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Lecture 7:

Optimizing Neural Networks
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Due 1/2 11:59pm
- Multi-layer Neural Networks, 
- Image Features, 
- Optimizers

Administrative: Assignment 2
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Project proposal due 1/29 11:59pm 

Submit to Gradescope (1 per group, add all group 
members)

Expectations on course website

Project can change between Proposal and Milestone

Administrative: Course Project

33
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Administrative: Midterm
In class, Feb 5

Covers up to lecture 8

Allowed: 

-1 double sided handwritten “cheat sheet”

- 1 non-graphing calculator

Many practice exams in the Exam Archive
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https://courses.cs.washington.edu/courses/cse493g1/exam-archive/
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Last time: Activation Functions
Sigmoid

tanh

ReLU

Leaky ReLU

ELU

5
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Last time: Weight Initialization
Initialization too small:
Activations go to zero, gradients also zero,
No learning =(

Initialization too big:
Activations saturate (for tanh),
Gradients zero, no learning =(

Initialization just right:
Nice distribution of activations at all layers,
Learning proceeds nicely =)

6



A. Farhadi, S. Pratt Lecture 7 - Jan 27, 20267

Last time: Data Preprocessing
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Input: Per-channel mean, 
shape is D

Per-channel var, 
shape is D

Normalized x,
Shape is N x D

Last Time: Batch Normalization [Ioffe and Szegedy, 2015]

Learnable scale and 
shift parameters:

Output,
Shape is N x D

Learning     =    ,
   =      will recover the 
identity function!
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Today
- Improve your training error:

- (Fancier) Optimizers
- Learning rate schedules

- Improve your test error:
- Regularization
- Choosing Hyperparameters

9
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(Fancier) Optimizers
Can we do better than SGD?

1010
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Vanilla SGD

W_1

W_2
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Optimization: Problem #1 with SGD
What if loss changes quickly in one direction and slowly in another?
What does gradient descent do?

Aside: You can detect this situation by calculating the condition number, 
which is the ratio of largest to smallest singular value of the Hessian matrix
Large ratio implies high condition number implies the loss is uneven

w2

w1
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Optimization: Problem #1 with SGD
What if loss changes quickly in one direction and slowly in another?
What does gradient descent do?
Very slow progress along shallow dimension, jitter along steep direction

Loss function has high condition number: ratio of largest to smallest 
singular value of the Hessian matrix is large

13
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Optimization: Problem #2 with SGD

What if the loss 
function has a 
local minima or 
saddle point?

lo
ss

w
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Optimization: Problem #2 with SGD

What if the loss 
function has a 
local minima or 
saddle point?

Zero gradient, 
gradient descent 
gets stuck

lo
ss

w
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Optimization: Problem #2 with SGD

What if the loss 
function has a 
local minima or 
saddle point?

Saddle points much 
more common in 
high dimension

Dauphin et al, “Identifying and attacking the saddle point problem in high-dimensional non-convex optimization”, NIPS 2014
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Optimization: Problem #3 with SGD

Our gradients come from 
minibatches so they can be noisy!
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SGD + Momentum

Local Minima Saddle points

Poor Conditioning

Gradient Noise

SGD SGD+Momentum

18
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SGD: the simple two line update code

SGD

19
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SGD + Momentum:
continue moving in the general direction as the previous iterations

SGD

- Build up “velocity” as a running mean of gradients
- Rho gives “friction”; typically rho=0.9 or 0.99

Sutskever et al, “On the importance of initialization and momentum in deep learning”, ICML 2013

SGD+Momentum

20
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SGD + Momentum:
continue moving in the general direction as the previous iterations

SGD

- Build up “velocity” as a running mean of gradients
- Rho gives “friction”; typically rho=0.9 or 0.99

Sutskever et al, “On the importance of initialization and momentum in deep learning”, ICML 2013

SGD+Momentum
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SGD + Momentum: 
alternative equivalent formulation

SGD+Momentum SGD+Momentum

You may see SGD+Momentum formulated different ways, 
but they are equivalent - give same sequence of x

Sutskever et al, “On the importance of initialization and momentum in deep learning”, ICML 2013

