

Parameter-Efficient Fine-Tuning

CSE 493G, Winter 2026

Tanush Yadav

The OCR Task

Backpropagation Applied to Handwritten Zip Code Recognition

Y. LeCun

B. Boser

J. S. Denker

D. Henderson

R. E. Howard

W. Hubbard

L. D. Jackel

AT&T Bell Laboratories Holmdel, NJ 07733 USA

80322-4129 80206

40004 14310

37878 05153

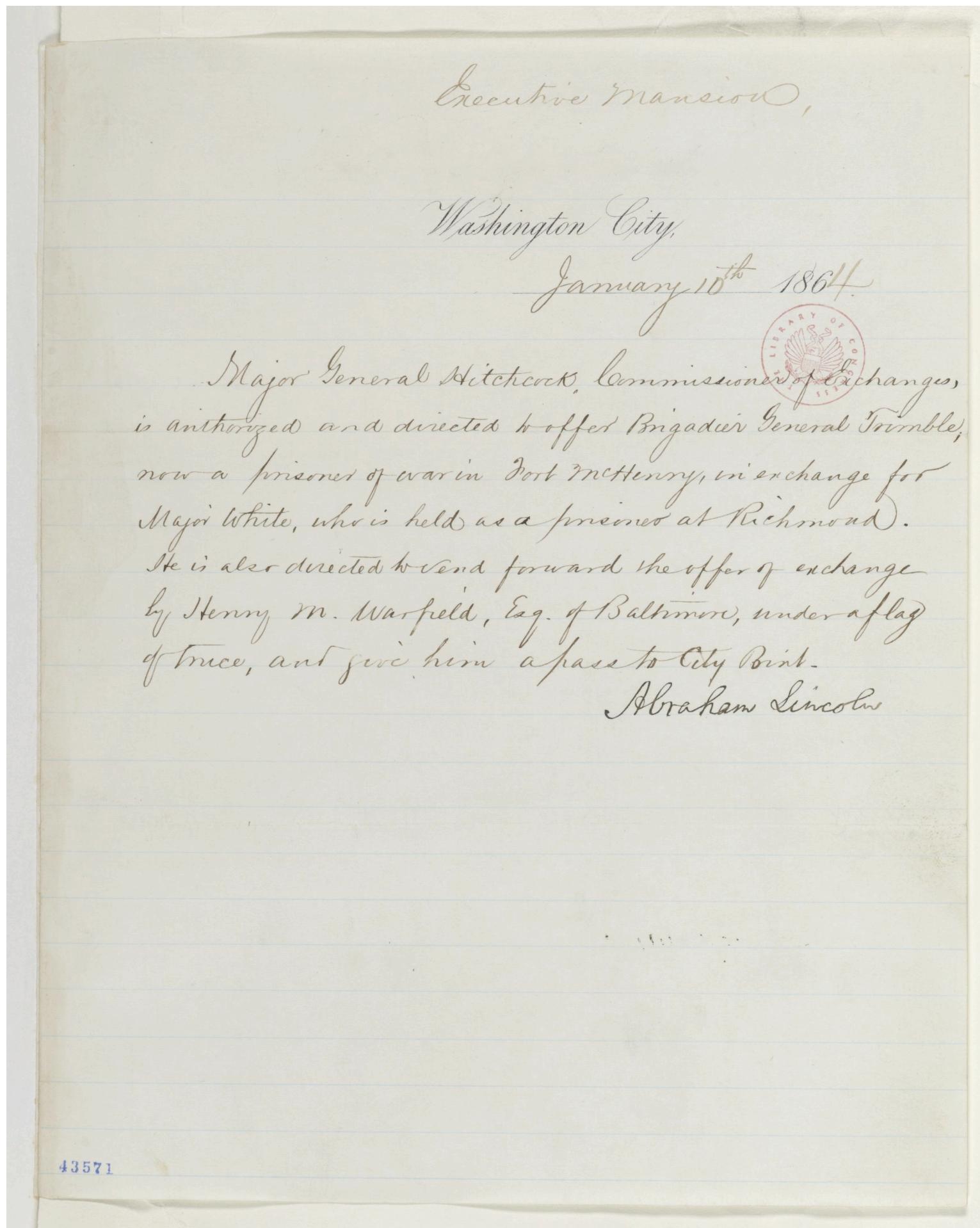
~~35502~~ 75216

35460 44209

1011913485726803226414186
6359720299299722510046701
3084111591010615406103631
1064111030475262009979966
8912056708557131427955460
2018750187112993089970984
0109707597331972015519055
1075318255182814358090943
1787521655460554603546055
18255108503047520439401

Figure 1 Examples of original zip codes (top) and normalized digits from the testing set (bottom).

The OCR Task



Executive Mansion,
Washington City,
January 15th, 1864

Major General Hitchcock, Commissioner
of Exchanges, is authorized and
directed to offer Brigadier General
Trimble, now a prisoner of war in Fort
McHenry, in exchange for Major White,
who is held as a prisoner at Richmond.
He is also directed to send forward the
offer of exchange by Henry M. Warfield,
Esq. of Baltimore, under a flag of
truce, and give him a pass to City
Point.

Abraham Lincoln

The OCR Task

An expensive undertaking

- \$734k grant to TAMU to OCR 300k documents digitized from microfilm
 - poor image quality (imaged in 70s, microfilm in 80s, digitized in 90s)
 - poor print quality (premodern printing techniques)
 - damaged documents (from 1746 to 1800)
- €11.5 million project by the EU to improve OCR tools

The OCR Task

A difficult undertaking

“All work currently being performed in the field of cultural analytics on documents published before 1800 ... is producing conclusions that are only about 50% reliable.”

OCR results “are poor or even useless”

The OCR Task

Traditional approaches

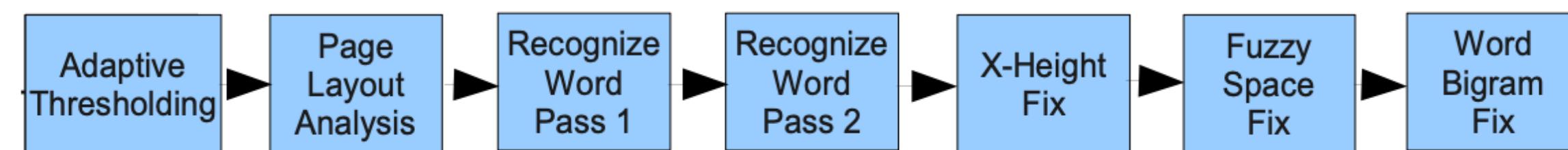


Figure 1. Block diagram of the overall architecture of Tesseract.

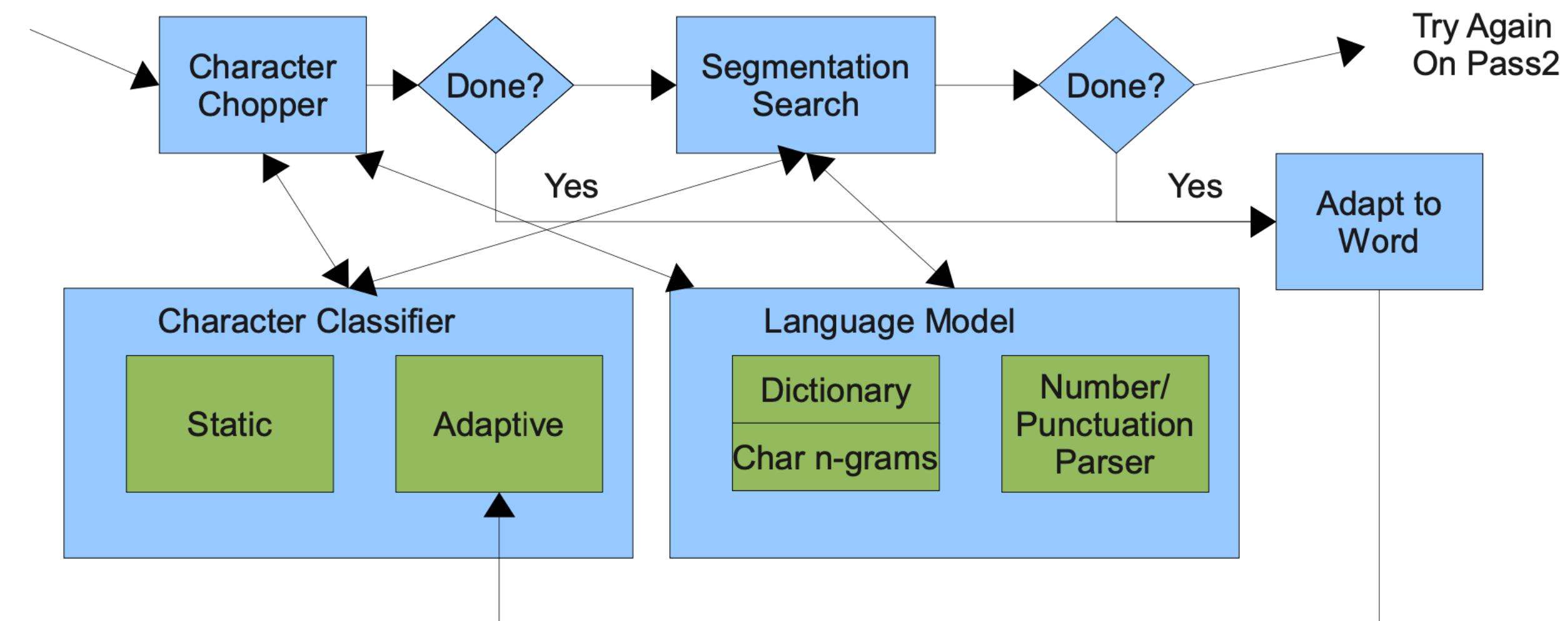


Figure 2. Block diagram of the Tesseract word recognizer.

