Lecture 7:
Optimizing Neural Networks
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Administrative: Assignment 2

Due 1/2 11:59pm

- Multi-layer Neural Networks,
- Image Features,

- Optimizers
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Administrative: Course Project

Project proposal due 1/29 11:59pm

Submit to Gradescope (1 per group, add all group
members)

Expectations on course website

Project can change between Proposal and Milestone
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Administrative: Midterm

In class, Feb 5

Covers up to lecture 8

Allowed:
-1 double sided handwritten “cheat sheet”
- 1 non-graphing calculator

Many practice exams in the Exam Archive
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https://courses.cs.washington.edu/courses/cse493g1/exam-archive/
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Last time: Weight Initialization

Activations go to zero, gradients also zero,
No learning =(

1 Initialization too small:

Initialization too big:
Activations saturate (for tanh),

Gradients zero, no learning =(

Initialization just right:
Nice distribution of activations at all layers,
Learning proceeds nicely =)
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Last time: Data Preprocessing

original data zero-centered data normalized data
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Last Time: Batch Normalization [loffe and Szegedy, 2015]

Input: »: N x D _ 1 Per-channel mean
. .  pa— Lx 2 y
Hj N z; “J " shapeis D
g =
Learnable scale and , 1 N ) Porchannel
. _ = S er-channel var,
shift parameters: 05 = 5 2_(@ig —1i)T D
-
T i L Z
" Lig — My :
Ti; = ' Normalllzed X,
Learning v=o0, g? + ¢  ShapeisNxD
B= 1 will recover the & .43, Output
identity function! Yij = 1303 T P7 ghapeis Nx D
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Today

- Improve your training error:
- (Fancier) Optimizers
- Learning rate schedules

- Improve your test error:

- Regularization
- Choosing Hyperparameters
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(Fancier) Optimizers
Can we do better than SGD?
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Vanilla SGD

# Vanilla Gradient Descent

while True:
weights grad = evaluate gradient(loss fun, data, weights)
weights += - step size * weights grad # perform parameter update
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Optimization: Problem #1 with SGD

What if loss changes quickly in one direction and slowly in another?
What does gradient descent do?

—

w1

Aside: You can detect this situation by calculating the condition number,
which is the ratio of largest to smallest singular value of the Hessian matrix
Large ratio implies high condition number implies the loss is uneven
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Optimization: Problem #1 with SGD

What if loss changes quickly in one direction and slowly in another?
What does gradient descent do?
Very slow progress along shallow dimension, jitter along steep direction

Loss function has high condition number: ratio of largest to smallest
singular value of the Hessian matrix is large
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Optimization: Problem #2 with SGD

A

loss

What if the loss
function has a
local minima or
saddle point?
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Optimization: Problem #2 with SGD

A

loss

What if the loss
function has a
local minima or
saddle point?

Zero gradient, ®
gradient descent
gets stuck

A. Farhadi, S. Pratt Lecture 7 - 15 Jan 27, 2026



Optimization: Problem #2 with SGD

What if the loss
function has a
local minima or
saddle point?

Saddle points much
more common in
high dimension

Dauphin et al, “Identifying and attacking the saddle point problem in high-dimensional non-convex optimization”, NIPS 2014
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Optimization: Problem #3 with SGD

Our gradients come from
minibatches so they can be noisy!

| X
L(W) = NZLi(-’Eiayi,W)

=1

N
1
VwL(W) = + > VwLi(i,yi, W)

=1
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SGD + Momentum Gradient Noise

Local Minima  Saddle points

e N\

Poor Conditioning

i W
T
A’A' AAA
‘: !‘!A'i;.’

A. Farhadi, S. Pratt Lecture 7 - 18 Jan 27, 2026



SGD: the simple two line update code

SGD

Ter1 = ¢ — aV f(xy)

while True:
dx = compute_gradient(x)
x —= learning_rate x dx
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SGD + Momentum:

continue moving in the general direction as the previous iterations
SGD SGD+Momentum

Vit1 = pvr + V f(xe)

Tt4+1 = Tt — AVt41

Ti+1 = Tt — QVf(J?t)

while True:
dx = compute_gradient(x)
x —= learning_rate x dx

- Build up “velocity” as a running mean of gradients
- Rho gives “friction”; typically rho=0.9 or 0.99

Sutskever et al, “On the importance of initialization and momentum in deep learning”, ICML 2013
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SGD + Momentum:

continue moving in the general direction as the previous iterations
SGD SGD+Momentum

Vit1 = pvr + V f(xe)

Lt+1 = Tt — QU441

Ti+1 = Tt — QVf(J?t)

vX = 0
while True:

while True:
dx = compute_gradient(x)

X —= learning_rate * dx dx = compute_gradient(x)
vX = rho x vx + dx
X —= learning_rate * vx

- Build up “velocity” as a running mean of gradients
- Rho gives “friction”; typically rho=0.9 or 0.99

Sutskever et al, “On the importance of initialization and momentum in deep learning”, ICML 2013
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SGD + Momentum:

alternative equivalent formulation

SGD+Momentum SGD+Momentum
Vt4+1 = PUt — (XVf(Qﬁt) Vt4+1 — PUt -+ Vf(.’Et)
Ti4+1 = Tt + Vg4l T+l = Tt — QU1
VX = 0 vX = 0
while True: while True:
dx = compute_gradient(x) dx = compute_gradient(x)
vX = rho *x vx - learning_rate x dx vX = rho *x vx + dx
X += VX x —= learning_rate * vx

You may see SGD+Momentum formulated different ways,
but they are equivalent - give same sequence of x

Sutskever et al, “On the importance of initialization and momentum in deep learning”, ICML 2013
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SGD+Momentum

