
Tanush Yadav

Parameter-Efficient Fine-Tuning
CSE 493G, Winter 2026

The OCR Task

LeCun et al.

http://yann.lecun.com/exdb/publis/pdf/lecun-89e.pdf

The OCR Task

OlmoOCR

https://olmocr.allenai.org/blog

The OCR Task
An expensive undertaking

• $734k grant to TAMU to OCR 300k documents digitized from microfilm

• poor image quality (imaged in 70s, microfilm in 80s, digitized in 90s)

• poor print quality (premodern printing techniques)

• damaged documents (from 1746 to 1800)

• €11.5 million project by the EU to improve OCR tools

Christy et al. ; UKOLN

https://doi.org/10.1145/3075645
https://www.ukoln.ac.uk/projects/impact/index.html

The OCR Task
A difficult undertaking

“All work currently being performed in the
field of cultural analytics on documents
published before 1800 … is producing
conclusions that are only about 50%
reliable.”

Christy et al.

OCR results “are poor or even useless”

https://doi.org/10.1145/3075645

The OCR Task
Traditional approaches

Ray Smith

https://doi.org/10.1117/12.2010051

The OCR Task
Modern ML pipeline approaches

MinerU

https://arxiv.org/abs/2409.18839

The OCR Task

Performance  
(%)

Cost  
($ / mil pages)

MinerU 61.5 596

olmoOCR

Modern ML pipeline approaches

https://arxiv.org/pdf/2502.18443

The OCR Task
Off-the-shelf VLMs

Performance  
(%)

Cost  
($ / mil pages)

MinerU 61.5 596

Qwen2-VL 31.5 176

GPT-4o 68.9 6240

olmoOCR

https://arxiv.org/pdf/2502.18443

The OCR Task
Off-the-shelf solutions force tradeoffs

Performance  
(%)

Cost  
($ / mil pages)

MinerU 61.5 596

Qwen2-VL 31.5 176

GPT-4o 68.9 6240

Marker 70.1 1484

olmoOCR

https://arxiv.org/pdf/2502.18443

The OCR Task
Off-the-shelf solutions force tradeoffs

Performance  
(%)

Cost  
($ / mil pages)

MinerU 61.5 596

Qwen2-VL 31.5 176

GPT-4o 68.9 6240

Marker 70.1 1484

olmoOCR

gold standard

https://arxiv.org/pdf/2502.18443

The OCR Task
Off-the-shelf solutions force tradeoffs

Performance  
(%)

Cost  
($ / mil pages)

MinerU 61.5 596

Qwen2-VL 31.5 176

GPT-4o 68.9 6240

Marker 70.1 1484

olmoOCR

gold standard

small, open-weight model

https://arxiv.org/pdf/2502.18443

How could we improve  
OCR in Qwen2-VL?

fine-tune the model on OCR data!

Fine-tuning for OCR
Continue training Qwen2-VL, only on OCR data

olmoOCR

https://arxiv.org/pdf/2502.18443

The OCR Task
Off-the-shelf solutions force tradeoffs

Performance  
(%)

Cost  
($ / mil pages)

MinerU 61.5 596

Qwen2-VL 31.5 176

GPT-4o 68.9 6240

Marker 70.1 1484

olmoOCR

gold standard

small, open-weight model

https://arxiv.org/pdf/2502.18443

The OCR Task
Off-the-shelf solutions force tradeoffs

Performance  
(%)

Cost  
($ / mil pages)

MinerU 61.5 596

Qwen2-VL 31.5 176

olmOCR 74.7 176

GPT-4o 68.9 6240

Marker 70.1 1484

olmoOCR

(old) gold standard

small, open-weight model

small, open-weight model

https://arxiv.org/pdf/2502.18443

What is fine-tuning?
Take a useful model that already knows a lot and update it slightly

Slide credit to Scott Geng

Why fine-tune?
Better, cheaper applications

Slide credit to Scott Geng

all of the internet

Pretrain

($100M)

