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Course Logistics
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W Interest Form due Monday (2/2)



Motivation & Background



Decreasing model size*
IS a worthy goal.
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Decreasing model size is a worthy goal.

DL models are outgrowing hardware

Song Han, MIT 6.5940, Lecture 5



https://www.dropbox.com/scl/fi/pxvvqyq2yu6mwgk79bq5x/Lec02-Basics.pdf?rlkey=tsumfkhrglic55jnjs4yu66ni&e=4&st=cmwnvuvn&dl=0

Decreasing model size is a worthy goal.

AlDataCentersAre Cheyenne to host massive Al data
Sending Power Bills Soaring [l center using more electricity than all

Wholesale electricity costs as muchas 267% more Wyo m i n g h 0 m e s c 0 m b i n e d

thanitdid five years agoin areas near data centers.
That’s being passed onto customers.

Al d ‘f ’ hi A $10 Billion Data Center Could Rise Beside Horseshoe Bend, Just
ata center renzy IS pUS II‘Ig U p Outside of Arizona’s Grand Canyon

® °
?
yo u r e I eCt rl c b I I I - h e re s Why The town of Page, Arizona, sold 500 acres of land near the Colorado River to a private developer. Some locals fear the

facility will drain the region’s already stressed water supply.

Children in the Democratic Republic of the Congo are subjected to the worst forms of child labor, including recruitment and use in
armed conflictand forced labor mining gold, tin ore (cassiterite), tantalum ore (coltan), and tungsten ore (wolframite). Children also

perform dangerous tasks mining cobalt ore (heterogenite) and copper ore.

Bloomberg; CNBC; Outside Magazine; Associated Press; U.S. Bureau of International Labor Affairs



https://www.bloomberg.com/graphics/2025-ai-data-centers-electricity-prices/
https://www.cnbc.com/2025/11/26/ai-data-center-frenzy-is-pushing-up-your-electric-bill-heres-why.html
https://www.outsideonline.com/outdoor-adventure/environment/data-center-horseshoe-bend/
https://apnews.com/article/ai-artificial-intelligence-data-center-electricity-wyoming-cheyenne-44da7974e2d942acd8bf003ebe2e855a
https://www.dol.gov/agencies/ilab/resources/reports/child-labor/congo-democratic-republic-drc

Decreasing model size is a worthy goal.

Model Precision bits/param
Gemma 3 (1B, 4B, 12B, 27B) int4 ~ 4 bits/param
GPT OSS (20B, 120B) mxfp4 ~ 4 bits/param

Apple Intelligence (3B)




model size = (# of parameters) x (parameter size)



model size = (# of parameters) x (parameter size)

pruning quantization



Parameter Size

How many bits does each parameter occupy? (“bit width”)

e FP32 = 4 bytes per parameter
e FP16, BF16 = 2 bytes per parameter
 FP8, Int8 = 1 byte per parameter

e Int4 = 0.5 bytes per parameter



Parameter Size
Qwen2.5-VL has 3B, 7B, and 72B versions

NVIDIA 2080 Ti NVIDIA RTX 6000 NVIDIA A40

11GB memory 24GB memory 40GB memory



Parameter Size

Operations are cheaper on lower bit widths

Operation Energy [pJ]
8 bit int ADD 0.03
..................................... 3 Zb,tmtADD 01
"""""""""""""""""" {6bitfloatADD | 04
""""""""""""""""" s2bitfoatADD | 09

32 bit float MULT

Rough Energy Cost For Various Operations in 45nm 0.9V

30 X

16 X :

10 100

1000

Song Han, MIT 6.5940, Lecture 5



https://www.dropbox.com/scl/fi/pxvvqyq2yu6mwgk79bq5x/Lec02-Basics.pdf?rlkey=tsumfkhrglic55jnjs4yu66ni&e=4&st=cmwnvuvn&dl=0

Parameter Size

What do the underlying bits represent?

FP32 JRNNRNRNN
FP16 HRRNEE
FP8 HRNEE

INTS |

Key

B Sign
B Exponent
Mantissa

Min
3.4 x 1038

-65504

-448

-128

Max

-3.4 x 1038

65504

448

127

Baseten, “FP8”


https://www.baseten.co/blog/fp8-efficient-model-inference-with-8-bit-floating-point-numbers/

Quantization

e process of constraining an input from a continuous or otherwise large set of
values to a smaller discrete set
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Quantization

A well-defined tool in math & signal processing

e process of constraining an input from a continuous or otherwise large set of
values to a smaller discrete set

e pdif
Bl Quantization bins

Tim Dettmers, “8-bit Methods”



https://youtu.be/jyOqtw4ry2w?si=NiF-iIHIUNEQ3STM&t=190
https://www.dropbox.com/scl/fi/pxvvqyq2yu6mwgk79bq5x/Lec02-Basics.pdf?rlkey=tsumfkhrglic55jnjs4yu66ni&e=4&st=cmwnvuvn&dl=0

Quantization

A well-defined tool in math & signal processing

e process of constraining an input from a continuous or otherwise large set of
values to a smaller discrete set

e pdif
Bl Quantization bins

—— Continuous Signal Quantized Signal

Quantization Error

Tim Dettmers, “8-bit Methods”
Song Han, MIT 6.5940, Lecture 5



https://youtu.be/jyOqtw4ry2w?si=NiF-iIHIUNEQ3STM&t=190
https://www.dropbox.com/scl/fi/pxvvqyq2yu6mwgk79bq5x/Lec02-Basics.pdf?rlkey=tsumfkhrglic55jnjs4yu66ni&e=4&st=cmwnvuvn&dl=0

Quantization

In the context of deep learning

e process of constraining an input from a continuous or otherwise large set of
values to a smaller discrete set

fp16 — Int8

Tim Dettmers, “8-bit Methods”
Song Han, MIT 6.5940, Lecture 5



https://youtu.be/jyOqtw4ry2w?si=NiF-iIHIUNEQ3STM&t=190
https://www.dropbox.com/scl/fi/pxvvqyq2yu6mwgk79bq5x/Lec02-Basics.pdf?rlkey=tsumfkhrglic55jnjs4yu66ni&e=4&st=cmwnvuvn&dl=0

Quantization

In the context of deep learning

e process of constraining an input from a continuous or otherwise large set of
values to a smaller discrete set

fp16 — Int8

while minimizing quantization error

Tim Dettmers, “8-bit Methods”
Song Han, MIT 6.5940, Lecture 5



https://youtu.be/jyOqtw4ry2w?si=NiF-iIHIUNEQ3STM&t=190
https://www.dropbox.com/scl/fi/pxvvqyq2yu6mwgk79bq5x/Lec02-Basics.pdf?rlkey=tsumfkhrglic55jnjs4yu66ni&e=4&st=cmwnvuvn&dl=0

Mathematical
Quantization Techniques




Quantization

Formalizing our problem

* (Given a matrix of floating point numbers, we wish to...
» store it as an integer matrix from which we can re-construct a float matrix

 minimize the difference between the original matrix and the reconstructed
matrix (“quantization error”)



Quantization

Formalizing our problem

» Let g be an integer. We wish to map it to a real number r
* Intuitively, we want to shift and scale our integer

 Mathematically, we want to apply an affine mapping

(that is, a transformation that preserves collinearity and ratio of distances)