Momentum update:

Velocity

actual step

Gradient

Combine gradient at current point with
velocity to get step used to update weights
Nesterov, “A method of solving a convex programming problem with convergence rate O(1/k*2)”, 1983

Nesterov, “Introductory lectures on convex optimization: a basic course”, 2004
Sutskever et al, “On the importance of initialization and momentum in deep learning”, ICML 2013
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Nesterov Momentum

Momentum update:

Velocity

actual step

Gradient

Combine gradient at current point with
velocity to get step used to update weights
Nesterov, “A method of solving a convex programming problem with convergence rate O(1/k*2)”, 1983

Nesterov, “Introductory lectures on convex optimization: a basic course”, 2004
Sutskever et al, “On the importance of initialization and momentum in deep learning”, ICML 2013

A. Farhadi, S. Pratt
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Nesterov Momentum

Gradient

Velocity

actual step

“Look ahead” to the point where updating using
velocity would take us; compute gradient there and
mix it with velocity to get actual update direction
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Nesterov Momentum

Vi1 = pvg — oV f(xs + pvg)

Ti+1 = Tg + V41

Gradient

Velocity

actual step

“Look ahead” to the point where updating using
velocity would take us; compute gradient there and
mix it with velocity to get actual update direction
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Nesterov Momentum

Annoying, usually we want
update in terms of ¢, V f(x¢)

S —

Vir1 = pvy — aV flxy + puy

Ti+1 = Tg + V41

Gradient

Velocity

actual step

“Look ahead” to the point where updating using
velocity would take us; compute gradient there and
mix it with velocity to get actual update direction
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Nesterov Momentum

Ut+1

Lt+1

pvy — oV f(xs + puy

Lt

+ V41

Annoying, usually we want
update in terms of ¢, V f(x¢)

S —

Gradient

Velocity

Change of variables :Et =\ Tt

rearrange:

+ pv¢ |and

actual step

A. Farhadi, S. Pratt

“Look ahead” to the point where updating using
velocity would take us; compute gradient there and
mix it with velocity to get actual update direction
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Nesterov Momentum

Annoying, usually we want
update in terms of ¢, V f(x¢)

S —

Vir1 = pvy — aV flxy + puy

Ti+1 = Tg + V41

Gradient

Velocity

Change of variables T; = Ty + pv; and

rearrange: actual step

Vi1 = pvs — aV f(Ty)

Lt+1 = Tt — PU¢ + (1 T p)vt-i-l “Look ahead” to the point where updating using
o~ velocity would take us; compute gradient there and
— Xt a3 Ut+1 T /O(Ut+1 T Ut) mix it with velocity to get actual update direction
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Nesterov Momentum
That’s it!

Step 1: Calculate the velocity at t+171
Step 2: Update the parameters using the

velocities at t+7 and ¢ Gradient

Velocity

actual step

Vi1 = pvs — aV f(Ty)

Lt+1 = Tt — PU¢ T (1 T p)vt-i-l “Look ahead” to the point where updating using
- velocity would take us; compute gradient there and
— Xt a3 Ut+1 T P(Ut+1 T Ut) mix it with velocity to get actual update direction
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Nesterov Momentum

—— SGD+Momentum

wmmm==_ Nesterov
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AdaGrad

grad_squared = 0

while True:

dx = compute_gradient(Xx)
grad_squared += dx * dx
X -= learning_rate * dx / (np.sqrt(grad_squared) + 1le-7)

Added element-wise scaling of the gradient based
on the historical sum of squares in each dimension

“‘Per-parameter learning rates”
or “adaptive learning rates”

Duchi et al, “Adaptive subgradient methods for online learning and stochastic optimization”, JMLR 2011
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AdaGrad

grad_squared = 0
while True:
dx = compute_gradient(Xx)
grad_squared += dx * dx
X -= learning_rate * dx / |(np.sqrt(grad_squared) + 1le-7)

—

Q: What happens with AdaGrad?
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AdaGrad

grad_squared = 0
while True:
dx = compute_gradient(Xx)
grad_squared += dx * dx
X -= learning_rate * dx / |(np.sqrt(grad_squared) + 1le-7)

Q: What happens with AdaGrad? Progress along “steep” directions is damped;

progress along “flat” directions is accelerated
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AdaGrad

grad_squared = 0
while True:
dx = compute_gradient(Xx)
grad_squared += dx * dx
X -= learning_rate * dx / |(np.sqrt(grad_squared) + 1le-7)

—

Q2: What happens to the step size over long time?
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AdaGrad

grad_squared = 0
while True:
dx = compute_gradient(Xx)
grad_squared += dx * dx
X -= learning_rate * dx / |(np.sqrt(grad_squared) + 1le-7)

—

Q2: What happens to the step size over long time? Decays to zero
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RMSProp: “Leaky AdaGrad”

grad_squared = 0
while True:

AdaGrad dx = compute_gradient(x)
grad_squared += dx * dx
X -= learning_rate * dx / (np.sqgrt(grad_squared) + 1le-7)

grad_squared = 0

while True:

RMSProp dx = compute_gradient(x)

grad_squared = decay_rate * grad_squared + (1 - decay_rate) * dx * dx
X -= learning_rate * dx / (np.sqrt(grad_squared) + 1le-7)

Tieleman and Hinton, 2012
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RMSProp

Lecture 7 - 37

SGD

SGD+Momentum

RMSProp

AdaGrad

(stuck due to
decaying Ir)

A. Farhadi, S. Pratt
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Adam (almost)

first_moment = 0
second_moment = 0@
while True:
dx = compute_gradient(x)
first_moment = betal * first_moment + (1 - betal) * dx
second_moment = beta2 * second_moment + (1 - beta2) * dx * dx
x -= learning_rate * first_moment / (np.sqrt(second_moment) + 1e-7))

Kingma and Ba, “Adam: A method for stochastic optimization”, ICLR 2015
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Adam (almost)

first_moment = 0
second_moment = 0
while True:

dx = compute_gradient(x)

first_moment = betal * first_moment + (1 - betal) * dx Momentum
second_moment = betaZ * second_moment + (1 - betaz) » dx * dX
x -= learning_rate * first_moment / (np.sqrt(second_moment) + 1e-7)) AdaGrad / RMSPI’Op

Sort of like RMSProp with momentum

Q: What happens at first timestep?