22



A. Farhadi, S. Pratt Lecture 7 - Jan 27, 202623

Gradient

Velocity

actual step

Momentum update:

SGD+Momentum

Nesterov, “A method of solving a convex programming problem with convergence rate O(1/k^2)”, 1983
Nesterov, “Introductory lectures on convex optimization: a basic course”, 2004
Sutskever et al, “On the importance of initialization and momentum in deep learning”, ICML 2013

Combine gradient at current point with 
velocity to get step used to update weights

23
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Gradient

Velocity

actual step

Momentum update:

Nesterov Momentum

Nesterov, “A method of solving a convex programming problem with convergence rate O(1/k^2)”, 1983
Nesterov, “Introductory lectures on convex optimization: a basic course”, 2004
Sutskever et al, “On the importance of initialization and momentum in deep learning”, ICML 2013

Gradient
Velocity

actual step

Nesterov Momentum

Combine gradient at current point with 
velocity to get step used to update weights

“Look ahead” to the point where updating using 
velocity would take us; compute gradient there and 
mix it with velocity to get actual update direction

24
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Nesterov Momentum

Gradient
Velocity

actual step

“Look ahead” to the point where updating using 
velocity would take us; compute gradient there and 
mix it with velocity to get actual update direction

25
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Nesterov Momentum
Annoying, usually we want 
update in terms of

Gradient
Velocity

actual step

“Look ahead” to the point where updating using 
velocity would take us; compute gradient there and 
mix it with velocity to get actual update direction

26
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Nesterov Momentum
Annoying, usually we want 
update in terms of

Gradient
Velocity

actual step

“Look ahead” to the point where updating using 
velocity would take us; compute gradient there and 
mix it with velocity to get actual update direction

Change of variables                                   and 
rearrange: 

27
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Nesterov Momentum
Annoying, usually we want 
update in terms of

Gradient
Velocity

actual step

“Look ahead” to the point where updating using 
velocity would take us; compute gradient there and 
mix it with velocity to get actual update direction

Change of variables                                   and 
rearrange: 
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Nesterov Momentum

Gradient
Velocity

actual step

“Look ahead” to the point where updating using 
velocity would take us; compute gradient there and 
mix it with velocity to get actual update direction

That’s it!

Step 1: Calculate the velocity at t+1
Step 2: Update the parameters using the 
velocities at t+1 and t
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Nesterov Momentum
SGD

SGD+Momentum

Nesterov
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AdaGrad

Added element-wise scaling of the gradient based 
on the historical sum of squares in each dimension

“Per-parameter learning rates” 
or “adaptive learning rates”

Duchi et al, “Adaptive subgradient methods for online learning and stochastic optimization”, JMLR 2011
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AdaGrad

Q: What happens with AdaGrad?
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AdaGrad

Q: What happens with AdaGrad? Progress along “steep” directions is damped; 
progress along “flat” directions is accelerated
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AdaGrad

Q2: What happens to the step size over long time?

34
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AdaGrad

Q2: What happens to the step size over long time? Decays to zero

35
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RMSProp: “Leaky AdaGrad”

AdaGrad

RMSProp

Tieleman and Hinton, 2012

36
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RMSProp
SGD

SGD+Momentum

RMSProp

AdaGrad 
(stuck due to 
decaying lr)
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Adam (almost)

Kingma and Ba, “Adam: A method for stochastic optimization”, ICLR 2015

38
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Adam (almost)

Kingma and Ba, “Adam: A method for stochastic optimization”, ICLR 2015

Momentum

AdaGrad / RMSProp

Sort of like RMSProp with momentum

Q: What happens at first timestep?

39
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Adam (full form)

Kingma and Ba, “Adam: A method for stochastic optimization”, ICLR 2015

Momentum

AdaGrad / RMSProp

Bias correction

Bias correction for the fact that 
first and second moment 
estimates start at zero

40
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Adam (full form)

Kingma and Ba, “Adam: A method for stochastic optimization”, ICLR 2015

Momentum

AdaGrad / RMSProp

Bias correction

Bias correction for the fact that 
first and second moment 
estimates start at zero

Adam with beta1 = 0.9, 
beta2 = 0.999, and learning_rate = 1e-3 or 5e-4
is a great starting point for many models! 

