Lecture 8:
Interpretability
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Administrative: Assignment 2

Due 1/2 11:59pm

- Multi-layer Neural Networks,
- Image Features,

- Optimizers
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Project Proposal
Due Today! 11:59pm
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Administrative: Fridays

This Friday

Quantization
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Administrative: Midterm #1

In class, Feb 5

Covers up to lecture 8

Allowed:
-1 double sided handwritten “cheat sheet”
- 1 non-graphing calculator

Many practice exams in the Exam Archive
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https://courses.cs.washington.edu/courses/cse493g1/exam-archive/

FOUR layers in total: CONV/ReLU/POOL/FC

RELU RELU RELU RELU RELU RELU
CONV |CONV CONV | CONV CONV | CONV FC
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Visualizing and Understanding
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Today: What's going on inside ConvNets?

= XAXn Class Scores:
I 13‘~ dense’| [dens 1 OOO n u m berS
L2 r::”n g 20% 2048

Max 128 Max
pooling pooling

Input Image:
3 x 224 x 224

What are the intermediate features looking for?

Krizhevsky et al, “lmageNet Classification with Deep Convolutional Neural Networks”, NIPS 2012.
Figure reproduced with permission.
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https://pixabay.com/p-1246693/?no_redirect
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Today's agenda

Visualizing what models have learned:
- Visualizing filters
- Visualizing final layer features
- Visualizing activations

Understanding input pixels
- ldentifying important pixels
- Saliency via backprop
- Guided backprop to generate images
- Gradient ascent to visualize features

Adversarial perturbations
Concept Vectors
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Today's agenda

Visualizing what models have learned:
- Visualizing filters
- Visualizing final layer features
- Visualizing activations
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Interpreting a Linear Classifier: Visual Viewpoint
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First Layer: Visualize Filters S

AlexNet:
64 x 3 x 11 x 11

Krizhevsky, “One weird trick for parallelizing convolutional neural networks”, arXiv 2014
He et al, “Deep Residual Learning for Image Recognition”, CVPR 2016
Huang et al, “Densely Connected Convolutional Networks”, CVPR 2017
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First Layer: Visualize Filters
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AlexNet:
64 x 3 x 11 x 11

Krizhevsky, “One weird trick for parallelizing convolutional neural networks”, arXiv 2014
He et al, “Deep Residual Learning for Image Recognition”, CVPR 2016
Huang et al, “Densely Connected Convolutional Networks”, CVPR 2017
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Visualize the Weights: layer 1 weights
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Last Layer

FC7 layer

4096-dimensional feature vector for an image
(layer immediately before the classifier)

Run the network on many images, collect the
feature vectors
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Last Layer: Nearest Neighbors o vector —_—

g
I
Test | |mage L2 Nearest neighbors in feature space | ><1 £

Recall: Nearest neighbors
in pixel space
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Krizhevsky et al, “lmageNet Classification with Deep Convolutional Neural Networks”, NIPS 2012.
Figures reproduced with permission.
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Last Layer: Learned Metric for “Semantic” Search
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representation Extremely Large Database

A. Farhadi, S. Pratt Lecture 8 - 17 Jan 29, 2026




Last Layer: Modern Day Search

}: " A
coactive.ai
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Last Layer: Dimensionality Reduction
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Simple algorithm: Principal o
: e
Component Analysis (PCA) R

More complex: t-SNE

Van der Maaten and Hinton, “Visualizing Data using t-SNE”, JMLR 2008
Figure copyright Laurens van der Maaten and Geoff Hinton, 2008. Reproduced with permission.
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Van der Maaten and Hinton, “Visualizing Data using t-SNE”, JMLR 2008 See high-resolution versions at
Krizhevsk I, “l Net Classificati ith D C lutional N IN ks”, NIPS 2012.
rizhevsky et al, “ImageNet Classification with Deep Convolutional Neural Networks’ httD://CS.Stanford.edU/Deoole/karDathV/Cnnembed/

Figure reproduced with permission.
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http://cs.stanford.edu/people/karpathy/cnnembed/

