CSE493S — Homework 2: Calibration

Marginal Mean/Quantile Consistency and Basic Theoretical Calibration

Due: Tue Nov 25, 2025 at 11:59pm Name: _____

Q1. Murphy's Brier Decomposition (10 pts). Suppose there are n examples $(x_1, y_1), \ldots, (x_n, y_n)$ with binary labels $y_i \in \{0, 1\}$ and probability forecasts $p_1, \ldots, p_n \in [0, 1]$. Partition the index set $\{1, \ldots, n\}$ arbitrarily into disjoint groups S_1, \ldots, S_B whose union is $\{1, \ldots, n\}$. For each bin b, define $n_b = |S_b|$, $w_b = n_b/n$, the empirical event rate $r_b = \frac{1}{n_b} \sum_{i \in S_b} y_i$, and the average forecast $c_b = \frac{1}{n_b} \sum_{i \in S_b} p_i$. Let the overall event rate be $r = \frac{1}{n} \sum_{i=1}^n y_i$. Show the empirical identity

Brier score =
$$\frac{1}{n} \sum_{i=1}^{n} (y_i - p_i)^2 = \underbrace{r(1-r)}_{\text{uncertainty}} - \underbrace{\sum_{b=1}^{B} w_b (r_b - r)^2}_{\text{resolution}} + \underbrace{\sum_{b=1}^{B} w_b (c_b - r_b)^2}_{\text{reliability}}.$$

Provide a short derivation (e.g., add-and-subtract r_b , expand, and average within bins). Conclude that replacing each p_i by r_b for $i \in S_b$ (bin-wise recalibration) reduces the Brier score by exactly the reliability term and leaves uncertainty and resolution unchanged.

- **Q2.** The Weather Factory (10 pts). Suppose nature draws a latent rain probability $B \sim D$ for some fixed but unknown distribution on [0,1]. Then, conditioned on $B, Y \mid B \sim \text{Bernoulli}(B)$. You must forecast a single constant q (without assuming any parametric form for D). Prove $q^* = \mathbb{E}[B]$ (assume $\mathbb{E}[B]$ exists). Express the optimal squared-loss risk $\min_q \mathbb{E}[(Y-q)^2]$ in terms of Var(Y) and Var(B). For clarity, define irreducible noise as $\mathbb{E}[B(1-B)]$ and heterogeneity as Var(B). Using the law of total variance, $\text{Var}(Y) = \mathbb{E}[B(1-B)] + \text{Var}(B)$; in particular, the optimal constant risk equals Var(Y). Briefly explain the roles of irreducible noise and heterogeneity.
- Q3. A/B Testing: One Constant Score (10 pts). A recommendation engine routes each user to arm A with probability α and to arm B with probability $1-\alpha$ (A/B testing). Let the binary outcome be Y (e.g., click/purchase). Under arm A the event rate is π_A ; under arm B it is π_B . If forced to output a single constant score q for all users, show $q^* = \alpha \pi_A + (1-\alpha)\pi_B$. Compute the Brier score increase versus arm-specific optimal constant scores (π_A on A and π_B on B) and show it equals $\alpha(1-\alpha)(\pi_A-\pi_B)^2$. Provide one–two sentences of interpretation.
- Q4. Label Shift: Should We Invert? (10 pts). Consider regression for a binary outcome task, where the prevalence of label 1 is π_{train} (and label 0 has $1-\pi_{\text{train}}$). At deployment, the marginal prevalence shifts to $\pi_{\text{deploy}} = 1 \pi_{\text{train}}$ (label shift), but the model still outputs probabilities p learned under π_{train} .
- Derive the deployment Brier scores for using p and for using 1-p. Show that their difference satisfies

$$\Delta = \mathbb{E}[(Y - (1 - p))^2] - \mathbb{E}[(Y - p)^2] = 1 - 2\mathbb{E}[Y] - 2\mathbb{E}[p] + 4\mathbb{E}[pY],$$

where expectations are under the deployment distribution.

• Give conditions under which flipping to 1-p strictly *improves* the Brier score after the shift (i.e., $\Delta < 0$). Identify any degenerate cases where neither choice changes the Brier score (e.g., constant $p \equiv 0.5$).

1

- Q5. The Tie Zone (8 pts). For a discrete distribution with atoms near the median, characterize the full set of 0.5-quantiles and explain why the pinball risk is flat on that interval. Provide a concrete example (e.g., a five-point support) and identify all medians.
- **Q6.** Mean vs. Median Target (8 pts). Switch to absolute loss $L(m) = \mathbb{E}[|Y m|]$. Show that any minimizer is a median (0.5-quantile), contrasting with squared loss targeting the mean. Give one operational implication when choosing loss.
- Q7. Calibration vs. Sharpness Trade-off (12 pts). You are given per-model bin summaries (each model's bins are formed by its own predicted probabilities). For both models, the overall event rate is the same: $\bar{r} = 0.5$.

Model A bins

$$w^A = (0.30, 0.40, 0.30), \quad r^A = (0.20, 0.50, 0.80), \quad c^A = (0.18, 0.50, 0.82).$$

Model B bins

$$w^B = (0.25, 0.50, 0.25), \quad r^B = (0.10, 0.50, 0.90), \quad c^B = (0.15, 0.50, 0.85).$$

- (a) Verify that $\sum_b w_b^A r_b^A = \sum_b w_b^B r_b^B = \bar{r} = 0.5$. Compute the uncertainty term $\bar{r}(1-\bar{r})$.
- (b) Using Murphy's decomposition with each model's own bins, compute the resolution for each model: $\sum_b w_b (r_b \bar{r})^2$. Which model is sharper (higher resolution)?
- (c) Compute the reliability for each model: $\sum_b w_b (c_b r_b)^2$. Which model is better calibrated (lower reliability)?
- (d) Compute each model's Brier score via Brier = $\bar{r}(1-\bar{r})$ resolution + reliability. Which model has the lower Brier score on this dataset?
- (e) In 3–5 sentences, explain how one model can be *more calibrated but less sharp*, while the other can be *less calibrated but sharper*. Conclude why calibration does not directly determine sharpness (and vice versa).