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Lecture 6:
Activation Functions & 
Normalization Layers
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Due today! 11:59pm

- K-Nearest Neighbor
- Linear classifiers: SVM, Softmax

Administrative: Assignment 1
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Out soon
- Multi-layer Neural Networks, 
- Image Features, 
- Optimizers

Administrative: Assignment 2
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Administrative: Fridays
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This Friday 

Convolutions & Vectorization
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Project
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Fill out partner form by eod if you want to!
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Where we are now...

x

W
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loss
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Where we are now...

Linear score function:

2-layer Neural Network
      

x hW1 sW2

3072 100 10

Neural Networks
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Illustration of LeCun et al. 1998 from CS231n 2017 Lecture 1

Where we are now...

Convolutional Neural Networks
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Where we are now...
Convolutional Layer

32

32

3

32x32x3 image
5x5x3 filter

convolve (slide) over all 
spatial locations

activation map

1

28

28
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FOUR layers in total: CONV/ReLU/POOL/FC
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Today: 
● Activation Function 
● Normalization layers
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There are a few more steps before we start 
training
1. One time setup

activation functions, preprocessing, weight initialization, 
regularization, gradient checking

2. Training dynamics
babysitting the learning process, 
parameter updates, hyperparameter optimization

3. Evaluation
model ensembles, test-time augmentation, transfer 
learning 



A. Farhadi, S. Pratt Lecture 6 - Jan 22, 2026

Today’s agenda
- Briefly revisit backprop
- Finish CNNs
- Activation Functions
- Data Preprocessing
- Weight Initialization
- Normalization Layers

13
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f(x) = max(0,x)
(elementwise)

4D input x:
[  1  ]
[ -2  ]
[  3  ]
[  -1 ]

Backprop with Vectors

4D output z: 
[  1  ]
[  0  ]
[  3  ]
[  0  ]

4D dL/dz: 
[  4  ]
[  -1 ]
[  5  ]
[  9  ]

[dz/dx] [dL/dz]
[ 1 0 0 0 ] [ 4  ]
[ 0 0 0 0 ] [ -1 ]
[ 0 0 1 0 ] [ 5  ]
[ 0 0 0 0 ] [ 9  ]

Upstream
gradient

Jacobian is sparse: 
off-diagonal entries 
always zero! Never 
explicitly form 
Jacobian -- instead 
use implicit 
multiplication

4D dL/dx: 
[ 4 ]
[ 0 ]
[ 5 ]
[ 0 ]
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f(x) = max(0,x)
(elementwise)

4D input x:
[  1  ]
[ -2  ]
[  3  ]
[  -1 ]

Backprop with Vectors

4D output z: 
[  1  ]
[  0  ]
[  3  ]
[  0  ]

4D dL/dz: 
[  4  ]
[  -1 ]
[  5  ]
[  9  ]

[dz/dx] [dL/dz]4D dL/dx: 
[ 4 ]
[ 0 ]
[ 5 ]
[ 0 ]

Upstream
gradient

Jacobian is sparse: 
off-diagonal entries 
always zero! Never 
explicitly form 
Jacobian -- instead 
use implicit 
multiplication

z
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Backprop with Matrices
x: [N×D]

[  2   1  -3 ]
[ -3   4   2 ]
w: [D×M]

[  3  2  1 -1]
[  2  1  3  2]
[  3  2  1 -2]

Matrix Multiply

y: [N×M]
[-1  -1  2  6 ]
[  5  2  11  1 ]

dL/dy: [N×M]
[  2  3 -3  9 ]
[ -8  1  4  6 ]
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Backprop with Matrices
x: [N×D]

[  2   1  -3 ]
[ -3   4   2 ]
w: [D×M]

[  3  2  1 -1]
[  2  1  3  2]
[  3  2  1 -2]

Matrix Multiply

y: [N×M]
[-1  -1  2  6 ]
[  5  2  11  1 ]

dL/dy: [N×M]
[  2  3 -3  9 ]
[ -8  1  4  6 ]Jacobians:

dy/dx: [(N×D)×(N×M)]
dy/dw: [(D×M)×(N×M)]

For a neural net we may have 
N=64, D=M=4096

Each Jacobian takes ~256 GB of 
memory! Must work with them implicitly!
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Backprop with Matrices
x: [N×D]

[  2   1  -3 ]
[ -3   4   2 ]
w: [D×M]

[  3  2  1 -1]
[  2  1  3  2]
[  3  2  1 -2]

Matrix Multiply

y: [N×M]
[-1  -1  2  6 ]
[  5  2  11  1 ]

dL/dy: [N×M]
[  2  3 -3  9 ]
[ -8  1  4  6 ]

Can we get dL/dx more efficiently, by just looking at 
what parts of the input ACTUALLY affect which parts 
of the output?