Qwen
(base)

Why fine-tune?
Better, cheaper applications

Slide credit to Scott Geng

all of the internet

Pretrain

($100M)

Finetune

($100k)

Qwen
(base)

Qwen 
Medical

Why fine-tune?
Better, cheaper applications

all of the internet

Pretrain

($100M)

Finetune

($100k)

 Qwen
Math

Qwen
(base)

Why fine-tune?
Better, cheaper applications

all of the internet

Pretrain

($100M)

Finetune

($100k)

 Qwen
Code

Qwen
(base)

Why fine-tune?
Align with human preferences

OpenAISlide credit to Scott Geng

https://cdn.openai.com/papers/Training_language_models_to_follow_instructions_with_human_feedback.pdf#page=3

Why fine-tune?
Democratize AI

 Everyone should be able to easily adapt  
a very capable (very big) base model  
to whatever task they want

Slide credit to Scott Geng

Fine-tuning allows specialized
models for different tasks or users

all originating from ONE base model

Why not fine-tune?
It’s expensive!

• During training:

• must load optimizer state for entire model —> high memory overhead

• meaningfully improving a terabyte-size model requires many GPU hours

• During inference:

• must load different massive models for each user

• can’t cache models

• takes minutes to load

The fine-tuning dilemma

• Fine-tuning is often necessary (e.g., OCR, code)

• Fine-tuning is prohibitively expensive

What should we do ?!?

The fine-tuning dilemma

• Fine-tuning is often necessary (e.g., OCR, code)

• Fine-tuning is prohibitively expensive

What if we only “tuned” a very small portion of the parameters?

Intrinsic Dimension
Consider our optimization landscape in ℝ2

Lecture 4, Slide 24

Intrinsic Dimension
Restrict ourselves to optimizing in a subspace ℝ1

Li et al. 2018

https://arxiv.org/pdf/1804.08838

Intrinsic Dimension
Optimize over a -dimensional subspace of for d ℝD d < D

Li et al. 2018

• The problem is in

• We will estimate the smallest such that the problem can be “solved”

• We will call the problem’s intrinsic dimension

• Formally, where is the dimension of the problem’s solution set

ℝD

d

d

d = D − s s

https://arxiv.org/pdf/1804.08838

Intrinsic Dimension
Toy Example

Li et al. 2018

• Let

• Loss function requires first 100 elements to sum to 1,  
second 100 elements to sum to 2, etc.

• Indeed, from any point with 0-loss we can move in 990 orthogonal directions
while remaining at 0-loss —> solution set is a 990 dimensional hyperplane

• So

• Indeed, one only needs to get 10 dimensions “right” to solve this problem

D = 1000

d = D − s = 1000 − 990 = 10

https://arxiv.org/pdf/1804.08838

Intrinsic Dimension
Estimating for neural netsd

Li et al. 2018

• Aforementioned examples are easy to work out algebraically

• For the mess that is neural networks, we will estimate by training modelsd

θ(D) = θ(D)
0 + Pθ(d)

https://arxiv.org/pdf/1804.08838

Intrinsic Dimension

Li et al. 2018

• Aforementioned examples are easy to work out algebraically

• For the mess that is neural networks, we will estimate by training modelsd

θ(D) = θ(D)
0 + Pθ(d)

final 
params

randomly initialized  
params

random projection 
matrix: d → D

trainable 
params

Estimating for neural netsd

https://arxiv.org/pdf/1804.08838

Intrinsic Dimension

Li et al. 2018

• Aforementioned examples are easy to work out algebraically

• For the mess that is neural networks, we will estimate by training modelsd

θ(D) = θ(D)
0 + Pθ(d)

ℝD

ℝD

ℝD × d

ℝd

Estimating for neural netsd

https://arxiv.org/pdf/1804.08838

Intrinsic Dimension

Li et al. 2018

• “Baseline solution” is a model allowed to optimize in space

• Increase until performance nears the baseline solution

ℝD

d

θ(D) = θ(D)
0 + Pθ(d)