Jacobs et al. 2018, “Efficient Integer-Arithmetic-Only Inference”



https://arxiv.org/pdf/1712.05877

Quantization

Formalizing our problem

» Let g be an integer. We wish to map it to a real number r
* Intuitively, we want to shift and scale our integer

 Mathematically, we want to apply an affine mapping

(that is, a transformation that preserves collinearity and ratio of distances)

— S(q - Z) — Sq - SZ S is the scaling factor (float)

/. is the zero-point (int)

Jacobs et al. 2018, “Efficient Integer-Arithmetic-Only Inference”



https://arxiv.org/pdf/1712.05877
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Also known as “asymmetric quantization”
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Zeropoint Quantization r=25q—2)

Also known as “asymmetric quantization”

e AssumeS=15€RandZ=1 € Z, then
e forgq=0wehaver=150—-1)=15(-1)=-15 €l
e forg=1wehaver=15(1-1)=1.5(0)=0 €|
e forg=2wehaver=152-1)=15(1)=15 €l




Zeropoint Quantization r=25q—2)

Also known as “asymmetric quantization”

e AssumeS=15€RandZ=1 € Z, then
e forgq=0wehaver=150—-1)=15(-1)=-15 €l
e forg=1wehaver=15(1-1)=1.5(0)=0 €|
e forg=2wehaver=152-1)=15(1)=15 €l
e forgq=3wehaver=153-1)=15Q2)=3 €l




Zeropoint Quantization

We can go the other way too

r=38q—-72) =



Zeropoint Quantization

We can go the other way too

r=38q—-72) =

e AssumeS=15€eRandZ =1 € Z, then



Zeropoint Quantization

We can go the other way too

r=38q—-2) = gq=

e AssumeS=15€eRandZ =1 € Z, then

1
. forr =1 we have g = [E_l_l] = [O.6+1]

16| =2€l



Zeropoint Quantization

We can go the other way too

r=5qg—-72) = q= |£+Z]

e AssumeS=15€eRandZ =1 € Z, then

1 _ _
.forr=1wehaveq=[ﬁ+1] [O.6+1]=[1.6]=2€L
0

. forr =0 we have g = [E_I_l] =0+1]|=|1|=1€/Z



Zeropoint Quantization

We can go the other way too

r=38q—-72) =



Zeropoint Quantization

We can go the other way too
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Zeropoint Quantization

We can go the other way too
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Zeropoint Quantization

We can go the other way too

r=5qg—-72) = q= |§+Z]

« Regardless of which $ and Z we choose, r = 0 maps exactly to g = Z

q = [%+Z] =|Z|=Z7



Zeropoint Quantization r=25q—2)

F—Q—>

real number

2N y
: ! Y
\ ' ’
1} ' y
s I ’
, ] ¢
: ] ’

integer

Song Han, MIT 6.5940, Lecture 5
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Zeropoint Quantization r=25q—2)

F—Q—>

real number

q—o—o—o—o—o—o—»

integer

zero point

Song Han, MIT 6.5940, Lecture 5
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Zeropoint Quantization r=25q—2)

How do we determine S and Z ?

F—Q—>

real number

q—o—o—o—o—o—o—»

integer

zero point

Song Han, MIT 6.5940, Lecture 5



https://www.dropbox.com/scl/fi/pxvvqyq2yu6mwgk79bq5x/Lec02-Basics.pdf?rlkey=tsumfkhrglic55jnjs4yu66ni&e=4&st=cmwnvuvn&dl=0

Quantization

Formalizing our problem

 Given a specific matrix,

fp16 — Int8

while minimizing quantization error



Zeropoint Quantization r=25q—2)

How do we determine S and Z ?

F—Q—>

real number

q—o—o—o—o—o—o—»

integer

zero point

Song Han, MIT 6.5940, Lecture 5
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Zeropoint Quantization r=25q—2)

How do we determine S and Z ?

F—Q—>

real number

2N y
: ! Y
\ ' ’
1} ' y
s I ’
, ] ¢
: ] ’

integer 4min / Qmax

zero point

Song Han, MIT 6.5940, Lecture 5



https://www.dropbox.com/scl/fi/pxvvqyq2yu6mwgk79bq5x/Lec02-Basics.pdf?rlkey=tsumfkhrglic55jnjs4yu66ni&e=4&st=cmwnvuvn&dl=0

Zeropoint Quantization r=25q—2)

How do we determine S and Z ?

r#

in 0 F max
real number

4
4
4
4
4
4

.
. I
.
‘.
A}
.
.

Song Han, MIT 6.5940, Lecture 5
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Zeropoint Quantization

How do we determine S and Z ?

v . =S(qmm—Z) (1) r =S(

Song Han, MIT 6.5940, Lecture 5
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Zeropoint Quantization

How do we determine S and Z ?

Fonin = S (Gmin — Z) ) Fax = S

q min

Subtracting (1) from (2),

Song Han, MIT 6.5940, Lecture 5
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Zeropoint Quantization

How do we determine S and Z ?

Fonin = S (Gmin — Z) ) Fax = S

q min

Subtracting (1) from (2),
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Zeropoint Quantization

How do we determine S and Z ?

Fonin = S (qmin — Z) ) Fax = S

dmin
Subtracting (1) from (2),

Voo — Vi =S(

max min

Simplifying,

Song Han, MIT 6.5940, Lecture 5



https://www.dropbox.com/scl/fi/pxvvqyq2yu6mwgk79bq5x/Lec02-Basics.pdf?rlkey=tsumfkhrglic55jnjs4yu66ni&e=4&st=cmwnvuvn&dl=0

Zeropoint Quantization

How do we determine S and Z ?

Fonin = S (qmin — Z) ) Fax = S

dmin
Subtracting (1) from (2),

Voo — Vi =S(

max min

Simplifying,

Song Han, MIT 6.5940, Lecture 5
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Zeropoint Quantization

How do we determine S and Z ?

Fonin = S (Gmin — Z) ) Fax = S

q min

Subtracting (1) from (2),

Voo — Vi =S(

max min

Simplifying,

Ymax — Ymin

Song Han, MIT 6.5940, Lecture 5



https://www.dropbox.com/scl/fi/pxvvqyq2yu6mwgk79bq5x/Lec02-Basics.pdf?rlkey=tsumfkhrglic55jnjs4yu66ni&e=4&st=cmwnvuvn&dl=0

Zeropoint Quantization

How do we determine S and Z ?

v . =S( —Z) (1) (3)

q min
Ymax — Ymin

Song Han, MIT 6.5940, Lecture 5



https://www.dropbox.com/scl/fi/pxvvqyq2yu6mwgk79bq5x/Lec02-Basics.pdf?rlkey=tsumfkhrglic55jnjs4yu66ni&e=4&st=cmwnvuvn&dl=0

Zeropoint Quantization

How do we determine S and Z ?

— (3)
Umax — Ymin

v . =S( —Z) (1)

q min

We now have a quantity for S, so we can solve (1) for Z,

Song Han, MIT 6.5940, Lecture 5
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Zeropoint Quantization

How do we determine S and Z ?