The OCR Task

Modern ML pipeline approaches

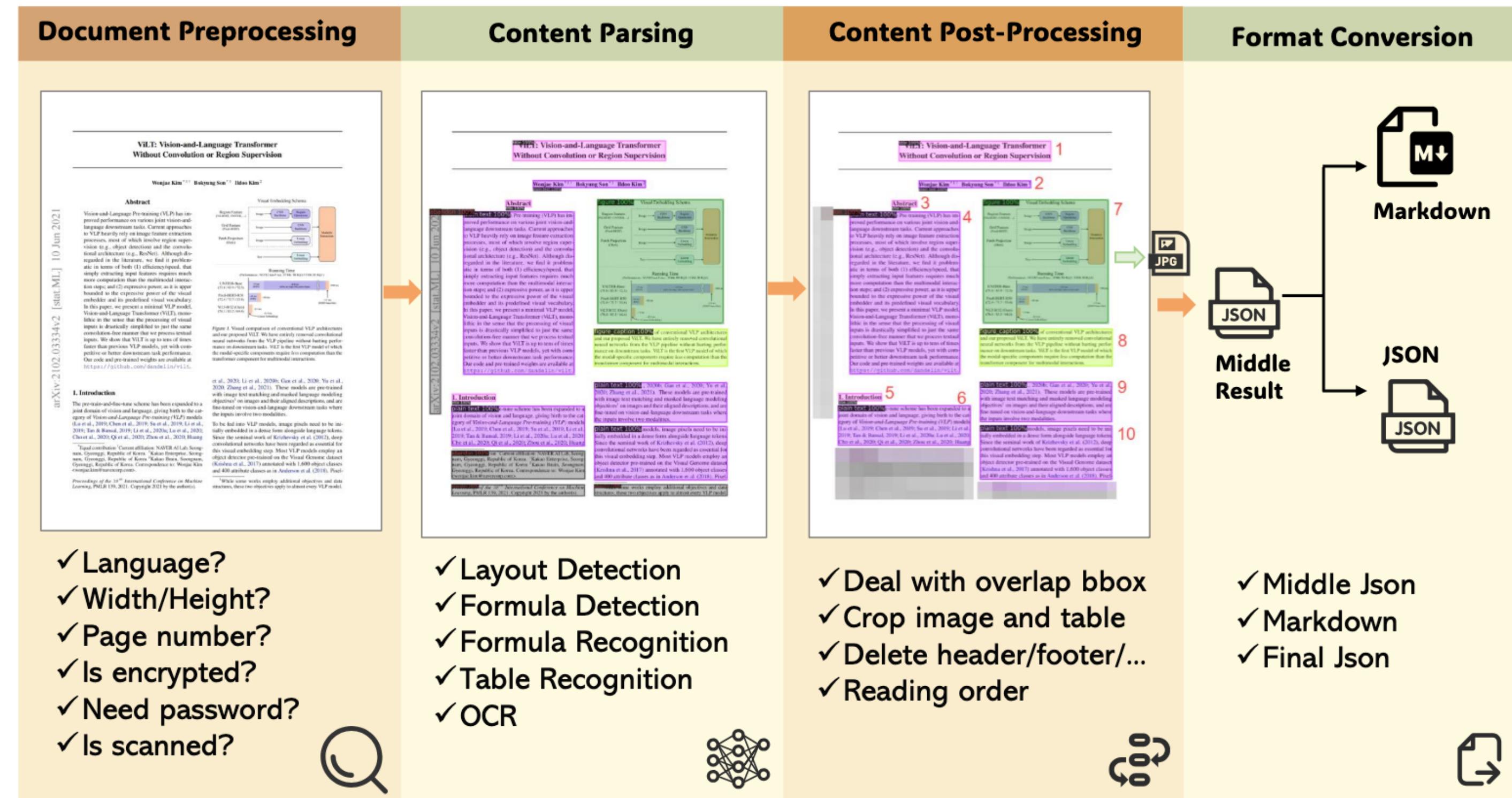


Figure 1: Overview of the MinerU framework processing workflow.

The OCR Task

Modern ML pipeline approaches

	Performance (%)	Cost (\$ / mil pages)
MinerU	61.5	596

The OCR Task

Off-the-shelf VLMs

	Performance (%)	Cost (\$ / mil pages)
MinerU	61.5	596
Qwen2-VL	31.5	176
GPT-4o	68.9	6240

The OCR Task

Off-the-shelf solutions force tradeoffs

	Performance (%)	Cost (\$ / mil pages)
MinerU	61.5	596
Qwen2-VL	31.5	176
GPT-4o	68.9	6240
Marker	70.1	1484

The OCR Task

Off-the-shelf solutions force tradeoffs

	Performance (%)	Cost (\$ / mil pages)
MinerU	61.5	596
Qwen2-VL	31.5	176
GPT-4o	68.9	6240
Marker	70.1	1484

gold standard

The OCR Task

Off-the-shelf solutions force tradeoffs

	Performance (%)	Cost (\$ / mil pages)
MinerU	61.5	596
Qwen2-VL	31.5	176
GPT-4o	68.9	6240
Marker	70.1	1484

small, open-weight model

gold standard

How could we improve OCR in Qwen2-VL?

fine-tune the model on OCR data!

Fine-tuning for OCR

Continue training Qwen2-VL, only on OCR data

Source	Unique docs	Total pages
Web crawled PDFs	96,929	240,940
Internet Archive books	5,896	17,701
<i>Total</i>	<i>102,825</i>	<i>258,641</i>

Table 1 olmOCR-mix-0225 composition by source.

Document type	Fraction
Academic	55.9%
Brochure	11.2%
Legal	10.2%
Books	6.8%
Table	5.6%
Diagram	4.7%
Slideshow	1.9%
Other	3.7%

Table 2 olmOCR-mix-0225 PDFs breakdown by document type.

The OCR Task

Off-the-shelf solutions force tradeoffs

	Performance (%)	Cost (\$ / mil pages)
MinerU	61.5	596
Qwen2-VL	31.5	176
GPT-4o	68.9	6240
Marker	70.1	1484

small, open-weight model

gold standard

The OCR Task

Off-the-shelf solutions force tradeoffs

	Performance (%)	Cost (\$ / mil pages)
MinerU	61.5	596
Qwen2-VL	31.5	176
olmOCR	74.7	176
GPT-4o	68.9	6240
Marker	70.1	1484

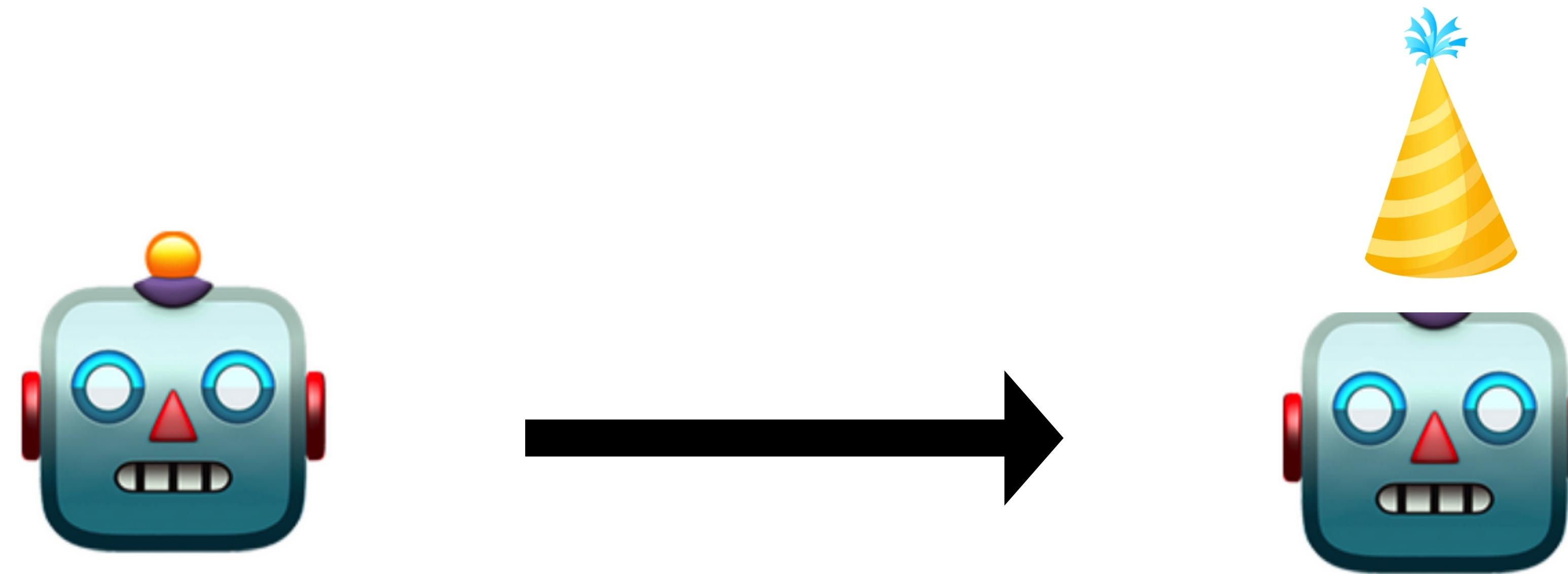
small, open-weight model

small, open-weight model

(old) gold standard

What is fine-tuning?

Take a useful model that already knows a lot and update it slightly



Why fine-tune?

Better, cheaper applications

Pretrain

(\$100M)

all of the internet

**Qwen
(base)**

Why fine-tune?

Better, cheaper applications

Pretrain

(\$100M)

all of the internet

Qwen
(base)

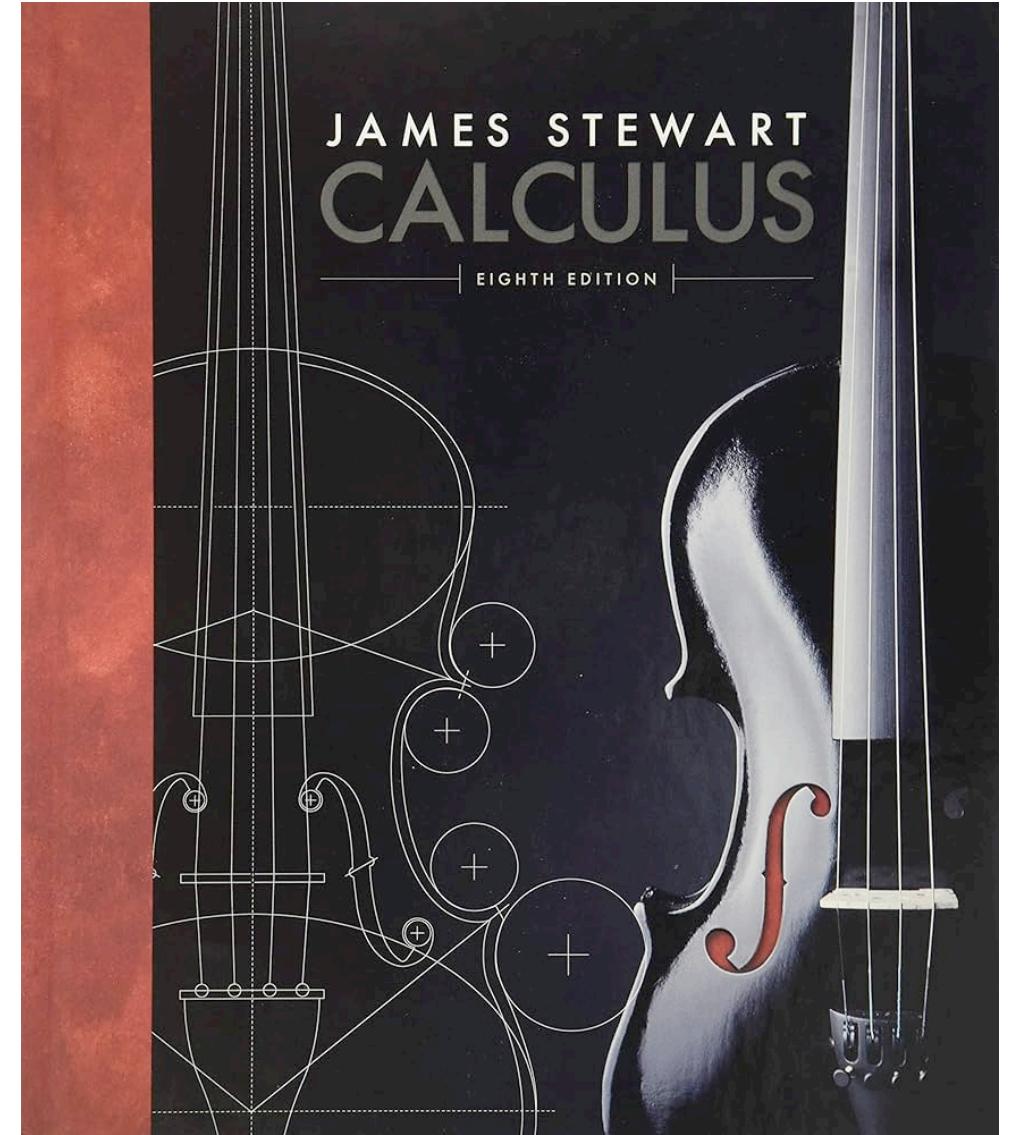
Finetune

(\$100k)

Qwen
Medical

Why fine-tune?

Better, cheaper applications



all of the internet

Pretrain
(\$100M)

Qwen
(base)

Finetune
(\$100k)

Qwen
Math

Why fine-tune?

Better, cheaper applications

all of the internet

Pretrain
(\$100M)

**Qwen
(base)**

Finetune
(\$100k)

**Qwen
Code**

Why fine-tune?

