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Course Logistics
• Project Proposal due yesterday


• A2 due Sunday (2/1)


• W Interest Form due Monday (2/2)



Motivation & Background



Decreasing model size* 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Decreasing model size is a worthy goal.

Song Han, MIT 6.5940, Lecture 5

DL models are outgrowing hardware

https://www.dropbox.com/scl/fi/pxvvqyq2yu6mwgk79bq5x/Lec02-Basics.pdf?rlkey=tsumfkhrglic55jnjs4yu66ni&e=4&st=cmwnvuvn&dl=0


Decreasing model size is a worthy goal.

Bloomberg; CNBC; Outside Magazine; Associated Press; U.S. Bureau of International Labor Affairs

https://www.bloomberg.com/graphics/2025-ai-data-centers-electricity-prices/
https://www.cnbc.com/2025/11/26/ai-data-center-frenzy-is-pushing-up-your-electric-bill-heres-why.html
https://www.outsideonline.com/outdoor-adventure/environment/data-center-horseshoe-bend/
https://apnews.com/article/ai-artificial-intelligence-data-center-electricity-wyoming-cheyenne-44da7974e2d942acd8bf003ebe2e855a
https://www.dol.gov/agencies/ilab/resources/reports/child-labor/congo-democratic-republic-drc


Decreasing model size is a worthy goal.

Model Precision bits/param

Gemma 3 (1B, 4B, 12B, 27B) int4 ~ 4 bits/param

GPT OSS (20B, 120B) mxfp4 ~ 4 bits/param

Apple Intelligence (3B)



model size = (# of parameters) × (parameter size)



model size = (# of parameters) × (parameter size)
pruning quantization



Parameter Size

• FP32 ⇒ 4 bytes per parameter


• FP16, BF16 ⇒ 2 bytes per parameter


• FP8, int8 ⇒ 1 byte per parameter


• int4 ⇒ 0.5 bytes per parameter

How many bits does each parameter occupy? (“bit width”)



Parameter Size
Qwen2.5-VL has 3B, 7B, and 72B versions

NVIDIA 2080 Ti

11GB memory

NVIDIA RTX 6000

24GB memory

NVIDIA A40

40GB memory



Parameter Size
Operations are cheaper on lower bit widths

Song Han, MIT 6.5940, Lecture 5

https://www.dropbox.com/scl/fi/pxvvqyq2yu6mwgk79bq5x/Lec02-Basics.pdf?rlkey=tsumfkhrglic55jnjs4yu66ni&e=4&st=cmwnvuvn&dl=0


Parameter Size
What do the underlying bits represent?

Min Max

Baseten, “FP8”

Key

-128 127

-448 448

-65504 65504

3.4 x 1038 -3.4 x 1038

https://www.baseten.co/blog/fp8-efficient-model-inference-with-8-bit-floating-point-numbers/
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• process of constraining an input from a continuous or otherwise large set of 
values to a smaller discrete set

Tim Dettmers, “8-bit Methods”
Song Han, MIT 6.5940, Lecture 5

https://youtu.be/jyOqtw4ry2w?si=NiF-iIHIUNEQ3STM&t=190
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Quantization
In the context of deep learning

• process of constraining an input from a continuous or otherwise large set of 
values to a smaller discrete set

Tim Dettmers, “8-bit Methods”

Song Han, MIT 6.5940, Lecture 5

fp16 → int8

https://youtu.be/jyOqtw4ry2w?si=NiF-iIHIUNEQ3STM&t=190
https://www.dropbox.com/scl/fi/pxvvqyq2yu6mwgk79bq5x/Lec02-Basics.pdf?rlkey=tsumfkhrglic55jnjs4yu66ni&e=4&st=cmwnvuvn&dl=0


Quantization
In the context of deep learning

• process of constraining an input from a continuous or otherwise large set of 
values to a smaller discrete set

Tim Dettmers, “8-bit Methods”

Song Han, MIT 6.5940, Lecture 5

fp16 → int8
while minimizing quantization error

https://youtu.be/jyOqtw4ry2w?si=NiF-iIHIUNEQ3STM&t=190
https://www.dropbox.com/scl/fi/pxvvqyq2yu6mwgk79bq5x/Lec02-Basics.pdf?rlkey=tsumfkhrglic55jnjs4yu66ni&e=4&st=cmwnvuvn&dl=0


Mathematical 

Quantization Techniques



Quantization
Formalizing our problem

• Given a matrix of floating point numbers, we wish to…


• store it as an integer matrix from which we can re-construct a float matrix


• minimize the difference between the original matrix and the reconstructed 
matrix (“quantization error”)



Quantization
Formalizing our problem

• Let  be an integer. We wish to map it to a real number 


• Intuitively, we want to shift and scale our integer


• Mathematically, we want to apply an affine mapping 
(that is, a transformation that preserves collinearity and ratio of distances)

q r

Jacobs et al. 2018, “Efficient Integer-Arithmetic-Only Inference”

https://arxiv.org/pdf/1712.05877


Quantization
Formalizing our problem

r = S(q − Z) = Sq − Sz   is the scaling factor (float) 
  is the zero-point (int)

S
Z

• Let  be an integer. We wish to map it to a real number 


• Intuitively, we want to shift and scale our integer


• Mathematically, we want to apply an affine mapping 
(that is, a transformation that preserves collinearity and ratio of distances)

q r

Jacobs et al. 2018, “Efficient Integer-Arithmetic-Only Inference”

https://arxiv.org/pdf/1712.05877
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Zeropoint Quantization
Also known as “asymmetric quantization”

• Assume  and , thenS = 1.5 ∈ ℝ Z = 1 ∈ ℤ

• for  we have q = 0 r = 1.5(0 − 1) = 1.5(−1) = − 1.5 ∈ ℝ
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r = S(q − Z)