-Z) L

Ymax — Ymin

I . =S(

q min

We now have a quantity for S, so we can solve (1) for Z,

]/' .
Fmin = 5 (Qmin o Z) = L= [Qmin — Ig,m]

Song Han, MIT 6.5940, Lecture 5
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Zeropoint Quantization

Quantize the following matrix to 2-bit signed ints

Song Han, MIT 6.5940, Lecture 5
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Zeropoint Quantization

Quantize the following matrix to 2-bit signed ints

— 1.08

r min

=212

"m

Song Han, MIT 6.5940, Lecture 5
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Zeropoint Quantization

Quantize the following matrix to 2-bit signed ints

Recall from CSE 351 that a N-bit signed integer has the range [-2V~1, 2V=1 — 1]

— 1.08

r min

=212

"m

Song Han, MIT 6.5940, Lecture 5
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Zeropoint Quantization

Quantize the following matrix to 2-bit signed ints

Recall from CSE 351 that a N-bit signed integer has the range [-2V~1, 2V=1 — 1]

Fmax = Fmin 212 — (—1.08)
max — Ymin 1 — (_2)

= 1.07 €|

Song Han, MIT 6.5940, Lecture 5



https://www.dropbox.com/scl/fi/pxvvqyq2yu6mwgk79bq5x/Lec02-Basics.pdf?rlkey=tsumfkhrglic55jnjs4yu66ni&e=4&st=cmwnvuvn&dl=0

Zeropoint Quantization

Quantize the following matrix to 2-bit signed ints

Recall from CSE 351 that a N-bit signed integer has the range [-2V~1, 2V=1 — 1]

Fmax = T 2.12 = (= 1.08)

S = = 1.07 €l
dmax — Ymin 1 — (_2)
roin —1.08
Z=|q.. — = |-2- =—1€Z
S 1.07

Song Han, MIT 6.5940, Lecture 5
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Zeropoint Quantization

Quantize the following matrix to 2-bit signed ints
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Zeropoint Quantization

Quantize the following matrix to 2-bit signed ints

Song Han, MIT 6.5940, Lecture 5



https://www.dropbox.com/scl/fi/pxvvqyq2yu6mwgk79bq5x/Lec02-Basics.pdf?rlkey=tsumfkhrglic55jnjs4yu66ni&e=4&st=cmwnvuvn&dl=0

Zeropoint Quantization

Quantize the following matrix to 2-bit signed ints

S =1.07 /Z=-1

Song Han, MIT 6.5940, Lecture 5
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Zeropoint Quantization

Quantize the following matrix to 2-bit signed ints

Original Weights (float)

Song Han, MIT 6.5940, Lecture 5
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Zeropoint Quantization

Quantize the following matrix to 2-bit signed ints
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Zeropoint Quantization

Quantize the following matrix to 2-bit signed ints

Original Weights (float) Quantized Weights (int2)
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Zeropoint Quantization

Quantize the following matrix to 2-bit signed ints

Original Weights (float) Quantized Weights (int2)

Examples

Song Han, MIT 6.5940, Lecture 5
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Zeropoint Quantization

Quantize the following matrix to 2-bit signed ints

Original Weights (float) Quantized Weights (int2)

m

-
-

Examples q=[ ’" 1]=[£—I]=L1-38—11=L0.381=0

1.07 1.07

Song Han, MIT 6.5940, Lecture 5
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Zeropoint Quantization

Quantize the following matrix to 2-bit signed ints

Original Weights (float) Quantized Weights (int2)

Examples ¢= [1.’(;7 — 1] = [%— 1] =|1.38-1] =[0.38] =0 q = [ . 1] = [%— 1] =|1.75-1] = [0.75] =1

Song Han, MIT 6.5940, Lecture 5
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Zeropoint Quantization

Determine the quantization error

Quantized Weights (int2)

Song Han, MIT 6.5940, Lecture 5
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Zeropoint Quantization

Determine the quantization error

Quantized Weights (int2)

'

r=107(g+ 1)

Song Han, MIT 6.5940, Lecture 5
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Zeropoint Quantization

Determine the quantization error

Quantized Weights (int2) Reconstructed Weights (float)

Song Han, MIT 6.5940, Lecture 5



https://www.dropbox.com/scl/fi/pxvvqyq2yu6mwgk79bq5x/Lec02-Basics.pdf?rlkey=tsumfkhrglic55jnjs4yu66ni&e=4&st=cmwnvuvn&dl=0

Zeropoint Quantization

Determine the quantization error

Quantized Weights (int2) Reconstructed Weights (float)

Examples

Song Han, MIT 6.5940, Lecture 5



https://www.dropbox.com/scl/fi/pxvvqyq2yu6mwgk79bq5x/Lec02-Basics.pdf?rlkey=tsumfkhrglic55jnjs4yu66ni&e=4&st=cmwnvuvn&dl=0

Zeropoint Quantization

Determine the quantization error

Quantized Weights (int2) Reconstructed Weights (float)

Examp|es r=107(g+1)=1070+1) =1.07

Song Han, MIT 6.5940, Lecture 5



https://www.dropbox.com/scl/fi/pxvvqyq2yu6mwgk79bq5x/Lec02-Basics.pdf?rlkey=tsumfkhrglic55jnjs4yu66ni&e=4&st=cmwnvuvn&dl=0

Zeropoint Quantization

Determine the quantization error

Quantized Weights (int2) Reconstructed Weights (float)

Examples r=107(g+1)=1070+1) =107 r=1.07(g+1)=1.07(1 + 1) = 2.14

Song Han, MIT 6.5940, Lecture 5



https://www.dropbox.com/scl/fi/pxvvqyq2yu6mwgk79bq5x/Lec02-Basics.pdf?rlkey=tsumfkhrglic55jnjs4yu66ni&e=4&st=cmwnvuvn&dl=0

Zeropoint Quantization

Determine the quantization error

Quantized Weights (int2) Reconstructed Weights (float)

Examp|es r=107(g+1)=1070+1) =1.07 r=107(g+1)=107(1+1)=2.14 r=107(g+1)=107(-1+1)=0

Song Han, MIT 6.5940, Lecture 5



https://www.dropbox.com/scl/fi/pxvvqyq2yu6mwgk79bq5x/Lec02-Basics.pdf?rlkey=tsumfkhrglic55jnjs4yu66ni&e=4&st=cmwnvuvn&dl=0

Zeropoint Quantization

Determine the quantization error

Original Weights (float) Reconstructed Weights (float)

e on] [ [
e e
o+ o] [ e o
e L] [ oo [

Song Han, MIT 6.5940, Lecture 5



https://www.dropbox.com/scl/fi/pxvvqyq2yu6mwgk79bq5x/Lec02-Basics.pdf?rlkey=tsumfkhrglic55jnjs4yu66ni&e=4&st=cmwnvuvn&dl=0

Zeropoint Quantization

Determine the quantization error

Original Weights (float) Reconstructed Weights (float) Quantization Error

e on] [ [ ] [on[om [ [
e o
oo o] [ e o] [l e
e L] [ Lo [

-

Song Han, MIT 6.5940, Lecture 5



https://www.dropbox.com/scl/fi/pxvvqyq2yu6mwgk79bq5x/Lec02-Basics.pdf?rlkey=tsumfkhrglic55jnjs4yu66ni&e=4&st=cmwnvuvn&dl=0

Zeropoint Quantization

Practice!

e Quantize the following matrix
into 3-bit signed integers

* Reconstruct the weights from the
quantized weights

» Calculate the quantization error




Zeropoint Quantization

Practice!

e Quantize the following matrix
into 3-bit signed integers

* Reconstruct the weights from the
quantized weights

» Calculate the quantization error

Recall from CSE 351 that a N-bit signed integer has the range [-2"V~1, 2V=1 _ 1]



Zeropoint Quantization

Practice!