Align with human preferences

A prompt is sampled from our prompt dataset.

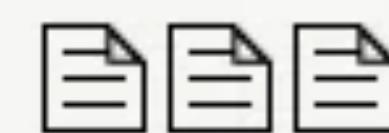
A labeler demonstrates the desired output behavior.

This data is used to fine-tune GPT-3.5 with supervised learning.

Explain reinforcement learning to a 6 year old.

We give treats and punishments to teach...

SFT



Why fine-tune?

Democratize AI

**Everyone should be able to easily adapt
a very capable (very big) base model
to whatever task they want**

**Fine-tuning allows specialized
models for different tasks or users**

all originating from ONE base model

Why not fine-tune?

It's expensive!

- During training:
 - must load optimizer state for **entire** model —> high memory overhead
 - meaningfully improving a terabyte-size model requires many GPU hours
- During inference:
 - must load *different* **massive** models for each user
 - can't cache models
 - takes minutes to load

The fine-tuning dilemma

- Fine-tuning is often necessary (e.g., OCR, code)
- Fine-tuning is prohibitively expensive

What should we do ?!?

The fine-tuning dilemma

- Fine-tuning is often necessary (e.g., OCR, code)
- Fine-tuning is prohibitively expensive

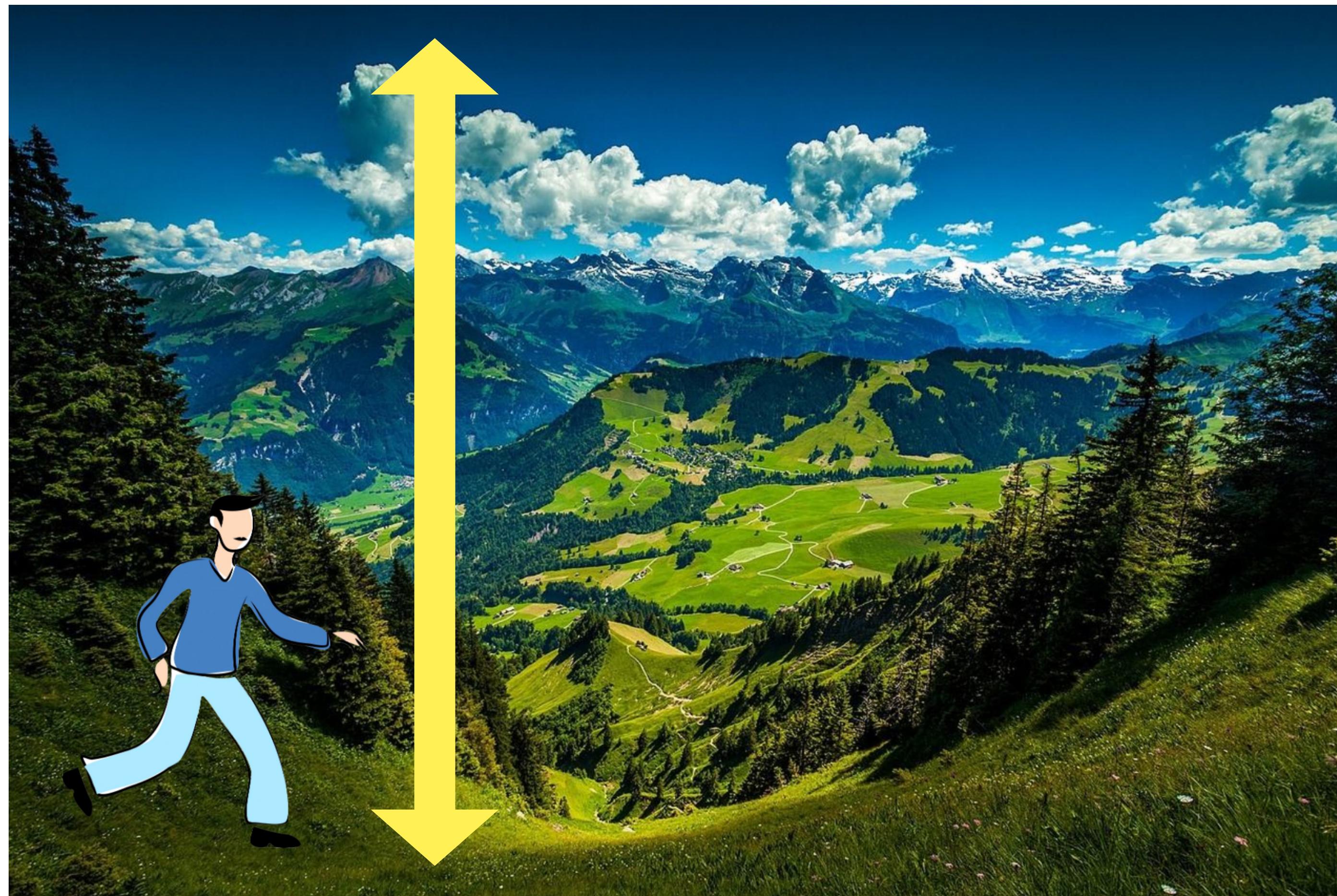
What if we only “tuned” a very small portion of the parameters?

Intrinsic Dimension

Consider our optimization landscape in \mathbb{R}^2

Intrinsic Dimension

Restrict ourselves to optimizing in a subspace \mathbb{R}^1



Intrinsic Dimension

Optimize over a d -dimensional subspace of \mathbb{R}^D for $d < D$

- The problem is in \mathbb{R}^D
- We will estimate the smallest d such that the problem can be “solved”
- We will call d the problem’s **intrinsic dimension**
- Formally, $d = D - s$ where s is the dimension of the problem’s solution set

Intrinsic Dimension

Toy Example

- Let $D = 1000$
- Loss function requires first 100 elements to sum to 1, second 100 elements to sum to 2, etc.
- Indeed, from any point with 0-loss we can move in 990 orthogonal directions while remaining at 0-loss \rightarrow solution set is a 990 dimensional hyperplane
- So $d = D - s = 1000 - 990 = 10$
- Indeed, one only needs to get 10 dimensions “right” to solve this problem

Intrinsic Dimension

Estimating d for neural nets

- Aforementioned examples are easy to work out algebraically
- For the mess that is neural networks, we will estimate d by training models

$$\theta^{(D)} = \theta_0^{(D)} + P\theta^{(d)}$$

Intrinsic Dimension

Estimating d for neural nets

- Aforementioned examples are easy to work out algebraically
- For the mess that is neural networks, we will estimate d by training models

$$\theta^{(D)} = \theta_0^{(D)} + P\theta^{(d)}$$

randomly initialized params

trainable params

final params

random projection matrix: $d \rightarrow D$

Intrinsic Dimension

Estimating d for neural nets

- Aforementioned examples are easy to work out algebraically
- For the mess that is neural networks, we will estimate d by training models

$$\theta^{(D)} = \theta_0^{(D)} + P\theta^{(d)}$$

Intrinsic Dimension

Estimating d for neural nets

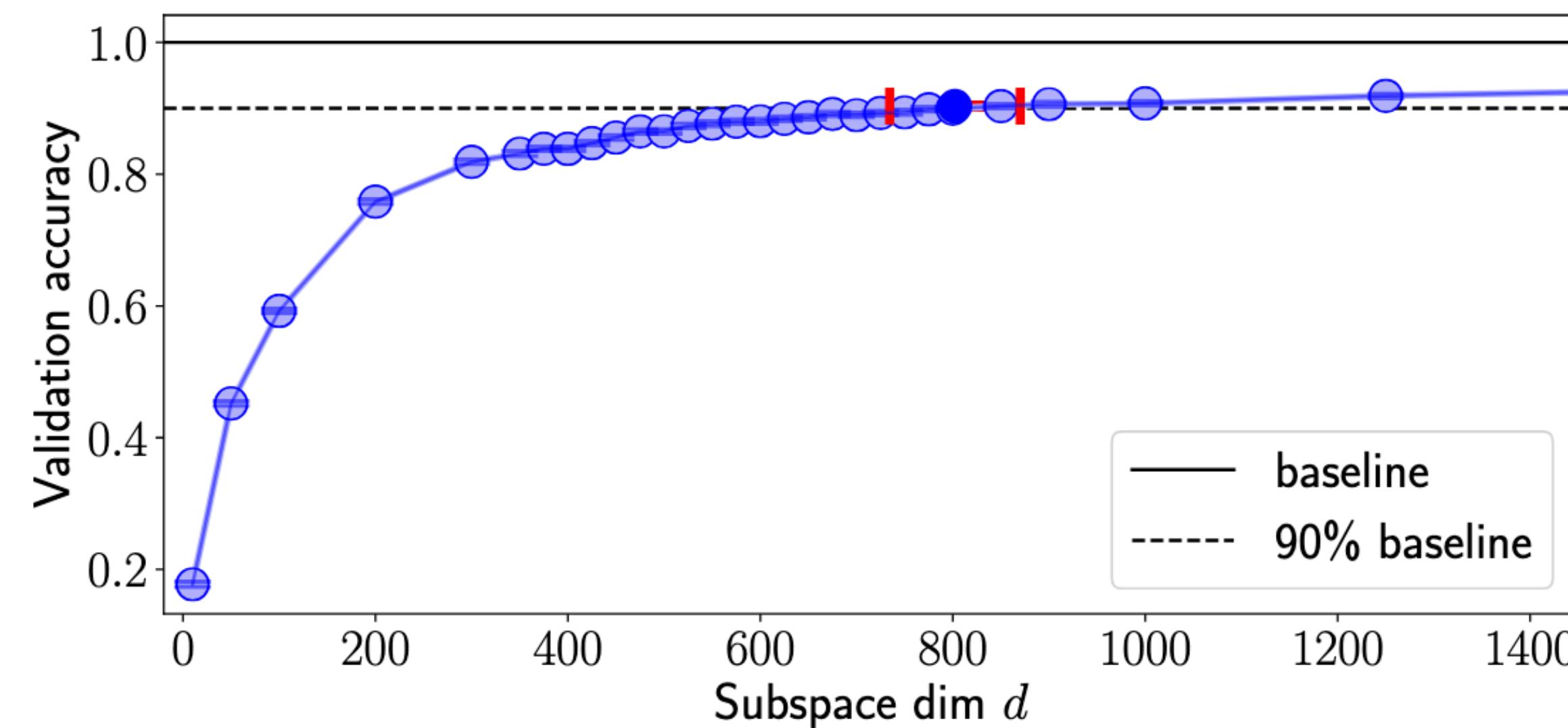
- “Baseline solution” is a model allowed to optimize in \mathbb{R}^D space
- Increase d until performance nears the baseline solution