Zeropoint Quantization
Also known as “asymmetric quantization”

• Assume  and , thenS = 1.5 ∈ ℝ Z = 1 ∈ ℤ

• for  we have q = 0 r = 1.5(0 − 1) = 1.5(−1) = − 1.5 ∈ ℝ

• for  we have q = 1 r = 1.5(1 − 1) = 1.5(0) = 0 ∈ ℝ

• for  we have q = 2 r = 1.5(2 − 1) = 1.5(1) = 1.5 ∈ ℝ

• for  we have q = 3 r = 1.5(3 − 1) = 1.5(2) = 3 ∈ ℝ

r = S(q − Z)



Zeropoint Quantization
We can go the other way too

r = S(q − Z) ⇒ q = ⌊ r
S

+ Z⌉
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Zeropoint Quantization
We can go the other way too

r = S(q − Z) ⇒ q = ⌊ r
S

+ Z⌉
• Assume  and , thenS = 1.5 ∈ ℝ Z = 1 ∈ ℤ

• for  we have r = 1 q = ⌊ 1
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Zeropoint Quantization
We can go the other way too

r = S(q − Z) ⇒ q = ⌊ r
S
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• for  we have r = 1 q = ⌊ 1
1.5
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Zeropoint Quantization
We can go the other way too

r = S(q − Z) ⇒ q = ⌊ r
S

+ Z⌉
• Regardless of which  and  we choose,  maps exactly to S Z r = 0 q = Z



Zeropoint Quantization
We can go the other way too

r = S(q − Z) ⇒ q = ⌊ r
S

+ Z⌉
• Regardless of which  and  we choose,  maps exactly to S Z r = 0 q = Z

q = ⌊ 0
S

+ Z⌉ = ⌊Z⌉ = Z



Zeropoint Quantization r = S(q − Z)

r

q

real number

integer

Song Han, MIT 6.5940, Lecture 5

https://www.dropbox.com/scl/fi/pxvvqyq2yu6mwgk79bq5x/Lec02-Basics.pdf?rlkey=tsumfkhrglic55jnjs4yu66ni&e=4&st=cmwnvuvn&dl=0


Zeropoint Quantization r = S(q − Z)

r

q

real number

integer

0

Z
zero point

Song Han, MIT 6.5940, Lecture 5

https://www.dropbox.com/scl/fi/pxvvqyq2yu6mwgk79bq5x/Lec02-Basics.pdf?rlkey=tsumfkhrglic55jnjs4yu66ni&e=4&st=cmwnvuvn&dl=0


Zeropoint Quantization
How do we determine  and  ?S Z

r = S(q − Z)
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q

real number

integer

0

Z
zero point

Song Han, MIT 6.5940, Lecture 5
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Quantization
Formalizing our problem

• Given a specific matrix, 

fp16 → int8
while minimizing quantization error



Zeropoint Quantization r = S(q − Z)

r

q

real number

integer

0

Z
zero point

Song Han, MIT 6.5940, Lecture 5

How do we determine  and  ?S Z
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Zeropoint Quantization r = S(q − Z)

r

q

real number

integer

rmin rmax

qmin qmax

0

Z
zero point

Song Han, MIT 6.5940, Lecture 5

How do we determine  and  ?S Z
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Zeropoint Quantization

rmin = S (qmin − Z)

Song Han, MIT 6.5940, Lecture 5

How do we determine  and  ?S Z

rmax = S (qmax − Z)

r = S(q − Z)

https://www.dropbox.com/scl/fi/pxvvqyq2yu6mwgk79bq5x/Lec02-Basics.pdf?rlkey=tsumfkhrglic55jnjs4yu66ni&e=4&st=cmwnvuvn&dl=0


Zeropoint Quantization

Song Han, MIT 6.5940, Lecture 5

How do we determine  and  ?S Z

rmin = S (qmin − Z) rmax = S (qmax − Z)(1) (2)

https://www.dropbox.com/scl/fi/pxvvqyq2yu6mwgk79bq5x/Lec02-Basics.pdf?rlkey=tsumfkhrglic55jnjs4yu66ni&e=4&st=cmwnvuvn&dl=0


Zeropoint Quantization

Song Han, MIT 6.5940, Lecture 5

How do we determine  and  ?S Z

rmin = S (qmin − Z) rmax = S (qmax − Z)
Subtracting (1) from (2),

(1) (2)

https://www.dropbox.com/scl/fi/pxvvqyq2yu6mwgk79bq5x/Lec02-Basics.pdf?rlkey=tsumfkhrglic55jnjs4yu66ni&e=4&st=cmwnvuvn&dl=0
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Zeropoint Quantization

Song Han, MIT 6.5940, Lecture 5

How do we determine  and  ?S Z

rmin = S (qmin − Z) (1) (3)S =
rmax − rmin

qmax − qmin

https://www.dropbox.com/scl/fi/pxvvqyq2yu6mwgk79bq5x/Lec02-Basics.pdf?rlkey=tsumfkhrglic55jnjs4yu66ni&e=4&st=cmwnvuvn&dl=0


Zeropoint Quantization

Song Han, MIT 6.5940, Lecture 5

How do we determine  and  ?S Z

rmin = S (qmin − Z)

We now have a quantity for , so we can solve (1) for ,S Z

(1) (3)S =
rmax − rmin

qmax − qmin
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Zeropoint Quantization

Song Han, MIT 6.5940, Lecture 5

How do we determine  and  ?S Z

rmin = S (qmin − Z)

We now have a quantity for , so we can solve (1) for ,S Z

(1) (3)S =
rmax − rmin

qmax − qmin

rmin = S (qmin − Z) ⇒ Z = ⌊qmin −
rmin

S ⌉
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Zeropoint Quantization

Song Han, MIT 6.5940, Lecture 5

Quantize the following matrix to 2-bit signed ints

2.09 -0.98 1.48 0.09

0.05 -0.14 -1.08 2.12

0.91 1.92 0 -1.03

1.87 0 1.53 1.49
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Zeropoint Quantization

