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Lecture notes

• These lecture notes are based on other courses in LLMs, including

• CSE493S/599S at UW by Ludwig Schmidt: https://mlfoundations.github.io/advancedml-sp23/ 

• EE-628 at EPFL by Volkan Cevher: https://www.epfl.ch/labs/lions/teaching/ee-628-training-large-language-

models/ee-628-slides-2025/ 

• ECE381V Generative Models at UT Austin by Sujay Sanghavi

• and various papers and blogs cited at the end of the slide deck

https://mlfoundations.github.io/advancedml-sp23/
https://www.epfl.ch/labs/lions/teaching/ee-628-training-large-language-models/ee-628-slides-2025/
https://www.epfl.ch/labs/lions/teaching/ee-628-training-large-language-models/ee-628-slides-2025/
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Language Model (LM) basics
• Example language task:


• What is the most likely next word [ ] given the following ? 
 

:      “On January 1 people usually say happy new  [ ].”


• This task is fundamental in language modeling.

• check spelling & grammar correction

• machine translation

• sentence classification

• speech recognition

• chatbot

• reasoning, planning, coding, math, etc.

nw Ssource

Ssource nw

 

 

 

 

ℙ(year |Ssource) > ℙ(years |Ssource)

ℙ(Stranslation 1 |Ssource) > ℙ(Stranslation 2 |Ssource)

ℙ(good |Ssource) > ℙ(bad |Ssource)

ℙ(Wreck a nice beach) < ℙ(Recognize speech)

ℙ(nw |Ssource)



• Definition (Language Model [Jurafsky and Martin,2023]) 


• Models that assign probability to sequences of words are called language 
models. 


• Next word prediction model is sufficient to assign probability to the entire 
sentence, , of  words with the chain rule: 
 
       
 
without any assumptions.


• For example, if then 



• Fundamental question in LM: how can we model and learn ?

S = (w1, w2, ⋯, wT) T

ℙ(S) = ℙ(w1:T) = ℙ(w1)ℙ(w2 |w1)ℙ(w3 |w1, w2)⋯ℙ(wT |w1:T−1)

S = w1:3 = "happy new year",
ℙ(S) = ℙ(happy)ℙ(new |happy)ℙ(year |happy new)

ℙ(wt |w1:t−1)



• how can we model and learn ?


• A trivial but memory-inefficient model uses empirical frequency on a large corpus: 
 




• All semantic relations are lost, e.g., "On January first people usually say happy new year.”


• A lot of zero counts for rare (combinations of) words. 


• A more efficient alternative is -gram LM, that uses past ( ) words to predict the next one: 
 

            e.g., 


• Bi-gram model,  uses only .

ℙ(wt |w1:t−1)

ℙ(year |Ssource) =
ℙ(Ssource + year)

ℙ(Ssource)
≃

#(On January 1 people usually say happy new year)
#(On January 1 people usually say happy new)

N N − 1

ℙ(wt |w1:t−1) = ℙ(wt |wt−N+1:t−1) ≃
#(wt−N+1:t)

#(wt−N+1:t−1)
#(happy new year)

#(happy new)

N = 2, ℙ(wt |wt−1)



• Terminologies


• Language models operate on tokens and not words, as we learned in the 
previous lecture, but we will use them interchangeably, unless we need to be 
precise.


• Vocabulary of tokens is denoted by  and its size by .


• Special tokens are used to indicate the beginning and end of sentences: 
 
For example, 5 tokens to represent “<BOS> Happy new year <EOS>”


• Pre-training is building an LM from scratch on a large corpus of text.


• Inference is using a trained LM to do next word prediction. 

𝒱 |𝒱 |



• Bi-gram LM pre-training requires memory of size  and the model is sparse: 


• For all pair of words in the corpus


• count  and 


• compute and store  for all 


• Bi-gram LM inference generates sequence of words:


• Initialize: , 


• While True


• 


• If : Output ( ); Break 

•

O( |𝒱 |2 )

#(w) #(w, w′￼)

ℙ(w |w′￼) =
#(w, w′￼)

#(w)
(w, w′￼) ∈ 𝒱 × 𝒱

w1 ← <BOS> t = 1

wt+1 ← arg max
w∈𝒱

ℙ(w |wt)

wt+1 = <EOS> w1:t+1

t ← t + 1



• Bi-gram LM pre-training requires memory of size  and the model is sparse: 


• For all pair of words in the corpus


• count  and 


• compute and store  for all 


• Bi-gram LM inference generates sequence of words:


• Initialize: , 


• While True


• 


• If : Output ( ); Break 

•

O( |𝒱 |2 )

#(w) #(w, w′￼)

ℙ(w |w′￼) =
#(w, w′￼)

#(w)
(w, w′￼) ∈ 𝒱 × 𝒱

w1 ← <BOS> t = 1

wt+1 ← arg max
w∈𝒱

ℙ(w |wt)

wt+1 = <EOS> w1:t+1

t ← t + 1

• This toy example generates the 
same deterministic sequence 
all the time. 