Jacobian is very large because it considers how 
EVERY element of the input x affects EVERY 
element of the output y
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Let’s look at how a single element of the input affects a single element of the output!
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These formulas are easy to remember: 
they are the only way to make shapes 
match up!
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Backprop with Matrices
x: [N×D]

[  2   1  -3 ]
[ -3   4   2 ]
w: [D×M]

[  3  2  1 -1]
[  2  1  3  2]
[  3  2  1 -2]

Matrix Multiply

y: [N×M]
[-1  -1  2  6 ]
[  5  2  11  1 ]

dL/dy: [N×M]
[  2  3 -3  9 ]
[ -8  1  4  6 ]

[N×D]  [N×M] [M×D]  [D×M]  [D×N] [N×M]  
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Today’s agenda
- Briefly revisit backprop
- Finish CNNs
- Activation Functions
- Data Preprocessing
- Weight Initialization
- Normalization Layers

39
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32

32

3

Convolution Layer
32x32x3 image
5x5x3 filter

convolve (slide) over all 
spatial locations

activation maps

1

28

28

consider a second, green filter

40
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Preview [Zeiler and Fergus 2013] Visualization of VGG-16 by Lane McIntosh. VGG-16 

architecture from [Simonyan and Zisserman 2014].

41
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N

NF

F

Output size:
(N - F) / stride + 1

e.g. N = 7, F = 3:
stride 1 => (7 - 3)/1 + 1 = 5
stride 2 => (7 - 3)/2 + 1 = 3
stride 3 => (7 - 3)/3 + 1 = 2.33 :\

42
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In practice: Common to zero pad the border
0 0 0 0 0 0

0

0

0

0

e.g. input 7x7
3x3 filter, applied with stride 1 
pad with 1 pixel border => what is the output?

(recall:)
(N - F) / stride + 1

43
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In practice: Common to zero pad the border

e.g. input 7x7
3x3 filter, applied with stride 1 
pad with 1 pixel border => what is the output?

7x7 output!

0 0 0 0 0 0

0

0

0

0

(recall:)
(N + 2P - F) / stride + 1

44
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In practice: Common to zero pad the border

e.g. input 7x7
3x3 filter, applied with stride 1 
pad with 1 pixel border => what is the output?

7x7 output!
in general, common to see CONV layers with 
stride 1, filters of size FxF, and zero-padding with 
(F-1)/2. (will preserve size spatially)
e.g. F = 3 => zero pad with 1
       F = 5 => zero pad with 2
       F = 7 => zero pad with 3

0 0 0 0 0 0

0

0

0

0

45
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Remember back to… 
E.g. 32x32 input convolved repeatedly with 5x5 filters shrinks volumes spatially!
(32 -> 28 -> 24 ...). 

32

32

3

CONV,
ReLU
e.g. 6 
5x5x3 
filters 28

28

6

CONV,
ReLU
e.g. 10 
5x5x6 
filters

CONV,
ReLU

….

10

24

24

46
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Examples time:

Input volume: 32x32x3
10 5x5 filters with stride 1, pad 2

Let’s assume output size is HxWxD.
What is D?

47
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Examples time:

Input volume: 32x32x3
10 5x5 filters with stride 1, pad 2

Let’s assume output size is HxWxD.
What is D? 10

48
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Examples time:

Input volume: 32x32x3
10 5x5 filters with stride 1, pad 2

Let’s assume output size is HxWxD.
What is D? 10
What is H or W?

49
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Examples time:

Input volume: 32x32x3
10 5x5 filters with stride 1, pad 2

Let’s assume output size is HxWxD.
What is D? 10
What is H or W? (32+2*2-5)/1+1 = 32

50
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Examples time:

Input volume: 32x32x3
10 5x5 filters with stride 1, pad 2

Let’s assume output size is HxWxD.
What is D? 10
What is H or W? (32+2*2-5)/1+1 = 32
So the total output size is: 32x32x10

51
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Examples time:

Input volume: 32x32x3
10 5x5 filters with stride 1, pad 2

Number of parameters in this layer?

