

CSE 493G/599G: Deep Learning

Section 1: Fundamentals

Welcome to section, we're happy you're here!

Reference Material

Rules of Broadcasting from Jake VanderPlas' *Python Data Science Handbook*:

- (1) If the two arrays differ in their number of dimensions, the shape of the one with fewer dimensions is padded with ones on its leading (left) side.
- (2) If the shape of the two arrays does not match in any dimension, the array with shape equal to 1 in that dimension is stretched to match the other shape.
- (3) If in any dimension the sizes disagree and neither is equal to 1, an error is raised.

Chain Rule for One Independent Variable:

Let $z = f(x, y)$ be a differentiable function. Further suppose that x and y are themselves differentiable functions of t , in other words $x = x(t)$ and $y = y(t)$. Then,

$$\frac{dz}{dt} = \frac{\partial z}{\partial x} \frac{dx}{dt} + \frac{\partial z}{\partial y} \frac{dy}{dt}$$

Chain Rule for Two Independent Variables:

Let $z = f(x, y)$ be a differentiable function, where x and y are themselves differentiable functions of a and b . In other words, $x = x(a, b)$ and $y = y(a, b)$. Then,

$$\frac{dz}{da} = \frac{\partial z}{\partial x} \frac{\partial x}{\partial a} + \frac{\partial z}{\partial y} \frac{\partial y}{\partial a}$$

and

$$\frac{dz}{db} = \frac{\partial z}{\partial x} \frac{\partial x}{\partial b} + \frac{\partial z}{\partial y} \frac{\partial y}{\partial b}$$

Generalized Chain Rule:

Let $w = f(x_1, x_2, \dots, x_m)$ be a differentiable function of m independent variables, and let $x_i = x_i(t_1, t_2, \dots, t_n)$ be a differentiable function of n independent variables. Then,

$$\frac{dw}{dt_j} = \frac{\partial w}{\partial x_1} \frac{\partial x_1}{\partial t_j} + \frac{\partial w}{\partial x_2} \frac{\partial x_2}{\partial t_j} + \dots + \frac{\partial w}{\partial x_m} \frac{\partial x_m}{\partial t_j}$$

for any $j \in 1, 2, \dots, n$.

1. Dimension: Impossible

Determine if NumPy allows the **addition** of the following pairs of arrays, and if applicable determine what the result's dimensions will be.

(a) Where `x.shape` is $(2,)$ and `y.shape` is $(2, 1)$

(b) Where `x.shape` is $(4,)$ and `y.shape` is $(4, 1, 1)$

(c) Where `x.shape` is $(4, 2)$ and `y.shape` is $(2, 4, 1)$

(d) Where `x.shape` is $(8, 3)$ and `y.shape` is $(2, 8, 1)$

(e) Where `x.shape` is $(6, 5, 3)$ and `y.shape` is $(6, 5)$

Determine if NumPy allows the **matrix multiplication** of the following pairs of arrays, and if applicable determine what the result's dimensions will be.

(f) Where `a.shape` is (5, 4) and `b.shape` is (4, 8).

(g) Where `a.shape` is (3, 5, 4) and `b.shape` is (3, 4, 8).

(h) Where `a.shape` is (3, 5, 4) and `b.shape` is (5, 4, 8).

(i) Where `a.shape` is (1, 5, 4) and `b.shape` is (5, 4, 8).

(j) Where `a.shape` is (2, 5, 4) and `b.shape` is (3, 2, 4, 8).

2. The More (Derivatives) The Merrier

(a) Let $z = 2x + y$, with $x = \ln(t)$ and $y = \frac{1}{3}t^3$. Find $\frac{dz}{dt}$.

(b) Let $z = x^2y - y^2$ where $x = t^2$ and $y = 2t$. Find $\frac{dz}{dt}$. Your answer should be in terms of t .

(c) Let $z = 3x^2 - 2xy + y^2$. Also let $x = 3a + 2b$ and $y = 4a - b$. Find $\frac{\partial z}{\partial a}$ and $\frac{\partial z}{\partial b}$.

(d) Let $w = f(x, y, z)$, $x = x(t, u, v)$, $y = y(t, u, v)$ and $z = z(t, u, v)$. Find the formula for $\frac{\partial w}{\partial t}$.