Kingma and Ba, “Adam: A method for stochastic optimization”, ICLR 2015
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Adam (full form)

first_moment = 0

second_moment = 0

for t in range(1, num_iterations):
dx = compute gradient(x) Momentum
first_moment = betal * first_moment + (1 - betal) * dx
second_moment = beta2 * second_moment + (1 - beta2) * dx * dx |
first_unbias = first_moment / (1 - betal ** t) . )
second_unbias = second_moment / (1 - beta2 ** t) Bias correction

| x -= learning_rate * first_unbias / (np.sqrt(second_unbias) + le-7)) |
AdaGrad / RMSProp

Bias correction for the fact that
first and second moment
estimates start at zero

Kingma and Ba, “Adam: A method for stochastic optimization”, ICLR 2015
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Adam (full form)

first_moment = 0
second_moment = 0
for t in range(1,

dx = compute gr

num_iterations):
adient(x)

first_moment =

betal * first_moment

+ (1 - betal) * dx

Momentum

| second_moment = beta2 * second_moment + (1 - beta2) * dx * dx |
first_unbias = first_moment / (1 - betal ** t)

second_unbias = second_moment / (1 - beta2 ** t)
| x -= learning_rate * first_unbias / (np.sqrt(second_unbias) + le-7)) |

Bias correction

AdaGrad / RMSProp

Bias correction for the fact that
first and second moment
estimates start at zero

Adam with beta1 = 0.9,
beta2 = 0.999, and learning_rate = 1e-3 or 5e-4
is a great starting point for many models!

Kingma and Ba, “Adam: A method for stochastic optimization”, ICLR 2015
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Adam

SGD

SGD+Momentum

RMSProp

Adam
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L2 Regularization vs Weight Decay

Optimization Algorithm L2 Regularization

L(w) = Lggra(w) + Lyeg (w) LW) = LggeaW) + A|lw|?*

ge = VL(Wt) ge = VL(Wy) = Viggra(Wy) + 24w,
s, = optimizer(g,) s¢ = optimizer(g;)

Wep1 = We — ASt Wit1 = W — aSt
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L2 Regularization vs Weight Decay

Optimization Algorithm L2 Regularization

L(w) = Lggra(w) + Lyeg (w) LW) = LggeaW) + A|lw|?*

gtr = VL(Wt) gt = VL(W;) = VLgara(We) + 22w,
s, = optimizer(g,) s¢ = optimizer(g;)

Wep1 = We — ASt Wit1 = W — aSt

L2 Regularization and Weight Decay are equivalent  \Weight Decay
for SGD, SGD+Momentum so people often use the _
terms interchangeably! Lw) = Laata (W)

9t = VLgara(We)
s, = optimizer(g;) + 2w,
Wiy1 = W — ASt

A. Farhadi, S. Pratt Lecture 7 - 44 Jan 27, 2026



L2 Regularization vs Weight Decay

Optimization Algorithm L2 Regularization

L(w) = Lggra(w) + Lyeg (w) LW) = LggeaW) + A|lw|?*

9t = VL(Wt) 9t = VL(Wt) o VLdata(Wt) + 22w,
s, = optimizer(g,) s¢ = optimizer(g;)

Wt+1 — Wt — aSt Wiir1 = W — ASt

L2 Regularization and Weight Decay are equivalent  \Weight Decay
for SGD, SGD+Momentum so people often use the _
terms interchangeably! Lw) = Laata (W)

. 9t = Vlgara (W)
But they are not the same for adaptive _ timi ( ) + 22w
methods (AdaGrad, RMSProp, Adam, etc) St = optimizer\g;

Wir1 = W — QS
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AdamW: Decoupled Weight Decay

Algorithm 2 ' Adam with L regularization and Adam with decoupled weight decay (AdamW)

1: given a = 0.001, 51 = 0.9, 32 = 0.999, ¢ = 102 A€ER
2: initialize time step t <— 0, parameter vector 8;—o € IR", first moment vector m;—g < 0, second moment
vector vi—g < 0, schedule multiplier 7;—o € R

3: repeat

| <L+ 1

5:  V/fi(6:-1) < SelectBatch(6;_1) > select batch and return the corresponding gradient
6: g, « Vii(0:—.) IO

7. my — Bimy—1 + (1 — B1)g, > here and below all operations are element-wise
8: Vi < ,.-"3-2vt_1 + (1 — .'_)’2)g12

9:  mmy +—m/(1— 1) > (31 is taken to the power of ¢
10: Py < ve/(1 — B%) > [32 is taken to the power of ¢
11:  m « SetScheduleMultiplier(?) > can be fixed, decay, or also be used for warm restarts

12: 0, « 0;_1 —n, (am,/(\/f?+ €) +-A0s_1 )
13: until stopping criterion is met
14: return optimized parameters 6,
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First-Order Optimization

Loss

w1
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First-Order Optimization

(1) Use gradient form linear approximation
(2) Step to minimize the approximation