• We can instead start with a given 
prompt, and continue completing 
the given prompt using the same 
techniques, that we will learn more 
about later.


• Later, we will learn random 
sampling that makes the output 
better. 



Modern language models

https://xkcd.com/1838/

Input sequence

A lot of sequential 
differentiable tensor 

operations.

Output sequence



General (Large Language Model) LLM framework

• Tokenization, 
embedding, 
positional 
encoding 

1. Token 
processing

2. Sequence 
mixing 3. Prediction w1:t−1  wt

1. Token 
processing

2. Sequence 
mixing 3. Prediction  wt+1 (w1:t−1, wt)

• LM architectures 
capture 
dependence 
across tokens

• token 
representation 
is turned into a 
prediction



Token processing
• Token processing turns a word or a token into a combination of  

a word embedding and a positional embedding

x y

x
sequence length T

embedding dim. m

1. Token 
processing

2. Sequence 
mixing 3. Prediction w1:T  wT+1

{⏟



• Fundamental question: what is the useful numerical representation of  a word/
token?


• Word (token) embeddings are the vectors representing words (tokens).


• One-hot representation uses standard basis vectors in .


• Relations between words are lost and similarity cannot be measured.


• Dimension of the vector is too large, e.g., for prediction

 
Vocab               one-hot representation 
 
a                      
ability              
able                
about             
above           
acarus            

ℝ|𝒱|

[1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, … ] 
[0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, … ]        
[0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, … ]     
[0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, … ]       
[0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, … ]         
[0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, … ]         

⋮ vocab size =|𝒱|



• Breakthrough in word embeeding: Word2Vec [Mikolov et al. 2013] and Glove [Pennington et al. 2014]


• capture similarities and relations between words via training on a text corpus


• gave significant gain for older model architectures like RNN and LSTM 


• Word2vec is trained to predict a missing word given a context window, for example, of size 2, 
before and after the masked word:  
 
                


• The -th word in the vocabulary is associated with two vector embeddings in -dimensions,


•  is the embedding when it is a target word, and


•  is the embedding when it is used as a context.


• After these embeddings are learned, the word is represented by either the summation or the 
concatenation of these two vectors, when used in an LM. 


•  is about 200~300 in practice.

⋯ people usually

context window

say⏟
target word

happy new

context window

⋯

i m

ti ∈ ℝm

ci ∈ ℝm

m



• example sample:  
 
                 


• Word2vec embeddings are trained on a corpus of text, where for each context window 
the loss is defined over a tuple , where


•  is the target word in the sample with embedding 


•  is one of the context words (called positive sample) with 


•  is not a context word (called negative sample) with 

• Word2vec is learned from text corpus to minimize a loss function: 

 
    

    

⋯ people usually

context window

say⏟
target word

happy new

context window

⋯

(wt, wc, wn)
wt twt

wp cwp

wn cwn

L = − log(ℙ(wt is a true target of wp) ⋅ ℙ(wt is not a true target of wn))
= − log(σ(⟨twt

, cwp
⟩)) − log(1 − σ(⟨twt

, cwn
⟩))

= − log( 1
1 + exp( − ⟨twt

, cwp
⟩) )−log(1 −

1
1 + exp( − ⟨twt

, cwn
⟩) )

wtwp wn



• Word2vec was a breakthrough due to its simplicity, efficient training, semantic 
quality, and vector arithmetic (which was not intended at all!)


• for example, other than the missing word prediction that it was trained to solve, word2vec 
was amazing at analogy tasks:      
                             king : man = ? : woman,            
can be solved by vector arithmetic, outputting the embedding that is the nearest neighbor   
                               
 
 
 
 
 
 
 
 
 

• It is quite surprising that local rules of co-occurences, i.e., how often do two words 
appear together in a context window, are enough to learn such rich semantic relations. 

xking + xwoman − xman ≃ xqueen



• Building upon the success of Word2vec, for a while, the typical approach has 
been to use these word vectors, and train specific model for each task: 
translation, sentiment analysis, etc.