Visualizi ng Activations hitps:/www.youtube.com/watch?v=AgkflQ4IGaM

convl pl nl1 conv2 p2 n2 conv3 conv4 eomvd p5 fc6 fc7 fe8 pro

convb feature map is
128x13x13; visualize
as 128 13x13

grayscale images

Yosinski et al, “Understanding Neural Networks Through Deep Visualization”, ICML DL Workshop 2014.
Figure copyright Jason Yosinski, 2014. Reproduced with permission.
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Today's agenda

Understanding input pixels
- ldentifying important pixels
- Saliency via backprop
- Guided backprop to generate images
- Gradient ascent to visualize features
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Maximally Activating Patches

\
Sl

Pick a layer and a channel; e.g. convd is
128 x 13 x 13, pick channel 17/128

Run many images through the network,
record values of chosen channel

Visualize image patches that correspond
to maximal activations

Springenberg et al, “Striving for Simplicity: The All Convolutional Net”, ICLR Workshop 2015
Figure copyright Jost Tobias Springenberg, Alexey Dosowtskly, Thomas Brox, Martin Riedmiller, 2015;
reproduced with permission.

A. Farhadi, S. Pratt Lecture 8 - 23 Jan 29, 2026



Which pixels matter:
Saliency via Occlusion

Mask part of the image before feeding to CNN,
check how much predicted probabilities change

P(elephant) = 0.95

P(elephant) = 0.75

Zeiler and Fergus, “Visualizing and Understanding Convolutional
Networks”, ECCV 2014
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https://pixabay.com/en/sailboat-ship-sailing-greenland-459794/
https://creativecommons.org/publicdomain/zero/1.0/deed.en
https://pixabay.com/en/elephant-african-bush-elephant-114543/
https://creativecommons.org/publicdomain/zero/1.0/deed.en
https://pixabay.com/en/gokart-fun-car-go-kart-racing-1089893/
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Which pixels matter: =L
Saliency via Occlusion

Mask part of the image before feeding to CNN,
check how much predicted probabilities change

Boat image is CCO public domain
Zeiler and Fergus, “Visualizing and Understanding Convolutional Elephant image is CC0 public domain
” -Karts image is ) public dome
Networks”, ECCV 2014 Go-Karts image is_CCO public domain o
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https://pixabay.com/en/sailboat-ship-sailing-greenland-459794/
https://creativecommons.org/publicdomain/zero/1.0/deed.en
https://pixabay.com/en/elephant-african-bush-elephant-114543/
https://creativecommons.org/publicdomain/zero/1.0/deed.en
https://pixabay.com/en/gokart-fun-car-go-kart-racing-1089893/
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Saliency via Occlusion: Shapley Values

P(corgi) = 0.8

Credit: lan Covert; Lundberg & Lee 2017
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Which pixels matter: Saliency via Backprop

Forward pass: Compute probabilities

-

Dog

2048 2048

128

128 Max
Max 128 Max pooling
pooling pooling

Simonyan, Vedaldi, and Zisserman, “Deep Inside Convolutional Networks: Visualising Image Classification Models
and Saliency Maps”, ICLR Workshop 2014.
Figures copyright Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman, 2014; reproduced with permission.
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Which pixels matter: Saliency via Backprop

Forward pass: Compute probabilities

Compute gradient of (unnormalized) class
score with respect to image pixels, take
absolute value and max over RGB channels

Simonyan, Vedaldi, and Zisserman, “Deep Inside Convolutional Networks: Visualising Image Classification Models
and Saliency Maps”, ICLR Workshop 2014.
Figures copyright Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman, 2014; reproduced with permission.
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Saliency Maps

Simonyan, Vedaldi, and Zisserman, “Deep Inside Convolutional Networks: Visualising Image Classification Models
and Saliency Maps”, ICLR Workshop 2014.

Figures copyright Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman, 2014; reproduced with permission.
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Saliency Maps: Segmentation without supervision

Use GrabCut on
saliency map

(s &

Simonyan, Vedaldi, and Zisserman, “Deep Inside Convolutional Networks: Visualising Image Classification Models
and Saliency Maps”, ICLR Workshop 2014.

