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Figure 1 Examples of ongmnal zip codes (top) and normalized digits from the
testing set (bottom).

| eCun et al.



http://yann.lecun.com/exdb/publis/pdf/lecun-89e.pdf

The OCR Task
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Executive Mansion,

Washington City,

January 15th, 1864

Major General Hitchcock, Commissioner
of Exchanges, is authorized and
directed to offer Brigadier General

Trimble, now a prisoner of war in Fort
McHenry, in exchange for Major White,
who is held as a prisoner at Richmond.
He is also directed to send forward the
offer of exchange by Henry M. Warfield,
Esq. of Baltimore, under a flag of
truce, and give him a pass to City
Point.

Abraham Lincoln

OImoOCR



https://olmocr.allenai.org/blog

The OCR Task

An expensive undertaking

« $734k grant to TAMU to OCR 300k documents digitized from microfilm
* poor image quality (imaged in 70s, microfilm in 80s, digitized in 90s)
e poor print quality (premodern printing techniques)

 damaged documents (from 1746 to 1800)

 €11.5 million project by the EU to improve OCR tools

Christy et al. ; UKOLN



https://doi.org/10.1145/3075645
https://www.ukoln.ac.uk/projects/impact/index.html

The OCR Task

A difficult undertaking

“All work currently being performed In the
field of cultural analytics on documents
published before 1800 ... Is producing
conclusions that are only about 50%
reliable.”

OCR results “are poor or even useless”



https://doi.org/10.1145/3075645

The OCR Task

Traditional approaches
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Figure 2. Block diagram of the Tesseract word recognizer.

Ray Smith



https://doi.org/10.1117/12.2010051

The OCR Task

Modern ML pipeline approaches

Document Preprocessing

Content Parsing

Content Post-Processing

VILT: Visson-and-Language Transformer
Without Comvelution or Region Supervision

\\\\\

v'Language?

v’ Width/Height?
v'Page number?
v'Is encrypted?
v'Need password?
v'Is scanned?

B Vislon-and-Language Transformer
Without Canvolution or Region Supervision

stat MLT 10 Jun 200

v’ Layout Detection
v'Formula Detection

v'Formula Recognition

v’ Table Recognition
v'OCR

v'Deal with overlap bbox
v Crop image and table
v'Delete header/footer/...

v'Reading order

=

Format Conversion
fm
Markdown
N
"JSON |
Middle JSON
Result — ‘
v'Middle Json
v Markdown
v'Final Json

Figure 1: Overview of the MinerU framework processing workflow.

MinerU



https://arxiv.org/abs/2409.18839

The OCR Task

Modern ML pipeline approaches

Performance
(%)

Cost
($ / mil pages)

MinerU

61.5

596

olmoQOCR



https://arxiv.org/pdf/2502.18443

The OCR Task

Off-the-shelf VLMs

Performance Cost

(%) ($ / mil pages)
MinerU 61.5 596
Qwen2-VL 31.5 176
GPT-40 68.9 6240

olmoQOCR



https://arxiv.org/pdf/2502.18443

The OCR Task

Off-the-shelf solutions force tradeoffs

Performance Cost

(%) ($ / mil pages)
MinerU 61.5 596
Qwen2-VL 31.5 176
GPT-40 68.9 6240
Marker /0.1 1484

olmoQOCR
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The OCR Task

Off-the-shelf solutions force tradeoffs

Performance Cost

(%) ($ / mil pages)
MinerU 61.5 596
Qwen2-VL 31.5 176
GPT-40 68.9 6240
Marker 70.1 1484

gold standard

olmoOCR
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The OCR Task

Off-the-shelf solutions force tradeoffs

Performance Cost
(%) ($ / mil pages)
MinerU 61.5 596
Qwen2-VL 31.5 176
GPT-40 68.9 6240
Marker 70.1 1484

small, open-weight model

gold standard

olmoOCR



https://arxiv.org/pdf/2502.18443

How could we improve
OCR in Qwen2-VL?

fine-tune the model on OCR data!



Fine-tuning for OCR

Continue training Qwen2-VL, only on OCR data

Document type Fraction

Academic 55.9%

S Unique Total Brochure 11.2%

ource

docs  pages Legal 10.2%

Books 6.8%

Web crawled PDFs 96,929 240,940 Table 5 6%
Internet Archive books 5,896 17,701 Diagram 4.7%
Total 102,825 258,641 Slideshow 1.9%
Other 3.7%

Table T 0lmOCR-mix-0225 composition by source.

type.