• Typical embedding dimension is 300, which is not too large, but the number 
of words can be huge, perhaps in the order of 1,000,000. 


• No longer used, as subword tokenization is more popular than words, and 
embeddings learned together with model weights perform better than 
word2vec.


• Modern embeddings for subword tokens are learned in pretraining stage, 
with an exception of a part of the embedding called the positional 
embedding, which contains information about the word’s position in the 
sentence.


• token vocab ~ 200k, and token embedding vectors of dimension 700~12000 
are trained.



• Positional embeddings are designed to capture the positions of the input 
sequence of words to a transformer.  


• Without positional encoding, the original transformer treats the input as a set, 
in which case the following two inputs are treated the same (more to follow 
when we learn architectures):  
 
                                    “I am happy”   vs.   “Am I happy”


• To take into account the order of the input, absolute positional embedding 
represents a word by concatenating its learned semantic embedding with an 
absolute position of the word, for example, 


• Attempt 1: its position index  can be used as absolute position embedding:  
 
                                       
 
but this is challenging to generalize to unseen sequence lengths, and the 
range of the value of the embedding increases with .

t

xt = (WordEmb(wt), t )

t



• Absolute positional embedding solution 1: original transformer paper [Vaswani et al. 
2017] proposes using alternating sin() and cos() functions of decreasing frequencies 
at position index t, added to the vector word embedding:   
 

      

• Absolute positional embedding solution 2: learned positional embedding. 
 
     


• Empirical performance is similar for the two absolute positional embeddings


• Learned positional embedding is popular in vision transformers

xt = WordEmb(wt) +

sin(t/100000/m)
cos(t/100000/m)
sin(t/100002/m)
cos(t/100002/m)
⋮

sin(t/100001/2)
cos(t/100001/2)

position embedding

xt = WordEmb(wt) + PosEmb(t)

[Zhou et al. 2020]

high frequency

low frequency



• Absolute positional embeddings encode the absolute position of the word in the sequence, 
which has two problems:


• it is hard to extrapolate to sequence lengths unseen during training,  
 
 
 
 
 
 
 
 
 
 
 

• and relative position is as important as absolute position, for example, “happy new ?” 
appearing in positions (1,2,3) have similar meaning as appearing in positions 
(500,501,502).


• Relative positional encoding addresses both: generalize to sequences of unseen lengths by 
relying on the pairwise distances between two words. We will revisit after we learn transformers.

}
Absolute positional embedding

Relative positional embedding

[Press et al. 2022]



Sequence mixing 
• Sequence mixing is one of the most well studied part of an LM that captures 

the dependencies across tokens.  

x y

x
sequence length T

embedding dim. m

y
 

(in a loose sense)
sequence length T

output dim. d

1. Token 
processing

2. Sequence 
mixing 3. Prediction w1:T  wT+1

{⏟ ⏟}



• Sequence mixer captures the hidden correlation across the tokens in a sequence.


• Markov in 1913 [Markov 1913] used Markov chains to predict whether an upcoming letter 
would be a vowel or a consonant.


• Markov assumption: the probability of a next word only depends on the past 
 words, i.e., .


• Markov chain with a window size of  can be captured by the -gram models we just 
studied a few slides ago. But the learning of the Markov chain  can 
be made efficient using neural networks, for example Feed Forward Neural 
networks that computes 

 

 
for an input of past  word embeddings, weight matrix , entry-
wise scalar activation function  of choice, and output of a word embedding.

N − 1 ℙ(wt |w1:t−1) = ℙ(wt |wt−N+1:t−1)

N N
ℙ(wt |wt−N+1:t−1)

Emb(wt) = σ W
Emb(wt−N+1)
⋮

Emb(wt−1)

N − 1 W ∈ ℝm×m(N−1)

σ( ⋅ )

e.g., σ(x) = tanh(x) =
e2x − 1
e2x + 1



• Feed Forward Neural networks (FFNs) as a sequence mixer uses  recent tokens to predict next token 
similar to -gram models (differentiable and parametric version of -gram models).


• Model weight  takes as input  token embeddings, each of dimension , and outputs a 
-dimensional representation.


• Forward pass in pre-training, the pseudocode is for a single sentence (using only two recent tokens, i.e., 
), and training proceeds by taking gradient of this loss and using stochastic gradient descent (SGD)


• Initialize the input  and loss 


• For 


, 


,





• A longer window with larger  increases the model size,  
and short  cannot capture longer dependencies.