$$\theta^{(D)} = \theta_0^{(D)} + P\theta^{(d)}$$

Intrinsic Dimension

Estimating d for MNIST

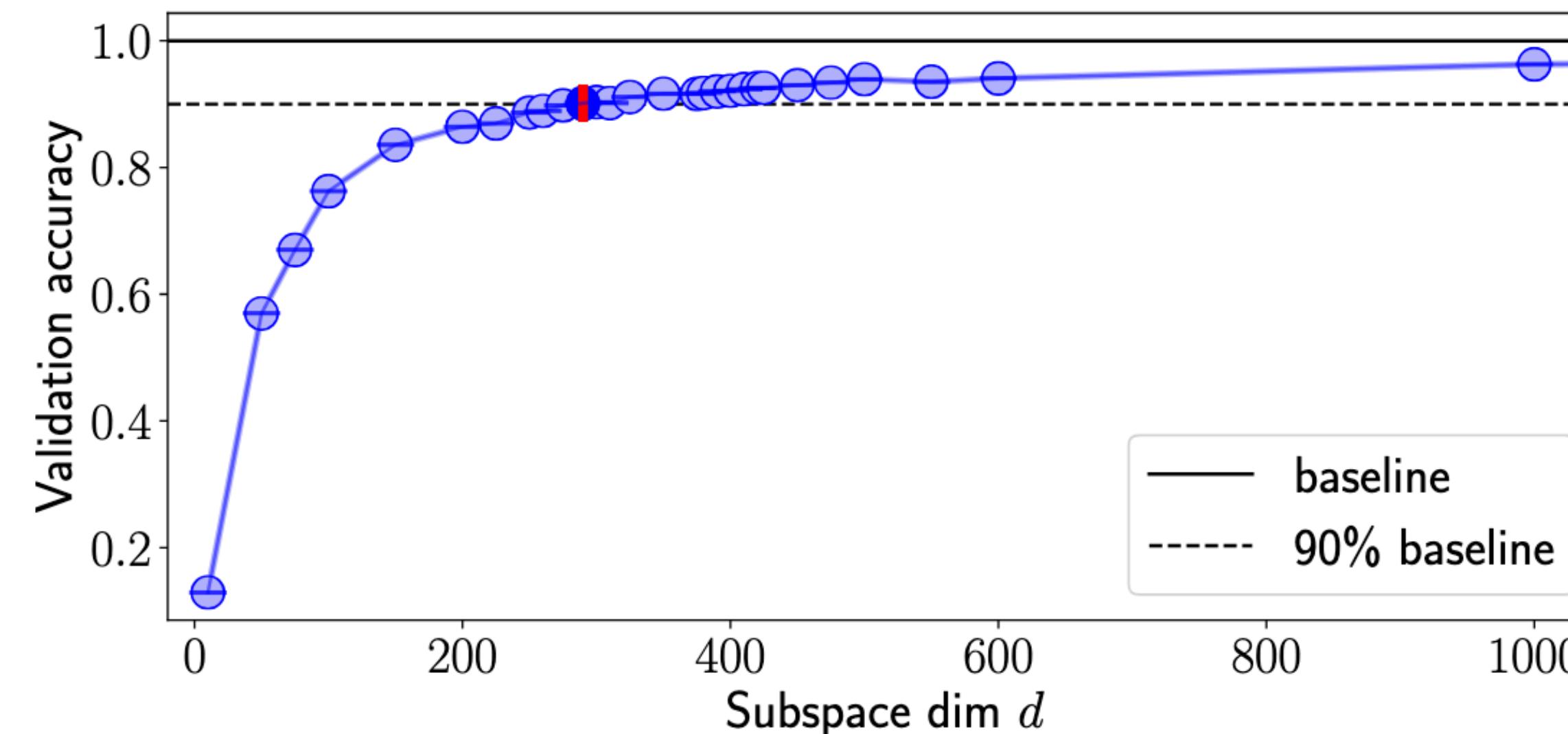
- Architecture: FCNet with two hidden layers of width 200
- $D = 199,210$ but we reach 90% of baseline near $d = 750$



Intrinsic Dimension

Estimating d for MNIST

- Architecture: LeNet
- $D = 44,426$ but we reach 90% of baseline near $d = 290$



Intrinsic Dimension

Estimating d for classic datasets

Dataset	CIFAR-10		ImageNet
Network Type	FC	LeNet	SqueezeNet
Parameter Dim. D	656,810	62,006	1,248,424
Intrinsic Dim. d_{int90}	9,000	2,900	> 500k

Intrinsic Dimension

Takeaways

- Classic computer vision problems require far fewer dimensions to solve than the size of our models would make you think
- “once a parameter space is large enough to solve a problem, extra parameters serve directly to increase the dimensionality of the solution manifold”
- With larger models, solutions have greater redundancy
—> “cover” more space —> easier to train

Intrinsic Dimension

Extended to fine-tuning

- Fine-tuning transformers for classic NLP tasks has a similar phenomenon
- Main change in formulation: $\theta_0^{(D)}$ is now our pre-trained base model
 - (We'll ignore some changes necessary for complexity of large models)

$$\theta^{(D)} = \theta_0^{(D)} + P\theta^{(d)}$$

Intrinsic Dimension

Extended to fine-tuning

- Fine-tuning transformers for classic NLP tasks has a similar phenomenon

Model	SAID:	DID:
	small changes we glossed over	exactly what we learned
BERT-Base	SAID	DID
BERT-Large		
RoBERTa-Base		
RoBERTa-Large		

Intrinsic Dimension

Extended to fine-tuning

- Fine-tuning transformers for classic NLP tasks has a similar phenomenon

Model	SAID		DID	
	MRPC	QQP	MRPC	QQP
BERT-Base				
BERT-Large				
RoBERTa-Base				
RoBERTa-Large				

SAID:
small changes
we glossed over

DID:
exactly what we learned

Intrinsic Dimension

Extended to fine-tuning

- Fine-tuning transformers for classic NLP tasks has a similar phenomenon

# params	Model	SAID		DID	
		MRPC	QQP	MRPC	QQP
110M	BERT-Base	1608	8030	1861	9295
	BERT-Large	1037	1200	2493	1389
125M	RoBERTa-Base	896	896	1000	1389
	RoBERTa-Large	207	774	322	774

SAID:
small changes
we glossed over

DID:
exactly what we learned

LoRA

Low-Rank Adaptation

- Previous papers: models “reside on a low intrinsic dimension”
- LoRA extends this notion to fine-tuning
 - “hypothesize that the change in weights during model adaptation also has a low ‘intrinsic rank’”

**Forget the previous definitions
of d , D , etc.**

LoRA

Linear Transformation of a Full Rank Matrix (rank = d)

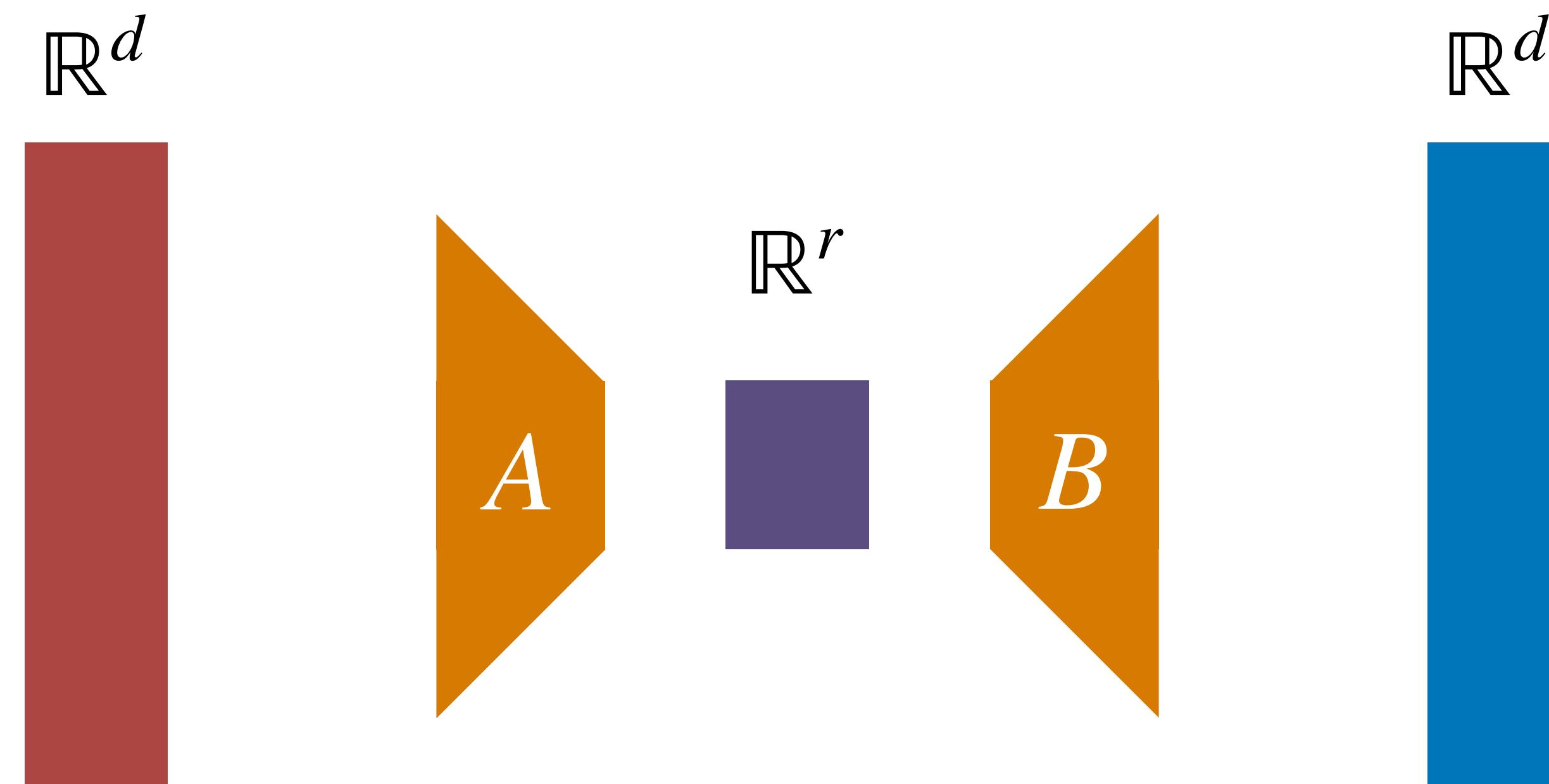
$$\mathbb{R}^d$$

$$\mathbb{R}^d$$

$$W \in \mathbb{R}^{d \times d}$$

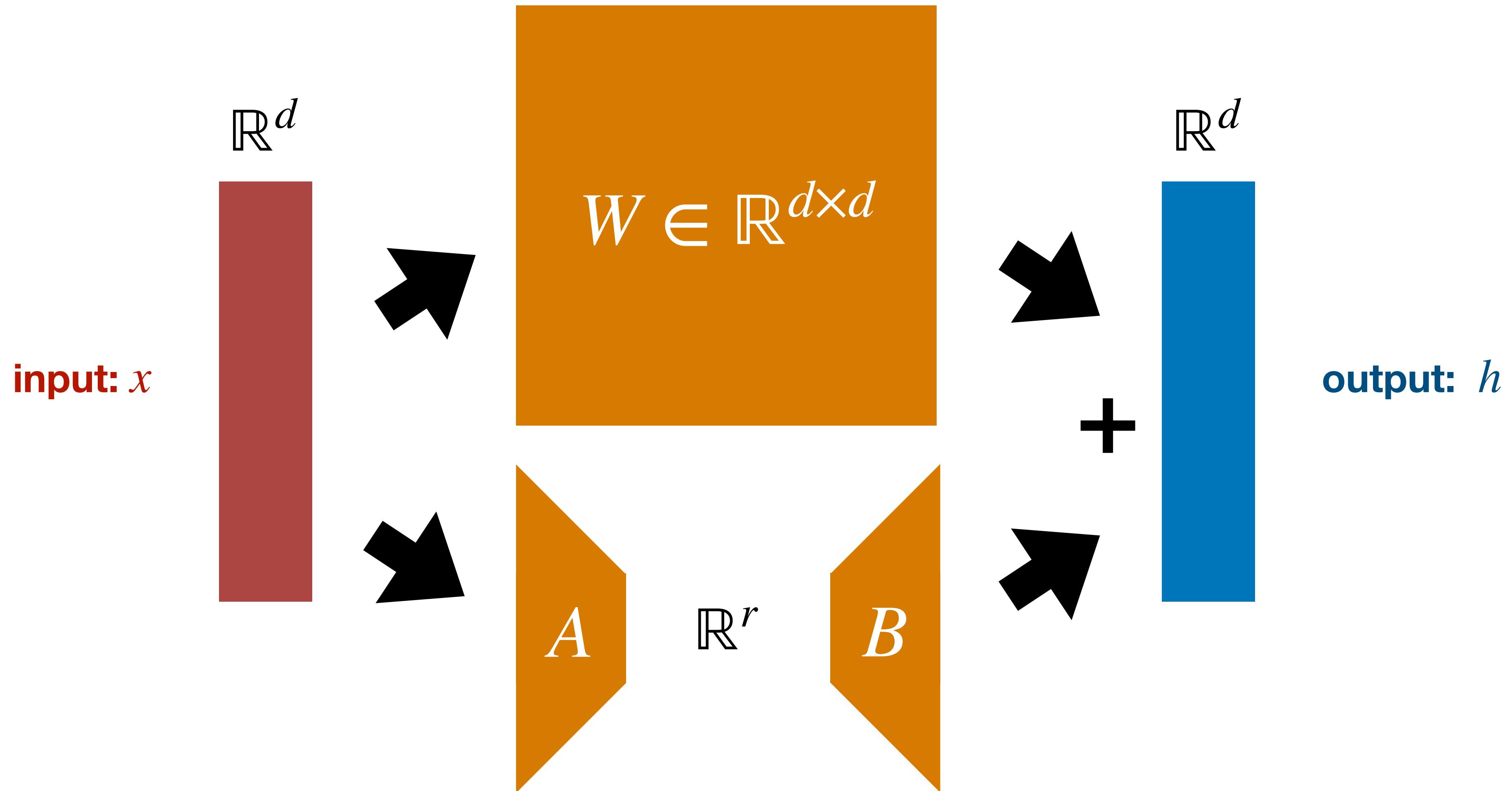
LoRA

Linear Transformations via an Intermediate Matrix (rank = $r \ll d$)