Table 2 01mOCR-mix-0225 PDFs breakdown by document

olmoQOCR
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The OCR Task

Off-the-shelf solutions force tradeoffs

Performance Cost
(%) ($ / mil pages)
MinerU 61.5 596
Qwen2-VL 31.5 176
GPT-40 68.9 6240
Marker 70.1 1484

small, open-weight model

gold standard

olmoOCR
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The OCR Task

Off-the-shelf solutions force tradeoffs

Performance Cost
(%) ($ / mil pages)

MinerU 61.5 596

Qwen2-VL 31.5 176

olmOCR (4.7 176

GPT-40 68.9 6240

Marker 70.1 1484

small, open-weight model

small, open-weight model

(old) gold standard

olmoOCR



https://arxiv.org/pdf/2502.18443

What is fine-tuning?

Take a useful model that already knows a lot and update it slightly

=

-

@ — &

Slide credit to Scott Geng



Why fine-tune?

Better, cheaper applications

Pretrain

all of the internet

Slide credit to Scott Geng



Why fine-tune?

Better, cheaper applications

5 ,::x Pretrain Fmetune
K{ \Vﬁ ($100M) @ @

($1 00k)

Qwen Qwen
(base) Medical

all of the internet

Slide credit to Scott Geng



Why fine-tune?

Better, cheaper applications

({ f ;\1\ Pretrain Fmetune

($100k)

Qwen Qwen

all of the internet (base) Math



Why fine-tune?

Better, cheaper applications

/{ 5 {\1 Pretrain Fmetune
\V§ ($100M) @ {;

($100k)

Qwen Qwen

all of the internet (base) Code



Why fine-tune?

Align with human preferences

Slide credit to Scott Geng

A promptis
sampled from our
prompt dataset.

A labeler
demonstrates the
desired output
behavior.

This data is used to
fine-tune GPT-3.5
with supervised
learning.

=
A

Explain reinforcement

learning to a 6 year old.

#

&

4

We give treats and

punishments to teach...

OpenAl



https://cdn.openai.com/papers/Training_language_models_to_follow_instructions_with_human_feedback.pdf#page=3

Why fine-tune?

Democratize Al

Everyone should be able to easily adapt
a very capable (very big) base model
to whatever task they want



Fine-tuning allows specialized
models for different tasks or users

all originating from ONE base model



Why not fine-tune?

It’s expensive!

* During training:
 must load optimizer state for entire model —> high memory overhead
 meaningfully improving a terabyte-size model requires many GPU hours
* During inference:
 must load different massive models for each user
e can’t cache models

e takes minutes to load



The fine-tuning dilemma

* Fine-tuning is often necessary (e.g., OCR, code)

* Fine-tuning is prohibitively expensive

What should we do ?!?



The fine-tuning dilemma

* Fine-tuning is often necessary (e.g., OCR, code)

* Fine-tuning Is prohibitively expensive

What if we only “tuned” a very small portion of the parameters?



Intrinsic Dimension

Consider our optimization landscape in |

Lecture 4, Slide 24



Intrinsic Dimension

Restrict ourselves to optimizing Iin a subspace |

Li et al. 2018



https://arxiv.org/pdf/1804.08838

Intrinsic Dimension

Optimize over a d-dimensional subspace of R” for d < D

D

 The problemisin |
« We will estimate the smallest d such that the problem can be “solved”
» We will call d the problem’s intrinsic dimension

« Formally, d = D — s where s is the dimension of the problem’s solution set

Li et al. 2018



https://arxiv.org/pdf/1804.08838

Intrinsic Dimension
Toy Example

e LetD = 1000

e | oss function requires first 100 elements to sum to 1,
second 100 elements to sum to 2, etc.

* |ndeed, from any point with 0-loss we can move in 990 orthogonal directions
while remaining at 0-loss —> solution set is a 990 dimensional hyperplane