Original Weights (float)
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Practice!
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Zeropoint Quantization

Practice!

Original Weights (float)




Zeropoint Quantization

Practice!

Original Weights (float)




Zeropoint Quantization

Practice!

Original Weights (float) Quantized Weights (int3)




Zeropoint Quantization

Practice!

Quantized Weights (int3)




Zeropoint Quantization

Practice!

Quantized Weights (int3)

r=3(g+1)




Zeropoint Quantization

Practice!

Quantized Weights (int3) Reconstructed Weights (float)

r=3(g+1)




Zeropoint Quantization

Practice!

Original Weights (float)




Zeropoint Quantization

Practice!

Original Weights (float) Reconstructed Weights (float)




Zeropoint Quantization

Matmul as an integer-arithmetic-only operation
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Matmul as an integer-arithmetic-only operation

 We mostly care about the first equation r=259q—2)



Zeropoint Quantization

Matmul as an integer-arithmetic-only operation

 We mostly care about the first equation r=259q—2)

e Sis still stored as a float & [
q —



Zeropoint Quantization r=_S(q—2)

Matmul as an integer-arithmetic-only operation

Let A, B € R™", Let A, B € 7"™" be their quantized versions. Let C = AB. Find C.

Notation: for some matrix M, we will refer to the element in its i-th row and j-th column as m;.
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Matmul as an integer-arithmetic-only operation

Let A, B € R™", Let A, B € 7"™" be their quantized versions. Let C = AB. Find C.

Notation: for some matrix M, we will refer to the element in its i-th row and j-th column as m;.

By the definition of matrix multiplication,

N
Cij = Z aikbkj
k=1



Zeropoint Quantization

Matmul as an integer-arithmetic-only operation

Let A, B € R™", Let A, B € 7"™" be their quantized versions. Let C = AB. Find C.

Notation: for some matrix M, we will refer to the element in its i-th row and j-th column as m;.

By the definition of matrix multiplication,

N
Cij = Z aikbkj
k=1

Applying our quantization schemes,

r=25q—2)



Zeropoint Quantization

Matmul as an integer-arithmetic-only operation

N

Sc¢ (6}']‘ — ZC) = Z 54 <&zj — ZA) Sp (l;ij — ZB>

k=1



Zeropoint Quantization

Matmul as an integer-arithmetic-only operation

N

Sc¢ (6}']‘ — ZC) = Z 54 <&zj — ZA) Sp (l;ij — ZB>

k=1

Factoring constants out of the sum,

N

Sc¢ (51']' — ZC) = 3498 Z (dij — ZA) <l;zj — ZB>

k=1



Zeropoint Quantization

Matmul as an integer-arithmetic-only operation

N

k=1
Factoring constants out of the sum,
N A
k=1

Isolating ¢;; on the left,




Jacobs et al. 2018, “Efficient Integer-Arithmetic-Only Inference”

Zeropoint Quantization

Matmul as an integer-arithmetic-only operation

N Yy S p


https://arxiv.org/pdf/1712.05877

Jacobs et al. 2018, “Efficient Integer-Arithmetic-Only Inference”

Zeropoint Quantization

Matmul as an integer-arithmetic-only operation

5SS
Define M := 22 Then,
Sc



https://arxiv.org/pdf/1712.05877

Jacobs et al. 2018, “Efficient Integer-Arithmetic-Only Inference”

Zeropoint Quantization

Matmul as an integer-arithmetic-only operation

k=1
5SS
Define M := 22 Then,
Sc
N A
b =Zc+ MY (&lj _ ZA) <bl] _ ZB)
k=1

Empirically, M € (0,1). Normalizing for some M, € [0.5,1),

M:2_n‘MO


https://arxiv.org/pdf/1712.05877

Jacobs et al. 2018, “Efficient Integer-Arithmetic-Only Inference”

Zeropoint Quantization

Matmul as an integer-arithmetic-only operation

k=1
5SS
Define M := 22 Then,
Sc
N A
b =Zc+ MY (&ij _ ZA) <bl] _ ZB>
k=1

Empirically, M € (0,1). Normalizing for some M, € [0.5,1),

M:2_n‘MO

fixed-point multiplier


https://arxiv.org/pdf/1712.05877

Jacobs et al. 2018, “Efficient Integer-Arithmetic-Only Inference”

Zeropoint Quantization

Matmul as an integer-arithmetic-only operation

k=1
5SS
Define M := 22 Then,
Sc
N A
b =Zc+ MY (&ij _ ZA) <bl] _ ZB>
k=1

Empirically, M € (0,1). Normalizing for some M, € [0.5,1),

bit shift
M — 2_n . MO

fixed-point multiplier


https://arxiv.org/pdf/1712.05877

Jacobs et al. 2018, “Efficient Integer-Arithmetic-Only Inference”

Zeropoint Quantization

Matmul as an integer-arithmetic-only operation

LSS A
Cii = Z- A 5 ,; (ai] — ZA> <bl] — ZB>
A\
Define M := 22 Then,
Sc
N A
b =Zc+ MY (&l.j _ ZA) <bl] _ ZB>
k=1

Empirically, M € (0,1). Normalizing for some M, € [0.5,1),

bit shift
Assuming int32, this will

M=2"".M always have 30 bits of
0

relative accuracy. Why?

fixed-point multiplier


https://arxiv.org/pdf/1712.05877

Zeropoint Quantization

We can now do integer-only matmul!

Operation Energy [pJ]

8 bit int ADD 0.03 &
..................................... 3 2b,tmtADD 01
"""""""""""""""""" {6bitfloatADD | 04
""""""""""""""""" s2bitfoatADD | 09

32 bit float MULT

Rough Energy Cost For Various Operations in 45nm 0.9V

16 X

10 100

1000

Song Han, MIT 6.5940, Lecture 5



https://www.dropbox.com/scl/fi/pxvvqyq2yu6mwgk79bq5x/Lec02-Basics.pdf?rlkey=tsumfkhrglic55jnjs4yu66ni&e=4&st=cmwnvuvn&dl=0

Zeropoint Quantization

Practical Considerations

N
k=1

Dettmers et al. 2022, “LLM.int8()”



https://arxiv.org/pdf/2208.07339

Zeropoint Quantization

Practical Considerations

N
k=1

The bulk of the computation occurs Iin the sum:

N
k=1

Dettmers et al. 2022, “LLM.int8()”



https://arxiv.org/pdf/2208.07339

Zeropoint Quantization

Practical Considerations

N
k=1

The bulk of the computation occurs Iin the sum:

N
k=1

CPUs contain PMADDUBSW, but most GPUs/TPUs don’t.

Dettmers et al. 2022, “LLM.int8()”
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Zeropoint Quantization

Practical Considerations

N
k=1

The bulk of the computation occurs Iin the sum:

N
k=1

CPUs contain PMADDUBSW, but most GPUs/TPUs don’t.