41
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Adam 

SGD

SGD+Momentum

RMSProp

Adam

42
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L2 Regularization vs Weight Decay

43
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L2 Regularization and Weight Decay are equivalent 
for SGD, SGD+Momentum so people often use the 
terms interchangeably!

But they are not the same for adaptive
methods (AdaGrad, RMSProp, Adam, etc)

44

L2 Regularization vs Weight Decay
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L2 Regularization and Weight Decay are equivalent 
for SGD, SGD+Momentum so people often use the 
terms interchangeably!

But they are not the same for adaptive
methods (AdaGrad, RMSProp, Adam, etc)

45

L2 Regularization vs Weight Decay

45
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First-Order Optimization

Loss

w1

47
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First-Order Optimization

Loss

w1

(1) Use gradient form linear approximation
(2) Step to minimize the approximation
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Second-Order Optimization

Loss

w1

(1) Use gradient and Hessian to form quadratic approximation
(2) Step to the minima of the approximation

49
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second-order Taylor expansion:

Solving for the critical point we obtain the Newton parameter update:

Second-Order Optimization

Q: Why is this bad for deep learning?

50
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second-order Taylor expansion:

Solving for the critical point we obtain the Newton parameter update:

Second-Order Optimization

Q: Why is this bad for deep learning?

Hessian has O(N^2) elements
Inverting takes O(N^3)
N = (Tens or Hundreds of) Millions

51
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Second-Order Optimization

- Quasi-Newton methods (BGFS most popular):
instead of inverting the Hessian (O(n^3)), approximate 
inverse Hessian with rank 1 updates over time (O(n^2) 
each).

- L-BFGS (Limited memory BFGS): 
Does not form/store the full inverse Hessian.

52
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L-BFGS

- Usually works very well in full batch, deterministic mode 
i.e. if you have a single, deterministic f(x) then L-BFGS will 
probably work very nicely

- Does not transfer very well to mini-batch setting. Gives 
bad results. Adapting second-order methods to large-scale, 
stochastic setting is an active area of research.

Le et al, “On optimization methods for deep learning, ICML 2011”
Ba et al, “Distributed second-order optimization using Kronecker-factored approximations”, ICLR 2017
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- AdamW should probably be your “default” optimizer 
for new problems

- Adam is a good second choice in many cases; it 
often works ok even with constant learning rate

- SGD+Momentum can outperform Adam but may 
require more tuning of LR and schedule
- Try cosine schedule, very few hyperparameters!

In practice:

54
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Learning rate schedules

5555
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SGD, SGD+Momentum, Adagrad, RMSProp, Adam all have 
learning rate as a hyperparameter.

Q: Which one of these learning 
rates is best to use?

56
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SGD, SGD+Momentum, Adagrad, RMSProp, Adam all have 
learning rate as a hyperparameter.

Q: Which one of these learning 
rates is best to use?

A: In reality, all of these are good 
learning rates.
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Phases of learning...
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Phases of learning...
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Phases of learning...
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Phases of learning...
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Phases of learning...
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Phases of learning...
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Phases of learning...
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Phases of learning...
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Phases of learning...
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Learning rate decays over time

Reduce learning rate
Step: Reduce learning rate at a few fixed 
points. E.g. for ResNets, multiply LR by 0.1 
after epochs 30, 60, and 90.
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Phases of learning...
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Phases of learning...
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Learning Rate Decay

: Initial learning rate
: Learning rate at epoch t
: Total number of epochs

Loshchilov and Hutter, “SGDR: Stochastic Gradient Descent with Warm Restarts”, ICLR 2017
Radford et al, “Improving Language Understanding by Generative Pre-Training”, 2018
Feichtenhofer et al, “SlowFast Networks for Video Recognition”, arXiv 2018
Child at al, “Generating Long Sequences with Sparse Transformers”, arXiv 2019

Step: Reduce learning rate at a few fixed 
points. E.g. for ResNets, multiply LR by 0.1 
after epochs 30, 60, and 90.

