
1 Chapter 12: Convex Learning Problems

1.1 Convexity

Definition 1.1 (Convex Set). A set C in a vector space is convex if for any v,w ∈ C, the line segment
between v and w is contained in C. That is, for any α ∈ [0, 1], we have

αv + (1− α)w ∈ C.

Example 2. Some convex shapes: Rd, {0}, (linear) cones.

Now, we will extend this notion to functions.

Definition 2.1 (Epigraph). The epigraph of a function f : X → R is the set

epigraph(f) = {(x, β) | f(x) ≤ β,x ∈ X}.

Definition 2.2 (Convex function). A function f is convex if epigraph(f) is a convex set.

If we “plug-in” our definitions, we can get a more explicit form:

Definition 2.3 (Convex function, expanded). Let C be a convex set. A function f : C → R is convex if for
every v,w ∈ C and α ∈ [0, 1] we have

f(αv + (1− α)w) ∈ αf(v) + (1− α)f(w).

Figure 1: Graphical depiction of Proposition 2.3

If a convex function is also differentiable, then we have a nice property that it lies above its tangent plane:

Proposition 2.4. If f is convex and differentiable, then for all v,w, we have

f(v) ≥ f(w) + ⟨∇f(w),v −w⟩︸ ︷︷ ︸
tangent plane

where ∇f(w) =
(

∂f(w)
∂w1

, . . . , ∂f(w)
∂wd

)
.
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Figure 2: Graphical depiction of Proposition 2.4

Motivation 3. Convexity is a local property that gives us global structure.

3.1 Lipschitz continuity

We will be interested in bounding the sensitivity of functions.

Definition 3.1 (Lipschitzness). Let C ⊆ Rd. A function f : Rd → Rk is ρ-Lipschitz over C if for every
w1,w2 ∈ C we have that

∥f(w1)− f(w2)∥ ≤ ρ∥w1 −w2∥.

In other words, as we change the input to the function, the output changes at most ρ times as quickly. We
call ρ the Lipschitz constant of f over C.

Example 4. Here are some Lipschitz (and non-Lipschitz) functions:

1. f(x) = |x| is 1-Lipschitz over R.

2. f(x) = x2 is not Lipschitz over R but it is 2-Lipschitz over [−1, 1].

3. f(x) =
∑∞

n=1
2−n

nπ |sin(nπx)| is 1-Lipschitz but not differentiable at any rational.

Proposition 4.1. Lipschitz functions are continuous and differentiable almost everywhere.

4.1 Smoothness (revisit)

Here is a definition of smoothness:

Definition 4.2 (Smoothness). A differentiable function f : Rd → R is β-smooth if its gradient is β-Lipschitz.

You may have seen other definitions of smoothness (so don’t get them mixed up!) This one is the most
common in optimization.

Definition 4.3 (Smoothness, expanded). A differentiable function f : Rd → R is β-smooth if for all v,w,
we have

∥∇f(v)−∇f(w)∥ ≤ ρ∥v −w∥

In other words smooth functions have gradients that cannot change too fast.

Example 5. f(x) = x2 is 2-smooth, but f(x) = x3 is not smooth over R.

6 Regularized Loss Minimization

6.1 Regularization

We will study a new learning paradigm: Regularized Loss Minimization and show that convex-Lipschitz-
bounded, and convex-smooth-bounded families of learning problems are learnable. The key insight is that
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regularizers make learning algorithms more stable.

Definition 6.1 (Regularized Loss Minimization).

A(S) = argmin
w

(LS(w) +R(w))

The idea is that the regularizer R measures the complexity of the hypothesis. We are going to focus on
Tikhonov regularization: R(w) = λ∥w∥2 for λ > 0, which is also known as “ℓ2 regularization”.

Example 7. Applying Tikhonov regularization to logistic regression

A(X,y) = argmin
w∈Rd

(
1

m

m∑
i=1

log
(
1 + exp(−y⟨w,xi⟩)

)
+ λ∥w∥2

)
.