N
N N

W ∈ ℝd×Nm N m d

N = 2

x0 ← 0 L ← 0

t = 1,…, T

yt ← σ(W [xt−1
xt ])

ut ← Predict(yt)

L + = (∑
i∈𝒱

− I(i=wt+1) log(u[i]
t ))

N
N

FFN


probability


cross-entropy loss

FFN x1  y1

FFN x2  y2

FFN x3  y3

FFN x4  y4

 x0 = 0

 ⋮

Predict

 u1

Predict

 u2

Predict

 u3

Predict

 u4



• Motivated by HMMs, Recurrent Neural Networks (RNNs) as a sequence mixer tracks a hidden state 
 to capture the temporal dependencies, and uses it to compute the output  as  

 
                                 , and  
                                  
where  and  are parametric learnable functions, e.g., multiple layers of FFNs, that are the same 
across all positions in the sequence, motivated by hidden Markov models. 


• Forward pass in pre-training for RNN, the pseudocode is for a single sentence


• Initialize the state  and loss 


• For 


, 


,


,


ht ∈ ℝdh yt ∈ ℝd

ht = g(xt, ht−1)
yt = f(ht)

g( ⋅ ) f( ⋅ )

h0 ← 0 L ← 0

t = 1,…, T

ht ← g(xt, ht−1)

yt ← f(ht)

ut ← Predict(yt)

L + = (∑
i∈𝒱

− I(i=wt+1) log(u[i]
t ))

RNN


probability


cross-entropy loss

RNN x1  y1

RNN x2  y2

RNN x3  y3

RNN x4  y4

 h0 = 0

 ⋮

 h1

 h2

 h3

Predict

 u1

Predict
 u2

Predict

 u3

Predict

 u4



• RNNs are trained via teacher forcing on next word prediction:


• Given a training sequence of words, [And, it, must, follow, …], each RNN 
step predicts the next word, which is compared to the ground truths and 
the loss is computed.


• The next RNN step is fed the ground truth word as an input, and not the 
prediction from the previous step.

<BOS>



• RNN-based LM is motivated by Hidden Markov Models (HMMs), which can 
capture temporal dependencies in a hidden state, , that is not observed. 


• The probability of a next word only depends on the hidden state as
 and 
.

ht

ℙ(wt |w1:t−1, h1:t−1) = ℙ(wt |ht−1)
ℙ(ht |w1:t, h1:t−1) = ℙ(ht |wt, ht−1)

h1

h2

h3

h4

w1

w2

w3

w4

h0



• At inference-time, RNN models run auto-regressive inference over forward passes


• Initialize the state , ,  
      and 


• While True: 


, 


,


,


Set  as the embedding of the token  
for 


If  is : break 




• Output: ,  

h0 ← 0 t ← 1
x1 ← Emb(⟨BOS⟩)

ht ← g(xt, ht−1)

yt ← f(ht)

ut ← Predict(yt)

xt+1
arg max

i
u[i]

t x3 = Emb(new)

xt+1 Emb(⟨EOS⟩)

t ← t + 1

x = [x1, ⋯, xt] y = [y1, …, yt+1] .

RNN


probability

RNN x1 = Emb(BOS)  y1

RNN x2 = Emb(happy)  y2

RNN  y3

RNN x4 = Emb(year)  y4

 h0 = 0

 ⋮

 h1

 h2

 h3

Predict arg max
 u1

 happy

Predict arg max
 u2

 new

 x3 = Emb(new) Predict arg max
 u3

 year

Predict arg max  ⟨EOS⟩
 u4



• Next word prediction is a fundamental task central to various other linguistic 
tasks, but how do we use RNN-based LMs to solve them? 

Sentiment analysis in 5 star rating

Names entity recognition

Next word prediction

Machine translation

<BOS>



• RNN architectures only partially address the long-range dependency 
problem, since information in the hidden state gets diluted over 
time.


• Following problems persist: 


• long sequences have vanishing or exploding gradients [Pascanu et 
al. 2013, Hochreiter et al. 1997], 


• mode collapse (i.e., generating repetitive outputs), 


• struggle with highly variable input sizes due to limited memory 
in the hidden state, acting as a bottleneck. 


• Resource considerations: 


• Inference memory: O(d). 


• Training complexity: O(Td) 


• Training time: no parallelization O(T) due to non-linearities. 


• Many attempts to tackle these problems: LSTM [Hochreiter et al. 1997], 
GRUs [Cho et al. 2014]

RNN x1  y1

RNN x2  y2

RNN x3  y3

RNN x4  y4

 h0 = 0

 ⋮

 h1

 h2

 h3

Predict

 u1

Predict
 u2

Predict

 u3

Predict

 u4
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