Song Han, MIT 6.5940, Lecture 5

Quantize the following matrix to 2-bit signed ints

2.09 -0.98 1.48 0.09

0.05 -0.14 -1.08 2.12

0.91 1.92 0 -1.03

1.87 0 1.53 1.49

1 -2 0 -1

-1 -1 -2 1

-2 1 -1 -2

1 -1 0 0

q = ⌊ r
1.07

− 1⌉

Original Weights (float) Quantized Weights (int2)

https://www.dropbox.com/scl/fi/pxvvqyq2yu6mwgk79bq5x/Lec02-Basics.pdf?rlkey=tsumfkhrglic55jnjs4yu66ni&e=4&st=cmwnvuvn&dl=0
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Quantize the following matrix to 2-bit signed ints

2.09 -0.98 1.48 0.09
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1 -1 0 0
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Song Han, MIT 6.5940, Lecture 5

Quantize the following matrix to 2-bit signed ints

2.09 -0.98 1.48 0.09

0.05 -0.14 -1.08 2.12

0.91 1.92 0 -1.03

1.87 0 1.53 1.49

1 -2 0 -1

-1 -1 -2 1

-2 1 -1 -2

1 -1 0 0

q = ⌊ r
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− 1⌉
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− 1⌉ = ⌊ 1.48
1.07

− 1⌉ = ⌊1.38 − 1⌉ = ⌊0.38⌉ = 0Examples

Original Weights (float) Quantized Weights (int2)
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Zeropoint Quantization

Song Han, MIT 6.5940, Lecture 5

Quantize the following matrix to 2-bit signed ints

2.09 -0.98 1.48 0.09

0.05 -0.14 -1.08 2.12

0.91 1.92 0 -1.03

1.87 0 1.53 1.49

1 -2 0 -1

-1 -1 -2 1

-2 1 -1 -2

1 -1 0 0

q = ⌊ r
1.07

− 1⌉

q = ⌊ r
1.07

− 1⌉ = ⌊ 1.48
1.07

− 1⌉ = ⌊1.38 − 1⌉ = ⌊0.38⌉ = 0Examples q = ⌊ r
1.07

− 1⌉ = ⌊ 1.87
1.07

− 1⌉ = ⌊1.75 − 1⌉ = ⌊0.75⌉ = 1

Original Weights (float) Quantized Weights (int2)

https://www.dropbox.com/scl/fi/pxvvqyq2yu6mwgk79bq5x/Lec02-Basics.pdf?rlkey=tsumfkhrglic55jnjs4yu66ni&e=4&st=cmwnvuvn&dl=0


Zeropoint Quantization

Song Han, MIT 6.5940, Lecture 5

Determine the quantization error
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-1 -1 -2 1

-2 1 -1 -2

1 -1 0 0

Quantized Weights (int2)
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Song Han, MIT 6.5940, Lecture 5

Determine the quantization error

r = 1.07(q + 1)

1 -2 0 -1

-1 -1 -2 1

-2 1 -1 -2

1 -1 0 0

Quantized Weights (int2)

https://www.dropbox.com/scl/fi/pxvvqyq2yu6mwgk79bq5x/Lec02-Basics.pdf?rlkey=tsumfkhrglic55jnjs4yu66ni&e=4&st=cmwnvuvn&dl=0
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Determine the quantization error
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r = 1.07(q + 1)

Examples

1 -2 0 -1
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1 -1 0 0

Quantized Weights (int2) Reconstructed Weights (float)
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Song Han, MIT 6.5940, Lecture 5

Determine the quantization error

2.14 -1.07 1.07 0

0 0 -1.07 2.14

-1.07 2.14 0 -1.07

2.14 0 1.07 1.07

r = 1.07(q + 1)

r = 1.07(q + 1) = 1.07(0 + 1) = 1.07Examples

1 -2 0 -1

-1 -1 -2 1

-2 1 -1 -2

1 -1 0 0

Quantized Weights (int2) Reconstructed Weights (float)

https://www.dropbox.com/scl/fi/pxvvqyq2yu6mwgk79bq5x/Lec02-Basics.pdf?rlkey=tsumfkhrglic55jnjs4yu66ni&e=4&st=cmwnvuvn&dl=0


Zeropoint Quantization

Song Han, MIT 6.5940, Lecture 5

Determine the quantization error

2.14 -1.07 1.07 0

0 0 -1.07 2.14

-1.07 2.14 0 -1.07

2.14 0 1.07 1.07

r = 1.07(q + 1)

r = 1.07(q + 1) = 1.07(0 + 1) = 1.07Examples r = 1.07(q + 1) = 1.07(1 + 1) = 2.14

1 -2 0 -1
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Zeropoint Quantization

Song Han, MIT 6.5940, Lecture 5

Determine the quantization error

2.14 -1.07 1.07 0

0 0 -1.07 2.14

-1.07 2.14 0 -1.07

2.14 0 1.07 1.07

r = 1.07(q + 1)

r = 1.07(q + 1) = 1.07(0 + 1) = 1.07Examples r = 1.07(q + 1) = 1.07(1 + 1) = 2.14

1 -2 0 -1

-1 -1 -2 1

-2 1 -1 -2

1 -1 0 0

Quantized Weights (int2) Reconstructed Weights (float)

r = 1.07(q + 1) = 1.07(−1 + 1) = 0

https://www.dropbox.com/scl/fi/pxvvqyq2yu6mwgk79bq5x/Lec02-Basics.pdf?rlkey=tsumfkhrglic55jnjs4yu66ni&e=4&st=cmwnvuvn&dl=0