52
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Examples time:

Input volume: 32x32x3
10 5x5 filters with stride 1, pad 2

Number of parameters in this layer?
each filter has 5*5*3 + 1 = 76 params      (+1 for bias)

=> 76*10 = 760

53
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Convolution layer: summary

Let’s assume input is W1 x H1 x C
Conv layer needs 4 hyperparameters:
- Number of filters K
- The filter size F
- The stride S
- The zero padding P

This will produce an output of W2 x H2 x K 
where:
- W2 = (W1 - F + 2P)/S + 1
- H2 = (H1 - F + 2P)/S + 1

Number of parameters: F2KC and K biases
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Convolution layer: summary

Let’s assume input is W1 x H1 x C
Conv layer needs 4 hyperparameters:
- Number of filters K
- The filter size F
- The stride S
- The zero padding P

This will produce an output of W2 x H2 x K 
where:
- W2 = (W1 - F + 2P)/S + 1
- H2 = (H1 - F + 2P)/S + 1

Number of parameters: F2CK and K biases

Common settings:

K = (powers of 2, e.g. 32, 64, 128, 512)
- F = 3, S = 1, P = 1
- F = 5, S = 1, P = 2
- F = 5, S = 2, P = ? (whatever fits)
- F = 1, S = 1, P = 0
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(btw, 1x1 convolution layers are very useful)

64

56

56
1x1 CONV
with 32 filters

32
56

56
(each filter has size 
1x1x64, and performs a 
64-dimensional dot 
product)

56
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(btw, 1x1 convolution layers are a very useful)

64

56

56
1x1 CONV
with 32 filters

32
56

56
(each filter has size 
1x1x64, and performs a 
64-dimensional dot 
product)

57
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Conv layer needs 4 hyperparameters:
- Number of filters K
- The filter size F
- The stride S
- The zero padding P

Example: CONV 
layer in PyTorch

PyTorch is licensed under BSD 3-clause.

58

https://pytorch.org/
https://github.com/pytorch/examples/blob/master/LICENSE
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Receptive field

32

32

3

An activation map is a 28x28 sheet of neuron 
outputs:
1. Each is connected to a small region in the input
2. All of them share parameters

“5x5 filter” -> “5x5 receptive field for each neuron”28

28

59
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FOUR layers in total: CONV/ReLU/POOL/FC

60
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Pooling layer
- makes the representations smaller and more manageable 
- operates over each activation map independently:

61
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1 1 2 4

5 6 7 8

3 2 1 0

1 2 3 4

Single depth slice

x

y

max pool with 2x2 filters 
and stride 2 6 8

3 4

MAX POOLING

62
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Pooling layer: summary

Let’s assume input is W1 x H1 x C
Conv layer needs 2 hyperparameters:
- The spatial extent F
- The stride S

This will produce an output of W2 x H2 x C where:
- W2 = (W1 - F )/S + 1
- H2 = (H1 - F)/S + 1

Number of parameters: 0
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Fully Connected Layer (FC layer)
- Contains neurons that connect to the entire input volume, as in ordinary Neural 

Networks

64
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Summary

- ConvNets stack CONV,POOL,FC layers
- Trend towards smaller filters and deeper architectures
- Trend towards getting rid of POOL/FC layers (just CONV)
- Between 2012-2016 architectures looked like 

[(CONV-RELU)*N-POOL?]*M-(FC-RELU)*K,SOFTMAX
      where N is usually up to ~5, M is large, 0 <= K <= 2.

- but recent advances such as ResNet/GoogLeNet 
have challenged this paradigm

65
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Activation Functions

66
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Activation Functions
Sigmoid

tanh

ReLU

Leaky ReLU

ELU

67

GeLU
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Sigmoid

Sigmoid

- Squashes numbers to range [0,1]
- Historically popular since they 

have nice interpretation as a 
saturating “firing rate” of a neuron

68
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Sigmoid

Sigmoid

- Squashes numbers to range [0,1]
- Historically popular since they 

have nice interpretation as a 
saturating “firing rate” of a neuron

3 problems:

1. Saturated neurons “kill” the 
gradients

69
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sigmoid 
gate

x

70
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sigmoid 
gate

x

What happens when x = -10?

71
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sigmoid 
gate

x

What happens when x = -10?
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sigmoid 
gate

x

What happens when x = -10?
What happens when x = 0?

