Lecture 6:
Activation Functions &

Normalization Layers
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Administrative: Assignment 1

Due today! 11:59pm

- K-Nearest Neighbor
- Linear classifiers: SVM, Softmax
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Administrative: Assignment 2

Out soon

- Multi-layer Neural Networks,
- Image Features,

- Optimizers
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Administrative: Fridays

This Friday

Convolutions & Vectorization
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Project

Fill out partner form by eod if you want to!
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Where we are

NOW...

Computational graphs

f=We

Li =), max(0,s; — sy, +1)

L
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Where we are now...

Neural Networks
Linear score function: f — Wa

2-layer Neural Network f = Womax(0, Wix)
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Where we are now...

Convolutional Neural Networks

Image Maps

Fully Connected

Input

Convolutions
Subsamplmg

lllustration of LeCun et al. 1998 from CS231n 2017 Lecture 1
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Where we are now...
Convolutional Layer

Ve
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32x32x3 image
ox5x3 filter

convolve (slide) over all
spatial locations

activation map
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FOUR layers in total: CONV/ReLU/POOL/FC

RELU RELU RELU RELU RELU RELU
CONV |CONV CONV | CONV CONV | CONV FC

T AT A
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Today:
e Activation Function
e Normalization layers

A. Farhadi, S. Pratt Lecture 6 - 11 Jan 22, 2026



There are a few more steps before we start
training

1. One time setup
activation functions, preprocessing, weight initialization,
regularization, gradient checking

2. Training dynamics
babysitting the learning process,
parameter updates, hyperparameter optimization

3. Evaluation
model ensembles, test-time augmentation, transfer
learning
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Today's agenda

- Briefly revisit backprop
- Finish CNNs

- Activation Functions

- Data Preprocessing

- Weight Initialization

- Normalization Layers
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Backprop with Vectors

4D input x:

Jacobian is sparse:

[ 1]
(-2 ]

s

f(x) = max(0,x)

off-diagonal entries 3 : (elementwise)

always zero! Never i -1 | —

explicitly form

Jacobian -- instead i

Lo mplicit 4D dL/dx: dz/dx] [dL/dz]

multiplication (4] — 1 :4
0] = [0000][-1]
(5] — TOI[S
(0] — 0][9
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4D output z:
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4D dL/dz:
[ 4 ]
[ -1 ]
[ O ]
[ 9 ]

-—

+—

-—

-«—

1

[ 0 ]
3]
0 ]

Upstream
gradient
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Backprop with Vectors

4D input x: 4D output z:
[ 1] [ 1]
R _ 0]
Jacobian is sparse: : 3 - f(X) - max(Q,x) : 3 :
off-diagonal entries . | (elementwise) | ! :
always zero! Never [ 1] ——— — [ 0]
explic_itly fqrm
et Y 4D dL/dx: [dz/dx] [dL/dz] 4D dL/dz:
multiplication (4] —[ 4]
(0] (8_L) _ <2’_§>¢ it £; >0 — [ -1]~—— Upstream
5] \9d%/, 0 otherwise = [ & | —— gradient
(0] ~[9]—
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Backprop with Matrices y: [NxM]

X: [NxD] Matrix Multiply 5 | 2 || 12| 2
3 a2 Yn,m = Zx"’dwd’m dL/dy: [NxM]
wi[DxM] ! — ]
3 2 1 -1 -8 1 4 6
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Backprop with Matrices y: [NxM]

X: [NxD] Matrix Multiply 5 | 2 || 12| 2
3 a2 Yn.m = Zx"’dwd’m dL/dy: [NxM]
wi[DxM] ! — ]
32| |2 Jacobians: 0 0
IR BRE dy/dx: [(NxD)x(NxM)]
32 1| -2 dy/dw: [(DxM)x(NxM)]

For a neural net we may have
N=64, D=M=4096
Each Jacobian takes ~256 GB of
memory! Must work with them implicitly!
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Backprop with Matrices

X: [NxD]

2 1 -3

A. Farhadi, S. Pratt

-3 4 2
w: [DxM] —
3 2 il -1

Matrix Multiply

Yn,m = § Ln,dWd,m
d

Jacobian is very large because it considers how
EVERY element of the input x affects EVERY
element of the output y

Can we get dL/dx more efficiently, by just looking at
what parts of the input ACTUALLY affect which parts
of the output?
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X [2x3] y [2x4] oL/dy [2x4]

2 || 1| -3 1l -2 ]l 2 || 6 2 || 3 |[-3]) 9

2142 5211L\1 s 1l 4| s
</“P 3|l 2 1] -2

Let’s look at how a single element of the input affects a single element of the output!
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X [2x3] y [2x4] oL/dy [2x4]
e 3| 2] 12| -2 N
2 1 || -3 a1 2| s 2 3 (| 3] 9
2 1 |f 3| 2 !
7 s || 2 5 I 2 11L\ 1 sl 1| a4 s
</f“ 3|l 2 2] -2

Whatis oy, ?
ax0,1
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X [2x3] y [2x4] oL/oy [2x4]
- , 3 2 il =1
2 1 =3 =1 0l|N=1 2 6 2 3 = 9
2 1 3 2
-3 4 2 5 2 11 1 -8 1 4 6
3 2 1 -2

Whatis oy, ?
ax0,1

Looking at the formula for yg », what's the partial
derivative with respect to xg1?

Yo0,2=Xo,0 " Wo,2+ Xp,1°W1,2 +Xp,2 * W2,2
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X [2x3] y [2x4] oL/dy [2x4]
: , 3 2 il -1 :
2 1 =3 =1 0l|N=1 2 6 2 3 = 9
2 1 3 2
-3 4 2 5 2 11 1 -8 1 4 6
3 2 1 -2

Whatis oy, ? Whatis s ?
9X0,1 9x0,1

Looking at the formula for yg », what's the partial
derivative with respect to xg1?

Yo0,2=Xo,0 " Wo,2+ Xp,1°W1,2 +Xp,2 * W2,2
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w [3><4] X0 Woo Xp0 Wo1 X0 Wo2 X0 Wo3
X [2X3] X1 W1ie Xp1 W11 Xp1 W12 X1 W13 6L/6y [2x4]

i ] 3 - E = X2 W20 X2 W21 X2 W22 X2 W23

2 1 =3 2 5 -3 9

2 1l 3 2

-3 4 2 X19 Woo X19 Wo1 X109 Wo2 X19 Wo3 -8 1 4 6
3 2 1l -2 X11 W10 X11 W11 X11 W12 X11 W13
X12 W20 X12 W21 X12 W22 X12 W23

Whatis oy, ? Whatis s ?
9X0,1 9x0,1

Looking at the formula for yg », what's the partial
derivative with respect to xg1?

Yo0,2=Xo,0 " Wo,2+ Xp,1°W1,2 +Xp,2 * W2,2
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w [3><4] X0 Woo Xp0 Wo1 X0 Wo2 X0 Wo3
X [2X3] X1 W1ie Xp1 W11 Xp1 W12 X1 W13 6L/6y [2x4]

i ] 3 - E = X2 W20 X2 W21 X2 W22 X2 W23

2 1 =3 2 5 -3 9

2 1l 3 2

-3 4 2 X19 Woo X19 Wo1 X109 Wo2 X19 Wo3 -8 1 4 6
3 2 1l -2 X11 W10 X11 W11 X11 W12 X11 W13
X12 W20 X12 W21 X12 W22 X12 W23

Whatis oy, ? Whatis s ?
9X0,1 9x0,1

There are multiple local gradients since xg 1 affects

Looking at the formula for yg », what's the partial R A—

derivative with respect to xg1?
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w [3><4] X0 Woo Xp0 Wo1 X0 Wo2 X0 Wo3
X [2X3] X1 W1ie Xp1 W11 Xp1 W12 X1 W13 6L/6y [2x4]

I 1 3 - E = X2 W20 Xg2 W21 X2 W22 X2 W23

2 1 =3 2 5 -3 9

2 1 3 2

-3 4 2 X19 Woo X19 Wo1 X109 Wo2 X19 Wo3 -8 1 4 6
3 2 i -2 X11 W10 X11 W11 X11 W12 X11 W13
X12 W20 X12 W21 X12 W22 X12 W23

Whatis asyp, ? Whatis o ? Whatis o ?
axo,1 9%0,1 ax0'1

There are multiple local gradients since xq 1 affects

Looking at the formula for yg », what's the partial R A—

derivative with respect to xg1?
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w [3><4] X0 Woo Xp0 Wo1 X0 Wo2 X0 Wo3
X [2X3] X1 W1ie Xp1 W11 Xp1 W12 X1 W13 6L/6y [2x4]

