
A. Farhadi, S. Pratt Lecture 6 - Jan 22, 2026

Lecture 6:
Activation Functions &
Normalization Layers

1

A. Farhadi, S. Pratt Lecture 6 - Jan 22, 2026

Due today! 11:59pm

- K-Nearest Neighbor
- Linear classifiers: SVM, Softmax

Administrative: Assignment 1

2

A. Farhadi, S. Pratt Lecture 6 - Jan 22, 2026

Out soon
- Multi-layer Neural Networks,
- Image Features,
- Optimizers

Administrative: Assignment 2

3

A. Farhadi, S. Pratt Lecture 6 - Jan 22, 2026

Administrative: Fridays

4

This Friday

Convolutions & Vectorization

A. Farhadi, S. Pratt Lecture 6 - Jan 22, 2026

Project

5

Fill out partner form by eod if you want to!

A. Farhadi, S. Pratt Lecture 6 - Jan 22, 2026

Where we are now...

x

W

hinge
loss

R

+ L
s (scores)

Computational graphs

*

6

A. Farhadi, S. Pratt Lecture 6 - Jan 22, 2026

Where we are now...

Linear score function:

2-layer Neural Network

x hW1 sW2

3072 100 10

Neural Networks

7

A. Farhadi, S. Pratt Lecture 6 - Jan 22, 2026

Illustration of LeCun et al. 1998 from CS231n 2017 Lecture 1

Where we are now...

Convolutional Neural Networks

8

A. Farhadi, S. Pratt Lecture 6 - Jan 22, 2026

Where we are now...
Convolutional Layer

32

32

3

32x32x3 image
5x5x3 filter

convolve (slide) over all
spatial locations

activation map

1

28

28

9

A. Farhadi, S. Pratt Lecture 6 - Jan 22, 2026

FOUR layers in total: CONV/ReLU/POOL/FC

10

A. Farhadi, S. Pratt Lecture 6 - Jan 22, 2026

Today:
● Activation Function
● Normalization layers

11

A. Farhadi, S. Pratt Lecture 6 - Jan 22, 202612

There are a few more steps before we start
training
1. One time setup

activation functions, preprocessing, weight initialization,
regularization, gradient checking

2. Training dynamics
babysitting the learning process,
parameter updates, hyperparameter optimization

3. Evaluation
model ensembles, test-time augmentation, transfer
learning

A. Farhadi, S. Pratt Lecture 6 - Jan 22, 2026

Today’s agenda
- Briefly revisit backprop
- Finish CNNs
- Activation Functions
- Data Preprocessing
- Weight Initialization
- Normalization Layers

13

A. Farhadi, S. Pratt Lecture 6 - Jan 22, 202614

f(x) = max(0,x)
(elementwise)

4D input x:
[1]
[-2]
[3]
[-1]

Backprop with Vectors

4D output z:
[1]
[0]
[3]
[0]

4D dL/dz:
[4]
[-1]
[5]
[9]

[dz/dx] [dL/dz]
[1 0 0 0] [4]
[0 0 0 0] [-1]
[0 0 1 0] [5]
[0 0 0 0] [9]

Upstream
gradient

Jacobian is sparse:
off-diagonal entries
always zero! Never
explicitly form
Jacobian -- instead
use implicit
multiplication

4D dL/dx:
[4]
[0]
[5]
[0]

A. Farhadi, S. Pratt Lecture 6 - Jan 22, 202615

f(x) = max(0,x)
(elementwise)

4D input x:
[1]
[-2]
[3]
[-1]

Backprop with Vectors

4D output z:
[1]
[0]
[3]
[0]

4D dL/dz:
[4]
[-1]
[5]
[9]

[dz/dx] [dL/dz]4D dL/dx:
[4]
[0]
[5]
[0]

Upstream
gradient

Jacobian is sparse:
off-diagonal entries
always zero! Never
explicitly form
Jacobian -- instead
use implicit
multiplication

z

A. Farhadi, S. Pratt Lecture 6 - Jan 22, 202616

Backprop with Matrices
x: [N×D]

[2 1 -3]
[-3 4 2]
w: [D×M]

[3 2 1 -1]
[2 1 3 2]
[3 2 1 -2]