73
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sigmoid 
gate

x

What happens when x = -10?
What happens when x = 0?
What happens when x = 10?

74
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sigmoid 
gate

x

What happens when x = -10?
What happens when x = 0?
What happens when x = 10?

75
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sigmoid 
gate

x

What happens when x = -10?
What happens when x = 0?
What happens when x = 10?

76
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Why is this a problem?
If all the gradients flowing back will be 
zero and weights will never change

sigmoid 
gate

x

77
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Sigmoid

Sigmoid

- Squashes numbers to range [0,1]
- Historically popular since they 

have nice interpretation as a 
saturating “firing rate” of a neuron

3 problems:

1. Saturated neurons “kill” the 
gradients

2. Sigmoid outputs are not 
zero-centered

78
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Consider what happens when the input to a neuron is 
always positive...

What can we say about the gradients for that neuron (i.e. a row of w)?

Neuron/row = (vector size n)
Input = x (vector size n, all positive)
Output = z (what shape?)
dL/dz = (what shape?)
dL/dw = (what shape?) 

79
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Consider what happens when the input to a neuron is 
always positive...

What can we say about the gradients for that neuron (i.e. a row of w)?

Neuron/row = (vector size n)
Input = x (vector size n, all positive)
Output = z (what shape?)
dL/dz = (what shape?)
dL/dw = (what shape?) 

80

Scalar (+ or -)
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Consider what happens when the input to a neuron is 
always positive...

What can we say about the gradients for that neuron (i.e. a row of w)?

Neuron/row = (vector size n)
Input = x (vector size n, all positive)
Output = z (what shape?)
dL/dz = (what shape?)
dL/dw = (what shape?) 

81

Scalar (+ or -)X (all +)
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Consider what happens when the input to a neuron is 
always positive...

What can we say about the gradients for that neuron (i.e. a row of w)?

Neuron/row = (vector size n)
Input = x (vector size n, all positive)
Output = z (what shape?)
dL/dz = (what shape?)
dL/dw = (what shape?) 

82

Scalar (+ or -)X (all +)(all + or -)



A. Farhadi, S. Pratt Lecture 6 - Jan 22, 2026

Consider what happens when the input to a neuron is 
always positive...

What can we say about the gradients on w?
Always all positive or all negative :(

hypothetical 
optimal w 
vector

zig zag path

allowed 
gradient 
update 
directions

allowed 
gradient 
update 
directions

83
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Consider what happens when the input to a neuron is 
always positive...

What can we say about the gradients on w?
Always all positive or all negative :(
(For a single element! Minibatches help)

hypothetical 
optimal w 
vector

zig zag path

allowed 
gradient 
update 
directions

allowed 
gradient 
update 
directions

84



A. Farhadi, S. Pratt Lecture 6 - Jan 22, 2026

Sigmoid

Sigmoid

- Squashes numbers to range [0,1]
- Historically popular since they 

have nice interpretation as a 
saturating “firing rate” of a neuron

3 problems:

1. Saturated neurons “kill” the 
gradients

2. Sigmoid outputs are not 
zero-centered

3. exp() is a bit compute expensive

85
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Tanh

tanh(x)

- Squashes numbers to range [-1,1]
- zero centered (nice)
- still kills gradients when saturated :(

[LeCun et al., 1991]

86
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ReLU - Computes f(x) = max(0,x)

- Does not saturate (in +region)
- Very computationally efficient
- Converges much faster than 

sigmoid/tanh in practice (e.g. 6x)

ReLU
(Rectified Linear Unit)

[Krizhevsky et al., 2012]

87
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ReLU

ReLU
(Rectified Linear Unit)

- Computes f(x) = max(0,x)

- Does not saturate (in +region)
- Very computationally efficient
- Converges much faster than 

sigmoid/tanh in practice (e.g. 6x)

- Not zero-centered output

88
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ReLU

ReLU
(Rectified Linear Unit)

- Computes f(x) = max(0,x)

- Does not saturate (in +region)
- Very computationally efficient
- Converges much faster than 

sigmoid/tanh in practice (e.g. 6x)

- Not zero-centered output
- An annoyance:

hint: what is the gradient when x < 0?

89
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ReLU 
gate

x

What happens when x = -10?
What happens when x = 0?
What happens when x = 10?