I 1 3 - E = X2 W20 Xg2 W21 X2 W22 X2 W23

2 1 =3 ‘ 2 5 -3 9

2 1 3 2

-3 4 2 X19 Woo X19 Wo1 X109 Wo2 X19 Wo3 -8 1 4 6
3 2 i -2 X11 W10 X11 W11 X11 W12 X11 W13
X12 W20 X12 W21 X12 W22 X12 W23

Whatis asyp, ? Whatis o ? Whatis o ?
axo,1 9%0,1 ax0'1

There are multiple local gradients since xq 1 affects Sum of: (how much xg 1 affects each y) x (how much each y affects L)

Looking at the formula for yg », what's the partial R A—

derivative with respect to xg1?
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w [3><4] X0 Woo Xp0 Wo1 X0 Wo2 X0 Wo3
X [2X3] X1 W1ie Xp1 W11 Xp1 W12 X1 W13 6L/6y [2x4]
I 1 3 - E = X2 W20 Xg2 W21 X2 W22 X2 W23
2 1 =3 ‘ 2 5 -3 9
2 1 3 2
-3 4 2 X19 Woo X19 Wo1 X109 Wo2 X19 Wo3 -8 1 4 6
3 2 i -2 X11 W10 X11 W11 X11 W12 X11 W13
X12 W20 X12 W21 X12 W22 X12 W23

Whatis asyp, ? Whatis o ? Whatis o ?
axo,1 9%0,1 ax0'1

There are multiple local gradients since xq 1 affects Sum of: (how much xg 1 affects each y) x (how much each y affects L)

Looking at the formula for yg », what's the partial R A—

derivative with respect to xg1?
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w [3><4] X0 Woo Xp0 Wo1 X0 Wo2 X0 Wo3
X [2X3] X1 W1ie Xp1 W11 Xp1 W12 X1 W13 6L/6y [2x4]

I 1 3 - E = X2 W20 Xg2 W21 X2 W22 X2 W23

2 1 ||P=3 || | < 3 3 @

2 1 3 2

-3 4 2 X19 Woo X19 Wo1 X109 Wo2 X19 Wo3 -8 1 4 6
3 2 i -2 X11 W10 X11 W11 X11 W12 X11 W13
X12 W20 X12 W21 X12 W22 X12 W23

Whatis asyp, ? Whatis o ? Whatis o ?
axo,1 9%0,1 ax0'1

There are multiple local gradients since xq 1 affects Sum of: (how much xg 1 affects each y) x (how much each y affects L)

Looking at the formula for yg », what's the partial R A—

derivative with respect to xg1?
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w [3><4] X0 Woo Xp0 Wo1 X0 Wo2 X0 Wo3
X [2X3] X1 W1ie Xp1 W11 Xp1 W12 X1 W13 6L/6y [2x4]

i ] 3 - E = X2 W20 X2 W21 X2 W22 X2 W23

2 1 =3 2 5 -3 9

2 1l 3 2

-3 4 2 X19 Woo X19 Wo1 X109 Wo2 X19 Wo3 -8 1 4 6
3 2 1l -2 X11 W10 X11 W11 X11 W12 X11 W13
X12 W20 X12 W21 X12 W22 X12 W23

Whatis asyp, ? Whatis o ? Whatis o ?
ax0,1 9%0,1 0X0.1

There are multiple local gradients since xq 1 affects Sum of: (how much xg 1 affects each y) x (how much each y affects L)

Looking at the formula for yg », what's the partial R A—

derivative with respect to xg1?

oyo.0 =[Yo.ol  QENGCNEN  [Nove.1 . [NNOTNNN . 0Yeol . NENCCHEN  9Ve.31  NEEE
m = Wy = 2 9xg,1 3y0,0 9%g,1 3y0,1 9xp,1 9yp,2 9xg,1 9y0,3
- ’

Yo0,2=Xo,0 " Wo,2+ Xp,1°W1,2 +Xp,2 * W2,2

90,1 _ - +

ET i N
90,2
—s = = 9
o1 - W2 =3 .| = M3 = |3 T 1 R B K EK N

: 1,0 3y0,0 ol ayp,1 £Z 3yo,2 Lo 3yg,3
il
aigi =g - B
= wlrow 1] 8L [row 0]
ay
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w [3x4]
X [2x3]
e K 3 2 1l -1
2 1 -3
2 1 3 2
-3 4 2

aL  _— oL [row 0]

2= wlrow 1]
axg,l ay

X0 Woo Xp0 Wo1 X0 Wo2 X0 Wo3 6L/6 [2x4]
X
X1 W1ie Xp1 W11 Xp1 W12 X1 W13 y
Xg2 W20 Xg2 W21 Xg2 W22 Xg2 W23 2 3 =3 9
X19 Woo X19 Wo1 X109 Wo2 X19 Wo3 -8 1 4 6
X11 Wio X11 W11 X11 W12 X11 W13
X12 W20 X12 W21 X12 W22 X12 W23
.
Whatis o ?
3X0'1
Sum of: (how much xg 1 affects each y) x (how much each y affects L)
_ 9o,0 oL ¥e,1 , oL, dye,2 , 3L . de,3 , oL
axg,1 90,0 axg, 1 aye,1 axg,1 3yp,2 axg, 1 2yg,3
+
= oL o N L N L .eL
1,0 3y0,0 ol ayp,1 £Z 3yo,2 Lo 3yg,3
= wlrow 1] AL [row @]
oy
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w [3><4] X0 Woo Xp0 Wo1 X0 Wo2 X0 Wo3 6L/6 [2x4]
X
X [2X3] 3 2 1 1 X1 W1ie Xp1 W11 Xp1 W12 X1 W13 y
i ] X2 W20 X2 W21 Xg2 W22 X2 W23 2 3 o 9
2 1 -3 | |
2 1l 3 2
-3 4 2 X10 Woo X10 Wo1 X109 Wo2 X190 Wo3 -8 1 4 6
3 2 1l -2 X11 W10 X11 W11 X11 W12 X11 W13
X12 W20 X12 W21 X12 W22 X12 W23
.
Whatis o ?
9%0,1
oL - oL [row 0] wlrow 1]
9%p,1 9y Sum of: (how much xg ; affects each y) x (how much each y affects L)
9Y0,0 oL 90,1 oL 9Y0,2 oL 90,3 oL
aL oL [row n = =222 . + 2% . = 4 e + 2% .
o - EEEE 1. wlrow d] axg,1 90,0 axg, 1 aye,1 axg,1 3yp,2 axg, 1 2yg,3
9Xn,d oy
"
- oL - . D . D .o oL
= v,e 3y0,0 ol ayp,1 £Z 3yo,2 Lo 3yg,3
= wlrow 1] AL [row @]
oy
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w [3><4] X0 Woo Xp0 Wo1 X0 Wo2 X0 Wo3 6L/6 [2x4]
X
X [2X3] 3 2 1 1 X1 W1ie Xp1 W11 Xp1 W12 X1 W13 y
I I X@2 W20 X2 W21 X02 W22 X2 W23 "
2 1 ||P=3 || < 3 3 9
2 1l 3 2
-3 4 2 X10 Woo X10 Wo1 X109 Wo2 X190 Wo3 -8 1 4 6
3 2 1l -2 X11 W10 X11 W11 X11 W12 X11 W13
X12 W20 X12 W21 X12 W22 X12 W23
.
Whatis o ?
3X0'1
oL - oL [row 0] wlrow 1]
9%p,1 9y Sum of: (how much xg ; affects each y) x (how much each y affects L)
_ 99,0 . oL 9,1 ., oL 90,2 . oL 99,3 ., oL
a;L'— = atlrownl . yrow q) T X1 a¥0,0 * oxo,1 0,1 * oxo,1 ay0,2 * oxo,1 9y0,3
n,d ay
"
oL [2x3]
ox - S .o oL .o oL .o oL
N \( = w10 3y0,0 1,1 ayp,1 T W12 aye,2 * VW13 3yg,3
l% -wlo] :TLg cwl1] ‘ :7"@ “wl21]
= wlrow 1] AL [row @]
S oy
i 'W[o] LL 'W[l] LL 'W[Z]
ay1 oy1 y1
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w [3><4] X0 Woo Xp0 Wo1 X0 Wo2 X0 Wo3 GL/G [2x4]
X
X [2X3] 3 2 1 1 X1 W1ie Xp1 W11 Xp1 W12 X1 W13 y
[ 1 B X2 W X2 W X2 W X2 W
2 1 -3 02 W20 02 W21 | 02 W22 02 W23 2 3 -3 9
2 1l 3 2
-3 4 2 X19 Woo X19 Wo1 X109 Wo2 X19 Wo3 -8 1 4 6
3 2 1 -2 X11 W1o X11 W11 X11 W12 X11 W13
X12 W20 X12 W21 X12 W22 X12 W23
.
Whatis o ?
3X0'1
wT [4x3]
oL [2x4] Sum of: (how much xg ; affects each y) x (how much each y affects L)
3y wo,o || wi,0 || W2,0
BY%L@ 3)%1 8%2 8%3 e
o T o T ol el s - 2Yo,0 |  [NCUNEN  ovo,1 | [NNGUSEN  [ove. 2|  WENCTEEN | @ve,3 | OO
! ! 9x0,1 y0,0 ax0,1 y0,1 ax0,1 y0,2 9x0,1 y0,3
9y1,0||9y1,1|9y1,2(|9y1,3
wp,3 || w1,3 || w2,3
&
oL [2x3]
ox Nk = w L - [ N [ &
( ‘ 1,0 3y0,0 ol ay0,1 £Z 3yo,2 Lo 3yg,3
oL oL aL
‘ SO N | IFRe ‘ 2wzl
= wlrow 1] AL [row @]
> , @ ay
oL aten || 2B swid || 2w
ay1 oy1 y1
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w [3x4]
x [2x3]
— 3 2 1
2 1 -3
2 1 3
-3 4 2
3 2 1
oL _ oL, T
ax ny w
wT [4x3]
oL [2x4]
dy Yo,0 || W1,0
oL e | ot |[ ot w1 |[vin
9y0,0|| 9y0,1||9ye,2||9Ye,3
aL aL aL aL wp,2 || W1,2
oy1,0]1[9Y1,1][9y1,2(|9y1,
1,0 150 1,2 133 wp 3 | w13
oL [2x3]
ox
( |
i 'W[@] LL 'W[l] LL 'W[Z]
Yo 9yQ Yo
oL oL aL
— -wl0] — -w[1] — -w[2]
9y1 oy1 9y1
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w2,0
2,1
W52