e« Sod=D —s5=1000-990 = 10

* |Indeed, one only needs to get 10 dimensions “right” to solve this problem

Li et al. 2018



https://arxiv.org/pdf/1804.08838

Intrinsic Dimension

Estimating d for neural nets

 Aforementioned examples are easy to work out algebraically

« For the mess that is neural networks, we will estimate d by training models

0P = 0\ + PY'Y

Li et al. 2018



https://arxiv.org/pdf/1804.08838

Intrinsic Dimension

Estimating d for neural nets

 Aforementioned examples are easy to work out algebraically

 For the mess that is neural networks, we will estimate d by training models

randomly initialized trainable

params params
0" = 9\ + PGV
final random projection

params matrix:d = D

Li et al. 2018



https://arxiv.org/pdf/1804.08838

Intrinsic Dimension

Estimating d for neural nets

 Aforementioned examples are easy to work out algebraically

« For the mess that is neural networks, we will estimate d by training models

RP R4

0 = 9\ + POV

RD RDxd

Li et al. 2018



https://arxiv.org/pdf/1804.08838

Intrinsic Dimension

Estimating d for neural nets

« “Baseline solution” is a model allowed to optimize in | D space

» Increase d until performance nears the baseline solution

0P = 0\ + POV

Li et al. 2018



https://arxiv.org/pdf/1804.08838

Intrinsic Dimension
Estimating d for MNIST

* Architecture: FCNet with two hidden layers of width 200

o« D =199.,210 but we reach 90% of baseline near d = 750
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Li et al. 2018



https://arxiv.org/pdf/1804.08838

Intrinsic Dimension
Estimating d for MNIST

e Architecture: LeNet

o D = 44426 but we reach 90% of baseline near d = 290
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Li et al. 2018



https://arxiv.org/pdf/1804.08838

Intrinsic Dimension

Estimating d for classic datasets

Dataset CIFAR-10 ImageNet
Network Type FC LeNet | SqueezeNet
Parameter Dim. D 656,810 | 62,006 1,248,424
Intrinsic Dim. d;nt90 9,000 2,900 > 500k

Li et al. 2018



https://arxiv.org/pdf/1804.08838

Intrinsic Dimension

Takeaways

* Classic computer vision problems require far fewer dimensions to solve than
the size of our models would make you think

* “once a parameter space Is large enough to solve a problem, extra
parameters serve directly to increase the dimensionality of the solution
manifold”

 With larger models, solutions have greater redundancy
—> “cover’ more space —> easler to train

Li et al. 2018



https://arxiv.org/pdf/1804.08838

Intrinsic Dimension

Extended to fine-tuning

* Fine-tuning transformers for classic NLP tasks has a similar phenomenon

« Main change in formulation: 6’(§D ) is now our pre-trained base model

* (We’ll ignore some changes necessary for complexity of large models)

0P = 0\ + POV

Gupta et al. 2020



https://arxiv.org/pdf/2012.13255

Intrinsic Dimension

Extended to fine-tuning

* Fine-tuning transformers for classic NLP tasks has a similar phenomenon

SAID:
small changes
we glossed over

SAID DID

DID:
exactly what we learned

Model

BERT-Base
BERT-Large

RoBERTa-Base
RoBERTa-Large

Gupta et al. 2020
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Intrinsic Dimension

Extended to fine-tuning

* Fine-tuning transformers for classic NLP tasks has a similar phenomenon

SAID:
small changes
we glossed over

DID:
exactly what we learned

SAID DID
Model MRPC QQP MRPC QQP
BERT-Base
BERT-Large
RoBERTa-Base
RoBERTa-Large

Gupta et al. 2020
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Intrinsic Dimension

Extended to fine-tuning

* Fine-tuning transformers for classic NLP tasks has a similar phenomenon

# params

110M
340M

125M
355M

SAID:

small changes
we glossed over

DID:

exactly what we learned

SAID DID
Model MRPC QQP MRPC QQP
BERT-Base 1608 8030 1861 9295
BERT-Large 1037 1200 2493 1389
RoBERTa-Base 896 896 1000 1389
RoBERTa-Large 207 774 322 774

Gupta et al. 2020



https://arxiv.org/pdf/2012.13255

LoRA

Low-Rank Adaptation

* Previous papers: models “reside on a low intrinsic dimension”
* LoRA extends this notion to fine-tuning

* “"hypothesize that the change in weights during model adaptation
also has a low ‘intrinsic rank™

Hu et al. 2021



https://arxiv.org/pdf/2106.09685

Forget the previous definitions
of d, D, etc.