Figures copyright Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman, 2014; reproduced with permission.
Rother et al, “Grabcut: Interactive foreground extraction using iterated graph cuts”, ACM TOG 2004
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Saliency maps: Uncovers biases

Such methods also find
biases

wolf vs dog classifier looks
is actually a snow vs
no-snow classifier

(a) Husky classified as wolf (b) Explanation

Figures copyright Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin, 2016; reproduced with permission.
Ribeiro et al, ““Why Should | Trust You?” Explaining the Predictions of Any Classifier”, ACM KDD 2016
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Maximally Activating Patches

\
Sl

Pick a layer and a channel; e.g. convd is
128 x 13 x 13, pick channel 17/128

Run many images through the network,
record values of chosen channel

Visualize image patches that correspond
to maximal activations

Springenberg et al, “Striving for Simplicity: The All Convolutional Net”, ICLR Workshop 2015
Figure copyright Jost Tobias Springenberg, Alexey Dosowtskly, Thomas Brox, Martin Riedmiller, 2015;
reproduced with permission.
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Intermediate Features via (guided) backprop

Pick a single intermediate channel, e.g. one
value in 128 x 13 x 13 conv5 feature map

Compute gradient of activation value with
respect to image pixels

Zeiler and Fergus, “Visualizing and Understanding Convolutional Networks”, ECCV 2014
Springenberg et al, “Striving for Simplicity: The All Convolutional Net”, ICLR Workshop 2015
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Intermediate Features via (guided) backprop

RelLU
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Pick a single intermediate channel, e.g. one
value in 128 x 13 x 13 conv5 feature map
Backward pass: 0 N O -2 I -1
. ) ] . guided 6lojJo| «<— |6]|-3]|1
Compute gradient of activation value with backpropagation [ | 3 =
respect to image pixels =
Images come out nicer if you only
backprop positive gradients through
each RelLU (guided backprop)
Zeiler and Fergus, “Visualizing and Understanding Convolutional Networks”, ECCV 2014 Figure copyright Jost Tobias Springenberg, Alexey Dosovitskiy, Thomas
Springenberg et al, “Striving for Simplicity: The All Convolutional Net”, ICLR Workshop 2015 Brox, Martin Riedmiller, 2015; reproduced with permission.
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Intermediate features via (guided) backprop

olaie)e “W"ﬂ"ﬁ
2%Y | ,J'i ’W’I

Maximally activating patches Guided Backprop
(Each row is a different neuron)

Zeiler and Fer g , “Vis| I ing and Understanding Con It INtw rks”, ECCV 2014
Spri g nberg e I “Striving for Simplici yTh e All Con I nal Net ICLRW rkshop 2015
Figure copyr ghtJ st Tobias Springenberg, Alexey Dosovits| ky Thomas Brox, Martin Riedmiller, 2015; reproduced with permission.
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Intermediate features via (guided) backprop

e
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Maximally activating patches Guided Backprop
(Each row is a different neuron)

Zeiler and Fergus, “Visualizing and Understanding Convolutional Networks”, ECCV 2014
Springenberg et al, “Striving for Simplicity: The All Convolutional Net”, ICLR Workshop 2015
Figure copyright Jost Tobias Springenberg, Alexey Dosovitskiy, Thomas Brox, Martin Riedmiller, 2015; reproduced with permission.
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Class Activation Mapping (CAM)

Global Fully Connected
Average Layer, weights
Pooling &€ IR$X%
H o —( K — C
w
Last layer CNN features: Pooled features: Class Scores:
K C
fe]RHxWxK FER SeR
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Class Activation Mapping (CAM)

Global Fully Connected
Average Layer, weights
Pooling &€ IR$X%
H o —( K — C
w
Last layer CNN features: Pooled features: Class Scores:
K C
fe]RHxWxK FER SeR

1
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Class Activation Mapping (CAM)

Global Fully Connected
Average Layer, weights
Pooling &€ IR$X%
H o —( K — C
w
Last layer CNN features: Pooled features: Class Scores:
K C
fe]RHxWxK FER SeR
B o= 1 Zf SC:;wk,ch
k= T 2 how,k
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Class Activation Mapping (CAM)