2,3

X0 Woo Xp0 Wo1 X0 Wo2 X0 Wo3 GL/G [2x4]
X
X1 W1ie Xp1 W11 Xp1 W12 X1 W13 y
Xg2 W20 X2 W21 X02 W22 Xg2 W23 2 3 =3 9
X19 Woo X19 Wo1 X109 Wo2 X19 Wo3 -8 1 4 6
X11 W10 X11 W11 X11 W12 X11 W13
X12 W20 X12 W21 X12 W22 X12 W23

L ecture 6 -

I

34

Whatis o ?
3X0'1

Sum of: (how much xg 1 affects each y) x (how much each y affects L)

3Y0,0 oL
9Xg, 1 90,0
- oL
1,0 30,0
wlrow 1]

9,1 , oL . dve,2 | GERNN | 90,3 , EOD
9x0,1 9ye,1 9x0,1 9Y0,2 9x0,1 9y0,3
” E | o N . = aL
L 0,1 Lo 99,2 £ 90,3
oL [row 0]

ay
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w [3><4] Xp0 Yoo Xp0 Wo1 Xo0 Wo2 Xp0 Wo3
X [2X3] 3 2 1 1 X1 W1ie Xp1 W11 Xp1 W12 Xp1 W13 6L/6y [2x4]

2 [ 1 i -3 B Xg2 W20 Xg2 W21 X02 W22 Xg2 W23 2 3 -3 9

2 1l 3 2
-3 4 2 X19 Woo X19 Wo1 X109 Wo2 X19 Wo3 -8 1 4 6

3 2 d -2 X11 W1o X11 W11 X11 W12 X11 W13

X12 W20 X12 W21 X12 W22 X12 W23
Summary: Two Ways to Compute the Same Thing
Fory = x-w where x is [NxD], wis [DxM], y is [NxM]:
Explicit Jacobian Approach Implicit Matrix Multiply
oL _ Jacobian oy . aL
X ox By oL = _ ety | T
ax ay

Jacobian size: [(N-D) x (N:M)] — mostly zeros!

Dimensions: (IRTEEEEEER « W60 - "(N°D) Dimensions: (N x M) x (M x D) - (N x D)

Large sparse matrix — wasteful Small dense matrix — efficient
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w [3><4] Xp0 Yoo Xp0 Wo1 Xo0 Wo2 Xp0 Wo3
X [2X3] 3 2 1 1 X1 W1ie Xp1 W11 Xp1 W12 Xp1 W13 6L/6y [2x4]
2 [ 1 i -3 B Xg2 W20 Xg2 W21 X02 W22 Xg2 W23 2 3 -3 9
2 1l 3 2
-3 4 2 X19 Woo X19 Wo1 X109 Wo2 X19 Wo3 -8 1 4 6
3 2 d -2 X11 W1o X11 W11 X11 W12 X11 W13
X12 W20 X12 W21 X12 W22 X12 W23
ZTI; = %‘; = WT g; = XT %
Summary: Two Ways to Compute the Same Thing
Fory = x-w where x is [NxD], wis [DxM], y is [NxM]:
Explicit Jacobian Approach Implicit Matrix Multiply
oL _ Jacobian oy . aL
X ox By oL = _ ety | T
ax ay

Jacobian size: [(N-D) x (N:M)] — mostly zeros!

Dimensions: (IRTEEEEEER « W60 - "(N°D) Dimensions: (N x M) x (M x D) - (N x D)

Large sparse matrix — wasteful Small dense matrix — efficient
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w [3><4] X0 Woo Xp0 Wo1 X0 Wo2 X0 Wo3
X [2X3] 3 2 1 -1 Xo1 Wio Xp1 W11 Xp1 W12 X1 W13 6L/6y [2x4]
2 1 _3 Xp2 W20 Xp2 W21 X@2 W22 Xg2 W23 2 3 _3 9
2 1l 3 2
-3 4 2 X19 Woo X10 Wo1 X109 Wo2 X19 Wo3 -8 1 4 6
3 2 1 =2 X11 W1o X11 W11 X11 W12 X11 W13
X12 W20 X12 W21 X12 W22 X12 W23
now o
These formulas are easy to remember: Summary: Two Ways to Compute the Same Thing
they are the only way to make shapes . ' .
match up! Fory = x-w where x is [NxD], wis [DxM], y is [NxM]:
Explicit Jacobian Approach Implicit Matrix Multiply
oL _ Jacobian oy . aL
X ox dy Z—)L( = % i

Jacobian size: [(N-D) x (N:M)] — mostly zeros!

Dimensions: (IRTEEEEEER « W60 - "(N°D) Dimensions: (N x M) x (M x D) - (N x D)

Large sparse matrix — wasteful Small dense matrix — efficient
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Backprop with Matrices y: [NxM]

X: [NxD] Matrix Multiply 5 | 2 || 12| 2
2 1 -3
3 a2 yn,mzzx"’dwd’m dL/dy: [NxM]
wi[DxM] ! — ]
3| 2 2 |f -2 -8 || 1 3 6
[N¥D] [NxM] [MxD! DxM] [DxN] [NXM:

oL (0L> i oL . (0L

— =|=—]w = — & =

Ox Oy ow oy
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Today's agenda

- Briefly revisit backprop
- Finish CNNs

- Activation Functions

- Data Preprocessing

- Weight Initialization

- Normalization Layers
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Convolution Layer consider a second, green filter

_— 32x32x3 image activation maps

5x5x3 filter %
2
@>@ &

convolve (slide) over all

spatial locations
32 / 28
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Preview [Zellel’ and Fel’gUS 2013] Visu.alization of VGG.-16 by Lane M?Intosh. VGG-16

architecture from [Simonyan and Zisserman 2014].

: : Linearly
Low-level Mid-level High-level separable
features features features .
classifier

VGG-16 Convi_1 VGG-16 Conv3 2 VGG-16 Convs. 3
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Output size:
= (N - F) / stride + 1
N eg.N=7,F=3:
F stride 1=>(7-3)/1+1=5
stride2=>(7-3)/2+1=3

(
stride 3 => (7-3)/3+1=2.33:\
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n practice: Common to zero pad the border

0/0|{0|0O0|0|O

e.g. input 7x7
0 3x3 filter, applied with stride 1
0 pad with 1 pixel border => what is the output?