Dettmers et al. 2022, “LLM.int8()”
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Zeropoint Quantization

Practical Considerations

N
k=1

The bulk of the computation occurs Iin the sum:

N
<él\ij - ZA) (bij o ZB) — Z él\zjsz o él\ijZB o ijZA ZAZB
k=1

CPUs contain PMADDUBSW, but most GPUs/TPUs don’t.

The zeropoint slows us down tremendously!

Dettmers et al. 2022, “LLM.int8()”



https://arxiv.org/pdf/2208.07339

Absolute Maximum Quantization

Also known as “symmetric quantization”
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Absolute Maximum Quantization

Also known as “symmetric quantization”

 What if get rid of the zeropoint?

r=38q—-24) = r=J3q
* This forces a symmetric quantization scheme. Why?

Fmax — Tmin _ 2" 7g

G — max min bsmax Fabsmax

ny/ —

max — 9min 2 - Amax Amax



Deep Learning
Quantization Paradigms




Quantization-Aware Training

Song Han, MIT 6.5940, Lecture 6



https://www.dropbox.com/scl/fi/qt970xoje5d1btek4a8cl/Lec06-Quantization-II.pdf?rlkey=lalxz5ed2hez0olwu4e4gokbj&e=3&st=f1oof15v&dl=0

Quantization-Aware Training

Layer N -1 —» —> —> outputs —> Layer N+ 1

Song Han, MIT 6.5940, Lecture 6



https://www.dropbox.com/scl/fi/qt970xoje5d1btek4a8cl/Lec06-Quantization-II.pdf?rlkey=lalxz5ed2hez0olwu4e4gokbj&e=3&st=f1oof15v&dl=0

Quantization-Aware Training

Layer N -1 —» —> —> outputs —> Layer N+ 1

’

’ example layer “e

Song Han, MIT 6.5940, Lecture 6



https://www.dropbox.com/scl/fi/qt970xoje5d1btek4a8cl/Lec06-Quantization-II.pdf?rlkey=lalxz5ed2hez0olwu4e4gokbj&e=3&st=f1oof15v&dl=0

Quantization-Aware Training

Simulated / Fake Quantization

Layer N -1 —» —> —> outputs —> Layer N+ 1

’

’ example layer “e

Song Han, MIT 6.5940, Lecture 6



https://www.dropbox.com/scl/fi/qt970xoje5d1btek4a8cl/Lec06-Quantization-II.pdf?rlkey=lalxz5ed2hez0olwu4e4gokbj&e=3&st=f1oof15v&dl=0

Quantization-Aware Training

Simulated / Fake Quantization

v

weight quantization
: activation - Layer
inputs [ Layer N —> quantization —> OREPEES — N+1

Layer
N-—-1

Song Han, MIT 6.5940, Lecture 6



https://www.dropbox.com/scl/fi/qt970xoje5d1btek4a8cl/Lec06-Quantization-II.pdf?rlkey=lalxz5ed2hez0olwu4e4gokbj&e=3&st=f1oof15v&dl=0

Quantization-Aware Training

Simulated / Fake Quantization

v

weight quantization deployed during inference
: 1 N activation Sutouts Layer
inputs [ ayer —> quantization —> - — N+1

Layer
N-—-1

Song Han, MIT 6.5940, Lecture 6



https://www.dropbox.com/scl/fi/qt970xoje5d1btek4a8cl/Lec06-Quantization-II.pdf?rlkey=lalxz5ed2hez0olwu4e4gokbj&e=3&st=f1oof15v&dl=0

Quantization-Aware Training

Simulated / Fake Quantization

only maintained during training,
allows small gradients to accumulate

weight quantization deployed during inference
: 1 N activation Sutouts Layer
inputs [ ayer —> quantization —> - — N+1

Layer
N-—-1

Song Han, MIT 6.5940, Lecture 6



https://www.dropbox.com/scl/fi/qt970xoje5d1btek4a8cl/Lec06-Quantization-II.pdf?rlkey=lalxz5ed2hez0olwu4e4gokbj&e=3&st=f1oof15v&dl=0

Quantization-Aware Training

Simulated / Fake Quantization

W
weight quantization

O(W) l

Q(X ) N Y activation Q(Y)
— Layer — quantization ——

Inputs outputs

Song Han, MIT 6.5940, Lecture 6



https://www.dropbox.com/scl/fi/qt970xoje5d1btek4a8cl/Lec06-Quantization-II.pdf?rlkey=lalxz5ed2hez0olwu4e4gokbj&e=3&st=f1oof15v&dl=0

Quantization-Aware Training
Straight-Through Estimator (STE)

* Quantization is a step function = gradient is almost always O

S
4
3
2

O (w) = round (w)

Song Han, MIT 6.5940, Lecture 6



https://www.dropbox.com/scl/fi/qt970xoje5d1btek4a8cl/Lec06-Quantization-II.pdf?rlkey=lalxz5ed2hez0olwu4e4gokbj&e=3&st=f1oof15v&dl=0

Quantization-Aware Training
Straight-Through Estimator (STE)

* Quantization is a step function = gradient is almost always O

» STE passes gradients along “as if it had been the identity function”

oL OL  0QW)  dL o oL
oW  00(W) oW  90(W)  90(W)

Bengio et al. 2013, “Estimating or Propagating Gradients”



https://arxiv.org/pdf/1308.3432

Quantization-Aware Training
Straight-Through Estimator (STE)

* Quantization is a step function = gradient is almost always O

» STE passes gradients along “as if it had been the identity function”

oL oL 90W)  dL o oL
oW  00(W) oW  90(W)  90(W)

chain rule

Bengio et al. 2013, “Estimating or Propagating Gradients”
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Quantization-Aware Training
Straight-Through Estimator (STE)

* Quantization is a step function = gradient is almost always O

» STE passes gradients along “as if it had been the identity function”

oL _ oL 00W) oL . oL
oW 0Q(W) oW  9Q(W)  0Q(W)
chain rule straigh_t-through

Bengio et al. 2013, “Estimating or Propagating Gradients”
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Quantization-Aware Training
Straight-Through Estimator (STE)

* Quantization is a step function = gradient is almost always O

» STE passes gradients along “as if it had been the identity function”

Bengio et al. 2013, “Estimating or Propagating Gradients”
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Quantization-Aware Training
Straight-Through Estimator (STE)

* Quantization is a step function = gradient is almost always O

» STE passes gradients along “as if it had been the identity function”

oL oL oL
oW 00(W) 0Q(W)
weights D — weight quantization ' Layer N
—_— —_—
w O(W)

Bengio et al. 2013, “Estimating or Propagating Gradients”



https://arxiv.org/pdf/1308.3432

Quantization-Aware Training

Practical Considerations

* Quite effective, especially useful for really large models
* Requires training (or re-training) the model &

* Also called “"Mixed Precision Training”



Krishnamoorthi 2018, “Quantizing deep convolutional networks”

Post-Training Quantization

Practical Considerations


https://arxiv.org/pdf/1806.08342#page=21

Krishnamoorthi 2018, “Quantizing deep convolutional networks”

Post-Training Quantization

Practical Considerations

. Asymmetric | Symmetric | Asymmetric | Symmetric Floating
Model Size | Model Name PTQ PTQ QAT QAT Point
3.5M MobileNet-v2 0.1% 69.8% 70.9% 71.1% 71.9%
25M ResNet-50 5% 5% 5% 5% 75.6%