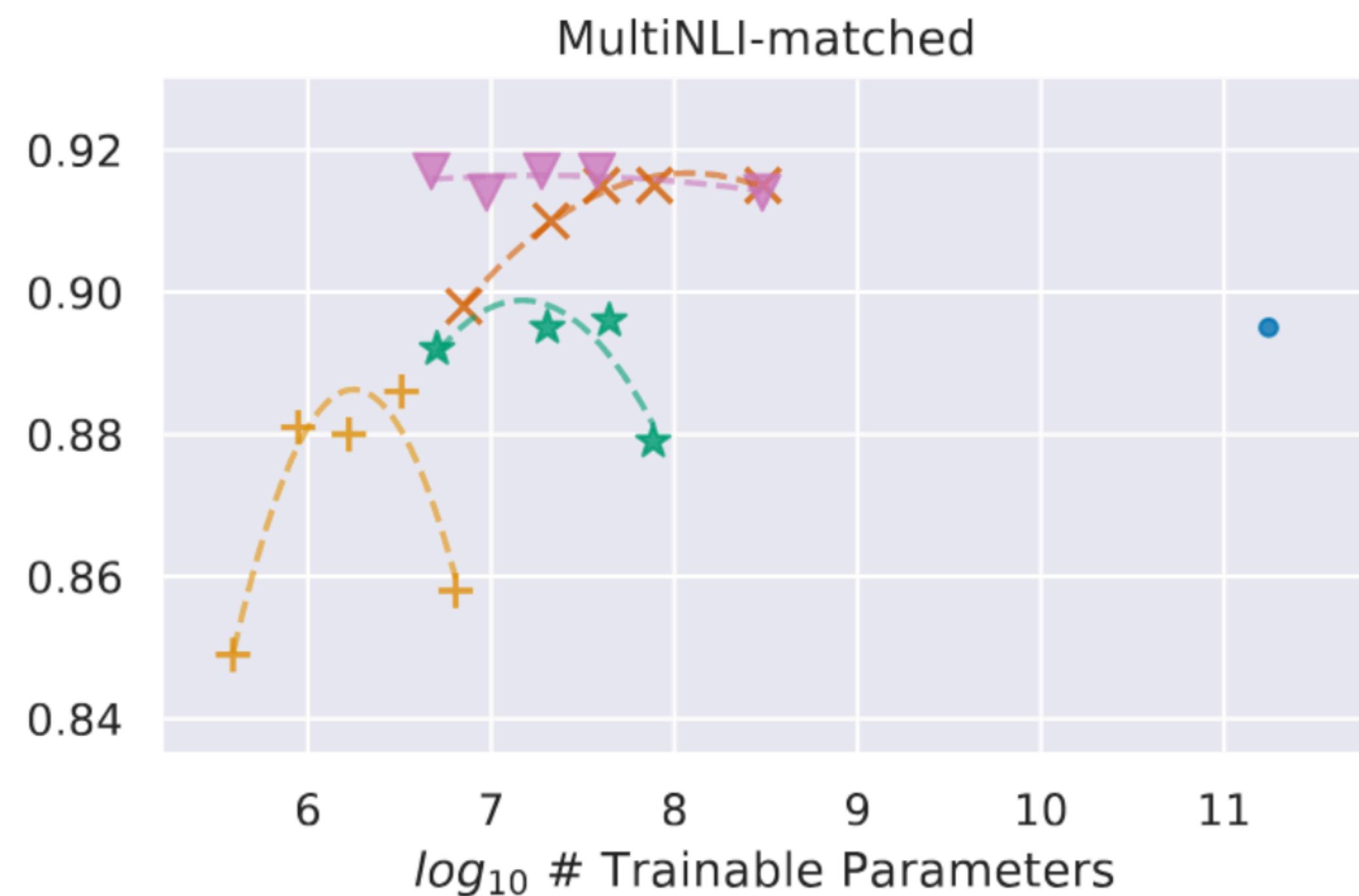
LoRA

On a pre-trained model: **freeze** W , **train** A, B



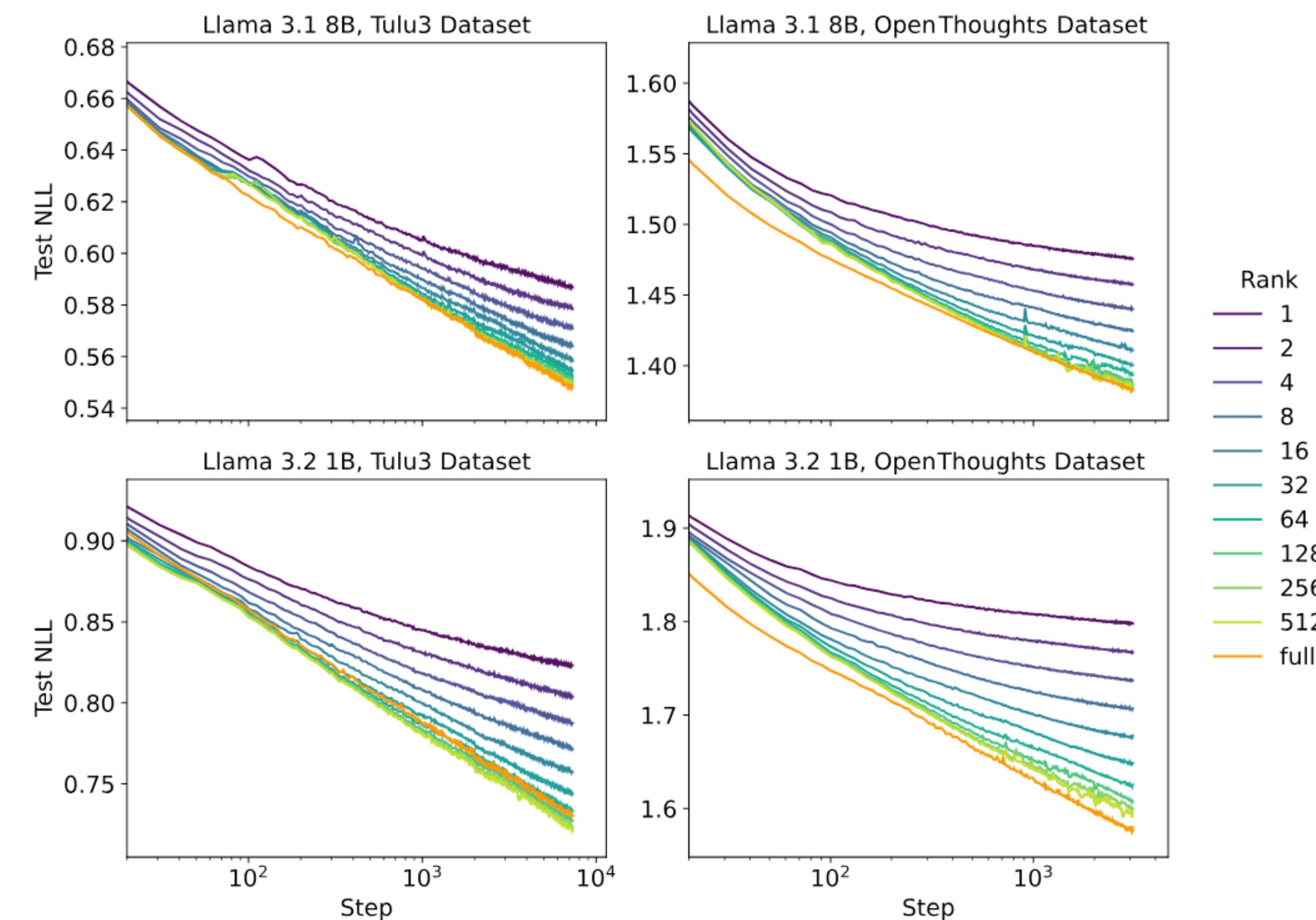
LoRA

Compare pink triangles vs. the blue dot



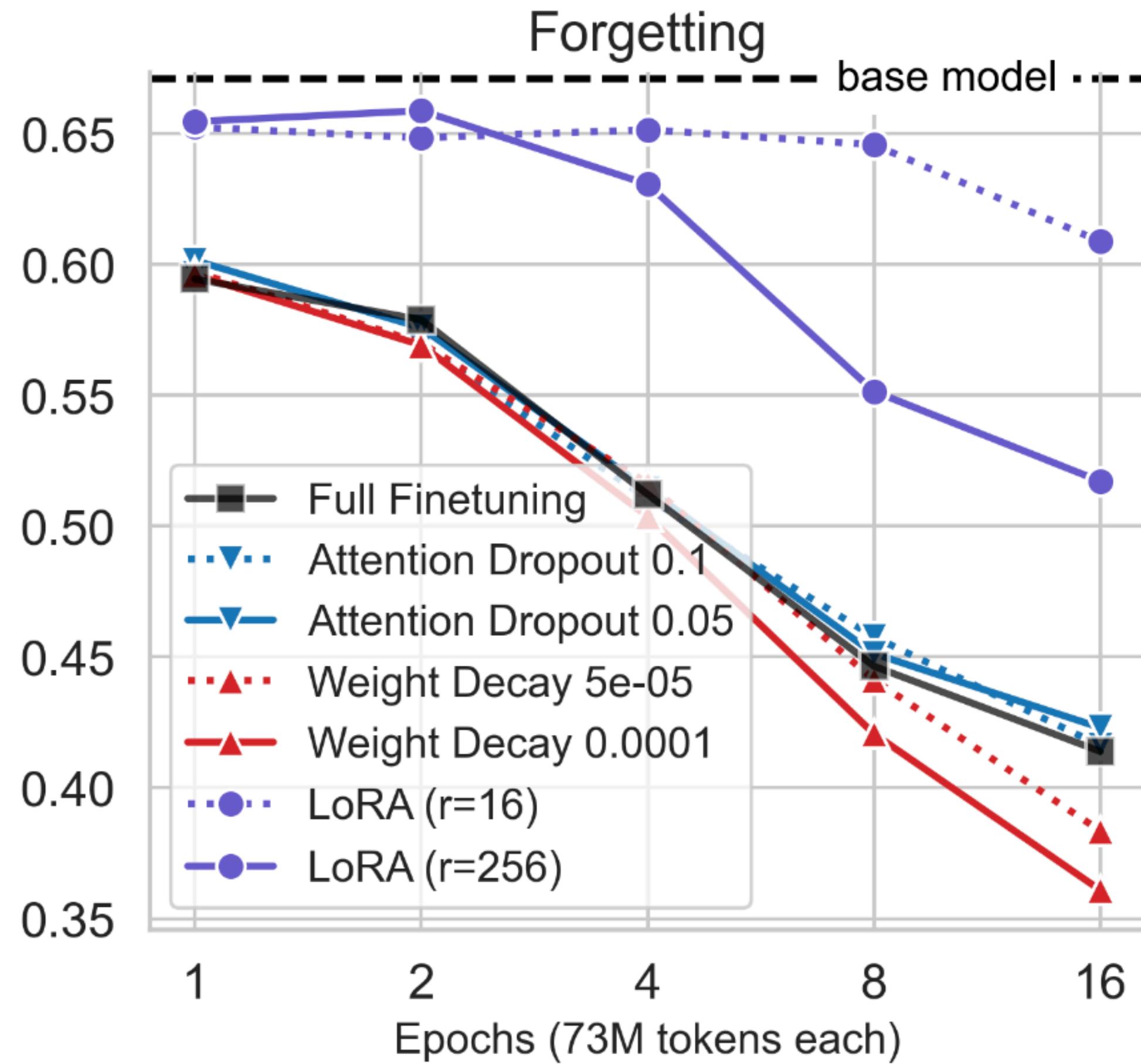
LoRA

$8 \leq r \leq 512$ is common in literature (where, often, $d = 4096$)



