi-head Attention)


• Instead of having one attention, we can have  attention heads in parallel 
such that  
 

, 
where .


• This division of heads allows parallelization. 

• Each head handles different aspect, e.g., subject-verb agreement, syntax, 

semantic relations, etc, enhancing the model’s ability to capture diverse 
dependencies. 

h

MultiHead(x) = Concat(head1, ⋯, headh)
headi = Attention(W(i)

Q x, W(i)
K x, W(i)

V x)



• Matrix multiplications are compute-bound, i.e., run-time is dominated 
by computation, and element-wise operations are memory-bound, i.e., 
dominated by memory access 


• Run-time of a transformer layer is dominated by Dropout, Softmax, 
Mask which are memory-bound. 


• But memory is hierarchical. So the idea of Flash attention is to keep 
intermediate steps in SRAM (faster memory access) and only write the 
final result back to HBM (slower memory access). 


• Use tiling to process in small blocks instead of full sequence. 

• It is up to 2~4x faster with less memory footprint:   complexity 

where  is the size of the block.  
O(TCd)

C

courtesy of https://gordicaleksa.medium.com/eli5-flash-attention-5c44017022ad
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• Modern language models are made up of layers of 
transformer blocks.


• A transformer block is  
[self-attention + layer normalization + feedforward 
layer +layer normalization]


• GPT-2 has 12 heads and 12~48 layers. 


• Original transformer is proposed with encoder and 
decoder for neural machine translation, but we only 
learned the transformer decoder which is sufficient 
as an LM.



• The role of skip connection is to prevent 
vanishing gradients (as we saw in the case of 
RNNs) by allowing gradients to flow directly from 
deeper layers to earlier layers.


• It is motivated by ResNet’s success in image 
classification.  


• The role of FFN (applied to each token separately 
but shared weights) is to introduce additional 
non-linearity and improve expressiveness. 

x

LayerNormalization(y + x)
xy

Skip connection

yt ∈ ℝd

ỹt ∈ ℝd

Linear

Linear

Activation
dim = 4d
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yt−1

ỹt−1

⋯⋯



• To stabilize training, Batch Normalization and Layer Normalization are proposed. 

• Batch normalization is initially proposed in [Ioffe et al. 2015] to mitigate a phenomena 

known as internal covariate shift by standardizing the input to each layer on the 
mini-batch that is being processed.


• Covariate shift is when the input distribution changes. Internal covariate shift is 
when the input distribution to a layer in a deep neural network changes, due to the 
sampling of a mini-batch. 


• To mitigate such distribution changes, batch normalization standardizes the input 
to a layer: each input coordinate is subtracted its mini-batch mean and divided by  
the mini-batch standard deviation.


• This stabilizes the training, allowing larger step sizes and converging faster. At 
inference, moving average is used for the internal statistics. 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• One caveat is that the output of batch normalization is coordinate-wise scaled and shifted by 
learnable parameters, which we omit in the explanation. 


• Later research [Santurkar et al. 2018] has discovered that the success of batch normalization has little 
to do with internal covariate shifts. 




• Instead, batch normalization makes the landscape smooth, making it easier for gradient based 
optimization methods to take larger steps.


• However, for LLM training, each sample is processed separately, and hence batch size is 
oftentimes one. Further, sequence lengths are variable, so there is no predefined notion of a 
coordinate-wise statistics.



• Layer normalization [Ba et al. 2016] is similar but works with a single input 
sequence of arbitrary lengths.  
 

 

 
, for position , coordinate 


• This is widely used in LLMs’ transformer layers to stabilize the training 
dynamics. 
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• Forward pass in pre-training on single sentence: 

• Initial loss , and let 

• For each layer 

• 

• 

• 

• 

• 


• 


• 

• 


•

L = 0 y0 = x
ℓ = 1,…, ℒ

Qℓ ← WQ,ℓyℓ−1, Kℓ ← WK,ℓyℓ−1, Vℓ ← WV,ℓyℓ−1
Sℓ ← Mask(QT

ℓ Kℓ)
yℓ ← Row-wise-Softmax(Sℓ)VT

ℓ
yℓ ← Layernorm(yℓ + yℓ−1)
yskip ← yℓ
yℓ ← WF2,ℓ σ(WF1,ℓyℓ)
yℓ ← Layernorm(yℓ + yskip)

u = [u1, …, uT] ← Row-wise-Softmax(WOyℒ)

L + = (
T

∑
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|𝒱|

∑
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t log(u[i]
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• Next token prediction involve outputting a distribution over the vocab and 
sampling from the distribution. 



• The last transformer block outputs .


• The prediction layer takes the output representation of the last word,  , to 
predict the next token, with a learnable parameter , which may 
or may not be sharing weights with the input token embedding matrix. 
            
             

yℒ ∈ ℝT×d

yℒ,T
WO ∈ ℝ|𝒱|×d

uT ← Softmax(WOyℒ,T)

xT
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|𝒱 |

d
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• Given the token distribution, there are many ways to sample tokens, auto-regressively.


• Auto-regressive sampling uses the chain rule to break the distribution on the sentence into:  
              


• If the LM predicts an accurate and calibrated conditional distribution, then random sampling auto-
regressively provides an exact sample from the joint distribution on the sentence:    
Random sampling samples a token from the distribution , each time until <EOS>, but can generate 
out-of-distribution samples, resulting in hallucination and non-grammatical sentences.  
LMs are not well calibrated since they are trained as classifiers with cross-entropy. 


• On the other extreme is Greedy sampling, which samples the highest probability token, deterministically.


• In practice, one balances the two ends by Sampling with temperature , usually between 0 and 1, which samples from 
an adjusted :  

           , 

where  recovers the original random sampling,  
T=0 recovers the greedy sampling,  
0<T<1 balances the two.  
T is tuned like a hyper-parameter at inference time.


• Top-k sampling samples from  but only among the top-k tokens.


• Nucleus sampling (also known as top-p sampling) [Holtzman et al. 2020] samples from  but only among the smallest set 
whose cumulative probability exceeds 

ℙ(S) = ℙ(w1:T) = ℙ(w1)ℙ(w2 |w1)ℙ(w3 |w1, w2)⋯ℙ(wT |w1:T−1)

ut

T
Softmax(WOyℒ,t)

ut,i = ℙ(i-th token) =
eWO,iyℒ,t/T

∑|𝒱|
j=1 eWO, jyℒ,t/T

T = 1

ut

ut
p ∈ (0,1)



• Greedy sampling attempts to solve  
       , 

where ’s are the solution of the previous maximization.


• Instead, we can try to better approximate the most likely sequence directly (solving the LHS of above), using Beam 
search, which produces high quality but low-diversity sequences.


• (deterministic) Beam search with beam width  proceeds as follows.


•  most likely candidates are selected for the first token.


•For each token at position 1,  most likely next tokens are selected.


•Out of  candidates for a sequence of length 2, the most likely  candidates are chosen. 


•This repeats until  candidates end on <EOS>. 

arg max
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ℙ(w1:T) ≈ arg max
w1

ℙ(w1)arg max
w2

ℙ(w2 |w*1 )ℙ⋯arg max
wT

ℙ(wT |w*1:T−1)

w*t

B

B

k

kB B

B
In practice, Nucleus sampling  
strikes the right balance and  
usually performs the best.
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