60M ResNet-152 76.1% 76% 76% /6% 77.8%



https://arxiv.org/pdf/1806.08342#page=21

Krishnamoorthi 2018, “Quantizing deep convolutional networks”

Post-Training Quantization

Practical Considerations

Model Size | Model Name Asyrl:r,\_:_r:)etric Synl;r_lr_\ce)tric Asygzretric Syrr&n;_?_tric Fllgsitri‘rt\g
3.5M MobileNet-v2 0.1% 69.8% 70.9% 71.1% 71.9%
25M ResNet-50 75% 75% 75% 75% 75.6%
60M ResNet-152 76.1% 76% 76% 76% 77.8%

Smaller models suffer from PQT, likely because they
have a smaller representational capacity


https://arxiv.org/pdf/1806.08342#page=21

Quantization Libraries

& their underlying PTQ methods




LLM.Int8()

Seminal work in quantization for LLMs

Dettmers et al. 2022, “LLM.int8()”



https://arxiv.org/pdf/2208.07339

LLM.int8()

Seminal work in quantization for LLMs

e Implemented in bitsandbytes

e Integrated with & Transformers

Z
\

Dettmers et al. 2022, “LLM.int8()”



https://arxiv.org/pdf/2208.07339

LLM.int8()

Seminal work in quantization for LLMs

e Implemented in bitsandbytes

e Integrated with & Transformers

125M

Parameters 1.3B 2.7B 6.7B 13B

32-bit Float 25.65 1591 1443 1330 12.45
Int8 absmax 8776 16.55 15.11 14.59 19.08
Int8 zeropoint 56.66 1624 1476 1349 13.94
Int8 absmax row-wise 3093 1708 1524 14.13 16.49
Int8 absmax vector-wise 3584 16.82 1498 14.13 16.48
Int8 zeropoint vector-wise 25.72 1594 1436 13.38 1347
Int8 absmax row-wise + decomposition 30.76 16.19 14.65 13.25 12.46
Absmax LLM.int8() (vector-wise + decomp) 25.83 1593 1444 13.24 1245
Zeropoint LLM.int8() (vector-wise + decomp) 25.69 15.92 14.43 13.24 1245

perplexity scores

Dettmers et al. 2022, “LLM.int8()”
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LLM.int8()

Seminal work in quantization for LLMs

e Implemented in bitsandbytes

* Integrated with & Transformers

125M

Parameters 3B 2B -6:/8B - 138

32-bit Float 2565 1591 1443 13.30 1245
Int8 absmax 8§76 - 1655 1511 1459 1908
Int8 zeropoint 56.66 16.24 1476 13.49 13.94
Int8 absmax row-wise 3093 1708 1524 1413 = 1649
Int8 absmax vector-wise 3584 16.82 1498 14.13 1648
Int8 zeropoint vector-wise 202 21594 1436 1338 54y
Int8 absmax row-wise + decomposition 30.76 16.19 14.65 13.25 12.46
Absmax LLM.int8() (vector-wise + decomp) 25.83 1593 1444 13.24 1245
Zeropoint LLM.int8() (vector-wise + decomp) 25.69 15.92 14.43 13.24 1245

perplexity scores

previously discussed methods

Dettmers et al. 2022, “LLM.int8()”
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LLM.Int8()

Seminal work in quantization for LLMs

e Implemented in bitsandbytes

* Integrated with & Transformers

125M

Parameters 3B 2B -6:/8B - 138

32-bit Float 2565 1591 1443 13.30 1245
Int8 absmax 8§76 - 1655 1511 1459 1908
Int8 zeropoint 56.66 16.24 14.76 13.49 13.94
Int8 absmax row-wise 3093 1708 1524 1413 = 1649
Int8 absmax vector-wise 3584 1682 1498 14.13 1648
Int8 zeropoint vector-wise 25902 1594 1436 1338 13547
Int8 absmax row-wise + decomposition 5036 - 1619 1465 1375 1246
Absmax LLM.int8() (vector-wise + decomp) 25.83 1593 1444 13.24 1245
Zeropoint LLM.int8() (vector-wise + decomp) 25.69 1592 1443 13.24 1245

perplexity scores

previously discussed methods

what we’re about to discuss

Dettmers et al. 2022, “LLM.int8()”
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LLM.Int8()

Absmax Quantization

r
r=38q—-24) = r=8 = q:[E]

¢ — Fmax — "min "y Fabsmax Fabsmax

ny/ —

max — 9min Amax 1277

'\

int8 = ¢, = 127

Dettmers et al. 2022, “LLM.int8()”
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LLM.Int8()

Absmax Quantization

quantized — real

a Fabsmax

r=5q—-72) = r=8 = g= E

q Fmax — Tmin "y Fabsmax Fabsmax

— N —

max — 9min Amax 1277

we Will refer to this value as s

Dettmers et al. 2022, “LLM.int8()”
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LLM.Int8()

Absmax Quantization

1

. — . quantized — real
)

quantized — real

Fabsmax

¢ 5 :real — quantized

Dettmers et al. 2022, “LLM.int8()”
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LLM.Int8()

INt8 matmul with fp16 inputs and outputs

- Given inputs X4 € |

sXh and Wf16 e |

h

%% we compute Cﬂ6 e R5%¢

Dettmers et al. 2022, “LLM.int8()”
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LLM.Int8()

INt8 matmul with fp16 inputs and outputs

+ Given inputs Xy € I sXh and W €I X0 \ve compute Cf16 e R3¢

Xr16Wrie = Crie

Dettmers et al. 2022, “LLM.int8()”
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LLM.Int8()

INt8 matmul with fp16 inputs and outputs

+ Given inputs Xy € I sXh and W €I X0 \ve compute Cf16 e R3¢

1
Xr6Wre = Cpg ® — - Cizp

A116 . SWf16

Dettmers et al. 2022, “LLM.int8()”
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LLM.Int8()

INt8 matmul with fp16 inputs and outputs

+ Given inputs Xy € I sXh and W €I X0 \ve compute Cf16 e R3¢

1
Xr6Wre = Cpg ® — - Cizp

A116 . SWf16

/

from previous slide

Dettmers et al. 2022, “LLM.int8()”
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LLM.Int8()

INt8 matmul with fp16 inputs and outputs

+ Given inputs Xy € I sXh and W €I X0 \ve compute Cf16 e R3¢

Xr16Wrie = G ® - Cinp

Sxf16SWf16

1

' X'SWiS

l

X

xf16SWf16

Dettmers et al. 2022, “LLM.int8()”
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LLM.Int8()

INt8 matmul with fp16 inputs and outputs

+ Given inputs Xy € I sXh and W €I X0 \ve compute Cf16 e R3¢

. C:

|
¢ g 132
Xr16~ Wri6 \

1
- XigWig

l

Xr16Wrie = Crig ®

Why int32?