S

Loss

w1
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Second-Order Optimization

(1) Use gradient and Hessian to form quadratic approximation
(2) Step to the minima of the approximation

A
Loss

w1

A. Farhadi, S. Pratt Lecture 7 - 49 Jan 27, 2026



Second-Order Optimization

second-order Taylor expansion:

L(0) =~ L(60) 4 (0 — 60)" Vo L(60) + (6 — 60)" H (6 — 6p)

Solving for the critical point we obtain the Newton parameter update:

0* =0y — H VoL ()

Q: Why is this bad for deep learning?
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Second-Order Optimization

second-order Taylor expansion:

L(0) =~ L(60) 4 (0 — 60)" Vo L(60) + (6 — 60)" H (6 — 6p)

Solving for the critical point we obtain the Newton parameter update:

% 1 Hessian has O(N”2) elements
0" =00 — H VQL(OO) Inverting takes O(N*3)

N = (Tens or Hundreds of) Millions

Q: Why is this bad for deep learning?
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Second-Order Optimization
0* = 0y — H'VoL(6p)

- Quasi-Newton methods (BGFS most popular):
instead of inverting the Hessian (O(n"3)), approximate
inverse Hessian with rank 1 updates over time (O(n"2)
each).

- L-BFGS (Limited memory BFGS):
Does not form/store the full inverse Hessian.
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L-BFGS

- Usually works very well in full batch, deterministic mode
l.e. if you have a single, deterministic f(x) then L-BFGS will
probably work very nicely

- Does not transfer very well to mini-batch setting. Gives
bad results. Adapting second-order methods to large-scale,
stochastic setting is an active area of research.

Le et al, “On optimization methods for deep learning, ICML 2011”
Ba et al, “Distributed second-order optimization using Kronecker-factored approximations”, ICLR 2017
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In practice:

- AdamW should probably be your “default” optimizer
for new problems
- Adam is a good second choice in many cases; it
often works ok even with constant learning rate
- SGD+Momentum can outperform Adam but may
require more tuning of LR and schedule
- Try cosine schedule, very few hyperparameters!
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Learning rate schedules
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SGD, SGD+Momentum, Adagrad, RMSProp, Adam all have
learning rate as a hyperparameter.

Q: Which one of these learning
N rates is best to use?

low learning rate

high learning rate

good learning rate
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A. Farhadi, S. Pratt

SGD, SGD+Momentum, Adagrad, RMSProp, Adam all have
learning rate as a hyperparameter.

low learning rate

high learning rate

good learning rate

Q: Which one of these learning

rates is best to use?

A: In reality, all of these are good

learning rates.

Lecture 7 - 57
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Phases of learning...
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Phases of learning...

o—>
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Phases of learning...

.-\A
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Phases of learning...

N
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Phases of learning...
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Phases of learning...
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Phases of learning...
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Phases of learning...
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Phases of learning...
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Learning rate decays over time

Training Loss

Step: Reduce learning rate at a few fixed
Reduce learning rate points. E.g. for ResNets, multiply LR by 0.1
l after epochs 30, 60, and 90.

0 20 40 60 80 100
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Phases of learning...
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Phases of learning...
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Learning Rate Decay

Learning rate
10 - Step: Reduce learning rate at a few fixed

points. E.g. for ResNets, multiply LR by 0.1
after epochs 30, 60, and 90.

0.6 1 1
Cosine: o; = 50 (1 4 cos(tw/T))

0.8 1

0.4 1

0.2 1

0.0 1

0 20 20 60 80 100
Epoch

& : Initial learning rate
Loshchilov and Hutter, “SGDR: Stochastic Gradient Descent with Warm Restarts”, ICLR 2017

Radford et al, “Improving Language Understanding by Generative Pre-Training”, 2018 th . Leamlng rate at GPOCh t
Feichtenhofer et al, “SlowFast Networks for Video Recognition”, arXiv 2018 .
Child at al, “Generating Long Sequences with Sparse Transformers”, arXiv 2019 T . TOtaI number Of epOChS

A. Farhadi, S. Pratt Lecture 7 - 70 Jan 27, 2026



Learning Rate Decay

Training Loss

10 1

Step: Reduce learning rate at a few fixed
points. E.g. for ResNets, multiply LR by 0.1
after epochs 30, 60, and 90.

1
Cosine: o; = 50 (1 4 cos(tw/T))

0.8 4

0.6 1

Loss

0.4 4

0.2 1

0.0

0 50 100 150 200 250 300
Epoch

& : Initial learning rate
Loshchilov and Hutter, “SGDR: Stochastic Gradient Descent with Warm Restarts”, ICLR 2017

Radford et al, “Improving Language Understanding by Generative Pre-Training”, 2018 at . Leamlng rate at GPOCh t
Feichtenhofer et al, “SlowFast Networks for Video Recognition”, arXiv 2018 .
Child at al, “Generating Long Sequences with Sparse Transformers”, arXiv 2019 T . TOtaI number Of epOChS
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Learning Rate Decay

Learning rate _ _
10 Step: Reduce learning rate at a few fixed

points. E.g. for ResNets, multiply LR by 0.1
after epochs 30, 60, and 90.

0.8 1

0.6 1

1
o Cosine: o, = 50 (1 + cos(tm/T))
02 Linear: «o; = ag(1 —¢/T)
0.0 1
0 20 20 60 80 100
Epoch

Q0 : Initial learning rate
(vt - Learning rate at epoch t

Devlin et al, “BERT: Pre-training of Deep Bidirectional Transformers for T : Total number of epOChS
Language Understanding”, 2018
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Learning Rate Decay

Learning rate

Lo Step: Reduce learning rate at a few fixed
points. E.g. for ResNets, multiply LR by 0.1

08 after epochs 30, 60, and 90.