Global Fully Connected
Average Layer, weights
Pooling &€ IR$X%
H o —( K — C
w
Last layer CNN features: Pooled features: Class Scores:
K C
fe]RHxWxK FER SeR
1
o 1 Zf Sc—;wkch:W;wkc%fhwk
k= T 2 how,k
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Class Activation Mapping (CAM)

Global Fully Connected
Average Layer, weights
Pooling &€ IR$X%
H o —( K — C
w
Last layer CNN features: Pooled features: Class Scores:
K C
fe]RHxWxK FER SeR
1
o 1 Zf Sc—;wkch:W;wkc%fhwk
k= T 2 how,k X
= HwW % ; W, e fhw.k
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Class Activation Mapping (CAM)

Global Fully Connected
Average Layer, weights
Pooling &€ IR$X%
H o —( K — C
w
Last layer CNN features: Pooled features: Class Scores:
K C
fe]RHxWxK FER SeR
1
o 1 Zf Sc—;wkch:W;wkc%fhwk
k= T 2 how,k .
— W % ; Wi cfh w,k
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Class Activation Mapping (CAM)

Global Fully Connected
Average Layer, weights
Pooling &€ IR$X%
H o —( K — C
w
Last layer CNN features: Pooled features: Class Scores:
K C
fe]RHxWxK FER SeR
1 CAMs
1 Sc - Z wk,ch - W Z Wk, c Z fh,w,k: M e RC’H’W
Fy = Wz‘fh,w,k k k hw
o - : Zzwk,cfh,w,k M = Zwk,cfh,w,k
HW hw k k
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Class Activation Mapping (CAM)

monastery

0.05

Class activation maps of top 5 predictions Class activation maps for one object class

Zhou et al, “Learning Deep Features for Discriminative Localization”, CVPR 2016
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Class Activation Mapping (CAM)  Problem: Can only

apply to last conv

church altar monastery

0.1465 0.09 0.05

Class activation maps of top 5 predictions Class activation maps for one object class
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Gradient-Weighted Class Activation Mapping (Grad-CAM)

1. Pick any layer, with activations A € R™*WxK

Selvaraju et al, “Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization”, CVPR 2017
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Gradient-Weighted Class Activation Mapping (Grad-CAM)

1. Pick any layer, with activations A € R™*WxK

2. Compute gradient of class score SCwith respect to A:

% € RHXWXK

0A

Selvaraju et al, “Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization”, CVPR 2017

A. Farhadi, S. Pratt Lecture 8 - 47 Jan 29, 2026




Gradient-Weighted Class Activation Mapping (Grad-CAM)

1. Pick any layer, with activations A € R™*WxK

2. Compute gradient of class score S with respect to A:
dS,

94
3. Global Average Pool the gradients to get weights a € RK

RHXWXK

a
k= HW hwaAhwk

Selvaraju et al, “Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization”, CVPR 2017
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Gradient-Weighted Class Activation Mapping (Grad-CAM)

1. Pick any layer, with activations A € R™*WxK

2. Compute gradient of class score S with respect to A:
dS,

94
3. Global Average Pool the gradients to get weights a € RK

RHXWXK

a
k= HW hwaAhwk

4. Compute activation map M¢ € REW .

M}cl,w = RelLU (Z akAh’W,k)
k

Selvaraju et al, “Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization”, CVPR 2017
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Gradient-Weighted Class Activation Mapping (Grad-CAM)

; Ovi
I 5 ]

(g) Original Image (h) Guided Backprop ‘Dog’ (1) Grad-CAM ‘Dog’  (j)Guided Grad-CAM ‘Dog’ (k) Occlusion map for ‘Dog’ (I)ResNet Grad-CAM ‘Dog’

Selvaraju et al, “Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization”, CVPR 2017
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Gradient-Weighted Class Activation Mapping (Grad-CAM)

Can also be applied beyond classification models, e.g. image captioning

Grad-CAM Grad-CAM

,3&}5} )y

o —
% e o e )
S Y a B

- por B .
A group of people flying kites on a beach A man is sitting at a table with a pizza

Selvaraju et al, “Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization”, CVPR 2017
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Visualizing CNN features: Gradient Ascent

(Guided) backprop: Gradient ascent:
Find the part of an Generate a synthetic
image that a neuron image that maximally
responds to activates a neuron