(recall:)

(N - F) / stride + 1
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n practice: Common to zero pad the border

olo|o|o0|0|O .
e.g. input 7x7
0 3x3 filter, applied with stride 1
0 pad with 1 pixel border => what is the output?
° 7x7 output!
0
(recall:)
(N + 2P - F) / stride + 1
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n practice: Common to zero pad the border

0/0|{0|0O0|0|O

e.g. input 7x7
0 3x3 filter, applied with stride 1
0 pad with 1 pixel border => what is the output?
° 7x7 output!
0 in general, common to see CONYV layers with

stride 1, filters of size FxF, and zero-padding with

(F-1)/2. (will preserve size spatially)

e.g. F =3 => zero pad with 1
F =5 => zero pad with 2

F =7 => zero pad with 3
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Remember back to...
E.g. 32x32 input convolved repeatedly with 5x5 filters shrinks volumes spatially!

(32->28->24 ..).

32 28 24
CONYV, CONYV, CONYV,
RelLU RelLU RelLU
e.g.6 e.g. 10
ox5x3 5Xx5x6
32 filters 28 filters 24
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Examples time: / /

Input volume: 32x32x3
10 5x5 filters with stride 1, pad 2 _/

Let’'s assume output size is HxWxD.
What is D?
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Examples time: / /

Input volume: 32x32x3
10 5x5 filters with stride 1, pad 2 _/

Let’'s assume output size is HxWxD.
What is D? 10
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Examples time: / /

Input volume: 32x32x3
10 5x5 filters with stride 1, pad 2 _/

<

Let’'s assume output size is HxWxD.

What is D? 10
What is H or W?
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Examples time: / /

Input volume: 32x32x3
10 5x5 filters with stride 1, pad 2 _/ _/

Let’'s assume output size is HxWxD.

What is D? 10
What is H or W? (32+2*2-5)/1+1 = 32
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Examples time: / /

Input volume: 32x32x3
10 5x5 filters with stride 1, pad 2 _/ _/

Let’'s assume output size is HxWxD.
What is D? 10

What is H or W? (32+2*2-5)/1+1 = 32
So the total output size is: 32x32x10
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Examples time: / /

Input volume: 32x32x3
10 5x5 filters with stride 1, pad 2 i

<
A

Number of parameters in this layer?
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Examples time: / /

Input volume: 32x32Xx
10 5x5 filters with stride 1, pad 2 _/

Number of parameters in this layer?
each filter has 5*5*3 + 1 = 76 params  (+1 for bias)
=> 7610 =760
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Convolution layer: summary

Let's assume inputis W, xH, x C
Conv layer needs 4 hyperparameters:
- Number of filters K
- The filter size F
- The stride S
- The zero padding P
This will produce an output of W, x H, x K
where:
- W, =(W,-F +2P)/S+1
- H,=(H, -F +2P)/S + 1
Number of parameters: F2KC and K biases
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Convolution layer: summary Common settings:

, . . K = f2, 2,64,128,512
Let's assume inputis W, xH, x C ) (Eiw§rgi1 ;2 13 64,128, 512
Conv layer needs 4 hyperparameters: . f- 5: g = 1: P=2

- Number of filters K - F=5,S =2, P=7? (whatever fits)
- F=1,8=1,P=0

- The filter size F

- The stride S

- The zero padding P
This will produce an output of W, x H, x K
where:

- W, =(W, -F +2P)/S+1

- H,=(H,-F +2P)/S +1

Number of parameters F°CK and K biases
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(btw, 1x1 convolution layers are very useful)

1x1 CONV

o6 with 32 filters 56

(each filter has size
1x1x64, and performs a
64-dimensional dot

56 product)

64 32

56
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(btw, 1x1 convolution layers are a very useful)

L

1x1 CONV
o6 with 32 filters

56

(each filter has size
1x1x64, and performs a
64-dimensional dot

56 product)

64 32

56
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Example: CONV
layer in PyTorch

Conv layer needs 4 hyperparameters:

- Number of filters K
- The filter size F

- The stride S

- The zero padding P

A. Farhadi, S. Pratt

Conv2d

CLASS torch.nn.Conv2d(in_channels, out_channels, kernel_size, stride=1, padding=0,
dilation=1, groups=1, bias=Tzrue)

Applies a 2D convolution over an input signal composed of several input planes.

In the simplest case, the output value of the layer with input size (N, Ciy, H, W) and output
(N, Couty Houty Wout) can be precisely described as:

Cin—1
out(Ni, Cou, ) = bias(Cour,) + Y, weight(Cou, , k) % input(N;, k)
k=0
where * is the valid 2D cross-correlation operator, N is a batch size, C' denotes a number of channels, H is a height of

input planes in pixels,and W is width in pixels.

e stride controls the stride for the cross-correlation, a single number or a tuple.
« padding controls the amount of implicit zero-paddings on both sides for padding number of points for each
dimension.
e dilation controls the spacing between the kernel points; also known as the a trous algorithm. It is harder to
describe, but this link has a nice visualization of what dilation does.
« groups controls the connections between inputs and outputs. in_channels and out_channels must both be
divisible by groups. For example,
o Atgroups=1, all inputs are convolved to all outputs.
o At groups=2, the operation becomes equivalent to having two conv
layers side by side, each seeing half the input channels, and producing
half the output channels, and both subsequently concatenated.

o Atgroups= in_channels, each input channel is convolved with its

own set of filters, of size: {%J 3

The parameters kernel_size, stride, padding, dilation can either be:

¢ asingle int -in which case the same value is used for the height and
width dimension
¢ a tuple of two ints - in which case, the first int is used for the height

dimension, and the second int for the width dimension L
PyTorch is licensed under BSD 3-clause.
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https://pytorch.org/
https://github.com/pytorch/examples/blob/master/LICENSE

Receptive field

v /]

XO 28 An activation map is a 28x28 sheet of neuron
_— | outputs:

1. Each is connected to a small region in the input
2. All of them share parameters

32 AS “5x5 filter” -> “5x5 receptive field for each neuron”
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FOUR layers in total: CONV/ReLU/POOL/FC

RELU RELU RELU RELU RELU RELU
CONV |CONV CONV | CONV CONV | CONV FC

T AT A
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Pooling layer
- makes the representations smaller and more manageable
- operates over each activation map independently:

224x224x64

112x112x64

pool

.—>

|

—

224

— 112
downsampling
112

A. Farhadi, S. Pratt

Lecture 6 - 61
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MAX POOLING

Single depth slice

X 11112 | 4
max pool with 2x2 filters
5| 6|7 | 8 and stride 2 6 | 8
31210 3|4
1123 | 4
y
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Pooling layer: summary

Let's assume inputis W, xH, x C
Conv layer needs 2 hyperparameters:
- The spatial extent F
- The stride S

This will produce an output of W, x H, x C where:
- W, =(W,-F)/S+1
- H,=(H,-F)/[S+1

Number of parameters: O
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Fully Connected Layer (FC layer)

- Contains neurons that connect to the entire input volume, as in ordinary Neural
Networks

ELU RELU RELU RELU RELU RELU
CONV lCONVl CONVl CONV lCONVl

|

& -
= e
a el
E 4
g -
= i
E !
=

LETRENLD
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Summary

- ConvNets stack CONV,POOL,FC layers

- Trend towards smaller filters and deeper architectures

- Trend towards getting rid of POOL/FC layers (just CONV)

- Between 2012-2016 architectures looked like
[([CONV-RELU)*N-POOL?]*M-(FC-RELU)*K,SOFTMAX
where N is usually up to ~5, M is large, 0 <= K <= 2.
- but recent advances such as ResNet/GooglLeNet

have challenged this paradigm
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Activation Functions
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Activation Functions

S|gmo|d Leaky RelLU )
_ 1 max(0.1z, x)
0'($)  14e*®
-0 g 10 —171 10

tanh GelLU
tanh (:E) 0.5a:<1 1 tanh[\/2/_7r(w p 0.044715w3)])
ReLU ELU

T x>0
maX(O’ ZIZ) : {oz(e‘” —1) <0
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Sigmoid o(z) =1/(1+e7%)

- Squashes numbers to range [0,1]

- Historically popular since they
have nice interpretation as a
saturating “firing rate” of a neuron

Sigmoid
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Sigmoid o(z) =1/(1+e77)

- Squashes numbers to range [0,1]