0.6 1 ].

Cosine: o; = 50 (1 4 cos(tw/T))

Linear: oy = (1 —t/T)

0.2 4

Inverse sqrt: oy = ozo/\/z

0 20 40 60 80 100

Epoch N _
Q0 : Initial learning rate
(vt - Learning rate at epoch t
Vaswani et al, “Attention is all you need”, NIPS 2017 T : TOtaI number Of epOChS
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Learning Rate Decay

Learning rate

Lo Step: Reduce learning rate at a few fixed
points. E.g. for ResNets, multiply LR by 0.1

08 after epochs 30, 60, and 90.

0.6 1 ].

Cosine: o; = 50 (1 4 cos(tw/T))

Linear: oy = (1 —t/T)

0.2 4

- - pA - - — Inverse sqrt: vy = ozo/\/z
Epoch
Constant: a; = q

Vaswani et al, “Attention is all you need”, NIPS 2017
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Learning Rate Decay: Linear Warmup

Learning rate T :
06 d High initial learning rates can make loss

- explode; linearly increasing learning rate
from O over the first ~5000 iterations can
prevent this

0.4 1
0.3 1

021 Empirical rule of thumb: If you increase the
batch size by N, also scale the initial
learning rate by N

0.1 1

0.0 1

0 20 a0 60 80 100
Epoch

Goyal et al, “Accurate, Large Minibatch SGD: Training ImageNet in 1 Hour”, arXiv 2017
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train_loss

info_info_normalize_proj_head_prior_elanding_60_apr_13 e

with L
cosine
and 4
warmup :

Step
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Improve test error
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Beyond Training Error

Train Loss Accuracy

175 - —e— train

15.0 val

125 0.8 1

10.0

0.7 4

75

5.0 06

2 P ¥ L A b oo et 000000t

0.0 05 {oeee®®®

(’) 25'00 50'00 75100 100'00 125'00 150'00 175‘:00 20600 0 25'00 50'00 75'00 10600 ]25';00 15()’00 175';00 20000

Better optimization algorithms But we really care about error on
help reduce training loss new data - how to reduce the gap?
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Early Stopping: Always do this

Train

Loss Accuracy

Stop training here

Iteration Iteration

Stop training the model when accuracy on the validation set decreases

Or train for a long time, but always keep track of the model snapshot
that worked best on val
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Model Ensembles

1. Train multiple independent models
2. At test time average their results

(Take average of predicted probability distributions, then choose argmax)

Enjoy 2% extra performance
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How to improve single-model performance?

Train Loss Accuracy

0.9 - —e— ftrain
+— val

17.5

15.0

125 0.8 1
10.0

0.7 4
15

50
0.6 1

25

05 4® pogt0eeees®
0 2500 5000 7500 10000 12500 15000 17500 20000 0 2500 5000 7500 10000 12500 15000 17500 20000

0.0

Regularization
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Regularization: Add term to loss

L= % sz\; 2y, 0ax(0, f(zi; W) — f(2i; W)y, +1) +AR(W)

n common use:
|2 regularization  BW) =322, Wi (Weight decay)
_1 regularization R(W) =320 22 (Wi

Elastic net (L1 + L2) R(W) =3, >, W2, + Wiyl
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Regularization: Dropout

In each forward pass, randomly set some neurons to zero
Probability of dropping is a hyperparameter; 0.5 is common

Srivastava et al, “Dropout: A simple way to prevent neural networks from overfitting”, JMLR 2014
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Regularization: Dropout Example forward

pass with a
p=0.5 y of kee - = Le ‘opou 3-layer network

_ using dropout
def train_step(X):

" X contains the data """

H1 = np.maximum(0, np.dot(Wl, X) + bl)
Ul = np.random.rand(*Hl.shape) < p

H1 *= Ul

H2 = np.maximum(©, np.dot(W2, H1l) + b2)
U2 = np.random.rand(*H2.shape) < p

H2 *= U2

out = np.dot(W3, H2) + b3

A. Farhadi, S. Pratt Lecture 7 - 84 Jan 27, 2026



pass with a

Create a drop mask and multiply Example forwara

p = 0.5 # probability of keej i1t | er = less dropou 3-layer network

using dropout

def train_step(X):

" X contains the data """

H1 = np.maximum(0, np.dot(Wl, X) + bl)
Ul = np.random.rand(*Hl.shape) < p

H1 *= Ul

H2 = np.maximum(©®, np.dot(W2, H1l) + b2)
U2 = np.random.rand(*H2.shape) < p

H2 *= U2

out = np.dot(W3, H2) + b3
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Regularization: Dropout

How can this possibly be a good idea?

Forces the network to have a redundant representation;
Prevents co-adaptation of features

has an ear

has a talil R

is furry —X—— . cat
~___— score

has claws +/
mischievous

look

[

T
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Regularization: Dropout

How can this possibly be a good idea?

Another interpretation:

Dropout is training a large ensemble of
models (that share parameters).

Each binary mask is one model
An FC layer with 4096 units has

24096 ~ 101233 possible masks!
Only ~ 1082 atoms in the universe...
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Dropout: Test time

Output Input
(label) (image)
Rand
Dropout makes our output random!  [yl= fiv(zl2) “oner

Want to “average out” the randomness at test-time
y=1@) = E.[f(,2)] = [ p(2)f (@, 2)dz

But this integral seems hard ...
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Dropout: Test time

Want to approximate
the integral
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Dropout: Test time

Want to approximate
the integral

Consider a single neuron.