Zeropoint Quantization

Song Han, MIT 6.5940, Lecture 5

Determine the quantization error

2.14 -1.07 1.07 0

0 0 -1.07 2.14

-1.07 2.14 0 -1.07

2.14 0 1.07 1.07

Reconstructed Weights (float)

2.09 -0.98 1.48 0.09

0.05 -0.14 -1.08 2.12

0.91 1.92 0 -1.03

1.87 0 1.53 1.49

Original Weights (float)

https://www.dropbox.com/scl/fi/pxvvqyq2yu6mwgk79bq5x/Lec02-Basics.pdf?rlkey=tsumfkhrglic55jnjs4yu66ni&e=4&st=cmwnvuvn&dl=0


Zeropoint Quantization

Song Han, MIT 6.5940, Lecture 5

Determine the quantization error

2.14 -1.07 1.07 0

0 0 -1.07 2.14

-1.07 2.14 0 -1.07

2.14 0 1.07 1.07

Reconstructed Weights (float)

2.09 -0.98 1.48 0.09

0.05 -0.14 -1.08 2.12

0.91 1.92 0 -1.03

1.87 0 1.53 1.49

Original Weights (float)

-0.05 0.09 0.41 0.09

0.05 -0.14 -0.01 -0.02

0.16 -0.22 0 0.04

-0.27 0 0.46 0.42

Quantization Error

https://www.dropbox.com/scl/fi/pxvvqyq2yu6mwgk79bq5x/Lec02-Basics.pdf?rlkey=tsumfkhrglic55jnjs4yu66ni&e=4&st=cmwnvuvn&dl=0


Practice!

• Quantize the following matrix 
into 3-bit signed integers


• Reconstruct the weights from the 
quantized weights


• Calculate the quantization error

18 7 8

3 6 12

0 -3 -2

Zeropoint Quantization



Practice!

• Quantize the following matrix 
into 3-bit signed integers


• Reconstruct the weights from the 
quantized weights


• Calculate the quantization error

18 7 8

3 6 12

0 -3 -2

Recall from CSE 351 that a -bit signed integer has the range N [−2N−1, 2N−1 − 1]

Zeropoint Quantization



Practice!

15 6 9

3 -3 12

0 -6 0

Zeropoint Quantization

Original Weights (float)
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Zeropoint Quantization

Original Weights (float)

rmin = − 6 rmax = 15



Practice!

15 6 9

3 -3 12

0 -6 0

Zeropoint Quantization

Original Weights (float)

rmin = − 6 rmax = 15

S = 3 Z = − 1



Practice!

15 6 9

3 -3 12

0 -6 0

Zeropoint Quantization

q = ⌊ r
3

− 1⌉

Original Weights (float)

rmin = − 6 rmax = 15

S = 3 Z = − 1



Practice!

15 6 9

3 -3 12

0 -6 0

Zeropoint Quantization

q = ⌊ r
3

− 1⌉

Original Weights (float) Quantized Weights (int3)

rmin = − 6 rmax = 15

S = 3 Z = − 1

4 1 2

0 -2 3

-1 -3 -1



Practice!

4 1 2

0 -2 3

-1 -3 1

Zeropoint Quantization

Quantized Weights (int3)



Practice!

4 1 2

0 -2 3

-1 -3 1

Zeropoint Quantization

r = 3(q + 1)

Quantized Weights (int3)



Practice!

4 1 2

0 -2 3

-1 -3 1

Zeropoint Quantization

r = 3(q + 1)

Quantized Weights (int3) Reconstructed Weights (float)

15 6 9

3 -3 12

0 -6 0



Practice!

15 6 9

3 -3 12

0 -6 0

Zeropoint Quantization

Original Weights (float)



Practice!

15 6 9

3 -3 12

0 -6 0

Zeropoint Quantization

Original Weights (float) Reconstructed Weights (float)

15 6 9

3 -3 12

0 -6 0
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Matmul as an integer-arithmetic-only operation

• We mostly care about the first equation

Zeropoint Quantization

r = S(q − Z)

q = ⌊ r
S

+ Z⌉



Matmul as an integer-arithmetic-only operation

• We mostly care about the first equation

•  is still stored as a float 😔S

Zeropoint Quantization

r = S(q − Z)

q = ⌊ r
S

+ Z⌉



Matmul as an integer-arithmetic-only operation
Zeropoint Quantization r = S(q − Z)

Let . Let  be their quantized versions. Let . Find . A, B ∈ ℝn×n ̂A, B̂ ∈ ℤn×n C = AB Ĉ

Notation: for some matrix , we will refer to the element in its -th row and -th column as .M i j mij
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cij =
N

∑
k=1

aikbkj

By the definition of matrix multiplication,

Notation: for some matrix , we will refer to the element in its -th row and -th column as .M i j mij



Matmul as an integer-arithmetic-only operation
Zeropoint Quantization r = S(q − Z)

Let . Let  be their quantized versions. Let . Find . A, B ∈ ℝn×n ̂A, B̂ ∈ ℤn×n C = AB Ĉ

cij =
N

∑
k=1

aikbkj

By the definition of matrix multiplication,

SC ( ̂cij − ZC) =
N

∑
k=1

SA ( ̂aij − ZA) SB (b̂ij − ZB)

Notation: for some matrix , we will refer to the element in its -th row and -th column as .M i j mij

Applying our quantization schemes,



Matmul as an integer-arithmetic-only operation
Zeropoint Quantization

SC ( ̂cij − ZC) =
N

∑
k=1

SA ( ̂aij − ZA) SB (b̂ij − ZB)



Matmul as an integer-arithmetic-only operation
Zeropoint Quantization

SC ( ̂cij − ZC) =
N

∑
k=1

SA ( ̂aij − ZA) SB (b̂ij − ZB)

Factoring constants out of the sum,

SC ( ̂cij − ZC) = SASB

N

∑
k=1

( ̂aij − ZA) (b̂ij − ZB)