- Historically popular since they
have nice interpretation as a
saturating “firing rate” of a neuron

3 problems:

1. Saturated neurons “kill” the
Sigmoid gradients
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():8: //!-d
X o o(@) = 1/(1+e ) gill
g @ sg;rlgld > . /
833 0.-};
0L 90 oL oL A
dxr Oz Oo do — e b o o o e g

200 = 6(x) (1 - 0(x) )

ox
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08 //_,-‘_
X do| sigmoid aife]) =ik e—i) 0'(:/;/
- o ate - o
oz ° ;
9L 00 0L\ oL Ll
dxr Oz Oo Do X _;-./.:....;....].0
What happens when x = -107? 299 = o(x) (1 - 0(x))
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08 //_,-‘_
X do| sigmoid aife]) =ik e—i) 0'(:/;/
- o ate - o
oz ° ;
9L 00 0L\ oL Ll
dxr Oz Oo Do X _;-./.:....;....].0
What happens when x = -107? 299 = o(x) (1 - 0(x))
6(x) =~0

agix) =0x)(1—-0(x))=01-0) =0
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()8 //_,-‘_
- = 1/
X Oo| sigmoid o) =l >) 0'7
< a_ ate < o4}
oz 9 ;
8L 00 0L \ oL At
dxr Oz Oo Do X _:-./.:....;‘...].0
What happens when x = -107? 299 = o(x) (1 - 0(x))

What happens when x = 07?
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()8 //_f-d_
- - 1/
X do| sigmoid e >) 'l
< - ate - 0..}/:
or| 9 |
0L 8o OL oL At
dxr Oz Oo Do X _:-./.3....;‘...110
What happens when x = -107? 299 = o(x) (1 - 0(x))

What happens when x = 07
What happens when x = 107
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()8 //_f-d_
- - 1/
X do| sigmoid e >) 'l
< - ate - 0..}/:
or| 9 |
0L 8o OL oL At
dxr Oz Oo Do X _:-./.3....;‘...110
What happens when x = -107? 299 = o(x) (1 - 0(x))

What happens when x = 07
What happens when x = 107

o(x) =~1 XD —o(x)(1-0®)=1(1-1) =0
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A

X Oo| sigmoid o(z)=1/(1+ e‘i) 0;;/
or_2% oL /i
oxr  Ox oo e _‘;ﬂ/‘:“‘~;k-.,].0
What h: 0 _ o) (1= 000)
What h"__.‘/\‘_’_
What h A LIS

_5 5
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oo
ozx

X
«
OL 0o OL
dr Oz Oo

sigmoid
gate

o(z) =1/(1+ e %)

>

<

@
oo

Why is this a problem?
If all the gradients flowing back will be
zero and weights will never change

A. Farhadi, S. Pratt

Lecture 6 - 77

..........

f NI
-10

do(x)
ox

o(x) (1 -o0(x))
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Sigmoid o(z) =1/(1+e7%)

- Squashes numbers to range [0,1]

- Historically popular since they
have nice interpretation as a
saturating “firing rate” of a neuron

3 problems:

1. Saturated neurons “kill” the

Sigmoid gradients
2. Sigmoid outputs are not

zero-centered
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Consider what happens when the input to a neuron is
always positive... T

axon from a neuron
f E w2+ b
:

synapse
WoZo

What can we say about the gradients for that neuron (i.e. a row of w)?

Neuron/row = (vector size n)

Input = x (vector size n, all positive) oL _ oz . oL
Output = z (what shape?) ow - ow 0z
dL/dz = (what shape?)

dL/dw = (what shape?)
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Consider what happens when the input to a neuron is
always positive...

f sz’wi +b

What can we say about the gradients for that neuron (i.e. a row of w)?

Neuron/row = (vector size n)

Input = x (vector size n, all positive) OL oz . oL

Output = z (what shape?) ow  ow 07

dL/dz = (what shape?)

dL/dw = (what shape?) Scalar (+or -)
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Consider what happens when the input to a neuron is
always positive...

f sz’wi +b

What can we say about the gradients for that neuron (i.e. a row of w)?

Neuron/row = (vector size n)

Input = x (vector size n, all positive) OL |0z . oL

Output = z (what shape?) ow |ow 07

dL/dz = (what shape?)

dL/dw = (what shape?) Scalar (+or -)
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Consider what happens when the input to a neuron is

always positive...

f sz’wi +b

What can we say about the gradients for that neuron (i.e. a row of w)?

Neuron/row = (vector size n)

Input = x (vector size n, all positive) oL

Output = z (what shape?)
dL/dz = (what shape?)
dL/dw = (what shape?)

A. Farhadi, S. Pratt

_ 0z | |OL
ow| ow | oz
(all + or -) Scalar (+ or -)

Lecture 6 - 82
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Consider what happens when the input to a neuron is

always positive... o
gradient
update
directions
|
f E wz fl?z —I_ b allowed zig zag path
" gradient
(] update
directions
hypothetical
What can we say about the gradients on w? optimal w
Always all positive or all negative :( vector
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Consider what happens when the input to a neuron is

always positive... o
gradient
update
directions
|
f E ’UJZ CEZ —I_ b allowed zig zag path
" gradient
(] update
directions
hypothetical
What can we say about the gradients on w? optimal w
Always all positive or all negative :( vector

(For a single element! Minibatches help)
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Sigmoid o(z) =1/(1+e7")

- Squashes numbers to range [0,1]

- Historically popular since they
have nice interpretation as a
saturating “firing rate” of a neuron

3 problems:

1. Saturated neurons “kill” the
Sigmoid gradients
2. Sigmoid outputs are not
zero-centered
3. exp() is a bit compute expensive
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Tanh

- Squashes numbers to range [-1,1]
- zero centered (nice)
- still kills gradients when saturated :(

tanh(x)

[LeCun et al., 1991]
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RelLU - Computes f(x) = max(0,x)

Lo - Does not saturate (in +region)

- Very computationally efficient

- Converges much faster than
sigmoid/tanh in practice (e.g. 6x)

-10 10

RelLU
(Rectified Linear Unit)

[Krizhevsky et al., 2012]
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RelLU - Computes f(x) = max(0,x)

- Does not saturate (in +region)

- Very computationally efficient

- Converges much faster than
sigmoid/tanh in practice (e.g. 6x)

10

-10 10

- Not zero-centered output
RelLU
(Rectified Linear Unit)
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RelLU - Computes f(x) = max(0,x)

- Does not saturate (in +region)

- Very computationally efficient

- Converges much faster than
sigmoid/tanh in practice (e.g. 6x)

10

-10 10

- Not zero-centered output
RelLU - An annoyance.:

(Rectified Linear Unit)
hint: what is the gradient when x < 0?
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10+

X 90 Retu o(z) = max(O,ic)
< Or gate <
dL 8o OL oL
or B oxr Oo oo -10 v 10

What happens when x = -107?
What happens when x = 07
What happens when x = 107?
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INPUT DATA active ReLU
TO RelLU
d

ead RelLU
will never activate

=> never update
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RelLU /\/ Dg

INPUT DATA active ReLU

=> people like to initialize
RelLU neurons with slightly
positive biases (e.g. 0.01)

s

dead RelLU
will never activate
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Mass et al., 2013
Leaky RelLU {He et al., 2015] |
- Does not saturate
- Computationally efficient
- Converges much faster than
sigmoid/tanh in practice! (e.g. 6x)
- will not “die”.

10,

- -1 10

Leaky ReLU
f(z) = max(0.01z, )
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Leaky ReLU {M:Zs’[ thalzo?gf ’

- Does not saturate

- Computationally efficient

- Converges much faster than
sigmoid/tanh in practice! (e.g. 6x)

- will not “die”.