Remark 7.1. Logistic regression without regularization is (strictly) convex. There is no closed form for the
mimimizer this time, but there are efficient solvers for this problem!

Our goal is to show the following:

Theorem 1 (Regularized logistic regression test risk bound). Let D be a distribution over X × [−1, 1], where
X = {x ∈ Rd | ∥x∥ ≤ 1}. Let H = {w ∈ Rd | ∥w∥ ≤ B}. For any ϵ ∈ (0, 1), let m ≥ 8B2/ϵ2. Then, applying
regularized logistic regression with parameter λ = ϵ/(2B2) satisfies

ES∈Dm [LD(ARLM(S))] ≤ min
w∈H

LD(w) + ϵ.

Remark 7.2. Note:

1. Both X and H are bounded. We will learn that this is important...

2. Similarly, the regularization is important.

3. We are proving a bound on the expected test error (or risk) as opposed to the usual high probability
bound on the test error. Note that the test error is random because the hypothesis A(S) is random.

4. Bounded expected risk implies agnostic PAC learnability, but we won’t prove this in this lecture.

5. We use expected risk here because it’s related to stability.

Example 8 (revisit). Applying Tikhonov regularization to linear regression

A(X,y) = argmin
w∈Rd

1

m

m∑
i=1

1

2
(⟨w,xi⟩ − yi)

2

gives us ridge regression (from CSE 448/546):

A(X,y) = argmin
w∈Rd

(
1

m

m∑
i=1

1

2
(⟨w,xi⟩ − yi)

2 + λ∥w∥2
)
.

You can find a closed form solution by setting the gradient to zero and solving for w.

Our goal is to show the following:

Theorem 2 (Ridge regression test risk bound). Let D be a distribution over X × [−1, 1], where X = {x ∈
Rd | ∥x∥ ≤ 1}. Let H = {w ∈ Rd | ∥w∥ ≤ B}. For any ϵ ∈ (0, 1), let m ≥ 150B2/ϵ2. Then, applying ridge
regression with parameter λ = ϵ/(3B2) satisfies

ES∈Dm [LD(ARLM(S))] ≤ min
w∈H

LD(w) + ϵ.
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8.1 Stability

By stability, we mean that “a small change in the input” does not “change the output much”. In particular,
on the input we consider two datasets that differ in a single example

S = (z1, z2, . . . , zi, . . . , zn)

S(i) = (z1, z2, . . . , z
′
i, . . . , zn)

and we measure the effect as the loss on zi = (xi, yi):

ℓ(A(S(i)), zi)− ℓ(A(S), zi).

Intuitively, we expect
ℓ(A(S(i)), zi)− ℓ(A(S), zi) ≥ 0.

since A(S(i)) does not get to see zi while A(S) does. If this difference is very large, then we might suspect
the algorithm is overfitting because it is performing poorly on data it hasn’t seen. On the other hand, if the
estimator is stable, then this difference shouldn’t be very big.

Now, let’s define a precise notion of stability:

Definition 8.1 (on-average-replace-one-stability). We say an algorithm A is on-average-replace-one-stable
with rate ϵ(m) if

ES,z′,i[ℓ(A(S(i)), zi)− ℓ(A(S), zi)] ≤ ϵ(m)

for all D, for some monotonically decreasing ϵ(·).

This definition is justified by the following which shows that stable algorithms generalize:

Theorem 3. Let S = (zi, . . . , zn) be iid from D and z′ ∼ D another iid sample. Let U [m] be the uniform
distribution over {1, . . . ,m}. Then for any algorithm A,

ES [LD(A(S))− LS(A(S))]︸ ︷︷ ︸
generalization gap

= ES,z′,i∼U [m][ℓ(A(S(i)), zi)− ℓ(A(S), zi)]︸ ︷︷ ︸
O.A.R.O.S.

.

Proof.