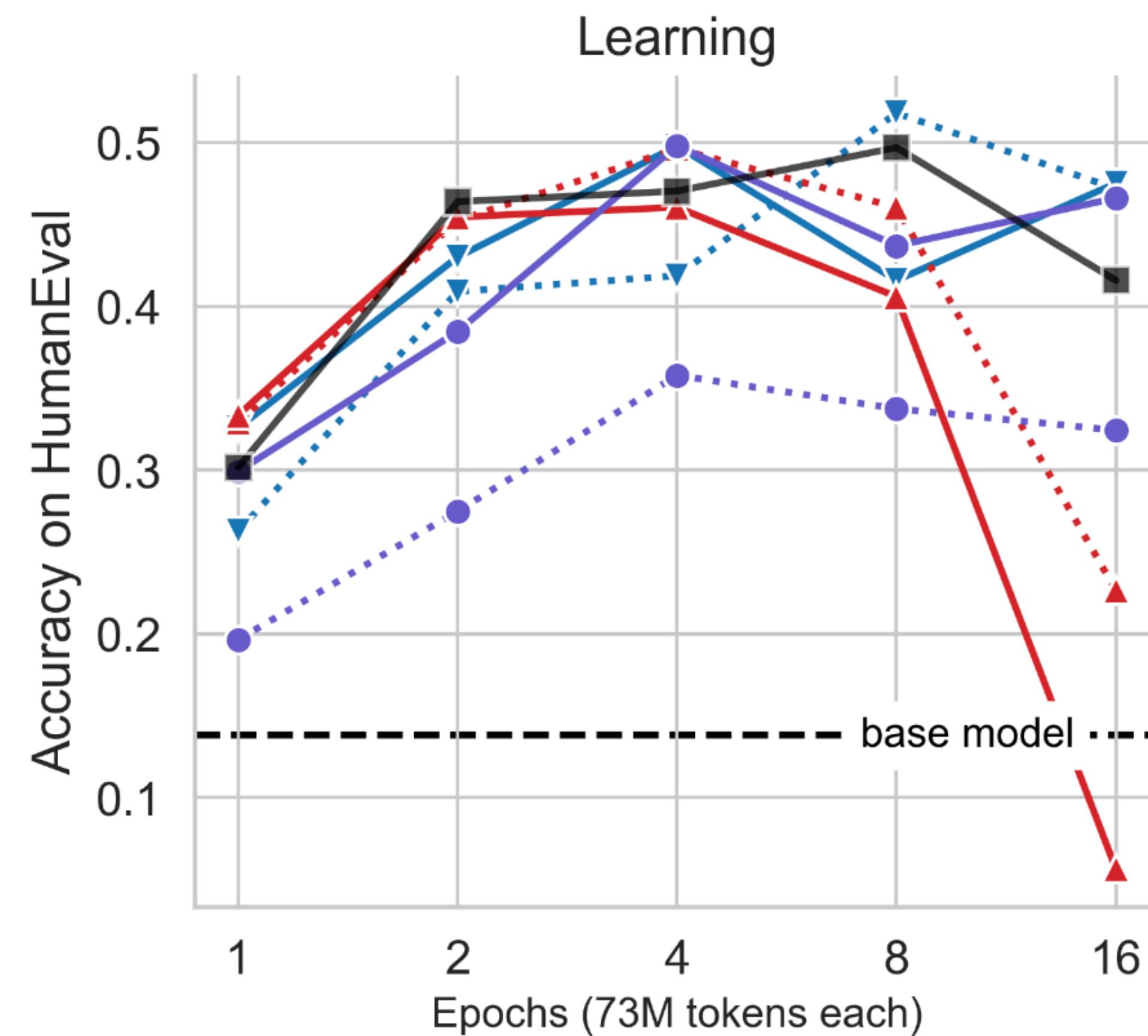
LoRA

Less “forgetting” of source domain



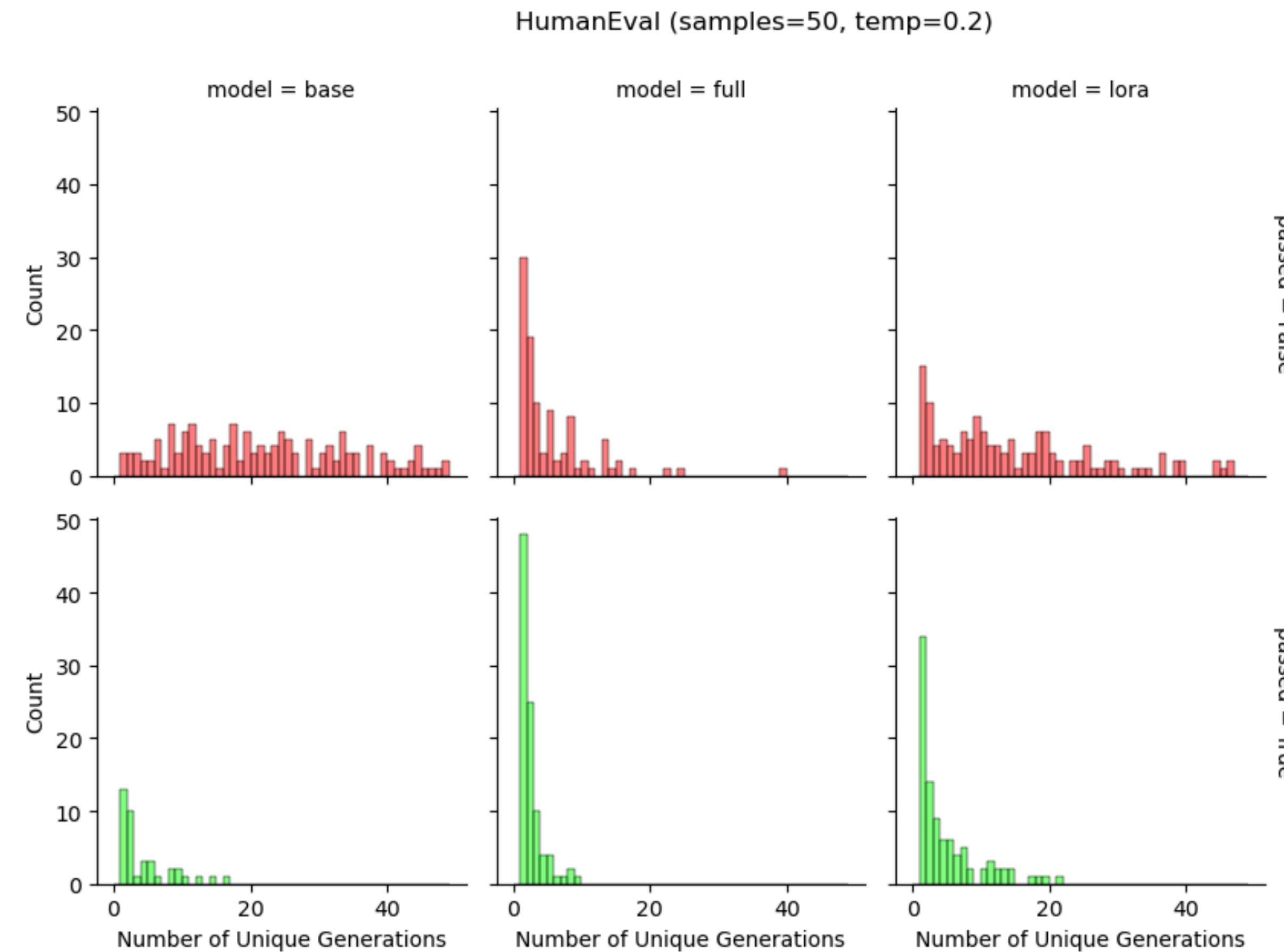
LoRA

But still learns (approximately) as much



LoRA

Preserves token diversity, which full fine-tuning is known to lose



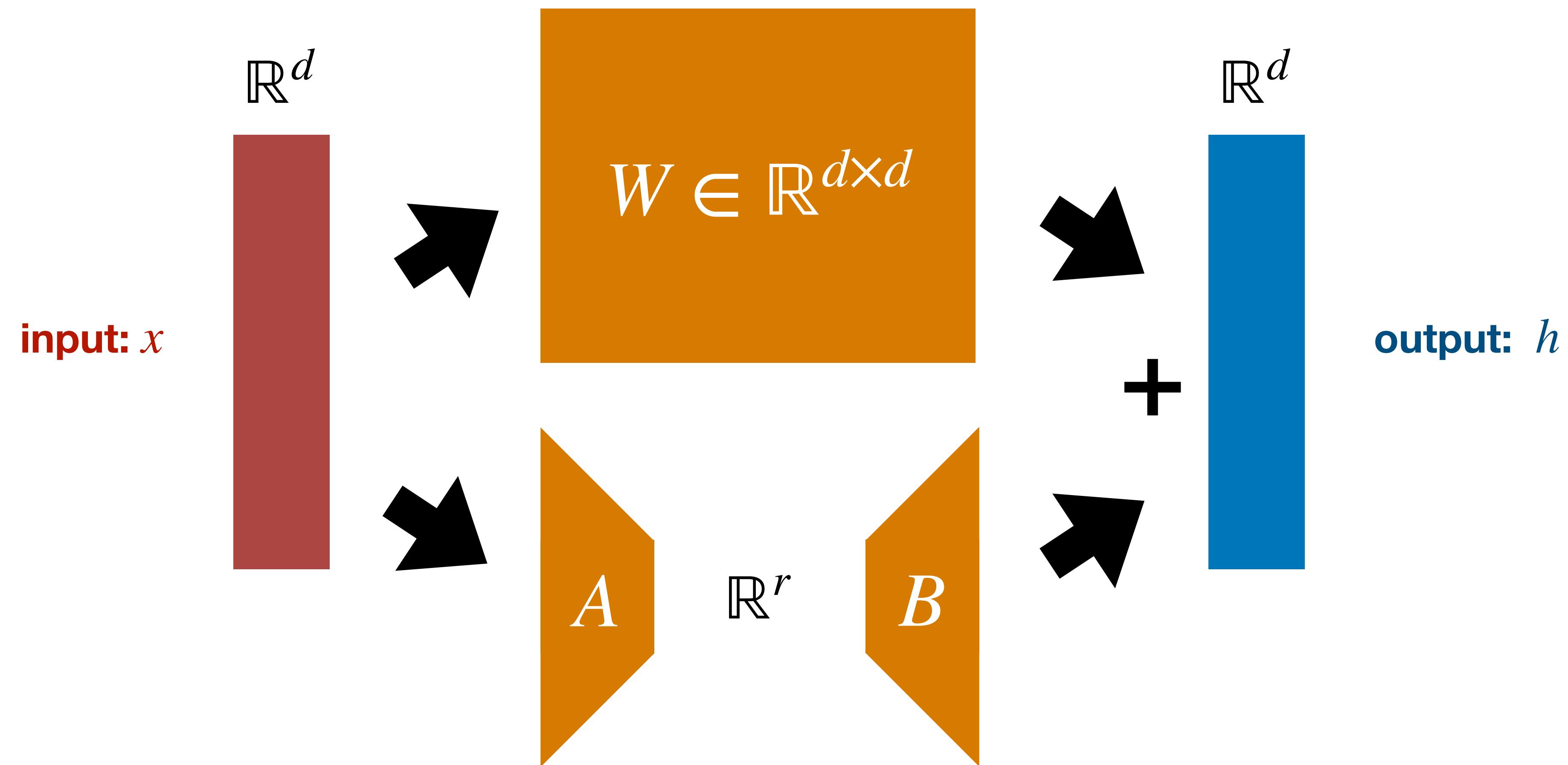
LoRA

Too weak sometimes

- olmOCR used full fine-tuning, not LoRA
- OpenThoughts used full fine-tuning, not LoRA