10,

Parametric Rectifier (PReLU)
Leaky RelLU f(a:) — max(a:v, a:)
f(z) = max(0.01z; ) Y
backprop into \alpha
(parameter)
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ELU [Clevert et al., 2015]

Exponential Linear Units (ELU)

- All benefits of ReLU
- Closer to zero mean outputs

- Computation requires exp()
- Negative saturation can Kill
gradients for large negative

P = i+ ifz >0
Y 7 e (exp(z) —1) ifx <0

(Alpha default = 1)
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SELU [Klambauer et al. ICLR 2017]

Scaled Exponential Linear Units (SELU)

- Scaled versionof ELU that
works better for deep networks

- “Self-normalizing” property;

- Can train deep SELU networks

—/ i without BatchNorm

N - (will discuss more later)

10

AT ifz >0
Aa(e® — 1) otherwise
a=1.6733, A =1.0507

fle) = {
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Maxout “Neuron” [Goodfellow et al., 2013]

- Does not have the basic form of dot product ->

nonlinearity
- Generalizes RelLU and Leaky RelLU
- Linear Regime! Does not saturate! Does not die!

max(wi z + by, ws = + by)

Problem: doubles the number of parameters/weights :(
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" [Ramachandran et al. 2018]
Swish

51 | e - They trained a neural network
j r
B=10 I : to generate and test out
| / different non-linearities.
e ] - Swish outperformed all other
e s options for CIFAR-10 accuracy
Swish

f(z) = zo(pz)

A. Farhadi, S. Pratt Lecture 6 - 98 Jan 22, 2026




[Hendrycks and Gimpel, Gaussian Error Linear Units (GELUs), 2016]

GelLU
: : .. - ldea: combine the best parts
Gaussian Error Linear Units of sigmoid and relu.
= - GELU transitions more
smoothly
- It weights each input

according to the Gaussian

- : (Normal) CDF
X ~N (OJ 1) o ol Cumulative Norma 1 Distribution Function
gelu(x) = xP(X < x) = > (1 + erf(x/2)) !
~ x0(1.702x)
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G e L U [Hendrycks and Gimpel, Gaussian Error Linear Units (GELUs), 2016]

Mathematically, GELU(z) = z x ®(z)

where ®(x) is the cumulative
distribution function (CDF) of a
standard normal distribution N
(0,1)

| ()
L+ tonh (@ (m+0_044715x3))] «— ltis approximated as

GELU(z) =~ 0.5«
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[Hendrycks and Gimpel, Gaussian Error Linear Units (GELUs), 2016]

Activation Functions
- More continuous version of

Gel U RelLU. It scales the input x by
= a probability factor
dependent on x
- Avoid dead neurons
- Empirically stable training
= : - Very common in
X~N(0,1) - Transformers (BERT, GPT,
gelu(x) =xP(X < x) = ;(1 + erf(x/v2)) VlT)
~ x0(1.702x)
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TLDR: In practice:

- Use RelLU. Be careful with your learning rates
- Use GelLU when using transformers
- Try out
- To squeeze out some marginal gains
- Don’t use sigmoid or tanh
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Data Preprocessing
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Data Preprocessing

original data zero-centered data normalized data
10 10 10
. A
o . . /I

-10 -10
1G -10 -5 0 5 1g -10 =5 0 5 10

X -= np.mean(X, axis = 0) . X /= np.std(X, axis = 0)

(Assume X [NxD] is data matrix,
each example in a row)
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Remember: Consider what happens when

the input to a neuron is always positive...

|

allowed
gradient
update
directions

i zwz‘wi +b

allowed
gradient
update
directions

What can we say about the gradients on w?

Always all positive or all negative :(

(this is also why you want zero-mean data!)

A. Farhadi, S. Pratt Lecture 6 - 105

zig zag path

hypothetical
optimal w
vector
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Data Preprocessing

Before normalization: classification loss After normalization: less sensitive to small
very sensitive to changes in weight matrix; changes in weights; easier to optimize
hard to optimize
®
® o\ A A
A
A ® A
A
A
o o\A
A
® A
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Data Preprocessing

Before normalization: classification loss After normalization: less sensitive to small

very sensitive to changes in weight matrix; changes in weights; easier to optimize
hard to optimize
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Data Preprocessing

original data zero-centered data normalized data
10 10 10
. A
o . . /I

-10 -10
1G -10 -5 0 5 1g -10 =5 0 5 10

X -= np.mean(X, axis = 0) . X /= np.std(X, axis = 0)

(Assume X [NxD] is data matrix, each example in a row)
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Data Preprocessing

In practice, you may also see PCA and Whitening of the data

original data

A. Farhadi, S. Pratt

10

decorrelated data

whitened data

5

(data has diagonal
covariance matrix)

L ecture 6 -

109

(covariance matrix is the
identity matrix)
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TLDR: In practice for Images: center only

e.g. consider CIFAR-10 example with [32,32,3] images

- Subtract the mean image
(mean image = [32,32,3] array)
- Subtract per-channel mean
(mean along each channel = 3 numbers)
- Subtract per-channel mean and
Not common

Divide by per-channel std ‘0 do PCA or
(mean along each channel = 3 numbers) whitening
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Weight Initialization
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- Q: what happens when W=constant init is used?

output layer
input layer
hidden layer
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- First idea: Small random numbers
(gaussian with zero mean and 1e-2 standard deviation)

W= 0.01 * np.random.randn(Din, Dout)
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- First idea: Small random numbers
(gaussian with zero mean and 1e-2 standard deviation)

W= 0.01 * np.random.randn(Din, Dout)

Works ~okay for small networks, but problems with
deeper networks.
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Weight Initialization: Activation statistics

dims = [4096] * 7 Forward pass for a 6-layer

hs = [] net with hidden size 4096

X = np.random.randn(16, dims[0])

for Din, Dout in zip(dims[:-1], dims[1l:]):
W = 0.01 * np.random.randn(Din, Dout)
X = np.tanh(x.dot(W))
hs.append(x)

What will happen to the activations for the last layer?
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Weight Initialization: Activation statistics

dims = [4096] * 7 Forward pass for a 6-layer All activations tend to zero

hs = [] net with hidden size 4096 for deeper network layers
X = np.random.randn(16, dims[0])

for Din, Dout in zip(dims[:-1], dims[1l:]): @Q:\What do the gradients
W 0.01 * np.random.randn(Din, Dout) TP
¥ = hp . Eanh(x. 0t (W) dL/dW look like*

hs.append(x)

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6
mean=-0.00 mean=0.00 mean=0.00 mean=-0.00 mean=-0.00 mean=0.00
std=0.49 std=0.29 std=0.18 std=0.11 std=0.07 std=0.05

-1 0 1 -1 0 1 -1 0 1 -1 0 1 -1 0 1 -1 0 1
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Weight Initialization: Activation statistics

dims = [4096] * 7 Forward pass for a 6-layer All activations tend to zero

hs = [] net with hidden size 4096 for deeper network layers
X = np.random.randn(16, dims[0])

for Din, Dout in zip(dims[:-1], dims[1l:]): @Q:\What do the gradients
W 0.01 * np.random.randn(Din, Dout) TP
¥ = hp . Eanh(x. 0t (W) dL/dW look like*

hs.append(x)

A: All zero, no learning =(

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6
mean=-0.00 mean=0.00 mean=0.00 mean=-0.00 mean=-0.00 mean=0.00
std=0.49 std=0.29 std=0.18 std=0.11 std=0.07 std=0.05

-1 0 1 -1 0 1 -1 0 1 -1 0 1 -1 0 1 -1 0 1
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Weight Initialization: Activation statistics

dims = [4096] * 7 Increase std of initial

hs = [] weights from 0.01 to 0.05
X = np.random.randn(16, dims[0])

for Din, Dout in zip(dims[:-1], dims[1l:]):
W = 0.05 * np.random.randn(Din, Dout)
X = np.tanh(x.dot(W))

hs.append (x)

What will happen to the activations when the weights are
initialized with larger values?
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Weight Initialization: Activation statistics

dims = [4096] * 7 Increase std of initial All activations saturate
hs = [] weights from 0.01 to 0.05 _
X = np.random.randn(16, dims[0]) Q: What do the gradlents

for Din, Dout in zip(dims[:-1], dims[1l:]): |ook like?
W = 0.05 * np.random.randn(Din, Dout)
X = np.tanh(x.dot(W))

hs.append (x)

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6
mean=0.00 mean=-0.00 mean=0.00 mean=-0.00 mean=0.00 mean=-0.00
std=0.87 std=0.85 std=0.85 std=0.85 std=0.85 std=0.85

3 0 1 ol 0 1 ) 0 1 -1 0 1 e | 0 1 -1 0 1
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Weight Initialization: Activation statistics

dims = [4096] * 7 Increase std of initial All activations saturate
hs = [] weights from 0.01 to 0.05 _
X = np.random.randn(16, dims[0]) Q: What do the gradlents

for Din, Dout in zip(dims[:-1], dims[1l:]): |ook like?
W= 0.05 * np.random.randn(Din, Dout)
X = np.tanh(x.dot(W)) A: Local gradients all zero,

hs.append(x) no learning =(
Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6
mean=0.00 mean=-0.00 mean=0.00 mean=-0.00 mean=0.00 mean=-0.00
std=0.87 std=0.85 std=0.85 std=0.85 std=0.85 std=0.85

3 0 1 ol 0 1 ) 0 1 -1 0 1 e | 0 1 -1 0 1
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Weight Initialization: “Xavier” Initialization

dims = [4096] * 7 “Xavier” initialization:
hs = [] std = 1/sqrt(Din)

X = np.random.randn(16, dims[0])
for Din, Dout in zip(dims[:-11, dims[1:]):

W = np.random.randn(Din, Dout) / np.sqgrt(Din)
X = np.tanh(x.dot(W))
hs.append(x)

Glorot and Bengio, “Understanding the difficulty of training deep feedforward neural networks”, AISTAT 2010
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Weight Initialization: “Xavier” Initialization

dims = [4096] * 7 “Xavier” initialization: “Just right”: Activations are
hs = [1 std = 1/sqri(Din) nicely scaled for all layers!