Matmul as an integer-arithmetic-only operation
Zeropoint Quantization

SC ( ̂cij − ZC) =
N

∑
k=1

SA ( ̂aij − ZA) SB (b̂ij − ZB)

Factoring constants out of the sum,

SC ( ̂cij − ZC) = SASB

N

∑
k=1

( ̂aij − ZA) (b̂ij − ZB)

Isolating  on the left,̂cij

̂cij = ZC +
SASB

SC

N

∑
k=1

( ̂aij − ZA) (b̂ij − ZB)



Matmul as an integer-arithmetic-only operation
Zeropoint Quantization

̂cij = ZC +
SASB

SC

N

∑
k=1

( ̂aij − ZA) (b̂ij − ZB)

Jacobs et al. 2018, “Efficient Integer-Arithmetic-Only Inference”

https://arxiv.org/pdf/1712.05877


Matmul as an integer-arithmetic-only operation
Zeropoint Quantization

̂cij = ZC +
SASB

SC

N

∑
k=1

( ̂aij − ZA) (b̂ij − ZB)

Define . Then,M :=
SASB

SC

̂cij = ZC + M
N

∑
k=1

( ̂aij − ZA) (b̂ij − ZB)

Jacobs et al. 2018, “Efficient Integer-Arithmetic-Only Inference”

https://arxiv.org/pdf/1712.05877


Matmul as an integer-arithmetic-only operation
Zeropoint Quantization

̂cij = ZC +
SASB

SC

N

∑
k=1

( ̂aij − ZA) (b̂ij − ZB)

Define . Then,M :=
SASB

SC

̂cij = ZC + M
N

∑
k=1

( ̂aij − ZA) (b̂ij − ZB)

Empirically, . Normalizing for some ,M ∈ (0,1) M0 ∈ [0.5,1)

M = 2−n ⋅ M0

Jacobs et al. 2018, “Efficient Integer-Arithmetic-Only Inference”

https://arxiv.org/pdf/1712.05877


Matmul as an integer-arithmetic-only operation
Zeropoint Quantization

̂cij = ZC +
SASB

SC

N

∑
k=1

( ̂aij − ZA) (b̂ij − ZB)

Define . Then,M :=
SASB

SC

̂cij = ZC + M
N

∑
k=1

( ̂aij − ZA) (b̂ij − ZB)

Empirically, . Normalizing for some ,M ∈ (0,1) M0 ∈ [0.5,1)

M = 2−n ⋅ M0

fixed-point multiplier

Jacobs et al. 2018, “Efficient Integer-Arithmetic-Only Inference”

https://arxiv.org/pdf/1712.05877


Matmul as an integer-arithmetic-only operation
Zeropoint Quantization

̂cij = ZC +
SASB

SC

N

∑
k=1

( ̂aij − ZA) (b̂ij − ZB)

Define . Then,M :=
SASB

SC

̂cij = ZC + M
N

∑
k=1

( ̂aij − ZA) (b̂ij − ZB)

Empirically, . Normalizing for some ,M ∈ (0,1) M0 ∈ [0.5,1)

M = 2−n ⋅ M0

bit shift

fixed-point multiplier

Jacobs et al. 2018, “Efficient Integer-Arithmetic-Only Inference”

https://arxiv.org/pdf/1712.05877


Matmul as an integer-arithmetic-only operation
Zeropoint Quantization

̂cij = ZC +
SASB

SC

N

∑
k=1

( ̂aij − ZA) (b̂ij − ZB)

Define . Then,M :=
SASB

SC

̂cij = ZC + M
N

∑
k=1

( ̂aij − ZA) (b̂ij − ZB)

Empirically, . Normalizing for some ,M ∈ (0,1) M0 ∈ [0.5,1)

M = 2−n ⋅ M0

bit shift

fixed-point multiplier

Assuming int32, this will 
always have 30 bits of 

relative accuracy. Why?

Jacobs et al. 2018, “Efficient Integer-Arithmetic-Only Inference”

https://arxiv.org/pdf/1712.05877


Zeropoint Quantization
We can now do integer-only matmul!

Song Han, MIT 6.5940, Lecture 5

https://www.dropbox.com/scl/fi/pxvvqyq2yu6mwgk79bq5x/Lec02-Basics.pdf?rlkey=tsumfkhrglic55jnjs4yu66ni&e=4&st=cmwnvuvn&dl=0


Zeropoint Quantization
Practical Considerations

Dettmers et al. 2022, “LLM.int8()”

̂cij = ZC + M
N

∑
k=1

( ̂aij − ZA) (b̂ij − ZB)

https://arxiv.org/pdf/2208.07339
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Dettmers et al. 2022, “LLM.int8()”

̂cij = ZC + M
N

∑
k=1

( ̂aij − ZA) (b̂ij − ZB)
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N

∑
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CPUs contain PMADDUBSW, but most GPUs/TPUs don’t.
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Zeropoint Quantization
Practical Considerations

Dettmers et al. 2022, “LLM.int8()”

̂cij = ZC + M
N

∑
k=1

( ̂aij − ZA) (b̂ij − ZB)

The bulk of the computation occurs in the sum:

( ̂aij − ZA) (b̂ij − ZB) =
N

∑
k=1

̂aijb̂ij − ̂aijZB − b̂ijZA + ZAZB

CPUs contain PMADDUBSW, but most GPUs/TPUs don’t.

int8

int16

https://arxiv.org/pdf/2208.07339


Zeropoint Quantization
Practical Considerations

Dettmers et al. 2022, “LLM.int8()”

̂cij = ZC + M
N

∑
k=1

( ̂aij − ZA) (b̂ij − ZB)

The bulk of the computation occurs in the sum:

( ̂aij − ZA) (b̂ij − ZB) =
N

∑
k=1

̂aijb̂ij − ̂aijZB − b̂ijZA + ZAZB

CPUs contain PMADDUBSW, but most GPUs/TPUs don’t.