Cosine:

70
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Learning Rate Decay

: Initial learning rate
: Learning rate at epoch t
: Total number of epochs

Loshchilov and Hutter, “SGDR: Stochastic Gradient Descent with Warm Restarts”, ICLR 2017
Radford et al, “Improving Language Understanding by Generative Pre-Training”, 2018
Feichtenhofer et al, “SlowFast Networks for Video Recognition”, arXiv 2018
Child at al, “Generating Long Sequences with Sparse Transformers”, arXiv 2019

Step: Reduce learning rate at a few fixed 
points. E.g. for ResNets, multiply LR by 0.1 
after epochs 30, 60, and 90.

Cosine:
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Learning Rate Decay

Devlin et al, “BERT: Pre-training of Deep Bidirectional Transformers for
Language Understanding”, 2018

Step: Reduce learning rate at a few fixed 
points. E.g. for ResNets, multiply LR by 0.1 
after epochs 30, 60, and 90.

Cosine:

Linear: 

: Initial learning rate
: Learning rate at epoch t
: Total number of epochs
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Step: Reduce learning rate at a few fixed 
points. E.g. for ResNets, multiply LR by 0.1 
after epochs 30, 60, and 90.

Cosine:

Linear: 

Inverse sqrt: 

Learning Rate Decay

: Initial learning rate
: Learning rate at epoch t
: Total number of epochsVaswani et al, “Attention is all you need”, NIPS 2017
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Step: Reduce learning rate at a few fixed 
points. E.g. for ResNets, multiply LR by 0.1 
after epochs 30, 60, and 90.

Cosine:

Linear: 

Inverse sqrt: 

Constant: 

Learning Rate Decay

Vaswani et al, “Attention is all you need”, NIPS 2017
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High initial learning rates can make loss 
explode; linearly increasing learning rate 
from 0 over the first ~5000 iterations can 
prevent this

Empirical rule of thumb: If you increase the 
batch size by N, also scale the initial 
learning rate by N

Learning Rate Decay: Linear Warmup

Goyal et al, “Accurate, Large Minibatch SGD: Training ImageNet in 1 Hour”, arXiv 2017
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with 
cosine 
and 
warmup
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Improve test error

7777
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Beyond Training Error

Better optimization algorithms 
help reduce training loss

But we really care about error on 
new data - how to reduce the gap?
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Early Stopping: Always do this

Iteration

Loss

Iteration

Accuracy
Train
Val

Stop training here

Stop training the model when accuracy on the validation set decreases
Or train for a long time, but always keep track of the model snapshot 
that worked best on val

79
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1. Train multiple independent models
2. At test time average their results

(Take average of predicted probability distributions, then choose argmax)

Enjoy 2% extra performance

Model Ensembles
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How to improve single-model performance?

Regularization
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Regularization: Add term to loss

82

In common use: 
L2 regularization
L1 regularization
Elastic net (L1 + L2)

(Weight decay)

82
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Regularization: Dropout
In each forward pass, randomly set some neurons to zero
Probability of dropping is a hyperparameter; 0.5 is common

Srivastava et al, “Dropout: A simple way to prevent neural networks from overfitting”, JMLR 2014
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Regularization: Dropout Example forward 
pass with a 
3-layer network 
using dropout
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Create a drop mask and multiply Example forward 
pass with a 
3-layer network 
using dropout
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Regularization: Dropout
How can this possibly be a good idea?

Forces the network to have a redundant representation;
Prevents co-adaptation of features

has an ear

has a tail

is furry

has claws

mischievous 
look

cat 
score

X

X

X

86
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Regularization: Dropout
How can this possibly be a good idea?

Another interpretation:

Dropout is training a large ensemble of 
models (that share parameters).

Each binary mask is one model

An FC layer with 4096 units has
24096 ~ 101233 possible masks!
Only ~ 1082 atoms in the universe...
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Dropout: Test time

Dropout makes our output random!

Output
(label)

Input
(image)

Random 
mask

Want to “average out” the randomness at test-time

But this integral seems hard … 
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Dropout: Test time
Want to approximate 
the integral

Consider a single neuron.
a

x y

w1 w2

89
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Dropout: Test time
Want to approximate 
the integral

Consider a single neuron.

At test time we have:
a

x y

w1 w2
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Dropout: Test time
Want to approximate 
the integral

Consider a single neuron.