X = np.random.randn(16, dims[0])
for Din, Dout in zip(dims[:-11, dims[1:]):

W = np.random.randn(Din, Dout) / np.sqrt(Din)

X = np.tanh(x.dot(W))

hs.append (x)

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6
mean=-0.00 mean=-0.00 mean=0.00 mean=0.00 mean=0.00 mean=-0.00

std=0.63 std=0.49 std=0.41 std=0.36 std=0.32 std=0.30

-1 0 1

20 | 0 1 ) 0 1 =k 0 1 -1 0 1 e 0 1

Glorot and Bengio, “Understanding the difficulty of training deep feedforward neural networks”, AISTAT 2010
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Weight Initialization: “Xavier” Initialization

dims = [4096] * 7 “Xavier” initialization: “Just right”: Activations are
hs = [1 std = 1/sqri(Din) nicely scaled for all layers!

X = np.random.randn(16, dims[0])
for Din, Dout in zip(dims[:-11, dims[1:]):

W = np.random.randn(Din, Dout) / np.sqgrt(Din)| For conv Iayers, Din is

2= e LecORIHD) filter_size? * input_channels

hs.append (x) — —

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6
mean=-0.00 mean=-0.00 mean=0.00 mean=0.00 mean=0.00 mean=-0.00

std=0.63 std=0.49 std=0.41 std=0.36 std=0.32 std=0.30

-1 0 1

20 | 0 1 ) 0 1 =k 0 1 -1 0 1 e 0 1

Glorot and Bengio, “Understanding the difficulty of training deep feedforward neural networks”, AISTAT 2010
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Weight Initialization: “Xavier” Initialization

dims = [4096] * 7 “Xavier” initialization: “Just right”: Activations are
hs = [1 std = 1/sqri(Din) nicely scaled for all layers!

X = np.random.randn(16, dims[0])
for Din, Dout in zip(dims[:-11, dims[1:]):

W = np.random.randn(Din, Dout) / np.sqgrt(Din)] For conv |ayers, Din is
x = np.tanh(x.dot(W)) filter_size? * input_channels
hs.append (x) B B

A VA— + +. ..+
Let: y = X W, X, W, +...+X 5 Wy

Glorot and Bengio, “Understanding the difficulty of training deep feedforward neural networks”, AISTAT 2010
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Weight Initialization: “Xavier” Initialization

dims = [4096] * 7 “Xavier” initialization: “Just right”: Activations are
hs = [1 std = 1/sqri(Din) nicely scaled for all layers!

X = np.random.randn(16, dims[0])
for Din, Dout in zip(dims[:-11, dims[1:]):

W = np.random.randn(Din, Dout) / np.sqgrt(Din)] For conv |ayers, Din is
x = np.tanh(x.dot(W)) filter_size? * input_channels
hs.append (x) B B

Let: y = X W, X, W +...+X 5 Wy

Assume: Var(x,) = Var(x,)= ...=Var(x,, )

Glorot and Bengio, “Understanding the difficulty of training deep feedforward neural networks”, AISTAT 2010
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Weight Initialization: “Xavier” Initialization

dims = [4096] * 7 “Xavier” initialization: “Just right”: Activations are
hs = [1 std = 1/sqri(Din) nicely scaled for all layers!

X = np.random.randn(16, dims[0])
for Din, Dout in zip(dims[:-11, dims[1:]):

W = np.random.randn(Din, Dout) / np.sqgrt(Din)] For conv |ayers, Din is
x = np.tanh(x.dot(W)) filter_size? * input_channels
hs.append (x) B B

Let: y = X W, X, W +...+X 5 Wy

Assume: Var(x,) = Var(x,)= ...=Var(x,, )

We want: Var(y) = Var(x)

Glorot and Bengio, “Understanding the difficulty of training deep feedforward neural networks”, AISTAT 2010
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Weight Initialization: “Xavier” Initialization

dims = [4096] * 7 “Xavier” initialization: “Just right”: Activations are
hs = [1 std = 1/sqri(Din) nicely scaled for all layers!

X = np.random.randn(16, dims[0])
for Din, Dout in zip(dims[:-11, dims[1:]):

W np.random.randn(Din, Dout) / np.sqgrt(Din)| For conv |ayer5, Din is

x = np.tanh(x.dot(W)) filter_size? * input_channels
hs.append (x) B B

Let: y = X W +X,W,+...+X . W Var(y) = Var(x,w,+x,w,+...+X_. W
substitutin value of
Assume: Var(x,) = Var(x,)= ...=Var(x ! J y]

We want: Var(y) = Var(x)

Dm)

Dm)

Glorot and Bengio, “Understanding the difficulty of training deep feedforward neural networks”, AISTAT 2010
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Weight Initialization: “Xavier” Initialization

dims = [4096] * 7 “Xavier” initialization: “Just right”: Activations are
hs = [1 std = 1/sqri(Din) nicely scaled for all layers!

X = np.random.randn(16, dims[0])
for Din, Dout in zip(dims[:-11, dims[1:]):

W np.random.randn(Din, Dout) / np.sqgrt(Din)| For conv |ayers, Din is

x = np.tanh(x.dot(W)) filter_size? * input_channels
hs.append (x) B —

Let: y = X, W +X,W,+...+X . W, Var(y) = Var(x,w +X,w,+...+X . W, )
_ _ = Din Var(xw.)
Assume: Var(x,) = Var(x,)= ...=Var(x,. ) [Assume all x,, . are iid]

We want: Var(y) = Var(x)

Glorot and Bengio, “Understanding the difficulty of training deep feedforward neural networks”, AISTAT 2010
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Weight Initialization: “Xavier” Initialization

dims = [4096] * 7 “Xavier” initialization: “Just right”: Activations are
hs = [1 std = 1/sqri(Din) nicely scaled for all layers!

X = np.random.randn(16, dims[0])
for Din, Dout in zip(dims[:-11, dims[1:]):

W = np.random.randn(Din, Dout) / np.sqgrt(Din)| For conv |ayers, Din is

x = np.tanh(x.dot(W)) filter_size? * input_channels
hs.append (x) B —

Let: y = X W +X,W,+...+X . W Var(y) = Var(x,w, +x,w,+...+X_. W )
_ _ = Din Var(xw.)

Assume: Var(x,) = Var(x,)= ...=Var(x,. ) = Din Var(x) Var(w)

We want: Var(y) = Var(x) [Assume all x,, w. are zero mean]

Glorot and Bengio, “Understanding the difficulty of training deep feedforward neural networks”, AISTAT 2010

A. Farhadi, S. Pratt Lecture 6 - 129 Jan 22, 2026



Weight Initialization: “Xavier” Initialization

dims = [4096] * 7 “Xavier” initialization: “Just right”: Activations are
hs = [1 std = 1/sqri(Din) nicely scaled for all layers!

X = np.random.randn(16, dims[0])
for Din, Dout in zip(dims[:-11, dims[1:]):

W np.random.randn(Din, Dout) / np.sqgrt(Din)| For conv |ayer5, Din is

x = np.tanh(x.dot(W)) filter_size? * input_channels
hs.append (x) B B

Let: y = X, W, X, W,+...+X_. W, Var(y) = Var(x,w, +X,w,+...+Xj. W )
_ _ L = Din Var(xw.)