At test time we have: & [a] = W1T + WY
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Dropout: Test time

Want to approximate
the integral

Consider a single neuron.

At test time we have: & [a] = W1T + WY

During training we have: Ela] = Y(w1z 4+ way) + (w1 + w90)

e |
e |

+ (w10 + w20) + (w10 + way)

— %(u}llﬁ + 'lUQy)
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Dropout: Test time

Want to approximate
the integral

Consider a single neuron.

At test time we have: E|a] = w1z + way
During training we have: glq] = Lwiz 4+ wey) + H(wiz + w90)

P =

=(w10 4+ w20) + (w10 + way)

P =

At test time, multiply -

by dropout probability

] [

(wi1z 4+ way)
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Dropout: Test time

def predict(X):

H1 = np.maximum(©, np.dot(Wl, X) + bl) * p
H2 = np.maximum(©, np.dot(W2, Hl) + b2) * p
out = np.dot(W3, H2) + b3

At test time all neurons are active always
=> \We must scale the activations so that for each neuron:
output at test time = expected output at training time
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" Vanilla Dropout: Not recommended implementation (see notes below) """

e Dropout Summary
def train_step(X):

np.maximum(©, np.dot(Wl, X) + bl)

H1 =

Ul = np.random.rand(*Hl.shape) < p #

H1 *= Ul 4 ] . . .

HZ = np.maximum(0, np.dot (W2, A1) + bZ) drop N tra|n t|me
U2 = np.random.rand(*H2.shape) < p cond drof sk

H2 *= U2 #

out = np.dot(W3, H2) + b3

def predict(X):

AL = np.maxinun(0, 1p.dot(W1, X) + b1)[* p # K0T  scale the activati scale at test time

H2 = np.maximum(©, np.dot(W2, Hl1l) + b2) * p #
out = np.dot(W3, H2) + b3
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More common: “Inverted dropout”

p=0.5"1

def train_step(X):

H1 = np.maximum(®, np.dot(Wl, X) + bl)

Ul (np.random.rand(*Hl.shape) < p)|/ p #
H1 *= Ul
H2 = np.maximum(©, np.dot(W2, H1l) + §2)
U2 = (np.random.rand(*H2.shape) < p) |/ p #|second dr
H2 *= U2 ¢ J

out = np.dot(W3, H2) + b3

FEOTIDReTRDSSe R AT = SR o test time is unchanged!
def predict(X): /

H1 = np.maximum(©, np.dot(Wl, X) + bl)
H2 = np.maximum(©, np.dot(W2, H1l) + b2)
out = np.dot(W3, H2) + b3
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Regularization: A common pattern

Training: Add some kind
of randomness

Y = fw(.CC,Z)

Testing: Average out randomness
(sometimes approximate)

y = f(@) = E. [f(x, 2)] = / p(2) (2, 2)dz
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Regularization: A common pattern

Training: Add some kind Example: Batch
of randomness Normalization
y = fw(z,z2) Training:
Normalize using
Testing: Average out randomness stats from random
(sometimes approximate) minibatches

y=f(z)=E;|f(z,2)] = /p(z)f(xv 2)dz Testing: Use fixed
stats to normalize
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Regularization: Data Augmentation

cat”
Load image
and label
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https://www.flickr.com/photos/malfet/1428198050
https://www.flickr.com/photos/malfet/
https://creativecommons.org/licenses/by/2.0/

Regularization: Data Augmentation

Load image
and label

Transform image
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Data Augmentation
Horizontal Flips
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Data Augmentation
Random crops and scales

Training: sample random crops / scales
ResNet:

1. Pick random L in range [256, 480]

2. Resize training image, short side = L

3. Sample random 224 x 224 patch
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Data Augmentation
Random crops and scales

Training: sample random crops / scales
ResNet:

1. Pick random L in range [256, 480]

2. Resize training image, short side = L

3. Sample random 224 x 224 patch

Testing: average a fixed set of crops

ResNet:
1. Resize image at 5 scales: {224, 256, 384, 480, 640}
2. For each size, use 10 224x224 crops: 4 corners + center, + flips
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Data Augmentation
Color Jitter

Simple: Randomize
contrast and brightness
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Data Augmentation  pore complex:

Color Jitter 1. Apply PCAto all [R, G, B]

Simple: Randomize pixels in training set
contrast and brightness

- 2. Sample a “color offset”
| along principal component
directions

=7 1. Add offset to all pixels of a
. training image

(As seen in [Krizhevsky et al. 2012], ResNet, etc)
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Data Augmentation
Get creative for your problem!

Examples of data augmentations:
- translation

- rotation

- stretching

- shearing,

- lens distortions, ... (go crazy)
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Automatic Data Augmentation

Original Sub-policy | Sub-policy 2 Sub-policy 3~ Sub-policy4  Sub-policy 5

ShearX, 0.9, 7 ShearY, 0.7, 6 ShearX, 0.9, 4 Invert, 0.9, 3 ShearY, 0.8, 5
Invert, 0.2, 3 Solarize, 0.4, 8 AutoContrast, 0.8, 3 Equalize, 0.6, 3 AutoContrast, 0.7, 3

Batch 1

Batch 2

Batch 3

Cubuk et al., “AutoAugment: Learning Augmentation Strategies from Data”, CVPR 2019
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Regularization: A common pattern

Training: Add random noise
Testing: Marginalize over the noise

Examples:
Dropout

Batch Normalization
Data Augmentation
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Regularization: DropConnect

Training: Drop connections between neurons (set weights to 0)
Testing: Use all the connections

Examples:
Dropout

Batch Normalization
Data Augmentation
DropConnect

Wan et al, “Regularization of Neural Networks using DropConnect”, ICML 2013
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Regularization: Fractional Pooling