At test time we have:
During training we have: 

a

x y

w1 w2

91
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Dropout: Test time
Want to approximate 
the integral

Consider a single neuron.

At test time we have:
During training we have: 

a

x y

w1 w2

At test time, multiply 
by dropout probability 

92
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Dropout: Test time

At test time all neurons are active always
=> We must scale the activations so that for each neuron:
output at test time = expected output at training time

93
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Dropout Summary

drop in train time

scale at test time
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More common: “Inverted dropout”

test time is unchanged!

95
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Regularization: A common pattern
Training: Add some kind 
of randomness

Testing: Average out randomness 
(sometimes approximate)

96
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Regularization: A common pattern
Training: Add some kind 
of randomness

Testing: Average out randomness 
(sometimes approximate)

Example: Batch 
Normalization

Training: 
Normalize using 
stats from random 
minibatches

Testing: Use fixed 
stats to normalize

97
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Load image 
and label

“cat”

CNN

Compute
loss

Regularization: Data Augmentation

This image by Nikita is 
licensed under CC-BY 2.0

98

https://www.flickr.com/photos/malfet/1428198050
https://www.flickr.com/photos/malfet/
https://creativecommons.org/licenses/by/2.0/
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Regularization: Data Augmentation

Load image 
and label

“cat”

CNN

Compute
loss

Transform image

99
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Data Augmentation
Horizontal Flips

100
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Data Augmentation
Random crops and scales

Training: sample random crops / scales
ResNet:
1. Pick random L in range [256, 480]
2. Resize training image, short side = L
3. Sample random 224 x 224 patch

101
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Data Augmentation
Random crops and scales

Training: sample random crops / scales
ResNet:
1. Pick random L in range [256, 480]
2. Resize training image, short side = L
3. Sample random 224 x 224 patch

Testing: average a fixed set of crops
ResNet:
1. Resize image at 5 scales:  {224, 256, 384, 480, 640}
2. For each size, use 10 224x224 crops: 4 corners + center, + flips
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Data Augmentation
Color Jitter

Simple: Randomize 
contrast and brightness
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Data Augmentation
Color Jitter

Simple: Randomize 
contrast and brightness

More Complex:

1. Apply PCA to all [R, G, B] 
pixels in training set

2. Sample a “color offset” 
along principal component 
directions

1. Add offset to all pixels of a 
training image

(As seen in [Krizhevsky et al. 2012], ResNet, etc)

104



A. Farhadi, S. Pratt Lecture 7 - Jan 27, 2026105

Data Augmentation
Get creative for your problem!

Examples of data augmentations:
- translation
- rotation
- stretching
- shearing, 
- lens distortions, …  (go crazy)
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Automatic Data Augmentation

Cubuk et al., “AutoAugment: Learning Augmentation Strategies from Data”, CVPR 2019
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Regularization: A common pattern
Training: Add random noise
Testing: Marginalize over the noise

Examples:
Dropout
Batch Normalization
Data Augmentation
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Regularization: DropConnect
Training: Drop connections between neurons (set weights to 0)
Testing: Use all the connections

Wan et al, “Regularization of Neural Networks using DropConnect”, ICML 2013

Examples:
Dropout
Batch Normalization
Data Augmentation
DropConnect
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Regularization: Fractional Pooling
Training: Use randomized pooling regions
Testing: Average predictions from several regions

Graham, “Fractional Max Pooling”, arXiv 2014

Examples:
Dropout
Batch Normalization
Data Augmentation
DropConnect
Fractional Max Pooling
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Regularization: Stochastic Depth
Training: Skip some layers in the network
Testing: Use all the layer

Examples:
Dropout
Batch Normalization
Data Augmentation
DropConnect
Fractional Max Pooling
Stochastic Depth (will become more 
clear in next week's lecture)

Huang et al, “Deep Networks with Stochastic Depth”, ECCV 2016
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Regularization: Cutout
Training: Set random image regions to zero
Testing: Use full image

Examples:
Dropout
Batch Normalization
Data Augmentation
DropConnect
Fractional Max Pooling
Stochastic Depth
Cutout / Random Crop