Assume: Var(x,) = Var(x,)= ...=Var(x,. ) = Din Var(x)) Var(w)

We want: Var(y) = Var(x) [Assume all x,, w. are iid]

So, Var(y) = Var(x.) only when Var(w.) = 1/Din

Glorot and Bengio, “Understanding the difficulty of training deep feedforward neural networks”, AISTAT 2010
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Weight Initialization: What about ReLU?

dims = [4096] * 7
hs = []

X = np.random.randn(16, dims[0])

for Din, Dout in zip(dims[:-1], dims[l:]):

W = np.random.randn(Din, Dout) / np.sqrt(Din)
X np.maximum(0, x.dot(W))
hs.append(x)

Change from tanh to ReLU
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Weight Initialization: What about ReLU?

dims =
hs = []
X = np.random.randn(16, dims[0])

for Din, Dout in zip(dims[:-1], dims[l:]):

W = np.random.randn(Din, Dout) / np.sqrt(Din)
X np.maximum(0, x.dot(W))
hs.append(x)

(40961 = 7 Change from tanh to ReLU

Xavier assumes zero
centered activation function

Activations collapse to zero
again, no learning =(

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6
mean=0.39 mean=0.28 mean=0.20 mean=0.14 mean=0.10 mean=0.07
std=0.58 std=0.41 std=0.30 std=0.21 std=0.15 std=0.10
-1 0 1 -1 0 1 -1 0 1 -1 0 1 -1 0 1 -1 0 1
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Weight Initialization: Kaiming / MSRA Initialization

aims 177°1 7 7 RelU correction: std = sqrt(2 / Din) - "Just right”: Activations are

X = np.random.randn(16, dims[0]) nicely scaled for all layers!
for Din, Dout in zip(dimsl[:-11, dims[1:1);:

W = np.random.randn(Din, Dout) * np.sqrt(2/Din)
X = np.maximum(0, x.dot(W))
hs.append (x)
Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6
mean=0.57 mean=0.57 mean=0.56 mean=0.55 mean=0.55 mean=0.55
std=0.83 std=0.83 std=0.83 std=0.81 std=0.81 std=0.81

-1 0 1 o | 0 1 -1 0 1 -1 0 1 -3 0 1 -1 0 1

He et al, “Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification”, ICCV 2015
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Proper initialization is an active area of research...

Understanding the difficulty of training deep feedforward neural networks
by Glorot and Bengio, 2010

Exact solutions to the nonlinear dynamics of learning in deep linear neural networks by Saxe et al, 2013
Random walk initialization for training very deep feedforward networks by Sussillo and Abbott, 2014

Delving deep into rectifiers: Surpassing human-level performance on ImageNet classification by He et
al., 2015

Data-dependent Initializations of Convolutional Neural Networks by Krahenbuhl et al., 2015
All you need is a good init, Mishkin and Matas, 2015
Fixup Initialization: Residual Learning Without Normalization, Zhang et al, 2019

The Lottery Ticket Hypothesis: Finding Sparse, Trainable Neural Networks, Frankle and Carbin, 2019
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Batch Normalization
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Batch Normalization [loffe and Szegedy, 2015]

“you want zero-mean unit-variance activations? just make them so.”

consider a batch of activations at some layer. To make
each dimension zero-mean unit-variance, apply:

v/ Var[z(*)] this is a vanilla
differentiable function...
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Batch Normalization [loffe and Szegedy, 2015]

N
Input: »: N x D i Z Per-channel mean,
N &~ shape is D
AAA | N
- 2 Per-channel var,
— N Z (i, — shape is D
N X i=1
x PR
By = i,j — Hj Normalized x,

YVY /0324_5 Shape is N x D

D
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Batch Normalization [loffe and Szegedy, 2015]

N
Input: » : N x D i = i Z Per-channel mean,
N — shape is D
Yy 1N
2 2 Per-channel var
. — — $ y
v N Z by shape is D
N X g
x. S oo .
:Am',j = s Normalized x,
2 Shape is N x D
o +¢
Yvy \/J—+
D Problem: What if zero-mean, unit

variance is too hard of a constraint?
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Batch Normalization

[loffe and Szegedy, 2015]

N
Input: »: N x D _ 1 Per-channel mean
. . . = — :C . ’
Hj N z; “J " shapeis D
7=
Learnable scale and , 1 ) Porch |
. _ 2 __ o er-channel vair,
Shlft paramEterS. O-_] N ;(:E’L,] ILL]) Shape isD
¥y 08 4D -
" Lig — My :
Ti; = ' Normalllzed X,
Learning v=o0, g? + ¢  ShapeisNxD
@: P will recover the Yi i = s+ B, Output
identity function! . J=8J 7 7) Shape is N x D

A. Farhadi, S. Pratt Lecture 6 - 139
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Estimates depend on minibatch;

Batch Normalization: Test-Time _ i o tocttime:

Input: »: N x D - x; ; Per-channel mean,
shape is D

Learnable scale and 5 Perchannel
. er-channel var
. . T: : — . !

shift parameters: Z( ig — M) shape is D

o) i L -
Fog = vsJ Normalized x,

' = . Shape is N x D
Learning v=o0, \/ 07T E P

@: u will recover the Ui = iyt B, Output
identity function! . J=8J 7 7) Shape is N x D
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Batch Normalization: Test-Time

Input: +: N x D . __ (Running) average of Per-channel mean,
:uj —  values seen during training shape is D
Learnable scale and
. ] 0.2 __ (Running) average of Per-channel var,
shift Parameters- J — values seen during training shape is D
¥ b D .
2 xla] 'LL] H
| | Ti; = Normalized x,
During testing batchnorm 02_ + e Shape is N x D
becomes a linear operator! V 7
Can be fused with the previous A . Output,
fully-connected or conv layer Yij = YiTij + P; Shape is N x D
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Batch Normalization

|

FC

:

BN

!

tanh

l

FC

:

BN

I

tanh

A. Farhadi, S. Pratt

-—

[loffe and Szegedy, 2015]

Usually inserted after Fully
Connected or Convolutional layers,
and before nonlinearity.

) _ (k) _ E[x(k)]
v/ Var[z(%)]
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Batch Normalization [loffe and Szegedy, 2015]

|

FLC - Makes deep networks much easier to train!
BN - Improves gradient flow
I - Allows higher learning rates, faster convergence
tanh - Networks become more robust to initialization
l - Acts as regularization during training
FC - Zero overhead at test-time: can be fused with conv!
l - Behaves differently during training and testing: this
BlN is a very common source of debugging!
tanh
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Batch Normalization for convolutions

Batch Normalization for

Batch Normalization for convolutional networks

fully-connected networks (Spatial Batchnorm, BatchNorm2D)
x: N x D X: NxCxHxW
Normalize | Normalize | 4
M,o0: 1 x D H,0: 1xCx1lxl
Y,P: 1 x D Y,P: 1xCx1lxl
y = Y(x-M)/0o+p y = Y(x-M)/o+p
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Layer Normalization
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Layer Normalization for MLPs

Layer Normalization for
fully-connected networks

Same behavior at train and test!
Often used in transformers

Batch Normalization for
fully-connected networks

Xx: N x D x: N x D
Normalize * Normalize *
M,o0: 1 x D M,0: N x 1
Y,B: 1 x D Y,B: 1 x D

y = Y(x-M)/0o+P y = Y(x-H)/0+B

Ba, Kiros, and Hinton, “Layer Normalization”, arXiv 2016
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Instance Normalization
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Instance Normalization for Convolutions

convolutional networks convolutional networks
Same behavior at train / test!
X: NxXCxHxW X: NxXCxHxW
Normalize * * * Normalize * *
H,0: 1xCx1lxl M,0: NxCx1lxl
Y,P: 1xCx1lx1 Y,B: 1xCx1lxl

y = Y(x-HU)/o+p y = Y(x-H)/o+p

Ulyanov et al, Improved Texture Networks: Maximizing Quality and Diversity in Feed-forward Stylization and Texture Synthesis, CVPR 2017
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Comparison of Normalization Layers

Batch Norm Layer Norm Instance Norm
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Wu and He, “Group Normalization”, ECCV 2018

A. Farhadi, S. Pratt Lecture 6 - 149 Jan 22, 2026



Group Normalization
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Wu and He, “Group Normalization”, ECCV 2018
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Summary TLDRs

We looked in detail at:

- Activation Functions (use RelLU or GelU)

- Data Preprocessing (images: subtract mean)

- Weight Initialization (use Xavier/He init)

- Batch Normalization (use this!)

- Layer Normalization (used in transformers!)
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Next time: Optimizers

- Parameter update schemes

- Learning rate schedules

- Gradient checking

- Regularization (Dropout etc.)
- Babysitting learning

- Evaluation (Ensembles etc.)
- Hyperparameter Optimization
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