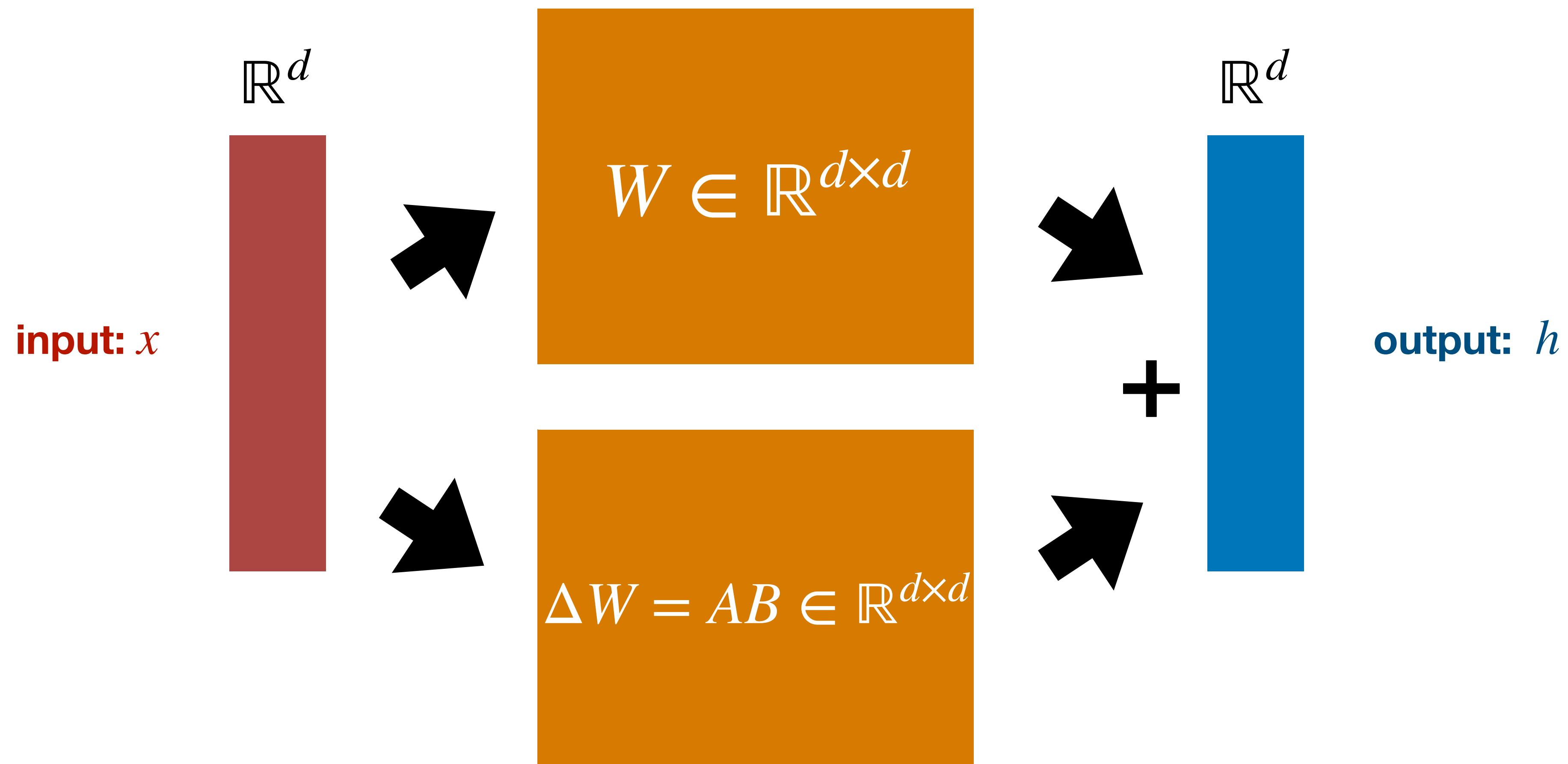
LoRA

During deployment



LoRA

During deployment



LoRA

During deployment

LoRA

During deployment

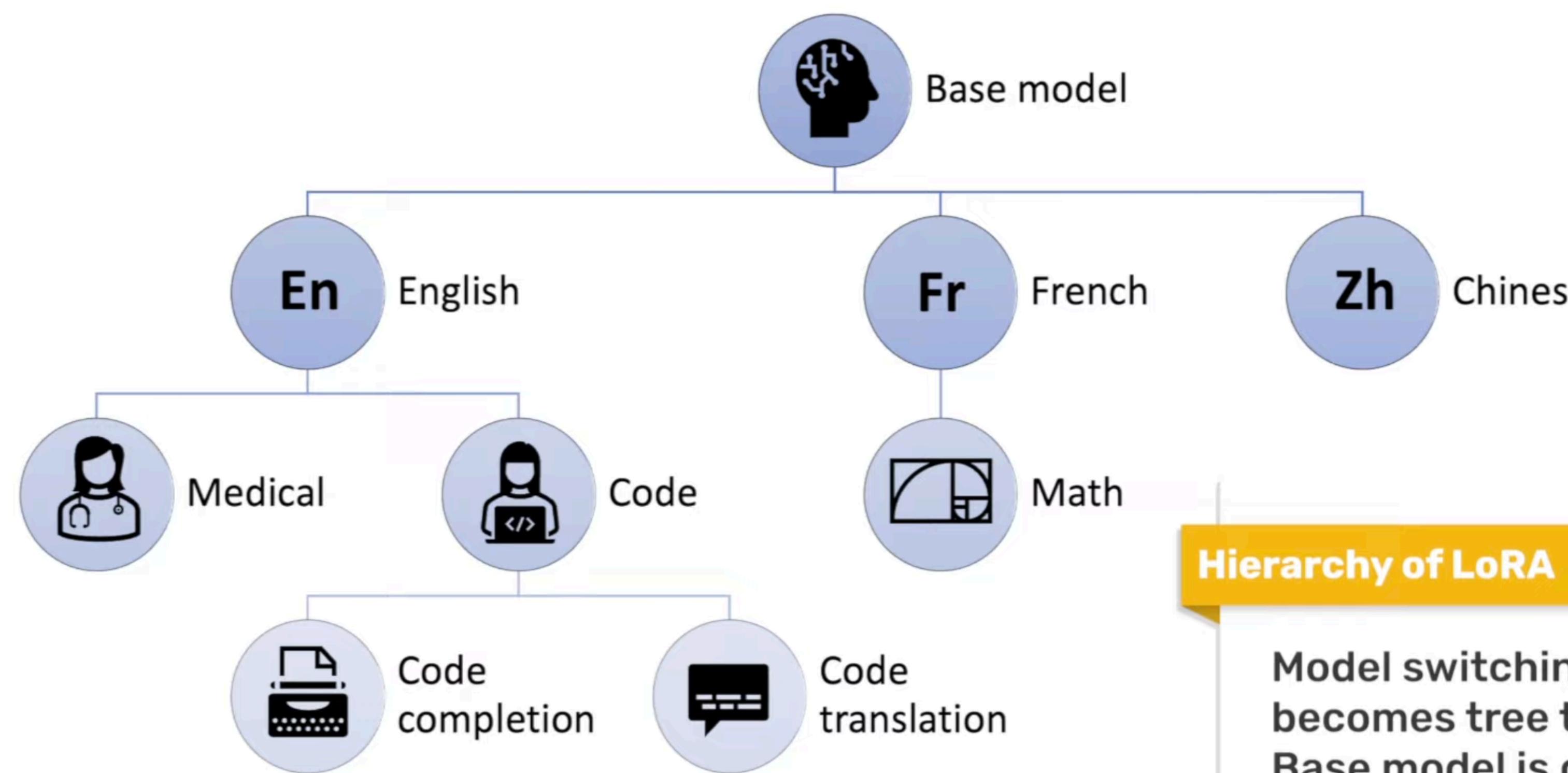
LoRA

Switching models

- Subtracting your adapter $\Delta W = AB$ from the updated weight matrix yields your **original** weights!
- Simplifies deploying many fine-tuned models:
 - don't need to keep multi-terabyte copies of fine-tuned models
 - instead, keep one master copy of the full base model, and then one copy for each of your (small) adapters