X

xf16SWf16

Dettmers et al. 2022, “LLM.int8()”
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INt8 matmul with fp16 inputs and outputs

+ Given inputs Xy € I sXh and W €I X0 \ve compute Cf16 e R3¢

Xr16Wrie = G ® - Cinp

Sxf16SWf16

1

Sxf16SWfl6

1

- XigWig

X

 0X;16) O(Wp)

xf16SWf16

Dettmers et al. 2022, “LLM.int8()”
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Vector-wise Quantization

 More scaling constants = improved quantization error

 Matrix multiplication is a series of dot products

 |dea: one scaling factor for each row of X and each column of W
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Vector-wise Quantization

+ Given inputs Xy € I sXh and W €I X0 \ve compute Cf16 e R3¢

. Assign a different scaling constant s,

., to each row of Xr16

« Assign a different scaling constant s

s 10 €ach col of Wiy
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first entry of C = (first row of X) - (first col of W)

1
~ - Q (first row of X) - O (first col of W)
s for first row of X - s for first col of W
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Vector-wise Quantization

first entry of C = (first row of X) - (first col of W)

1
~ - Q (first row of X) - O (first col of W)
s for first row of X - s for first col of W

Y4
first entry of C = 2 6 | -15 | e | 2
-4

V4

1
2
~ - ® 2 6 -15 ®
8.466 - 18.143 ( ) X y )
derived via 127 formula /

absmax
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Vector-wise Quantization

1

8.466 - 18.143

1

8.466 - 18.143

153.61

A

[18.143 - 7]

[18.143 - 2]

[18.143 - —4]

° Q( 6 -15
[2-8.466] | |6-8.466] ||-15-8.466]
127
17 51 -127 ¢ 36

-/3
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Vector-wise Quantization

1
— o 2 0 15
3.466 - 18.143 Q( )
: l 6| 6] | 0]
= 2 - 8.466 6 - 8.466 —15-8.466
8.466 - 18.143 68450 °
1 127
. 17 51 | -127 ° 36
153.61
-73
(17(127) + 51(36) — 127(=73)) =
153.61 (17127) + 51(36) (=73)) 153.61

. Q( 2

[18.143 - 7]

[18.143 - 2]

118.143 - —4]

- (13266) = 86.36
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Vector-wise Quantization

- ® 2 6 15
8.466 - 18.143 Q( )
— 2 - 8.466 6-8.466| ||-15-8.466
8.466 - 18.143 [ ! H |
i 127
® 17 51 -127 ® 36
153.61
-73

153.61

- (17(127) + 51(36) — 127(=73)) =

153.61

. Q( 2

[18.143 - 7]

[18.143 - 2]

118.143 - —4]

- (13266) = 86.36

for reference,
the correct result is 86
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row-wise '
absmax
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absmax

compute s I

compute S '

real & quantized
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Vabsmax
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Vector-wise Quantization

Xr16

row-wise '
absmax

15

12

10

11

col-wise '
absmax

compute s I

compute S '

real & quantized

127

Sr16 =

Vabsmax

8.466

10.583

12.7

15.875

11.545

18.143

15.875
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Vector-wise Quantization

Xr16
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3.466
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Xr16

S£16
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3.466
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12.7

15.875

11.545

18.143

15.875
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Vector-wise Quantization

Xr16

S£16

S£16

3.466

10.583

12.7

15.875

11.545

18.143

15.875

Q(Xy16) = le16Xf16—|

QW) = leI6Wf16—|

17

51

-127

-74

95

127
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-127 | 102

127

16

-12

127 | 104
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Vector-wise Quantization

* Recall our dequantization equation

|
Cf16 ~ ' Q(Xf16) Q(Wf16)

xf16SWf16

 \We now have multiple s

» How can we efficiently dequantize?
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. 1-th row of X was quantized with i-th entry of Sr16

» J-th col of W was quantized with j-th entry of 5,4
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. 1-th row of X was quantized with i-th entry of Sr16

» J-th col of W was quantized with j-th entry of 5,4

What should the ij-th entry of C be dequantized by?
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 How can we efficiently dequantize?
o 7j-th entry of C is the dot product of the i-th row of X & the j-th col of W
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» J-th col of W was quantized with j-th entry of 5,4
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Vector-wise Quantization

 How can we efficiently dequantize?
o 7j-th entry of C is the dot product of the i-th row of X & the j-th col of W

. 1-th row of X was quantized with i-th entry of Sr16

» J-th col of W was quantized with j-th entry of 5,4

What should C be dequantized by?

Sri6 @ Srl6
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Vector-wise Quantization

3.466
10.583

Sf16 X Sf16 — 12.7 X |18.143|15.875

15.875
11.545




LLM.Int8()

Vector-wise Quantization

8.466 153.610 | 134.408
10.583 192.012 | 168.010
— 12.7 _
Sf16 ® Sf16 — ® 18.143 | 15.875| — 230.414 | 201.613

15.875 288.018 | 252.016

11.545 209.468 | 183.284
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SXO

» Given inputs X/ € | X1 and Wi €1 X0 \we compute C6 € 1

1

e e 0(Xp16) (W)
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» Given inputs X/ € |

Cri6

b X o matrix

bXh and Wf16 =3

|
Sri6 @ Srl6

b X o matrix

h

SXO

*?, we compute Cpi¢ € |

- 0(Xp16) 2(Wyio)

b X o matrix
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Vector-wise Quantization

» Given inputs X/ € |

Cri6

b X o matrix

bXh and Wf16 =3

|
Sri6 @ Srl6

b X o matrix

h

SXO

*?, we compute Cpi¢ € |

- 0(Xp16) 2(Wio)

b X o matrix

elementwise
multiplication
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Vector-wise Quantization

« Given inpUtS Xf16 e | bXh and Wf16 e | hXO, we compute Cf16 e | SXO

{Sf16Xf16_‘ {Sf16Wf16_‘

1

e e 0(Xp15) (W)
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Vector-wise Quantization

- Given inputs X4 € |

Crie

bXh and Wf16 =3

Sf16Xf16

= 5+ 0(Xp6) 2( W)

h

*?, we compute Cy € I

Sr16 YV 116
|

SXO0
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Vector-wise Quantization

- Given inputs X4 € |

Crie

bXh and Wf16 =3

{SmeflJ {Smefléw

= 5+ 0(Xp6) 2( W)

h

*?, we compute Cy € I

SXO0
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Vector-wise Quantization

(1) Find vector-wise constants: Co & CX (2) Quantize (4) Dequantize
X*(127/C,) = X
X L 2 e 210 = %e ot (C,®Cy, )
2| 2]-1]1 1|0 W V\|I=1>|;5(127/CW) =W, 127%127 _ OUtF16
3(0]3]2 0 |-2
1]-1|-1{0 -11 2 oy (3) Int8 Matmul
F16
T W X W.= Out
18 18 132
c:X

Dettmers et al. 2022, “LLM.int8()”
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LLM.Int8()

Outliers

Regular values

Outliers

Dettmers et al. 2022, “LLM.int8()”
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LLM.Int8()

Outliers

feature feature feature feature feature
#1 H2 #3 #4 #5

sequence #1

Regular values

sequence #2 Outliers

sequence #3

FP16

Dettmers et al. 2022, “LLM.int8()”
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Outliers

2 o[ L
o123 feq 2

-1[37]-1f83 0

FP16

Dettmers et al. 2022, “LLM.int8()”
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Outliers

 Empirically, large (>6B) transformer models have outliers:

» Large magnitude features (columns)

FP16

Dettmers et al. 2022, “LLM.int8()”
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LLM.int8()

Outliers

 Empirically, large (>6B) transformer models have outliers:
» Large magnitude features (columns)

* Extremely important for performance

FP16

Dettmers et al. 2022, “LLM.int8()”
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LLM.int8()

Outliers

 Empirically, large (>6B) transformer models have outliers:
* Large magnitude features (columns)
* Extremely important for performance

* Require high quantization precision

FP16

Dettmers et al. 2022, “LLM.int8()”
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LLM.Int8()

Outliers

 Empirically, large transformer models have...
* 99.9% regular features — medium quantization precision OK

* 0.01% outlier features — require high quantization precision

Dettmers et al. 2022, “LLM.int8()”
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LLM.Int8()

Outliers

 Empirically, large transformer models have...
* 99.9% regular features — medium quantization precision OK

* 0.01% outlier features — require high quantization precision

Great, we already employ vector-wise quantization, right?

