Is
$$(V_s'(\Pi^{\leq s}) < 0) \quad P \quad V_s(\Pi^{\leq s}) > 0)$$
 $\exists \quad P \in \{0, tm, 2m, ... 1\} \quad s.t. \quad V_s'(\Pi^{\leq s}) \geq 0$
 $P \quad V_s'(\Pi^{\leq s}) \leq 0$

Compute q :

 $Q \cdot V_s'(\Pi^{\leq s}) + (l-q) \quad V_s'(\Pi^{\leq s}) \leq 0$
 $V_s'(\Pi^{\leq s}) \leq 0$

Play $P \quad \omega \neq q \quad This means$
 $P^{tm} \quad \omega p \quad l-q \quad The$
 $P^{tm} \quad \omega p \quad l-q \quad The$

So, this strategy nakes the 1st term o(t)
Won't show but $Z = \frac{1}{N(T)} = 0 \left(\frac{1}{N} \right) \left(\frac{1}{N$

Now,	we	arqued	one	con	get	online	calibration
It's	also	more	mea	ningful	than	online	MMC since
	the	least it	won't	allow ?	2010	1010	MMC since

But it still is mostly arguing that y's aps aren't too anticorrelated, still pretty global if your predictions are constant. EG. P= y is calibrated.

More meaningful when your predictor has more variability

what about asking for "good" prod on sets defined in a way I of predictions?

Eg, are ps similarly interpretable for XETAII as XEShort?

Also kind of weird that we haven't touched is yet, other than that predictions might come fronther.

Attempt 2: Marginal mean consistency for (quantile) groups

2: Calibration 1 groups

Let 6 £21 be a collection of group fns, ge6 is a subset of X, garefo, is g(x)=1 "x belonge to g". Then, M(g) = Pr[g(x)=1] is g's frequency/mass a-approx group mmc for 6 if Def f is Mig) [Eff)|g(x)=17 - A[Jlg(x)=1]] = ~~ If f isn't a-approx group MMC for G, patching will decrease z ed error, by $M(g) \cdot \Delta^z \geq \infty$ So a rounds will lead to termination. This is more meaningful than MMC for expressive G: eg G=27. However, this should lead us to wondering how much additional date we need to satisfy it... to estimate MMC for each grap, for example. (Hint: One way to do this is to treat 6 like 241) 161 or vcco)

Let's talk Now about group conditional calibration. We call this multialibration: Defl Fix (: x>[0,1] and group g: x => 50,13. Aug 2 cal error of f on g is $K_2(f,g,\overline{J}) = \begin{cases} Pr(f(x)=v \mid g/x=1] & (v - El y \mid f(x)=v) \end{cases}$ Ideally, went a avg² calibration error $\forall g \in G$, but weighted by group mass $K_2(f,g,D) \leq d$ d-multicalibrated ust 6. well, if your of isn't we can pertenit! v' if f(x)=v, g(x)=1h(x,f;v=v',g)= {f(x) o/w One subtle ty here. Originally calibration patching mapped values veR(+) to v'ECR(+)), no more than (RG) outputs.

w this, verify φ geb \Rightarrow v', could increase to IRIF)[-16].

	•	7	e ex	sen	Worse	sorta	since	we're	adding to
	•	T	2(f)	•				•	
C	lur B	ner!	score	. 4	is P	(C ₄₁) -	B(C ₁) =	. M . (v	1,84)(nt-nt)
A	natu	val	fix	is 4	o def	ine oc	r grid	- of	
•	pre	dict	ion	val	nes	in ad	vance	· / ·).
•	٠					R(f)			[長]
•	•	•	•	•			•		
•	•		•			2 U+	(v _{+,g+})((V+-V4)	2 - 1 - 42
•	•		•	• •				•	

•

•

•

•

•