90



A. Farhadi, S. Pratt Lecture 6 - Jan 22, 2026

INPUT DATA 
TO ReLU

active ReLU

dead ReLU
will never activate 
=> never update

91

ReLU
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INPUT DATA 
TO ReLU

active ReLU

dead ReLU
will never activate 
=> never update

=> people like to initialize 
ReLU neurons with slightly 
positive biases (e.g. 0.01)

92

ReLU
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Leaky ReLU

Leaky ReLU

- Does not saturate
- Computationally efficient
- Converges much faster than 

sigmoid/tanh in practice! (e.g. 6x)
- will not “die”.

[Mass et al., 2013]
[He et al., 2015]

93
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Leaky ReLU

Leaky ReLU

- Does not saturate
- Computationally efficient
- Converges much faster than 

sigmoid/tanh in practice! (e.g. 6x)
- will not “die”.

Parametric Rectifier (PReLU)

backprop into \alpha
(parameter)

[Mass et al., 2013]
[He et al., 2015]
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- All benefits of ReLU
- Closer to zero mean outputs

- Computation requires exp()
- Negative saturation can kill 

gradients for large negative

ELU
Exponential Linear Units (ELU)

[Clevert et al., 2015]

95

(Alpha default = 1)
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SELU
Scaled Exponential Linear Units (SELU)

- Scaled versionof ELU that 
works better for deep networks

- “Self-normalizing” property;
- Can train deep SELU networks 

without BatchNorm 
- (will discuss more later)

[Klambauer et al. ICLR 2017]

96

α = 1.6733, λ = 1.0507
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Maxout “Neuron”
- Does not have the basic form of dot product -> 

nonlinearity
- Generalizes ReLU and Leaky ReLU 
- Linear Regime! Does not saturate! Does not die!

Problem: doubles the number of parameters/weights :(

[Goodfellow et al., 2013]
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Swish

Swish

- They trained a neural network 
to generate and test out 
different non-linearities.

- Swish outperformed all other 
options for CIFAR-10 accuracy

[Ramachandran et al. 2018]
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- Idea: combine the best parts 
of sigmoid and relu.

- GELU transitions more 
smoothly

- It weights each input 
according to the Gaussian 
(Normal) CDF

GeLU
Gaussian Error Linear Units

[Hendrycks and Gimpel, Gaussian Error Linear Units (GELUs), 2016]
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Mathematically,

where Φ(𝑥) is the cumulative 
distribution function (CDF) of a 
standard normal distribution 𝑁
(0,1)

It is approximated as

GeLU [Hendrycks and Gimpel, Gaussian Error Linear Units (GELUs), 2016]
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Activation Functions
GeLU

[Hendrycks and Gimpel, Gaussian Error Linear Units (GELUs), 2016]

101

- More continuous version of 
ReLU. It scales the input 𝑥 by 
a probability factor 
dependent on 𝑥

- Avoid dead neurons
- Empirically stable training
- Very common in 

Transformers (BERT, GPT, 
ViT)
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TLDR: In practice:

- Use ReLU. Be careful with your learning rates
- Use GeLU when using transformers
- Try out Leaky ReLU / Maxout / ELU / SELU

- To squeeze out some marginal gains
- Don’t use sigmoid or tanh
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Data Preprocessing
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Data Preprocessing

(Assume X [NxD] is data matrix, 
each example in a row)
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Remember: Consider what happens when 
the input to a neuron is always positive...

What can we say about the gradients on w?
Always all positive or all negative :(
(this is also why you want zero-mean data!)

hypothetical 
optimal w 
vector

zig zag path

allowed 
gradient 
update 
directions

allowed 
gradient 
update 
directions
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6

Data Preprocessing
Before normalization: classification loss 
very sensitive to changes in weight matrix; 
hard to optimize

After normalization: less sensitive to small 
changes in weights; easier to optimize
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10
7

Data Preprocessing
Before normalization: classification loss 
very sensitive to changes in weight matrix; 
hard to optimize

After normalization: less sensitive to small 
changes in weights; easier to optimize
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(Assume X [NxD] is data matrix, each example in a row)

Data Preprocessing
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Data Preprocessing
In practice, you may also see PCA and Whitening of the data

(data has diagonal 
covariance matrix)

(covariance matrix is the 
identity matrix)
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TLDR: In practice for Images: center only

- Subtract the mean image (e.g. AlexNet)
(mean image = [32,32,3] array)