[* = arg max, [{(I)|+ R(I)

_— \

Neuron value Natural image regularizer
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Visualizing CNN features: Gradient Ascent
arg max S A= X1z
score for class ¢ (before Softmax)

3 K
192 128 204t 20ag \dense
13 AR
3 -
3] 13 13
00
192

1. Initialize image to zeros

zero image I

eeeeeeeeee

pooling  2%%

Repeat:
2. Forward image to compute current scores
3. Backprop to get gradient of neuron value with respect to image pixels

4. Make a small update to the image
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Visualizing CNN features: Gradient Ascent

arg max Se(I) — )\HIH%

Simple regularizer: Penalize L2
norm of generated image

Simonyan, Vedaldi, and Zisserman, “Deep Inside Convolutional Networks: Visualising Image Classification
Models and Saliency Maps”, ICLR Workshop 2014.
Figures copyright Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman, 2014; reproduced with permission.
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Visualizing CNN features: Gradient Ascent

arg max Se(I) — )\||I||§

Simple regularizer: Penalize L2
norm of generated image

cup dalmatian

bell pepper lemon husky
Simonyan, Vedaldi, and Zisserman, “Deep Inside Convolutional Networks: Visualising Image Classification
Models and Saliency Maps”, ICLR Workshop 2014.
Figures copyright Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman, 2014; reproduced with permission.
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Visualizing CNN features: Gradient Ascent

arg max Se(I) — )\||I||§

Simple regularizer: Penalize L2
norm of generated image

washing machine computer keyboard kit fox

Yosinski et al, “Understanding Neural Networks Through Deep Visualization”, ICML DL Workshop 2014. goose limousine
Figure copyright Jason Yosinski, Jeff Clune, Anh Nguyen, Thomas Fuchs, and Hod Lipson, 2014. Reproduced

with permission.
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Visualizing CNN features: Gradient Ascent
arg max S.(I) — M|I||3

Better regularizer: Penalize L2 norm of
image; also during optimization
periodically

(1) Gaussian blur image
(2) Clip pixels with small values to 0
(3) Clip pixels with small gradients to O

Yosinski et al, “Understanding Neural Networks Through Deep Visualization”, ICML DL Workshop 2014.
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Visualizing CNN features
arg max ST} — M2

Better regularizer: Penalize L2 norm of
image; also during optimization
periodically

(1) Gaussian blur image

(2) Clip pixels with small values to 0
(3) Clip pixels with small gradients to O

Yosinski et al, “Understanding Neural Networks Through Deep Visualization”, ICML DL Workshop 2014.

: Gradient Ascent

Flamingo

Ground Beetle

Figure copyright Jason Yosinski, Jeff Clune, Anh Nguyen, Thomas Fuchs, and Hod Lipson, 2014. Reproduced with permission.
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Visualizing CNN features: Gradient Ascent

arg max Se(I) — )\||I||§

Better regularizer: Penalize L2 norm of
image; also during optimization
periodically

(1) Gaussian blur image
(2) Clip pixels with small values to 0
(3) Clip pixels with small gradients to O

Yosinski et al, “Understanding Neural Networks Through Deep Visualization”, ICML DL Workshop 2014.
Figure copyright Jason Yosinski, Jeff Clune, Anh Nguyen, Thomas Fuchs, and Hod Lipson, 2014. Reproduced with permission.
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Visualizing CNN features: Gradient Ascent

Use the same approach to visualize intermediate features

(Q\

";’. - w % PP de
© . B : ) |

— ——

Yosinski et al, “Understanding Neural Networks Through Deep Visualization”, ICML DL Workshop 2014.
Figure copyright Jason Yosinski, Jeff Clune, Anh Nguyen, Thomas Fuchs, and Hod Lipson, 2014. Reproduced with permission.
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Visualizing CNN features: Gradient Ascent

Adding “multi-faceted” visualization gives even nicer results:
(Plus more careful regularization, center-bias)

Reconstructions of multiple feature types (facets) recognized Corresponding example training set images recognized
by the same “grocery store” neuron by the same neuron as in the "grocery store" class

o \ NGy
S il . ~ :
f it . .
\ - - e
p S )
- )