Training: Use randomized pooling regions
Testing: Average predictions from several regions

Examples:

Dropout

Batch Normalization
Data Augmentation
DropConnect
Fractional Max Pooling

Graham, “Fractional Max Pooling”, arXiv 2014
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Regularization: Stochastic Depth

Training: Skip some layers in the network
Testing: Use all the layer

Examples:

Dropout

Batch Normalization

Data Augmentation

DropConnect

Fractional Max Pooling

Stochastic Depth (will become more
clear in next week's lecture)

Huang et al, “Deep Networks with Stochastic Depth”, ECCV 2016

A. Farhadi, S. Pratt Lecture 7 - 110 Jan 27, 2026




Regularization: Cutout

Training: Set random image regions to zero
Testing: Use full image

Examples:

Dropout

Batch Normalization
Data Augmentation
DropConnect
Fractional Max Pooling
Stochastic Depth
Cutout / Random Crop

Works very well for small datasets like CIFAR,
DeVries and Taylor, “Improved Regularization of IeSS common for |arge datasets I|ke |mageNet

Convolutional Neural Networks with Cutout”, arXiv 2017
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Regularization: Mixup

Training: Train on random blends of images
Testing: Use original images

Examples:

Dropout

Batch Normalization
Data Augmentation
DropConnect
Fractional Max Pooling
Stochastic Depth
Cutout / Random Crop
Mixup

Zhang et al, “mixup: Beyond Empirical Risk Minimization”, ICLR 2018

Target label:

CNN cat: 0.4
dog: 0.6

o .4 RO
R j »
’ # -,
g 3
’ g £

Randomly blend the pixels
,« of pairs of training images,
3 e.g. 40% cat, 60% dog
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Regularization: CutMix

Training: Train on random blends of images
Testing: Use original images

Examples:

Dropout

Batch Normalization
Data Augmentation
DropConnect
Fractional Max Pooling
Stochastic Depth P )
Cutout / Random Crop 8§ 4 fi
Mixup

Yun et al, “CutMix: Regularization Strategies to Train
Strong Classifiers with Localizable Features”, ICCV 2019

Target label:

CNN cat: 0.4
dog: 0.6

Replace random crops of
one image with another:
e.g. 60% of pixels from
cat, 40% from dog
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Regularization: Label Smoothing

Training: Change target distribution
Testing: Take argmax over predictions

. Standard Training: Label Smoothing:
Examples. Cat: 100% Cat: 90%
Dropout Dog: 0% Dog: 5%

Batch Normalization Fish: 0% Fish: 5%
Data Augmentation =<1 et
DropConnect Set target distribution to be 1—-——¢ on the

. : K
Fractional Max Pooling correct category and €/K on all other

categories, with K categories ande € 0,1 . Loss

Stochastic Depth is cross-entropy between predicted and target
Cutout / Random Crop distribution.
Mixup

Label Smoothing

Szegedy et al, “Rethinking the Inception Architecture for Computer
ision” PR 20
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Regularization - In practice

Training: Add random noise
Testing: Marginalize over the noise

Examples:

Dropout
Batch Normalization
Data Augmentation

Cutout / Random Crop
Mixup

- Use dropout for large fully-connected
layers

- Using batchnorm is always a good
idea

- Try Cutout, MixUp, CutMix,
Stochastic Depth, Label Smoothing
to squeeze out a bit of extra
performance
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Choosing Hyperparameters
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Choosing Hyperparameters: Grid Search
Choose several values for each hyperparameter
(Often space choices log-linearly)

Example:

Weight decay: [1x10#, 1x103, 1x1072, 1x107"]
Learning rate: [1x10™*, 1x1073, 1x102, 1x107"]

Evaluate all possible choices on this hyperparameter grid
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Choosing Hyperparameters: Random search

Choose several values for each hyperparameter
(Often space choices log-linearly)

Example:
Weight decay: log-uniform on [1x10, 1x10™]
Learning rate: log-uniform on [1x10#, 1x107]

Run many different trials
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Random Search for

Random Search vs. Grid Search  Hyver-rarameter optimization

Bergstra and Bengio, 2012
Grid Layout Random Layout

o
°
o
Unimportant Parameter
O
Unimportant Parameter

Important Parameter Important Parameter

lllustration of Bergstra et al., 2012 by Shayne
Longpre, copyright CS231n 2017
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Choosing Hyperparameters

(without tons of GPUs)
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Choosing Hyperparameters

Step 1: Check initial loss

Turn off weight decay, sanity check loss at initialization
e.g. log(C) for softmax with C classes
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Choosing Hyperparameters

Step 1: Check initial loss
Step 2: Overfit a small sample

Try to train to 100% training accuracy on a small sample of
training data (~5-10 minibatches); fiddle with architecture,
learning rate, weight initialization

Loss not going down? LR too low, bad initialization
Loss explodes to Inf or NaN? LR too high, bad initialization
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Choosing Hyperparameters

Step 1: Check initial loss
Step 2: Overfit a small sample
Step 3: Find LR that makes loss go down

Use the architecture from the previous step, use all training
data, turn on small weight decay, find a learning rate that
makes the loss drop significantly within ~100 iterations

Good learning rates to try: 1e-1, 1e-2, 1e-3, 1e-4
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Choosing Hyperparameters

Step 1: Check initial loss

Step 2: Overfit a small sample

Step 3: Find LR that makes loss go down
Step 4. Coarse grid, train for ~1-5 epochs

Choose a few values of learning rate and weight decay around
what worked from Step 3, train a few models for ~1-5 epochs.