- Subtract per-channel mean (e.g. VGGNet)
(mean along each channel = 3 numbers)

- Subtract per-channel mean and
Divide by per-channel std (e.g. ResNet)
(mean along each channel = 3 numbers)

e.g. consider CIFAR-10 example with [32,32,3] images

Not common 
to do PCA or 
whitening
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Weight Initialization
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- Q: what happens when W=constant init is used?
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- First idea: Small random numbers 
(gaussian with zero mean and 1e-2 standard deviation)
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- First idea: Small random numbers 
(gaussian with zero mean and 1e-2 standard deviation)

Works ~okay for small networks, but problems with 
deeper networks.
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Weight Initialization: Activation statistics
Forward pass for a 6-layer 
net with hidden size 4096

115

What will happen to the activations for the last layer?
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Weight Initialization: Activation statistics
Forward pass for a 6-layer 
net with hidden size 4096

All activations tend to zero 
for deeper network layers

Q: What do the gradients 
dL/dW look like?
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Weight Initialization: Activation statistics
Forward pass for a 6-layer 
net with hidden size 4096

All activations tend to zero 
for deeper network layers

Q: What do the gradients 
dL/dW look like?

A: All zero, no learning =(
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Weight Initialization: Activation statistics
Increase std of initial 
weights from 0.01 to 0.05

118

What will happen to the activations when the weights are 
initialized with larger values?
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Weight Initialization: Activation statistics
Increase std of initial 
weights from 0.01 to 0.05

All activations saturate

Q: What do the gradients 
look like?
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Weight Initialization: Activation statistics
Increase std of initial 
weights from 0.01 to 0.05

All activations saturate

Q: What do the gradients 
look like?

A: Local gradients all zero, 
no learning =(
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Weight Initialization: “Xavier” Initialization
“Xavier” initialization: 
std = 1/sqrt(Din)

Glorot and Bengio, “Understanding the difficulty of training deep feedforward neural networks”, AISTAT 2010
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“Just right”: Activations are 
nicely scaled for all layers!

“Xavier” initialization: 
std = 1/sqrt(Din)

Glorot and Bengio, “Understanding the difficulty of training deep feedforward neural networks”, AISTAT 2010

Weight Initialization: “Xavier” Initialization
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“Just right”: Activations are 
nicely scaled for all layers!

For conv layers, Din is 
filter_size2 * input_channels

“Xavier” initialization: 
std = 1/sqrt(Din)

Glorot and Bengio, “Understanding the difficulty of training deep feedforward neural networks”, AISTAT 2010

Weight Initialization: “Xavier” Initialization
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“Xavier” initialization: 
std = 1/sqrt(Din)

Glorot and Bengio, “Understanding the difficulty of training deep feedforward neural networks”, AISTAT 2010

Weight Initialization: “Xavier” Initialization

Let: y = x1w1+x2w2+...+xDinwDin

“Just right”: Activations are 
nicely scaled for all layers!

For conv layers, Din is 
filter_size2 * input_channels
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“Xavier” initialization: 
std = 1/sqrt(Din)

Glorot and Bengio, “Understanding the difficulty of training deep feedforward neural networks”, AISTAT 2010

Weight Initialization: “Xavier” Initialization

Let: y = x1w1+x2w2+...+xDinwDin

“Just right”: Activations are 
nicely scaled for all layers!

For conv layers, Din is 
filter_size2 * input_channels

125

Assume: Var(x1) = Var(x2)= …=Var(xDin)



A. Farhadi, S. Pratt Lecture 6 - Jan 22, 2026

“Xavier” initialization: 
std = 1/sqrt(Din)

Glorot and Bengio, “Understanding the difficulty of training deep feedforward neural networks”, AISTAT 2010

Weight Initialization: “Xavier” Initialization

Let: y = x1w1+x2w2+...+xDinwDin

“Just right”: Activations are 
nicely scaled for all layers!

For conv layers, Din is 
filter_size2 * input_channels

126

Assume: Var(x1) = Var(x2)= …=Var(xDin)

We want: Var(y) = Var(xi)
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“Xavier” initialization: 
std = 1/sqrt(Din)

Glorot and Bengio, “Understanding the difficulty of training deep feedforward neural networks”, AISTAT 2010

Weight Initialization: “Xavier” Initialization

Var(y) = Var(x1w1+x2w2+...+xDinwDin)                              
[substituting value of y]
          

Let: y = x1w1+x2w2+...+xDinwDin

“Just right”: Activations are 
nicely scaled for all layers!