Nguyen et al, “Multifaceted Feature Visualization: Uncovering the Different Types of Features Learned By Each Neuron in Deep Neural Networks”, ICML Visualization for Deep Learning Workshop 2016.
Figures copyright Anh Nguyen, Jason Yosinski, and Jeff Clune, 2016; reproduced with permission.
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Visualizing CNN features: Gradient Ascent

beer bottle

entertainment

lampshade

cardoon

monitor

strawberry

breakwater

mosque

orange

motor scooter

pirate

grand piano

planetarium

hourglass

radio

cinema

sarong

Nguyen et al, “Multifaceted Feature Visualization: Uncovering the Different Types of Features Learned By Each Neuron in Deep Neural Networks”, ICML Visualization for Deep Learning Workshop 2016.
Figures copyright Anh Nguyen, Jason Yosinski, and Jeff Clune, 2016; reproduced with permission.
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Visualizing CNN features: Gradient Ascent

Optimize in FC6 latent space instead of pixel space:

Code Image
S | Forward and backward passes
RN — Y — +-po| === candle
PURRERY M Y i == banana
u9 u2 c2 c3 \ c4 N c5 . .
ul c1 == convertible
fc6 upconvolutional convolutional - - fc8
\ Y J fce fc7
Deep generator network Y J
(prior) DNN being visualized

Nguyen et al, “Synthesizing the preferred inputs for neurons in neural networks via deep generator networks,” NIPS 2016
Figure copyright Nguyen et al, 2016; reproduced with permission.
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Visualizing CNN features: Gradient Ascent
ptimize in' FC6

=N

A

latent space instead of pixel space:

e S s : S -
badger ‘ lawn mower

o 4 o Ty
NP

chest running shoe water jug pool table
Nguyen et al, “Synthesizing the preferred inputs for neurons in neural networks via deep generator networks,” NIPS 2016
Figure copyright Nguyen et al, 2016; reproduced with permission.
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Today's agenda

Adversarial perturbations
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Fooling Images / Adversarial Examples

(1) Start from an arbitrary image

(2) Pick an arbitrary incorrect class

(3) Modify the image to maximize the class
(4) Repeat until network is fooled
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Fooling Images / Adversarial Examples

African elephant koala Difference 10x Difference

Difference 10x Difference

Boat image is CCO public domain
Elephant image is CCO public domain
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https://pixabay.com/en/sailboat-ship-sailing-greenland-459794/
https://creativecommons.org/publicdomain/zero/1.0/deed.en
https://pixabay.com/en/elephant-african-bush-elephant-114543/
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Fooling Images / Adversarial Examples

African elephant koala Difference 10x Difference

Difference 10x Difference

Check out lan Goodfellow’s lecture from 2017

Elephant image is CCO public domain
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https://pixabay.com/en/sailboat-ship-sailing-greenland-459794/
https://creativecommons.org/publicdomain/zero/1.0/deed.en
https://pixabay.com/en/elephant-african-bush-elephant-114543/
https://creativecommons.org/publicdomain/zero/1.0/deed.en
https://www.youtube.com/watch?v=CIfsB_EYsVI

Fooling Person Detectors and Self-driving Cars

frame 5 frame 30 frame 60 frame 90 frame 120 frame 150 pattern

Xu et al., 2019; Eykholt et al., 2018
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Fooling Images / Adversarial Exal

£
T
o .
=
0 Labrador ¥ G
Uni | perturbati
p Flagpole Labrador
Tibetan mastiff 0 Tibetan mastiff
Lycaenid 0 Brabancon griffon
m Balloon 0 Labrador [
Moosavi-Dezfooli, Seyed-Mohsen, et al. "Universal adversarial perturbations." Proceedings of the IEEE conference on computer vision and pattern —} 1 [ (

recognition. 2017
Figure reproduced with permission ’
Whiptail lizard e Border terrier
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Feature Inversion

Given a CNN feature vector for an image, find a new image that:
Matches the given feature vector
“looks natural” (image prior regularization)