DeVries and Taylor, “Improved Regularization of 
Convolutional Neural Networks with Cutout”, arXiv 2017

Works very well for small datasets like CIFAR, 
less common for large datasets like ImageNet
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Regularization: Mixup
Training: Train on random blends of images
Testing: Use original images

Examples:
Dropout
Batch Normalization
Data Augmentation
DropConnect
Fractional Max Pooling
Stochastic Depth
Cutout / Random Crop
Mixup

Zhang et al, “mixup: Beyond Empirical Risk Minimization”, ICLR 2018

Randomly blend the pixels 
of pairs of training images, 
e.g. 40% cat, 60% dog

CNN
Target label:
cat: 0.4
dog: 0.6
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Regularization: CutMix
Training: Train on random blends of images
Testing: Use original images

Examples:
Dropout
Batch Normalization
Data Augmentation
DropConnect
Fractional Max Pooling
Stochastic Depth
Cutout / Random Crop
Mixup

Yun et al, “CutMix: Regularization Strategies to Train
Strong Classifiers with Localizable Features”, ICCV 2019

Replace random crops of 
one image with another: 
e.g. 60% of pixels from 
cat, 40% from dog

CNN
Target label:
cat: 0.4
dog: 0.6
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Regularization: Label Smoothing
Training: Change target distribution
Testing: Take argmax over predictions

Examples:
Dropout
Batch Normalization
Data Augmentation
DropConnect
Fractional Max Pooling
Stochastic Depth
Cutout / Random Crop
Mixup
Label Smoothing Szegedy et al, “Rethinking the Inception Architecture for Computer 

Vision”, CVPR 2015

Standard Training:
Cat: 100% 
Dog: 0% 
Fish: 0%

Label Smoothing:
Cat: 90%
Dog: 5%
Fish: 5%

Set target distribution to be                 on the 
correct category and        on all other 
categories, with K categories and   ∈ 0,1 . Loss 
is cross-entropy between predicted and target 
distribution.
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Regularization - In practice
Training: Add random noise
Testing: Marginalize over the noise

Examples:
Dropout
Batch Normalization
Data Augmentation
DropConnect
Fractional Max Pooling
Stochastic Depth
Cutout / Random Crop
Mixup

- Use dropout for large fully-connected 
layers

- Using batchnorm is always a good 
idea

- Try Cutout, MixUp, CutMix, 
Stochastic Depth, Label Smoothing 
to squeeze out a bit of extra 
performance 
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Choosing Hyperparameters

116
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Choose several values for each hyperparameter
(Often space choices log-linearly) 

Example: 
Weight decay: [1x10-4, 1x10-3, 1x10-2, 1x10-1] 
Learning rate: [1x10-4, 1x10-3, 1x10-2, 1x10-1] 

Evaluate all possible choices on this hyperparameter grid

117

Choosing Hyperparameters: Grid Search
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Choose several values for each hyperparameter
(Often space choices log-linearly)

Example:
Weight decay: log-uniform on [1x10-4, 1x10-1]
Learning rate: log-uniform on [1x10-4, 1x10-1]

Run many different trials

118

Choosing Hyperparameters: Random search
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Random Search vs. Grid Search

Important Parameter Important Parameter
U
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ar
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U
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m
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er

Grid Layout Random Layout

Illustration of Bergstra et al., 2012 by Shayne 
Longpre, copyright CS231n 2017

Random Search for 
Hyper-Parameter Optimization
Bergstra and Bengio, 2012
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Choosing Hyperparameters
(without tons of GPUs)
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Choosing Hyperparameters

Step 1: Check initial loss

Turn off weight decay, sanity check loss at initialization
e.g. log(C) for softmax with C classes
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Choosing Hyperparameters

Step 1: Check initial loss
Step 2: Overfit a small sample

Try to train to 100% training accuracy on a small sample of 
training data (~5-10 minibatches); fiddle with architecture, 
learning rate, weight initialization

Loss not going down? LR too low, bad initialization
Loss explodes to Inf or NaN? LR too high, bad initialization
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Choosing Hyperparameters

Step 1: Check initial loss
Step 2: Overfit a small sample
Step 3: Find LR that makes loss go down

Use the architecture from the previous step, use all training 
data, turn on small weight decay, find a learning rate that 
makes the loss drop significantly within ~100 iterations

Good learning rates to try: 1e-1, 1e-2, 1e-3, 1e-4
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Choosing Hyperparameters

Step 1: Check initial loss
Step 2: Overfit a small sample
Step 3: Find LR that makes loss go down
Step 4: Coarse grid, train for ~1-5 epochs

Choose a few values of learning rate and weight decay around 
what worked from Step 3, train a few models for ~1-5 epochs.