Estimating for neural netsd

https://arxiv.org/pdf/1804.08838

Intrinsic Dimension

Li et al. 2018

• Architecture: FCNet with two hidden layers of width 200

• but we reach 90% of baseline near D = 199,210 d = 750

Estimating for MNISTd

https://arxiv.org/pdf/1804.08838

Intrinsic Dimension

Li et al. 2018

• Architecture: LeNet

• but we reach 90% of baseline near D = 44,426 d = 290

Estimating for MNISTd

https://arxiv.org/pdf/1804.08838

Intrinsic Dimension

Li et al. 2018

Estimating for classic datasetsd

https://arxiv.org/pdf/1804.08838

Intrinsic Dimension
Takeaways

Li et al. 2018

• Classic computer vision problems require far fewer dimensions to solve than
the size of our models would make you think

• “once a parameter space is large enough to solve a problem, extra
parameters serve directly to increase the dimensionality of the solution
manifold”

• With larger models, solutions have greater redundancy  
—> “cover” more space —> easier to train

https://arxiv.org/pdf/1804.08838

Intrinsic Dimension
Extended to fine-tuning

Gupta et al. 2020

• Fine-tuning transformers for classic NLP tasks has a similar phenomenon

• Main change in formulation: is now our pre-trained base model

• (We’ll ignore some changes necessary for complexity of large models)

θ(D)
0

θ(D) = θ(D)
0 + Pθ(d)

https://arxiv.org/pdf/2012.13255

Intrinsic Dimension
Extended to fine-tuning

Gupta et al. 2020

• Fine-tuning transformers for classic NLP tasks has a similar phenomenon

DID:  
exactly what we learned

SAID:  
small changes 

we glossed over

https://arxiv.org/pdf/2012.13255

Intrinsic Dimension
Extended to fine-tuning

Gupta et al. 2020

• Fine-tuning transformers for classic NLP tasks has a similar phenomenon

DID:  
exactly what we learned

SAID:  
small changes 

we glossed over

https://arxiv.org/pdf/2012.13255

Intrinsic Dimension
Extended to fine-tuning

Gupta et al. 2020

• Fine-tuning transformers for classic NLP tasks has a similar phenomenon

DID:  
exactly what we learned

SAID:  
small changes 

we glossed over

params
110M
340M
125M
355M

https://arxiv.org/pdf/2012.13255

LoRA
Low-Rank Adaptation

• Previous papers: models “reside on a low intrinsic dimension”  

• LoRA extends this notion to fine-tuning

• “hypothesize that the change in weights during model adaptation
also has a low ‘intrinsic rank’”