» Given feature

x* = argmin £(P(x),Py) + AR(x) vector

xeRHxWxC I

» Features of new

€(<I>(x), (I)()) - ||(I>(X) — (I)()||2 image

8
Vl( ) ; (@ij41 = @5)" + (@ir1,5 — Tig) Total Variation regularizer

. (encourages spatial

Mahendran and Vedaldi, “Understanding Deep Image Representations by Inverting Them”, CVPR 2015 SM Ooth N ESS)
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Feature Inversion

Reconstructing from different layers of VGG-16
relub_1 relub_3

4 p
g W b

e Tl

I o

Mahendran and Vedaldi, “Understanding Deep Image Representations by Inverting Them”, CVPR
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DeepDream: Amplify Existing Features

Rather than synthesizing an image to maximize a specific neuron, instead try to
amplify the neuron activations at some layer in the network

Choose an image and a layer in a CNN; repeat:
1. Forward: compute activations at chosen layer
2. Set gradient of chosen layer equal to its activation
3.  Backward: Compute gradient on image

4. U pd ate i m a ge Mordvintsev, Olah, and Tyka, “Inceptionism: Going Deeper into Neural

Networks”, Google Research Blog. Images are licensed under CC-BY 4.0
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https://research.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html
https://creativecommons.org/licenses/by/4.0/

DeepDream: Amplify Existing Features

Rather than synthesizing an image to maximize a specific neuron, instead try to
amplify the neuron activations at some layer in the network

Choose an image and a layer in a CNN; repeat:
1. Forward: compute activations at chosen layer
2. Set gradient of chosen layer equal to its activation ~—— I" = arg mIaxz fi(H?
3.  Backward: Compute gradient on image .

Equivalent to:

4, U pd ate i m age Mordvintsev, Olah, and Tyka, “Inceptionism: Going Deeper into Neural

Networks”, Google Research Blog. Images are licensed under CC-BY 4.0

A. Farhadi, S. Pratt Lecture 8 - 74 Jan 29, 26


https://research.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html
https://creativecommons.org/licenses/by/4.0/
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https://creativecommons.org/licenses/by-sa/3.0/deed.en
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https://github.com/google/deepdream/blob/master/dream.ipynb
https://creativecommons.org/licenses/by/3.0/us/
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https://research.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html
https://creativecommons.org/licenses/by/4.0/

"The Dog-Fish"
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https://research.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html
https://creativecommons.org/licenses/by/4.0/
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Today's agenda

Concept Vectors
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Concept activation vectors

Bl = Let’s see if a neural network has learned a
specific concept and uses it effectively.
o @é@@
Example use case:

W % Q1. Has it learnt what stripes are?
) 4‘((’ ‘*f// %‘@ % Q2. Can it identify the category “zebra” by using
the concept “stripes”

Kim, Been, et al. "Interpretability beyond feature attribution: Quantitative testing with concept activation vectors (tcav)." ICML, 2018.
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Concept activation vectors

DM v R

f/ : R* — R™ hir:R™ =R

. mm %?:: | cee M K* class
o o 0
voed s @ -
Learn a linear classifier to

& 1z .&M’!“\ f
%(((’f 6\%///) % % I ’ i it (@ predict “stripes” from a layer’s

Iy il s > activations.

o)
f( &) Repeat across all layers to
' find the best linear classifier

Kim, Been, et al. "Interpretability beyond feature attribution: Quantitative testing with concept activation vectors (tcav)." ICML, 2018.
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Calculate if the gradient for that layer when
predicting “zebra” matches the classifier

fi : R" = R™ hir:R™ >R

I
% — th
- Mm . = = M K" class
o 0o 0 e 0o 0

Se e ()
Soadar - O |
A g =V i (fi( ")) - vo

Kim, Been, et al. "Interpretability beyond feature attribution: Quantitative testing with concept activation vectors (tcav)." ICML, 2018.
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Summary

Many methods for understanding CNN representations

Activations: Nearest neighbors, Dimensionality reduction,
maximal patches, occlusion

Gradients: Saliency maps, class visualization, fooling
images, feature inversion

Adversarial Examples: To confuse the models
Concept Vectors: Human interpretable probing method
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Next time:

Introduction to Language

A. Farhadi, S. Pratt Lecture 8 - 86 Jan 29, 2026