LoRA

Linear Transformation of a Full Rank Matrix ( rank = d )

R4 R4

Hu et al. 2021



https://arxiv.org/pdf/2106.09685

LoRA

Linear Transformations via an Intermediate Matrix (rank =r < < d)

R4 R4
I “ I

Hu et al. 2021



https://arxiv.org/pdf/2106.09685

LoRA

On a pre-trained model: freeze W, train A, B

input: x output: /

Hu et al. 2021



https://arxiv.org/pdf/2106.09685

LoRA

Compare pink triangles vs. the blue dot
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LoRA

8 < r<512is common in literature (where, often, d = 4096)
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https://thinkingmachines.ai/blog/lora/#optimal-learning-rate-and-rank

LoRA

Less “forgetting” of source domain
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https://arxiv.org/pdf/2405.09673

LoRA

But still learns (approximately) as much
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LoRA

Preserves token diversity, which full fine-tuning is known to lose
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https://arxiv.org/pdf/2405.09673

LoRA

Too weak sometimes

 oImOCR used full fine-tuning, not LORA
* OpenThoughts used full fine-tuning, not LoRA



LoRA

During deployment

input: x output: /1




LoRA

During deployment

input: x output: /1




LoRA

During deployment

input: x output: /1

* W+ AW € R *




LoRA

During deployment

input: x output: /1




LoRA

Switching models

« Subtracting your adapter AW = AB from the updated weight matrix
yields your original weights!

o Simplifies deploying many fine-tuned models:
* don’t need to keep multi-terabyte copies of fine-tuned models

* instead, keep one master copy of the full base model, and
then one copy for each of your (small) adapters

Edward Hu



https://www.youtube.com/watch?v=DhRoTONcyZE

LoRA

Hierarchy of modules
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Edward Hu
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thinkingmachines.ai/blog/lora




Full FT Is expensive

OK at an industry scale ... what about everyone else?

. ull Finetunin
* Cost per param: F(No';datp ning
¢ We|ght 2 byte ;)ptimizer
tate
» Weight gradient: 2 byte (32 b1
» Optimizer state: 8 byte Adapters l l l
 Jotal: 12 bytes per parameter
Base T T T
» 70B model -> 840 GB of GPU memory Model
-> 18X data Center GPUS 16-bit Transformer

Parameter Updates ===
Gradient Flow ==l

Slide Credit to Tim Dettmers



https://www.youtube.com/watch?v=fQirE9N5q_Y

LORA iIs expensive

OK at an R1 scale ... what about everyone else?

» Cost per param: ongin
ptimizer
* Weight: 16 bits State D D D
(32 bit)
* Weight gradient: ~0.4 bit l l
T T

Adapters é
1

* Optimizer state: ~0.8 bit (16 bit)

* Adapter weights: ~0.4 bit T T T
B

 [otal: 17.6 bits per parameter Ma::e|

16-bit Transformer

 7/0B model -> 154 GB of GPU memory
-> 4x data center GPUs |
OR 8x consumer GPUs Gradient Flow =

Parameter Updates ===

Slide Credit to Tim Dettmers



https://www.youtube.com/watch?v=fQirE9N5q_Y

QLORA is affordable

Fine-tuning for everyone!

» Cost per param: ;I::Lmizer .

. Weight: 4 bits (32 bit) l l

» Weight gradient: ~0.4 bit Adapters () (O O

(16 bit)
o Optimizer state: ~0.8 bit W
o Adapter weights: ~0.4 bit Base

_ Model |
* [otal: 5.2 bits per parameter 4-bit Transformer

/0B model -> 46 GB of GPU memory
-> 1x data center GPUs |
OR 2x consumer GPUs Gradient Flow ==jp

Parameter Updates ===

Slide Credit to Tim Dettmers



https://www.youtube.com/watch?v=fQirE9N5q_Y

QLOoRA

Core Components

 Double quantization: reduce space taken up by quantization constants by
quantizing those constants themselves!

* saves 0.4 bits of space per weight

 Quantize model to 4 bits: uses new data type (NF4) that is optimal for
normal distribution

 Paged optimizers: engineering trick for GPU memory spikes; we skip this

Dettmers et al. 2023



https://arxiv.org/pdf/2305.14314

QLOoRA

Produces LoRA Adapters on Fewer GPUs

« 4-bit quantized weights used during QLoRA
* not required to keep them quantized during serving
* QLOoRA yields 16 bit adapters
» could add/merge these with original weights then re-quantize

e could swap them into original weights



Summary

» (reat practical utility in fine-tuning base models for specific applications
* Full fine-tuning is prohibitively expensive to conduct and annoying to serve
 LoRA only adapts a certain subset of the model’s parameters

 Motivated by notion of a model’s intrinsic dimension being small

o Simplifies model serving since adapters can be easily “swapped” in/out

 QLoRA reduces the memory overhead when training LoRA adapters