LoRA

Hierarchy of modules



Hierarchy of LoRA

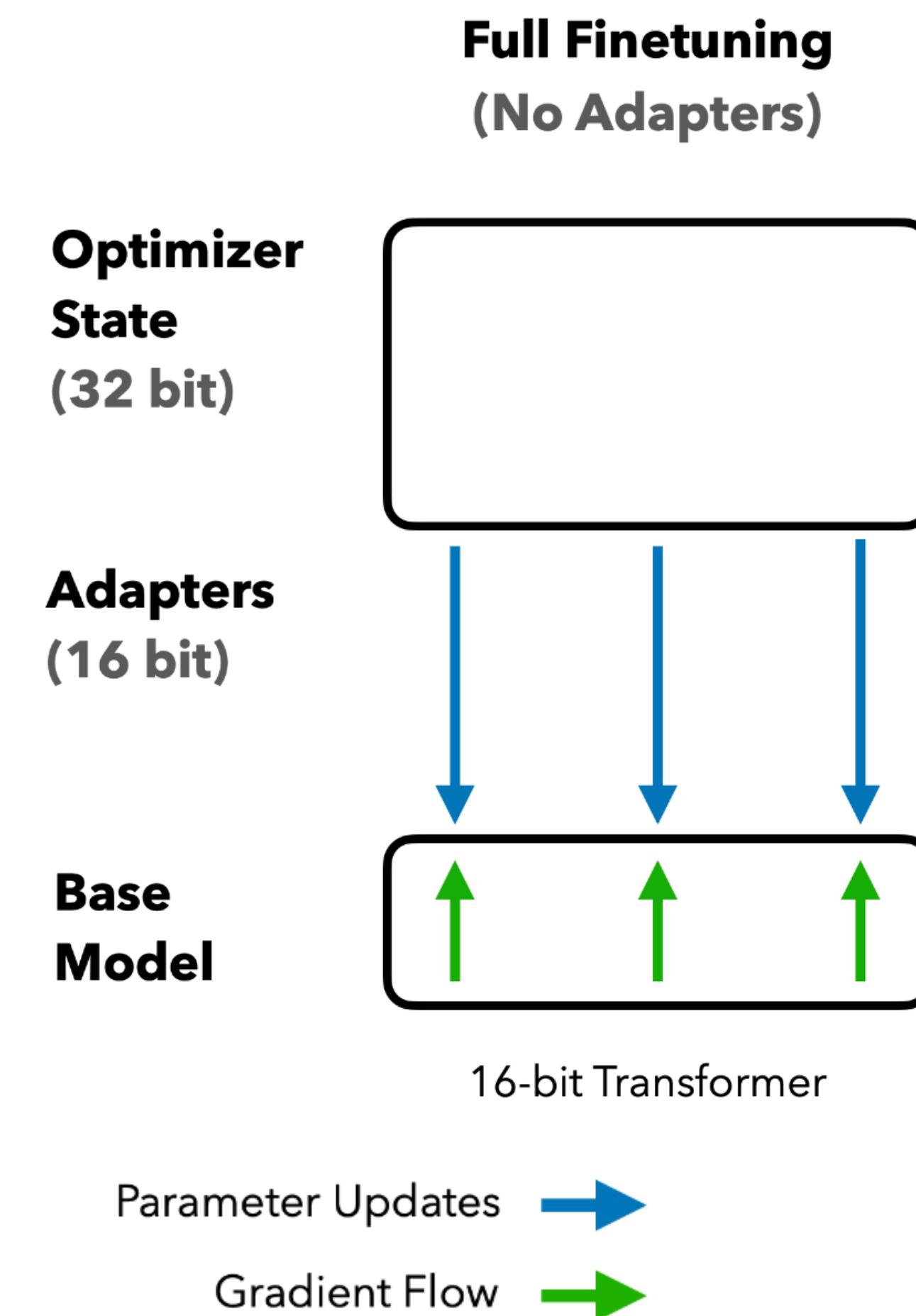
Model switching becomes tree traversal.
Base model is only instantiated once.

thinkingmachines.ai/blog/lora

Full FT is expensive

OK at an industry scale ... what about everyone else?

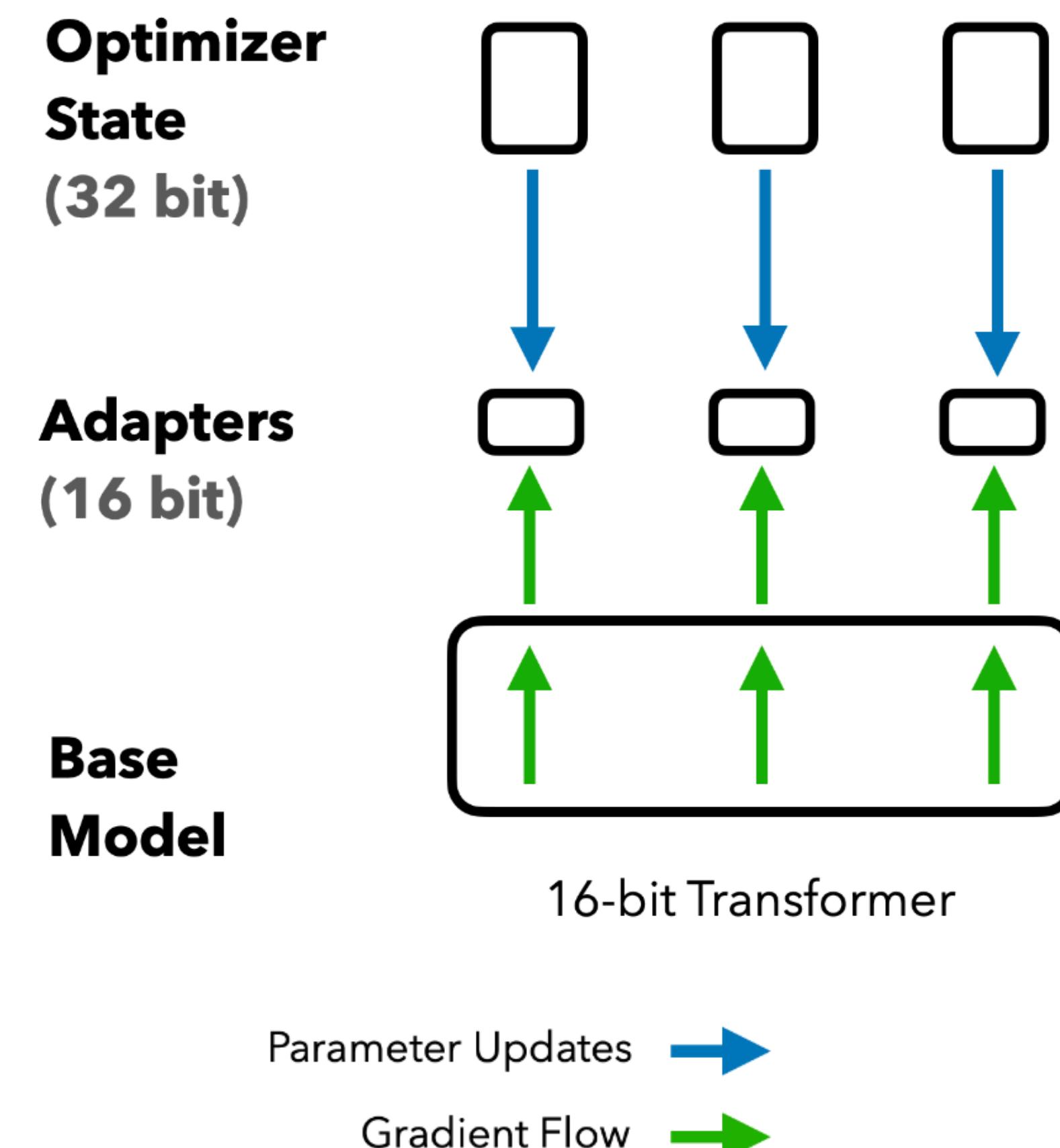
- Cost per param:
 - Weight: 2 byte
 - Weight gradient: 2 byte
 - Optimizer state: 8 byte
 - Total: **12 bytes** per parameter
- 70B model -> 840 GB of GPU memory
-> 18x data center GPUs



LoRA is expensive

OK at an R1 scale ... what about everyone else?

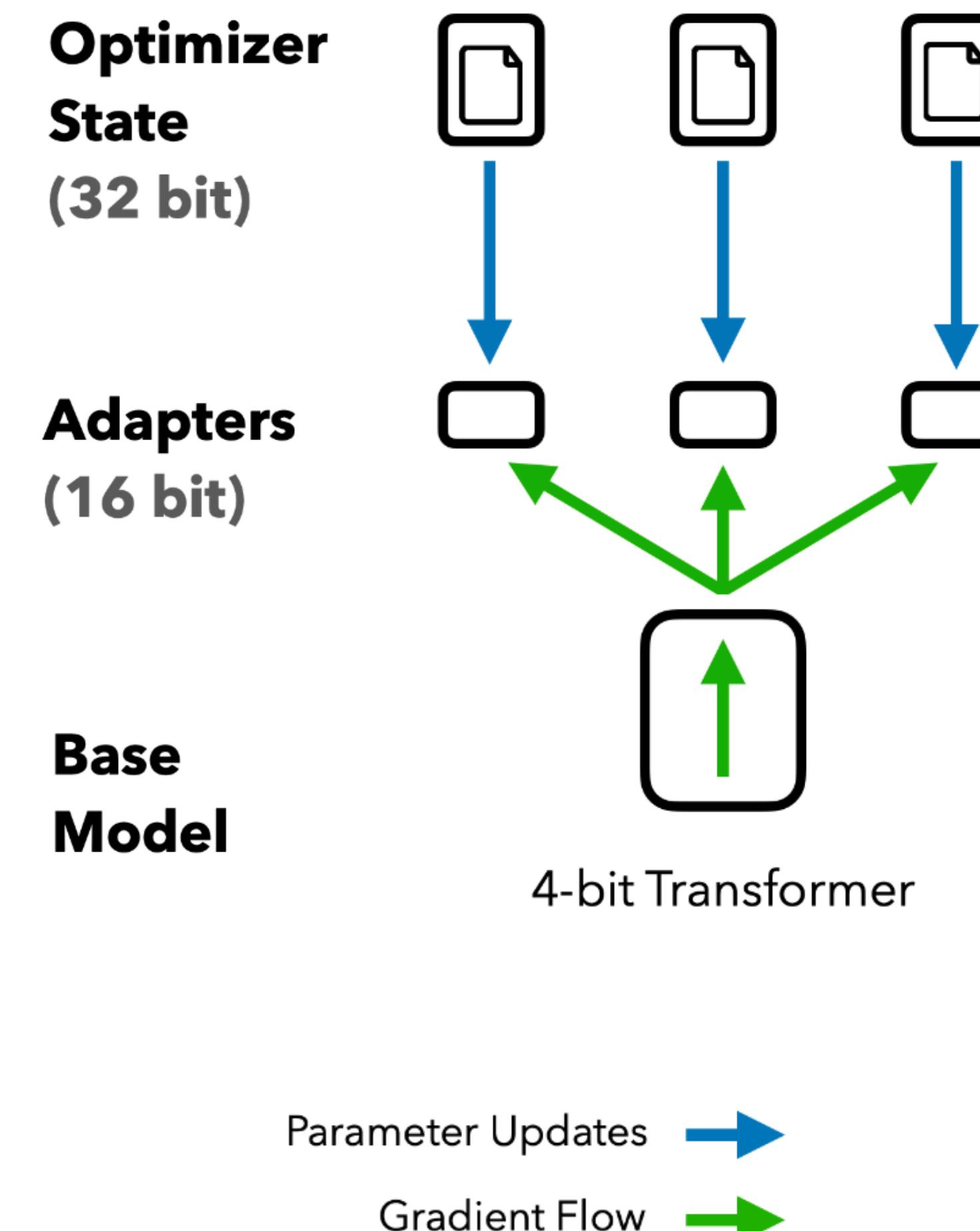
- Cost per param:
 - Weight: 16 bits
 - Weight gradient: ~0.4 bit
 - Optimizer state: ~0.8 bit
 - Adapter weights: ~0.4 bit
 - Total: **17.6 bits** per parameter
- 70B model -> 154 GB of GPU memory
 - > 4x data center GPUs
 - OR 8x consumer GPUs



QLoRA is affordable

Fine-tuning for everyone!

- Cost per param:
 - Weight: **4 bits**
 - Weight gradient: ~0.4 bit
 - Optimizer state: ~0.8 bit
 - Adapter weights: ~0.4 bit
 - Total: **5.2 bits** per parameter
- 70B model -> 46 GB of GPU memory
-> 1x data center GPUs
OR 2x consumer GPUs



QLoRA

Core Components

- **Double quantization:** reduce space taken up by quantization constants by quantizing those constants themselves!
 - saves 0.4 bits of space per weight
- **Quantize model to 4 bits:** uses new data type (NF4) that is optimal for normal distribution
- **Paged optimizers:** engineering trick for GPU memory spikes; we skip this

QLoRA

Produces LoRA Adapters on Fewer GPUs

- 4-bit quantized weights used *during* QLoRA
 - not required to keep them quantized during serving
- QLoRA yields **16 bit** adapters
 - could add/merge these with original weights then re-quantize
 - could swap them into original weights

Summary

- Great practical utility in fine-tuning base models for specific applications
- Full fine-tuning is prohibitively expensive to conduct and annoying to serve
- LoRA only adapts a certain subset of the model's parameters
 - Motivated by notion of a model's intrinsic dimension being small
 - Simplifies model serving since adapters can be easily “swapped” in/out
- QLoRA reduces the memory overhead when training LoRA adapters