The zeropoint slows us down tremendously!

int8

int16

https://arxiv.org/pdf/2208.07339
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Absolute Maximum Quantization
Also known as “symmetric quantization”

• What if get rid of the zeropoint?

• This forces a symmetric quantization scheme. Why?

r = S(q − Z) ⇒ r = Sq

S =
rmax − rmin

qmax − qmin
≈

2 ⋅ rabsmax

2 ⋅ qmax
=

rabsmax

qmax



Deep Learning

Quantization Paradigms



Quantization-Aware Training

Song Han, MIT 6.5940, Lecture 6

https://www.dropbox.com/scl/fi/qt970xoje5d1btek4a8cl/Lec06-Quantization-II.pdf?rlkey=lalxz5ed2hez0olwu4e4gokbj&e=3&st=f1oof15v&dl=0


Quantization-Aware Training

Layer NLayer N − 1 inputs outputs Layer N + 1

weights

Song Han, MIT 6.5940, Lecture 6

https://www.dropbox.com/scl/fi/qt970xoje5d1btek4a8cl/Lec06-Quantization-II.pdf?rlkey=lalxz5ed2hez0olwu4e4gokbj&e=3&st=f1oof15v&dl=0


Quantization-Aware Training

Layer NLayer N − 1 inputs outputs Layer N + 1

weights

Song Han, MIT 6.5940, Lecture 6

conv batch 
norm ReLU

example layer

https://www.dropbox.com/scl/fi/qt970xoje5d1btek4a8cl/Lec06-Quantization-II.pdf?rlkey=lalxz5ed2hez0olwu4e4gokbj&e=3&st=f1oof15v&dl=0


Quantization-Aware Training
Simulated / Fake Quantization

Layer NLayer N − 1 inputs outputs Layer N + 1

weights

Song Han, MIT 6.5940, Lecture 6

conv batch 
norm ReLU

example layer

https://www.dropbox.com/scl/fi/qt970xoje5d1btek4a8cl/Lec06-Quantization-II.pdf?rlkey=lalxz5ed2hez0olwu4e4gokbj&e=3&st=f1oof15v&dl=0


Quantization-Aware Training
Simulated / Fake Quantization

Song Han, MIT 6.5940, Lecture 6

Layer NLayer  
N − 1 inputs outputs

Layer  
N + 1

weights

weight quantization

activation 
quantization

https://www.dropbox.com/scl/fi/qt970xoje5d1btek4a8cl/Lec06-Quantization-II.pdf?rlkey=lalxz5ed2hez0olwu4e4gokbj&e=3&st=f1oof15v&dl=0


Quantization-Aware Training
Simulated / Fake Quantization

Song Han, MIT 6.5940, Lecture 6

Layer NLayer  
N − 1 inputs outputs

Layer  
N + 1

weights

weight quantization

activation 
quantization

deployed during inference

https://www.dropbox.com/scl/fi/qt970xoje5d1btek4a8cl/Lec06-Quantization-II.pdf?rlkey=lalxz5ed2hez0olwu4e4gokbj&e=3&st=f1oof15v&dl=0
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Layer NLayer  
N − 1 inputs outputs

Layer  
N + 1

weights

weight quantization

activation 
quantization

deployed during inference

only maintained during training,  
allows small gradients to accumulate

https://www.dropbox.com/scl/fi/qt970xoje5d1btek4a8cl/Lec06-Quantization-II.pdf?rlkey=lalxz5ed2hez0olwu4e4gokbj&e=3&st=f1oof15v&dl=0


Quantization-Aware Training
Simulated / Fake Quantization

Song Han, MIT 6.5940, Lecture 6

Layer Ninputs outputs

weights

weight quantization

activation 
quantization

Q(X) Y Q(Y)

W

Q(W)
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⇒

Bengio et al. 2013, “Estimating or Propagating Gradients”
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Quantization-Aware Training
Straight-Through Estimator (STE)

• Quantization is a step function  gradient is almost always 0 


• STE passes gradients along “as if it had been the identity function”

⇒

Bengio et al. 2013, “Estimating or Propagating Gradients”

Layer Nweights weight quantization

W Q(W)

∂L
∂Q(W)

∂L
∂W

=
∂L

∂Q(W)

https://arxiv.org/pdf/1308.3432


Quantization-Aware Training
Practical Considerations

• Quite effective, especially useful for really large models


• Requires training (or re-training) the model 😔


• Also called “Mixed Precision Training”



Post-Training Quantization
Practical Considerations
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Model Size Model Name Asymmetric 
PTQ

Symmetric 
PTQ

Asymmetric 
QAT

Symmetric 
QAT

Floating 
Point

3.5M MobileNet-v2 0.1% 69.8% 70.9% 71.1% 71.9%

25M ResNet-50 75% 75% 75% 75% 75.6%

60M ResNet-152 76.1% 76% 76% 76% 77.8%

Krishnamoorthi 2018, “Quantizing deep convolutional networks”
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Post-Training Quantization
Practical Considerations

Model Size Model Name Asymmetric 
PTQ

Symmetric 
PTQ

Asymmetric 
QAT

Symmetric 
QAT

Floating 
Point

3.5M MobileNet-v2 0.1% 69.8% 70.9% 71.1% 71.9%

25M ResNet-50 75% 75% 75% 75% 75.6%

60M ResNet-152 76.1% 76% 76% 76% 77.8%

Smaller models suffer from PQT, likely because they 
have a smaller representational capacity

Krishnamoorthi 2018, “Quantizing deep convolutional networks”

https://arxiv.org/pdf/1806.08342#page=21


Quantization Libraries

& their underlying PTQ methods
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LLM.int8()
Seminal work in quantization for LLMs