Good weight decay to try: 1e-4, 1e-5, 0
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Choosing Hyperparameters

Step 1: Check initial loss
Step 2: Overfit a small sample
Step 3: Find LR that makes loss go down
Step 4: Coarse grid, train for ~1-5 epochs
Step 5: Refine grid, train longer

Pick best models from Step 4, train them for longer (~10-20 
epochs) without learning rate decay
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Choosing Hyperparameters

Step 1: Check initial loss
Step 2: Overfit a small sample
Step 3: Find LR that makes loss go down
Step 4: Coarse grid, train for ~1-5 epochs
Step 5: Refine grid, train longer
Step 6: Look at loss and accuracy curves
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Q1. You see this. What should you do?

127

Accuracy

time

Train

Val
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Accuracy

time

Train

Val

Q2. You see this. What should you do?
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Accuracy

time

Train

Val

Q3. You see this. What should you do?

129



A. Farhadi, S. Pratt Lecture 7 - Jan 27, 2026130

Losses may be noisy, use a 
scatter plot and also plot moving 
average to see trends better

Look at learning curves!
Training Loss Train / Val Accuracy
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Loss

time

Q4. You see this. What should you do?
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Loss

time

Q5. You see this. What should you do?
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Loss

time

Learning rate step decay

Q5. You see this. What should you do?
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Cross-validation 

We launch 100s of 
training runs all at 
once and visualize all 
our models training 
with different 
hyperparameters

check out weights 
and biases

134
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You can plot all your loss curves for different hyperparameters on a single plot
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Choosing Hyperparameters

Step 1: Check initial loss
Step 2: Overfit a small sample
Step 3: Find LR that makes loss go down
Step 4: Coarse grid, train for ~1-5 epochs
Step 5: Refine grid, train longer
Step 6: Look at loss and accuracy curves
Step 7: GOTO step 5

136



A. Farhadi, S. Pratt Lecture 7 - Jan 27, 2026137

Hyperparameters to play with:
- learning rate, 
- Its decay schedule, update type
- regularization (L2/Dropout strength)
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Summary
- Improve your training error:

- Optimizers
- Learning rate schedules

- Improve your test error:
- Regularization
- Choosing Hyperparameters
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Next time: Visualizing and 
understanding neural networks
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Model Ensembles: Tips and Tricks
Instead of training independent models, use multiple 
snapshots of a single model during training!

Loshchilov and Hutter, “SGDR: Stochastic gradient descent with restarts”, arXiv 2016
Huang et al, “Snapshot ensembles: train 1, get M for free”, ICLR 2017
Figures copyright Yixuan Li and Geoff Pleiss, 2017. Reproduced with permission.
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Model Ensembles: Tips and Tricks
Instead of training independent models, use multiple 
snapshots of a single model during training!

Cyclic learning rate schedules can 
make this work even better!

Loshchilov and Hutter, “SGDR: Stochastic gradient descent with restarts”, arXiv 2016
Huang et al, “Snapshot ensembles: train 1, get M for free”, ICLR 2017
Figures copyright Yixuan Li and Geoff Pleiss, 2017. Reproduced with permission.
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Model Ensembles: Tips and Tricks
Instead of using actual parameter vector, keep a 
moving average of the parameter vector and use that 
at test time (Polyak averaging)

Polyak and Juditsky, “Acceleration of stochastic approximation by averaging”, SIAM Journal on Control and Optimization, 1992.

142



A. Farhadi, S. Pratt Lecture 7 - Jan 27, 2026143

Track the ratio of weight updates / weight magnitudes:

ratio between the updates and values: ~ 0.0002 / 0.02 = 0.01 (about okay)
want this to be somewhere around 0.001 or so
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