Dettmers et al. 2022, “LLM.int8()”
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Outliers

» Vector-wise quantization assigns different scaling factors for rows in X

o Qutliers occur in columns in X
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Outliers

» Vector-wise quantization assigns different scaling factors for rows in X

o Qutliers occur in columns in X

Vector-wise quantization doesn’t help



LLM.Int8()

Mixed-precision Decomposition

 What if we handled the normal features and outlier features separately?

Dettmers et al. 2022, “LLM.int8()”
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LLM.Int8()

Mixed-precision Decomposition

 What if we handled the normal features and outlier features separately?

2 [as5]-1}17]1
X [0 z
-1[37(-1}83] 0

Regular values

Llwlo | N A
NvNinvilolo

FP16

FP16

Outliers

Dettmers et al. 2022, “LLM.int8()”
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LLM.Int8()

Mixed-precision Decomposition

 What if we handled the normal features and outlier features separately?

2 [a5]-1}17]-1
X [0 z
-1|37|-1 83 0

Regular values

FP16

Outliers

w

I
m|WlOo|IN| L

NvNinvilolo

FP16 \

X

olnv]a] X

A =) [y

Ninvloln

45

-17

12

-63

37

83

Dettmers et al. 2022, “LLM.int8()”
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LLM.Int8()

Mixed-precision Decomposition

 What if we handled the normal features and outlier features separately?

2 [a5]-1}17]-1
X [0 z
-1|37|-1 83 0

Regular values

FP16

Outliers

w

I
m|WlOo|IN| L

NvNinvilolo

FP16 \

X

olnv]a] X

A =) [y

Ninvloln

45

-17

12

-63

37

83

1] 0
2 | -2
1 | 2
39 | 34

-165 | 126
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Dettmers et al. 2022, “LLM.int8()”
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LLM.Int8()

Mixed-precision Decomposition

 What if we handled the normal features and outlier features separately?

olnv]a] X
Ninv|o| N

RO~

2 ;
3[0f3 - — -2 -2
1|-1]-1 - 1 2
W ) WA 38 | 34
167 | 124
FP16 \ 45[17 W 39 | 34 / AL

X  [12]63 2|9 I
37'83I_ SRIE2 -165 | 126
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X [0 z
-1|37|-1 83 0

Regular values

Llwlo | N A
NvNinvilolo

FP16

-1/5| 166

Outliers

Dettmers et al. 2022, “LLM.int8()”
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This Is non-standard

Aside: Einstein Notation

— 1[0 I ‘I

2 |145|-1}17[-1 AD W " =l W .

X 0 [12]3 |63 2 0 |-2 ﬂ 1 X (1203 2|0 :
1[37]-183] 0 12 . 37}83 2 |

FP16 p16 i .




Aside: Einstein Notation

This Is non-standard

NiNnvlio]lolo

FP16




LLM.Int8()

Mixed-precision Decomposition

» Notation for handling outliers O “separately” (still with normal fp16 matmuil)

Cris= ) XiiWhis+ )XW

heO h&QO
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Mixed-precision Decomposition

Cre = S - Q(Xf16> Q(Wf16>

 What if we handled the normal features and outlier features separately?

Dettmers et al. 2022, “LLM.int8()”
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LLM.Int8()

Mixed-precision Decomposition

Cre = S - Q(Xf16> Q(Wf16>

 What if we handled the normal features and outlier features separately?

Cf16 = Z f16 6T 5 - Z Xi}éWh

heO h&QO

Dettmers et al. 2022, “LLM.int8()”
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LLM.Int8()

8-bit Vector-wise Quantization

r |
: (1) Find vector-wise constants: Cw & CX (2) Quantize (4) Dequantize E
! |
" X*(127/C,) =X !
_ X 12— e )= %e outx (c,®Cy,) o |
' W - = u 1
K : 2121 110 W6 (127/Cw) = W 127%127 Fl6 |
- 310 2 0|-2 :
' 1[-1f-1f0 -1[2 e (3) Int8 Matmul ;
. F16 '
X ] e -21 g ; T b XI8 VVI8= OUt|32 '
0112| 3 63| 2 1 :
1[37|-1]83 0 0]-2 W ; Cx :
FPLE | 3 (-2 S
1]2
FPie 16-bit Decomposition
Vo TTTmmm e e -
i (1) Decompose outliers  (2) FP16 Matmul :
n n
i i
> il — !
E 4517 W XF16 V\{:lﬁ OUtFIG " Out
'Y D 210 : FP16
Regular values : o2 3|2 :
. : 37183 F16 :
Outliers : F16 ;

Dettmers et al. 2022, “LLM.int8()”
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Outliers are critical to transformer performance
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LLM.Int8()

Outliers are critical to transformer performance

* Removing <7 outlier features causes...
* top-1 softmax probability cut in half

» validation perplexity increases 6-10Xx

Dettmers et al. 2022, “LLM.int8()”
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LLM.Int8()

Outliers are critical to transformer performance

* Removing <7 outlier features causes...
* top-1 softmax probability cut in half
» validation perplexity increases 6-10Xx
* Removing 7 random features causes...
e top-1 softmax probability decreases by 0.3%

 validation perplexity increases by 0.1%

Dettmers et al. 2022, “LLM.int8()”
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Phase Shift
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LLM.int8()

Phase Shift
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Dettmers et al. 2022, “LLM.int8()”
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GPTQ

4 Bit Quantization

e |Integrated with & Transformers

* First paper to break the 8 bit quantization barrier
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Frantar et al. 2022, “GPTQ”
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AWQ

4 Bit Quantization... but simpler :)

* 1% of weights are “salient weights”

o Similar insight to LLM.int8()
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4 Bit Quantization... but simpler :)

* 1% of weights are “salient weights”
o Similar insight to LLM.int8()
 Can be found via activation distribution instead of weights

* |ntuition: input features with large magnitude are important
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AWQ

4 Bit Quantization... but simpler :)

* 1% of weights are “salient weights”
o Similar insight to LLM.int8()
 Can be found via activation distribution instead of weights

* |ntuition: input features with large magnitude are important

. Neat trick: multiply weight by s, input by s~

Lin et al. 2024, “AWQ”
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Summary

Quantization is like printers.

* Powerful tool to reduce memory footprint of models with many use-cases
* Frontier labs use quantization to train very large models
 Academics & home users use quantization to fit large models on their GPUs

* Awe-Inspiring results
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