For conv layers, Din is 
filter_size2 * input_channels

127

Assume: Var(x1) = Var(x2)= …=Var(xDin)

We want: Var(y) = Var(xi)
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“Xavier” initialization: 
std = 1/sqrt(Din)

Glorot and Bengio, “Understanding the difficulty of training deep feedforward neural networks”, AISTAT 2010

Weight Initialization: “Xavier” Initialization

Var(y) = Var(x1w1+x2w2+...+xDinwDin)                              
           = Din Var(xiwi)
[Assume all xi, wi are iid]
          

Let: y = x1w1+x2w2+...+xDinwDin

“Just right”: Activations are 
nicely scaled for all layers!

For conv layers, Din is 
filter_size2 * input_channels

128

Assume: Var(x1) = Var(x2)= …=Var(xDin)

We want: Var(y) = Var(xi)
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“Xavier” initialization: 
std = 1/sqrt(Din)

Glorot and Bengio, “Understanding the difficulty of training deep feedforward neural networks”, AISTAT 2010

Weight Initialization: “Xavier” Initialization

Var(y) = Var(x1w1+x2w2+...+xDinwDin)                              
           = Din Var(xiwi)
           = Din Var(xi) Var(wi)
[Assume all xi, wi are zero mean]
          

Let: y = x1w1+x2w2+...+xDinwDin

“Just right”: Activations are 
nicely scaled for all layers!

For conv layers, Din is 
filter_size2 * input_channels

129

Assume: Var(x1) = Var(x2)= …=Var(xDin)

We want: Var(y) = Var(xi)
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“Xavier” initialization: 
std = 1/sqrt(Din)

Glorot and Bengio, “Understanding the difficulty of training deep feedforward neural networks”, AISTAT 2010

Weight Initialization: “Xavier” Initialization

Var(y) = Var(x1w1+x2w2+...+xDinwDin)                              
           = Din Var(xiwi)
           = Din Var(xi) Var(wi)
[Assume all xi, wi are iid]
          

Let: y = x1w1+x2w2+...+xDinwDin

“Just right”: Activations are 
nicely scaled for all layers!

For conv layers, Din is 
filter_size2 * input_channels
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Assume: Var(x1) = Var(x2)= …=Var(xDin)

We want: Var(y) = Var(xi)

So, Var(y) = Var(xi) only when Var(wi) = 1/Din
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Weight Initialization: What about ReLU?

Change from tanh to ReLU
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Weight Initialization: What about ReLU?

Xavier assumes zero 
centered activation function

Activations collapse to zero 
again, no learning =(

Change from tanh to ReLU
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Weight Initialization: Kaiming / MSRA Initialization

ReLU correction: std = sqrt(2 / Din)

He et al, “Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification”, ICCV 2015

“Just right”: Activations are 
nicely scaled for all layers!
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Proper initialization is an active area of research…
Understanding the difficulty of training deep feedforward neural networks
by Glorot and Bengio, 2010

Exact solutions to the nonlinear dynamics of learning in deep linear neural networks by Saxe et al, 2013

Random walk initialization for training very deep feedforward networks by Sussillo and Abbott, 2014

Delving deep into rectifiers: Surpassing human-level performance on ImageNet classification by He et 
al., 2015

Data-dependent Initializations of Convolutional Neural Networks by Krähenbühl et al., 2015

All you need is a good init, Mishkin and Matas, 2015

Fixup Initialization: Residual Learning Without Normalization, Zhang et al, 2019

The Lottery Ticket Hypothesis: Finding Sparse, Trainable Neural Networks, Frankle and Carbin, 2019
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Batch Normalization
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Batch Normalization
“you want zero-mean unit-variance activations? just make them so.”