Good weight decay to try: 1e-4, 1e-5, 0
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Choosing Hyperparameters

Step 1: Check initial loss

Step 2: Overfit a small sample

Step 3: Find LR that makes loss go down
Step 4. Coarse grid, train for ~1-5 epochs
Step 5: Refine grid, train longer

Pick best models from Step 4, train them for longer (~10-20
epochs) without learning rate decay
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Choosing Hyperparameters

Step 1: Check initial loss

Step 2: Overfit a small sample

Step 3: Find LR that makes loss go down
Step 4. Coarse grid, train for ~1-5 epochs
Step 5: Refine grid, train longer

Step 6: Look at loss and accuracy curves

A. Farhadi, S. Pratt Lecture 7 - 126 Jan 27, 2026



A
Accuracy

Train

time

Q1. You see this. What should you do?
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A
Accuracy

Train

time

Q2. You see this. What should you do?
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A
Accuracy

Train

time

Q3. You see this. What should you do?
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Look at learning curves!

Training Loss Train / Val Accuracy
U.1U
gg { —@— ftrain

0.08 4

0 9 1
- :

S g0 A tegtey teeteee
o 94
£
c -
@ 0.04 90 -
[_

0.02 90 -

0.00 -

0 100000 200000300000400000 500000600000  ° § 100000 200000 300000 400000 500000 600000
lteration lteration

Losses may be noisy, use a
scatter plot and also plot moving
average to see trends better
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Loss

time

Q4. You see this. What should you do?
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Loss

time

Q5. You see this. What should you do?
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Loss

Learning rate step decay

time

Q5. You see this. What should you do?
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Cross-validation

We launch 100s of

training runs all at

once and visualize all

our models training

with different

hyperparameters — i NN S S O e e L

| S (- | . - N | — - il — | SN —

check out weights
and biases
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You can plot all your loss curves for different hyperparameters on a single plot

— task0
—— taskl
— task2
— task3

task4

task5
— task6
— tRskT
—— task8
— task9

task10

task1l
— taskl2
—— taskl3

— taskl4
—— taskl5
task16

task17
— taskl8
— task19
— task20
— task21l

task22

task23
— task24
~—— taskd
YT i

task28
task29
— task30
— task31
yowviask32
—— task33
task34
task35
— task36
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Choosing Hyperparameters

Step 1: Check initial loss

Step 2: Overfit a small sample

Step 3: Find LR that makes loss go down
Step 4. Coarse grid, train for ~1-5 epochs
Step 5: Refine grid, train longer

Step 6: Look at loss and accuracy curves
Step 7: GOTO step 5
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Hyperparameters to play with:

- learning rate,

- Its decay schedule, update type

- regularization (L2/Dropout strength)
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Summary

- Improve your training error:
- Optimizers
- Learning rate schedules

- Improve your test error:

- Regularization
- Choosing Hyperparameters
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Next time: Visualizing and
understanding neural networks
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Model Ensembles: Tips and Tricks

Instead of training independent models, use multiple
snapshots of a single model during training!

05 Single Model A
04 Standard LR Schedule /) W

Loshchilov and Hutter, “SGDR: Stochastic gradient descent with restarts”, arXiv 2016
Huang et al, “Snapshot ensembles: train 1, get M for free”, ICLR 2017
Figures copyright Yixuan Li and Geoff Pleiss, 2017. Reproduced with permission.
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Model Ensembles: Tips and Tricks

Instead of training independent models, use multiple
snapshots of a single model during training!

05 Single Model A °%7 Snapshot Ensemble /M jor —Cifart0 (L=100.k=24, B=300 epochs)
04 Standard LR Schedule /) \ 04 Cyclic LR Schedule : ///\ —— Standard Ir scheduling
2 ! 2 —— Cosine annealing with restart Ir 0.1
03 N i 10° | | | I |
0.2 0.2 | | | | |
12}
0.1 0.1 ® 1 8 10"
0 o 74 f\ g
/) :
-0.14 -0.1 Z W é 1072
=
-0.2 02 r W- s
-0.3 -0.3 o E 1073 |
_04 04, — , Model | Model | Model | Model | Model | Model
50 == 50 50 — gazs 50 1 2 3 4 5 6
40 = 40 40 — 40 10 1 | 1 1 1
30 30 30 30 0 50 100 150 200 250 300
20 20 20 20
: Epochs
Loshchilov and Hutter, “SGDR: Stochastic gradient descent with restarts”, arXiv 2016 CyC“C Iearnlng rate SChedUIGS can
H.uang et al, Snapsﬁot ens.embles: train 1 get M for free”, ICLR 2017 make thlS Work even better!

Figures copyright Yixuan Li and Geoff Pleiss, 2017. Reproduced with permission.

A. Farhadi, S. Pratt Lecture 7 - 141 Jan 27, 2026




Model Ensembles: Tips and Tricks

Instead of using actual parameter vector, keep a
moving average of the parameter vector and use that
at test time (Polyak averaging)

2 True:
data batch = dataset.sample data batch()
loss = network.forward(data batch)

dx = network.backward()
X += - learning rate * dx
X test = 0.995*x test + 0.005*x

Polyak and Juditsky, “Acceleration of stochastic approximation by averaging”, SIAM Journal on Control and Optimization, 1992.
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Track the ratio of weight updates / weight magnitudes:

# assume parameter vector W and its gradient vector dw
param scale = np.linalg.norm(W.ravel())

update = -learning rate*dW # simple SGD update

update scale = np.linalg.norm(update.ravel())

W += update # the actual update

print update scale / param scale # want ~le-3

ratio between the updates and values: ~ 0.0002 / 0.02 = 0.01 (about okay)
want this to be somewhere around 0.001 or so
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