ES [LS(A(S))] = ES,i[ℓ(A(S), zi)]

and

ES [LD(A(S))] = ES,z′ [ℓ(A(S), z′)] note that S and z′ are independent

= ES,z′ [ℓ(A(S(i)), z′)] so we can swap them!

for all i ∈ [m].

8.2 Strong convexity

Assuming a convex loss function which is either Lipschitz or smooth, we show that RLM is stable because
it is strongly convex.

Definition 8.2 (Strong convexity, line segment form). A function is λ-strongly convex if for all v,w and
α ∈ (0, 1) we have

f(αv + (1− α)w) ≤ αf(v) + (1− α)f(w)− λ

2
α(1− α)∥v −w∥2︸ ︷︷ ︸
strong convexity term

.

Remark 8.3. Every convex function is 0-strongly convex.
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Remark 8.4. Personally, I find this definition a bit difficult to understand at first glance. If we name the
RHS g(α) then note the following:

1. g(0) = w.

2. g(1) = v.

3. d2g
dα2 = λ∥v−w∥2 but this is in the α coordinate system. In the “C” coordinate system, the curvature
is λ!

Figure 3: Graphical depiction of Proposition 8.2

For twice continuously differentiable functions, there is a nice test based on global minimum eigenvalue of
the Hessian:

Proposition 8.5. Twice continuously differentiable f is λ-strongly convex iff ∇2f(w) ⪰ λI for all w.

Example 9. Here are some examples:

1. The function f(w) = ∥w∥2 is 2-strongly convex (and f(w) = λ∥w∥2 is then clearly 2λ-strongly-convex).

2. Draw some function which is not strongly convex...

3. Give a sketch for why strong convexity + a nice loss gives stability of A(S).

Proposition 9.1. If f is convex and g is λ-strongly convex then f + g is λ-strongly convex.

These follow from the definition.

Now, recall that RLM was defined as

A(S) = argmin
w

(LS(w) + λ∥w∥2)︸ ︷︷ ︸
denote by fS(w)

.

and from the above, we know that fS(w) is 2λ-strongly convex.

Proposition 9.2. If f is λ-strongly-convex, and u∗ is the minimizer of f then for all w,

f(w)− f(u∗) ≥ λ

2
∥w − u∗∥2.

Proof. From the definition of strong convexity,

f(u∗) ≤ f(αw + (1− α)u∗) ≤ αf(w) + (1− α)f(u∗)− λ

2
α(1− α)∥w − u∗∥2.

Collecting like terms and dividing by α > 0

f(u∗) ≤ f(w)− λ

2
(1− α)∥w − u∗∥2.
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Rearranging this and taking α → 0+ gives the desired result.

Let’s try to bound ∥A(S(i))−A(S)∥. We’ll do this by bounding fS(A(S(i)))− fS(A(S)) on both sides.

Lower bound: Note that u∗ = A(S) in Proposition 9.2 so since fS(w) is 2λ-strongly convex, we have

fS(A(S(i)))− fS(A(S)) ≥ λ∥A(S(i))−A(S)∥2.

Upper bound: We have

fS(A(S
(i))︸ ︷︷ ︸

ŵ(i)

)− fS(A(S)︸ ︷︷ ︸
ŵ

) = LS(ŵ
(i))︸ ︷︷ ︸

L
S(i) (ŵ(i))+

ℓ(ŵ(i),zi)−ℓ(ŵ(i),z′)
m

+λ∥ŵ(i)∥2 − LS(ŵ)︸ ︷︷ ︸
L

S(i) (ŵ)+
ℓ(ŵ,zi)−ℓ(ŵ,z′)

m

−λ∥ŵ∥2

=
(
LS(i)(ŵ(i)) + λ∥ŵ(i)∥2︸ ︷︷ ︸

f
S(i) (ŵ(i))

−LS(i)(ŵ(i)) + λ∥ŵ(i)∥2︸ ︷︷ ︸
f
S(i) (ŵ)

)
︸ ︷︷ ︸

≤ 0 because ŵ(i) minimizes f
S(i)