Hu et al. 2021

https://arxiv.org/pdf/2106.09685

Forget the previous definitions  
of , , etc.d D

LoRA
Linear Transformation of a Full Rank Matrix (rank =)d

Hu et al. 2021

W ∈ ℝd×d

ℝd ℝd

https://arxiv.org/pdf/2106.09685

A

LoRA
Linear Transformations via an Intermediate Matrix (rank =)r < < d

Hu et al. 2021

ℝd ℝd

B

ℝr

https://arxiv.org/pdf/2106.09685

A

LoRA
On a pre-trained model: freeze , train W A, B

Hu et al. 2021

ℝd

B

W ∈ ℝd×d

ℝr

ℝd

input: x output: h

https://arxiv.org/pdf/2106.09685

LoRA
Compare pink triangles vs. the blue dot

Hu et al. 2021

https://arxiv.org/pdf/2106.09685

LoRA
 is common in literature (where, often,)8 ≤ r ≤ 512 d = 4096

Thinking Machines

https://thinkingmachines.ai/blog/lora/#optimal-learning-rate-and-rank

LoRA
Less “forgetting” of source domain

Biderman et al. 2024

https://arxiv.org/pdf/2405.09673

LoRA
But still learns (approximately) as much

Biderman et al. 2024

LoRA
Preserves token diversity, which full fine-tuning is known to lose

Biderman et al. 2024

https://arxiv.org/pdf/2405.09673

LoRA
Too weak sometimes

• olmOCR used full fine-tuning, not LoRA

• OpenThoughts used full fine-tuning, not LoRA

LoRA
During deployment

A

ℝd

Bℝr

ℝd

input: x output: h

W ∈ ℝd×d

LoRA
During deployment

ΔW = AB ∈ ℝd×d

ℝd

W ∈ ℝd×d
ℝd

input: x output: h

LoRA
During deployment

ℝd

W + ΔW ∈ ℝd×d

ℝd

input: x output: h

LoRA
During deployment

ℝd

Adapted 
Weights

ℝd

input: x output: h

LoRA
Switching models

Edward Hu

• Subtracting your adapter from the updated weight matrix 
yields your original weights!

• Simplifies deploying many fine-tuned models:

• don’t need to keep multi-terabyte copies of fine-tuned models

• instead, keep one master copy of the full base model, and  
then one copy for each of your (small) adapters

ΔW = AB

https://www.youtube.com/watch?v=DhRoTONcyZE

LoRA
Hierarchy of modules

Edward Hu

https://www.youtube.com/watch?v=DhRoTONcyZE

thinkingmachines.ai/blog/lora

Full FT is expensive
OK at an industry scale … what about everyone else?

• Cost per param:

• Weight: 2 byte

• Weight gradient: 2 byte

• Optimizer state: 8 byte

• Total: 12 bytes per parameter

• 70B model -> 840 GB of GPU memory  
 -> 18x data center GPUs

Slide Credit to Tim Dettmers

https://www.youtube.com/watch?v=fQirE9N5q_Y

LoRA is expensive
OK at an R1 scale … what about everyone else?

• Cost per param:

• Weight: 16 bits

• Weight gradient: ~0.4 bit

• Optimizer state: ~0.8 bit

• Adapter weights: ~0.4 bit

• Total: 17.6 bits per parameter

• 70B model -> 154 GB of GPU memory  
 -> 4x data center GPUs 
 OR 8x consumer GPUs

Slide Credit to Tim Dettmers

https://www.youtube.com/watch?v=fQirE9N5q_Y

QLoRA is affordable

• Cost per param:

• Weight: 4 bits

• Weight gradient: ~0.4 bit

• Optimizer state: ~0.8 bit

• Adapter weights: ~0.4 bit

• Total: 5.2 bits per parameter

• 70B model -> 46 GB of GPU memory  
 -> 1x data center GPUs 
 OR 2x consumer GPUs

Slide Credit to Tim Dettmers

Fine-tuning for everyone!

https://www.youtube.com/watch?v=fQirE9N5q_Y

QLoRA
Core Components

• Double quantization: reduce space taken up by quantization constants by
quantizing those constants themselves!

• saves 0.4 bits of space per weight

• Quantize model to 4 bits: uses new data type (NF4) that is optimal for
normal distribution

• Paged optimizers: engineering trick for GPU memory spikes; we skip this

Dettmers et al. 2023

https://arxiv.org/pdf/2305.14314

QLoRA
Produces LoRA Adapters on Fewer GPUs

• 4-bit quantized weights used during QLoRA

• not required to keep them quantized during serving

• QLoRA yields 16 bit adapters

• could add/merge these with original weights then re-quantize

• could swap them into original weights

Summary

• Great practical utility in fine-tuning base models for specific applications

• Full fine-tuning is prohibitively expensive to conduct and annoying to serve

• LoRA only adapts a certain subset of the model’s parameters

• Motivated by notion of a model’s intrinsic dimension being small

• Simplifies model serving since adapters can be easily “swapped” in/out

• QLoRA reduces the memory overhead when training LoRA adapters