• Implemented in bitsandbytes


• Integrated with 🤗 Transformers

previously discussed methods

what we’re about to discuss

Dettmers et al. 2022, “LLM.int8()”
perplexity scores

https://arxiv.org/pdf/2208.07339


LLM.int8()
Absmax Quantization

Dettmers et al. 2022, “LLM.int8()”

S =
rmax − rmin

qmax − qmin
≈

rabsmax

qmax
=

rabsmax

127

int8 ⇒ qmax = 127

r = S(q − Z) ⇒ r = Sq ⇒ q = ⌊ r
S ⌉

https://arxiv.org/pdf/2208.07339


LLM.int8()
Absmax Quantization

Dettmers et al. 2022, “LLM.int8()”

r = S(q − Z) ⇒ r = Sq ⇒ q = ⌊ r
S ⌉

S =
rmax − rmin

qmax − qmin
≈

rabsmax

qmax
=

rabsmax

127

quantized → real

rabsmax

127

real → quantized

127
rabsmaxwe will refer to this value as s

https://arxiv.org/pdf/2208.07339


LLM.int8()
Absmax Quantization

Dettmers et al. 2022, “LLM.int8()”

quantized → real

rabsmax

127

real → quantized

127
rabsmax

• 


•

1
s

: quantized → real

s : real → quantized

https://arxiv.org/pdf/2208.07339
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int8 matmul with fp16 inputs and outputs

• Given inputs  and , we compute Xf16 ∈ ℝs×h Wf16 ∈ ℝh×o Cf16 ∈ ℝs×o

Dettmers et al. 2022, “LLM.int8()”

Xf16Wf16 = Cf16 ≈
1

sxf16
⋅ swf16

⋅ Ci32

from previous slide

https://arxiv.org/pdf/2208.07339
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• Given inputs  and , we compute Xf16 ∈ ℝs×h Wf16 ∈ ℝh×o Cf16 ∈ ℝs×o

Dettmers et al. 2022, “LLM.int8()”

Xf16Wf16 = Cf16 ≈
1

sxf16
swf16

⋅ Ci32

≈
1
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LLM.int8()
int8 matmul with fp16 inputs and outputs

• Given inputs  and , we compute Xf16 ∈ ℝs×h Wf16 ∈ ℝh×o Cf16 ∈ ℝs×o

Dettmers et al. 2022, “LLM.int8()”

Xf16Wf16 = Cf16 ≈
1

sxf16
swf16

⋅ Ci32

≈
1

sxf16
swf16

⋅ Xi8Wi8

Why int32?

https://arxiv.org/pdf/2208.07339


LLM.int8()
int8 matmul with fp16 inputs and outputs

• Given inputs  and , we compute Xf16 ∈ ℝs×h Wf16 ∈ ℝh×o Cf16 ∈ ℝs×o

Dettmers et al. 2022, “LLM.int8()”

Xf16Wf16 = Cf16 ≈
1

sxf16
swf16

⋅ Ci32

≈
1

sxf16
swf16

⋅ Xi8Wi8

=
1

sxf16
swf16

⋅ Q(Xf16) Q(Wf16)

https://arxiv.org/pdf/2208.07339
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• More scaling constants ⇒ improved quantization error

• Matrix multiplication is a series of dot products

• Idea: one scaling factor for each row of  and each column of X W
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• Given inputs  and , we compute Xf16 ∈ ℝs×h Wf16 ∈ ℝh×o Cf16 ∈ ℝs×o

• Assign a different scaling constant  to each row of sxf16
Xf16

• Assign a different scaling constant  to each col of swf16
Wf16
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first entry of C = (first row of X) ⋅ (first col of W)

≈
1

s for first row of X ⋅ s for first col of W
⋅ Q (first row of X) ⋅ Q (first col of W)

2 6 -15

7

2

-4
first entry of C = ⋅

2 6 -15

7

2

-4
Q(≈

1
8.466̄ ⋅ 18.143

derived via  formula
127

absmax

⋅ ) ⋅ Q( )
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2 6 -15

7

2

-4
Q(=

1
8.466̄ ⋅ 18.143 ⋅ ) ⋅ Q( )

=
1

8.466̄ ⋅ 18.143 ⋅ ⋅⌊2 ⋅ 8.466̄⌉ ⌊6 ⋅ 8.466̄⌉ ⌊−15 ⋅ 8.466̄⌉

⌊18.143 ⋅ 7⌉

⌊18.143 ⋅ 2⌉

⌊18.143 ⋅ −4⌉

=
1

153.61 ⋅ 17 51 -127

127

36

-73
⋅

=
1

153.61
⋅ (17(127) + 51(36) − 127(−73)) =

1
153.61

⋅ (13266) = 86.36 for reference, 
the correct result is 86
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127

rabsmax

7 8 18.143 15.875



LLM.int8()
Vector-wise Quantization

2 6 -15

-7 9 12

3 -10 8

8 1 3

-1 11 9

Xf16

7 -3

2 -8

-4 0

Wf16

row-wise 
  

absmax

col-wise  
 

absmax

real → quantized

sf16 =
127

rabsmax

7 8 18.143 15.875
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7 -3

2 -8
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2 6 -15

-7 9 12

3 -10 8

8 1 3

-1 11 9

Xf16

7 -3

2 -8

-4 0

Wf16

8.466

10.583

12.7

15.875

11.545

sf16

sf16

Q(Xf16) = ⌊sf16Xf16⌉

Q(Wf16) = ⌊sf16Wf16⌉

17 51 -127

-74 95 127

38 -127 102

127 16 3

-12 127 104

127 -48

36 -127

-73 0
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⋅ Q(Xf16) Q(Wf16)

• We now have multiple 


• How can we efficiently dequantize?
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• How can we efficiently dequantize?