+
ℓ(ŵ(i), zi)− ℓ(ŵ, zi)

m
− ℓ(ŵ(i), z′)− ℓ(ŵ, z′)

m

Chaining the two inequalities together, we get

λ∥A(S(i))−A(S)∥2 ≤ ℓ(A(S(i)), zi)− ℓ(A(S), zi)

m
− ℓ(A(S(i)), z′)− ℓ(A(S), z′)

m
. (1)

9.0.1 Lipschitz loss

If the loss function ℓ(·, z) is ρ-Lipschitz for all z, then

ℓ(A(S(i)), zi)− ℓ(A(S), zi) ≤ ρ∥A(S(i))−A(S)∥, and (2)

ℓ(A(S(i)), z′)− ℓ(A(S), z′) ≤ ρ∥A(S(i))−A(S)∥.

Plugging these both into (1), we get

λ∥A(S(i))−A(S)∥2 ≤ 2ρ∥A(S(i))−A(S)∥
m

.

Rearranging this yields

∥A(S(i))−A(S)∥ ≤ 2ρ

λm
.

Plugging this into (2), we get

ℓ(A(S(i)), zi)− ℓ(A(S), zi) ≤
2ρ2

λm
.

Since this holds for any S, z′, i, we have the stability we desire:

Corollary 9.3. For convex and ρ-Lipschitz loss function, then RLM with R(w) = λ∥w∥2 is on-average-

replace-one-stable with rate 2ρ2

λm .

Corollary 9.4. Applying Theorem 3, we obtain

ES [LD(A(S))− LS(A(S))] ≤ 2ρ2

λm
.

Remark 9.5. The RHS is small when ρ is small (loss is less sensitive) and when λ is large (regularization
is strong).
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9.0.2 Smooth and Nonnegative Loss (revisit)

Proposition 9.6. Assume the loss function is β-smooth and nonegative, then the RLM rule with the
regularizer λ∥w∥2, where λ ≥ 2β

m , satisfies

ES [LD(A(S))− LS(A(S))] ≤ 48β

λm
E[LS(A(S))].

9.1 Controlling the Fitting-Stability Tradeoff

Ok we bounded the generalization gap, but what we wanted is to bound the test loss. Let’s expand

ES [LD(A(S))] = ES [LS(A(S))] + ES [LD(A(S))− LS(A(S))]︸ ︷︷ ︸
bounded by stability!

≤ ES [LS(A(S)) + λ∥A(S)∥2] + 2ρ2

λm

≤ ES [LS(w
∗) + λ∥w∗∥2] + 2ρ2

λm
for any w∗

= LD(w
∗) + λ∥w∗∥2 + 2ρ2

λm︸ ︷︷ ︸
λ trades off

.

Corollary 9.7 (Convex-Lipschitz-bounded test risk bound). If ℓ(·, z) is convex and ρ-Lipschitz for all z and

∥w∗∥ ≤ B, then for λ =
√

2ρ2

B2m , RLM with regularization R(w) = λ∥w∥2 satisfies

ES(LD(A(S))) ≤ min
w∈H

LD(w) + ρB

√
8

m
.

Remark 9.8. Solving for m, we see that if m > 8ρ2B2/ϵ2 then for every distribution D,

ES [LD(A(S))] ≤ min
w∈H

LD(w) + ϵ.

This proves Theorem 1 after we note that with our bounds, logistic regression is 1-Lipschitz.

Now revisiting the convex-smooth-bounded case, we have

Corollary 9.9 (Convex-smooth-bounded test risk bound). If ℓ(·, z) is convex and β-smooth for all z, ∥w∗∥ ≤
B, and ℓ(0, z) ≤ 1 for all z and for any ϵ ∈ (0, 1) we have m ≥ 150βB2

ϵ2 , then for λ = ϵ/(3B2), RLM with
regularization R(w) = λ∥w∥2 satisfies

ES [LD(A(S))] ≤ min
w∈H

LD(w) + ϵ.

This proves Theorem 2 after observing that in our setting, ridge regression is β = 1 smooth.
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