[Ioffe and Szegedy, 2015]

consider a batch of activations at some layer. To make 
each dimension zero-mean unit-variance, apply:

this is a vanilla 
differentiable function...
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Input: Per-channel mean, 
shape is D

Per-channel var, 
shape is D

Normalized x,
Shape is N x D

Batch Normalization [Ioffe and Szegedy, 2015]

XN

D
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Input: Per-channel mean, 
shape is D

Per-channel var, 
shape is D

Normalized x,
Shape is N x D

Batch Normalization [Ioffe and Szegedy, 2015]

XN

D Problem: What if zero-mean, unit 
variance is too hard of a constraint? 
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Input: Per-channel mean, 
shape is D

Per-channel var, 
shape is D

Normalized x,
Shape is N x D

Batch Normalization [Ioffe and Szegedy, 2015]

Learnable scale and 
shift parameters:

Output,
Shape is N x D

Learning     =    ,
   =      will recover the 
identity function!
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Input: Per-channel mean, 
shape is D

Per-channel var, 
shape is D

Normalized x,
Shape is N x D

Batch Normalization: Test-Time

Learnable scale and 
shift parameters:

Output,
Shape is N x D

Learning     =    ,
   =      will recover the 
identity function!

Estimates depend on minibatch; 
can’t do this at test-time!
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Input: Per-channel mean, 
shape is D

Per-channel var, 
shape is D

Normalized x,
Shape is N x D

Batch Normalization: Test-Time

Learnable scale and 
shift parameters:

Output,
Shape is N x D

(Running) average of 
values seen during training

(Running) average of 
values seen during training

During testing batchnorm 
becomes a linear operator! 
Can be fused with the previous 
fully-connected or conv layer
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Batch Normalization [Ioffe and Szegedy, 2015]

FC

BN

tanh

FC

BN

tanh

...

Usually inserted after Fully 
Connected or Convolutional layers, 
and before nonlinearity.
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Batch Normalization [Ioffe and Szegedy, 2015]

FC

BN

tanh

FC

BN

tanh

...

- Makes deep networks much easier to train!
- Improves gradient flow
- Allows higher learning rates, faster convergence
- Networks become more robust to initialization
- Acts as regularization during training
- Zero overhead at test-time: can be fused with conv!
- Behaves differently during training and testing: this 

is a very common source of debugging!
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Batch Normalization for convolutions

  x: N × D

𝞵,𝝈: 1 × D
ɣ,β: 1 × D
y = ɣ(x-𝞵)/𝝈+β

  x: N×C×H×W

𝞵,𝝈: 1×C×1×1
ɣ,β: 1×C×1×1
y = ɣ(x-𝞵)/𝝈+β

Normalize Normalize

Batch Normalization  for 
fully-connected networks

Batch Normalization for 
convolutional networks
(Spatial Batchnorm, BatchNorm2D)
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Layer Normalization
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Layer Normalization for MLPs

  x: N × D

𝞵,𝝈: 1 × D
ɣ,β: 1 × D
y = ɣ(x-𝞵)/𝝈+β

  x: N × D

𝞵,𝝈: N × 1
ɣ,β: 1 × D
y = ɣ(x-𝞵)/𝝈+β

Normalize Normalize

Layer Normalization for 
fully-connected networks
Same behavior at train and test!
Often used in transformers

Batch Normalization  for 
fully-connected networks

Ba, Kiros, and Hinton, “Layer Normalization”, arXiv 2016

146



A. Farhadi, S. Pratt Lecture 6 - Jan 22, 2026

Instance Normalization
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Instance Normalization for Convolutions

  x: N×C×H×W

𝞵,𝝈: 1×C×1×1
ɣ,β: 1×C×1×1
y = ɣ(x-𝞵)/𝝈+β

  x: N×C×H×W

𝞵,𝝈: N×C×1×1
ɣ,β: 1×C×1×1
y = ɣ(x-𝞵)/𝝈+β

Normalize Normalize

Instance Normalization for 
convolutional networks
Same behavior at train / test!

Batch Normalization  for 
convolutional networks

Ulyanov et al, Improved Texture Networks: Maximizing Quality and Diversity in Feed-forward Stylization and Texture Synthesis, CVPR 2017
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Comparison of Normalization Layers

Wu and He, “Group Normalization”, ECCV 2018
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Group Normalization

Wu and He, “Group Normalization”, ECCV 2018
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Summary
We looked in detail at:

- Activation Functions (use ReLU or GeLU)
- Data Preprocessing (images: subtract mean)
- Weight Initialization (use Xavier/He init)
- Batch Normalization (use this!)
- Layer Normalization (used in transformers!)

TLDRs
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Next time: Optimizers
- Parameter update schemes
- Learning rate schedules
- Gradient checking
- Regularization (Dropout etc.)
- Babysitting learning
- Evaluation (Ensembles etc.)
- Hyperparameter Optimization

152