• -th entry of  is the dot product of the -th row of  & the -th col of 


• -th row of  was quantized with -th entry of 


• -th col of  was quantized with -th entry of 

ij C i X j W

i X i sf16

j W j sf16

sf16 sf16⊗

What should  be dequantized by?C
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8.466

10.583

12.7

15.875

11.545

⊗ =18.143 15.875
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Vector-wise Quantization

sf16 sf16⊗ =

8.466

10.583

12.7

15.875

11.545

⊗ =

153.610 134.408

192.012 168.010

230.414 201.613

288.018 252.016

209.468 183.284

18.143 15.875
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Vector-wise Quantization

sf16 sf16⊗
1

Q( )Cf16 = ⋅ Xf16 Q( )Wf16

 matrixb × o

• Given inputs  and , we compute 
Xf16 ∈ ℝb×h Wf16 ∈ ℝh×o Cf16 ∈ ℝs×o

 matrixb × o  matrixb × o

elementwise 
multiplication
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sf16 sf16⊗
1

Q( )Cf16 = ⋅ Xf16 Q( )Wf16

⌊ ⌉ ⌊ ⌉
= =

sf16Xf16 sf16Wf16

• Given inputs  and , we compute Xf16 ∈ ℝb×h Wf16 ∈ ℝh×o Cf16 ∈ ℝs×o
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Q( )Cf16 = ⋅ Xf16 Q( )Wf16

= =
sf16Xf16 sf16Wf16

• Given inputs  and , we compute Xf16 ∈ ℝb×h Wf16 ∈ ℝh×o Cf16 ∈ ℝs×o
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Q( )Cf16 = ⋅ Xf16 Q( )Wf16

⌊ ⌉ ⌊ ⌉
= =

sf16Xf16 sf16Wf16

• Given inputs  and , we compute Xf16 ∈ ℝb×h Wf16 ∈ ℝh×o Cf16 ∈ ℝs×o

S
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LLM.int8()
Outliers

Dettmers et al. 2022, “LLM.int8()”

sequence #1

sequence #2

sequence #3

feature  
#1

feature  
#2

feature  
#3

feature  
#4

feature  
#5

https://arxiv.org/pdf/2208.07339
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LLM.int8()
Outliers

• Empirically, large (>6B) transformer models have outliers:

• Large magnitude features (columns)

• Extremely important for performance

• Require high quantization precision

Dettmers et al. 2022, “LLM.int8()”

https://arxiv.org/pdf/2208.07339
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• Empirically, large transformer models have…
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LLM.int8()
Outliers

• Empirically, large transformer models have…


• 99.9% regular features — medium quantization precision OK


• 0.01% outlier features — require high quantization precision

Great, we already employ vector-wise quantization, right?

Dettmers et al. 2022, “LLM.int8()”

https://arxiv.org/pdf/2208.07339


LLM.int8()
Outliers

• Vector-wise quantization assigns different scaling factors for rows in 


• Outliers occur in columns in 

X

X



LLM.int8()
Outliers

• Vector-wise quantization assigns different scaling factors for rows in 


• Outliers occur in columns in 

X

X

Vector-wise quantization doesn’t help
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Mixed-precision Decomposition

• What if we handled the normal features and outlier features separately?
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X2W2 + X4W4



LLM.int8()
Mixed-precision Decomposition

• Notation for handling outliers  “separately” (still with normal fp16 matmul)O

Cf16 = ∑
h∈O

Xh
f16W

h
f16 + ∑

h∉O

Xh
f16W

h
f16
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Mixed-precision Decomposition

• What if we handled the normal features and outlier features separately?

Q( )Cf16 = ⋅ Xf16 Q( )Wf16S
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Mixed-precision Decomposition

Cf16 = ∑
h∈O

Xh
f16W

h
f16 + S ⋅ ∑

h∉O

Xh
i8W

h
i8

• What if we handled the normal features and outlier features separately?

Q( )Cf16 = ⋅ Xf16 Q( )Wf16S
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LLM.int8()
Outliers are critical to transformer performance

• Removing <7 outlier features causes…


• top-1 softmax probability cut in half


• validation perplexity increases 6-10x

• Removing 7 random features causes…


• top-1 softmax probability decreases by 0.3%


• validation perplexity increases by 0.1%

Dettmers et al. 2022, “LLM.int8()”
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GPTQ
4 Bit Quantization

• Integrated with 🤗 Transformers


• First paper to break the 8 bit quantization barrier

Frantar et al. 2022, “GPTQ”

https://arxiv.org/pdf/2210.17323


AWQ
4 Bit Quantization… but simpler :)

Lin et al. 2024, “AWQ”

https://arxiv.org/pdf/2306.00978


AWQ
4 Bit Quantization… but simpler :)

• 1% of weights are “salient weights”


• Similar insight to LLM.int8()

Lin et al. 2024, “AWQ”

https://arxiv.org/pdf/2306.00978


AWQ
4 Bit Quantization… but simpler :)

• 1% of weights are “salient weights”


• Similar insight to LLM.int8()

• Can be found via activation distribution instead of weights


• Intuition: input features with large magnitude are important

Lin et al. 2024, “AWQ”

https://arxiv.org/pdf/2306.00978


AWQ
4 Bit Quantization… but simpler :)

• 1% of weights are “salient weights”


• Similar insight to LLM.int8()

• Can be found via activation distribution instead of weights


• Intuition: input features with large magnitude are important

• Neat trick: multiply weight by , input by s s−1

Lin et al. 2024, “AWQ”

https://arxiv.org/pdf/2306.00978
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Summary
Quantization is like printers.

• Powerful tool to reduce memory footprint of models with many use-cases


• Frontier labs use quantization to train very large models


• Academics & home users use quantization to fit large models on their GPUs

• Awe-inspiring results
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