Matrix Multiply

y: [N×M]
[-1 -1 2 6]
[5 2 11 1]

dL/dy: [N×M]
[2 3 -3 9]
[-8 1 4 6]

A. Farhadi, S. Pratt Lecture 6 - Jan 22, 202617

Backprop with Matrices
x: [N×D]

[2 1 -3]
[-3 4 2]
w: [D×M]

[3 2 1 -1]
[2 1 3 2]
[3 2 1 -2]

Matrix Multiply

y: [N×M]
[-1 -1 2 6]
[5 2 11 1]

dL/dy: [N×M]
[2 3 -3 9]
[-8 1 4 6]Jacobians:

dy/dx: [(N×D)×(N×M)]
dy/dw: [(D×M)×(N×M)]

For a neural net we may have
N=64, D=M=4096

Each Jacobian takes ~256 GB of
memory! Must work with them implicitly!

A. Farhadi, S. Pratt Lecture 6 - Jan 22, 202618

Backprop with Matrices
x: [N×D]

[2 1 -3]
[-3 4 2]
w: [D×M]

[3 2 1 -1]
[2 1 3 2]
[3 2 1 -2]

Matrix Multiply

y: [N×M]
[-1 -1 2 6]
[5 2 11 1]

dL/dy: [N×M]
[2 3 -3 9]
[-8 1 4 6]

Can we get dL/dx more efficiently, by just looking at
what parts of the input ACTUALLY affect which parts
of the output?

Jacobian is very large because it considers how
EVERY element of the input x affects EVERY
element of the output y

A. Farhadi, S. Pratt Lecture 6 - Jan 22, 202619

Let’s look at how a single element of the input affects a single element of the output!

A. Farhadi, S. Pratt Lecture 6 - Jan 22, 202620

A. Farhadi, S. Pratt Lecture 6 - Jan 22, 202621

A. Farhadi, S. Pratt Lecture 6 - Jan 22, 202622

A. Farhadi, S. Pratt Lecture 6 - Jan 22, 202623

A. Farhadi, S. Pratt Lecture 6 - Jan 22, 202624

A. Farhadi, S. Pratt Lecture 6 - Jan 22, 202625

A. Farhadi, S. Pratt Lecture 6 - Jan 22, 202626

A. Farhadi, S. Pratt Lecture 6 - Jan 22, 202627

A. Farhadi, S. Pratt Lecture 6 - Jan 22, 202628

A. Farhadi, S. Pratt Lecture 6 - Jan 22, 202629

A. Farhadi, S. Pratt Lecture 6 - Jan 22, 202630

A. Farhadi, S. Pratt Lecture 6 - Jan 22, 202631

A. Farhadi, S. Pratt Lecture 6 - Jan 22, 202632

A. Farhadi, S. Pratt Lecture 6 - Jan 22, 202633

A. Farhadi, S. Pratt Lecture 6 - Jan 22, 202634

A. Farhadi, S. Pratt Lecture 6 - Jan 22, 202635

A. Farhadi, S. Pratt Lecture 6 - Jan 22, 202636

A. Farhadi, S. Pratt Lecture 6 - Jan 22, 202637

These formulas are easy to remember:
they are the only way to make shapes
match up!

A. Farhadi, S. Pratt Lecture 6 - Jan 22, 202638

Backprop with Matrices
x: [N×D]

[2 1 -3]
[-3 4 2]
w: [D×M]

[3 2 1 -1]
[2 1 3 2]
[3 2 1 -2]

Matrix Multiply

y: [N×M]
[-1 -1 2 6]
[5 2 11 1]

dL/dy: [N×M]
[2 3 -3 9]
[-8 1 4 6]

[N×D] [N×M] [M×D] [D×M] [D×N] [N×M]

A. Farhadi, S. Pratt Lecture 6 - Jan 22, 2026

Today’s agenda
- Briefly revisit backprop
- Finish CNNs
- Activation Functions
- Data Preprocessing
- Weight Initialization
- Normalization Layers

39

A. Farhadi, S. Pratt Lecture 6 - Jan 22, 2026

32

32

3

Convolution Layer
32x32x3 image
5x5x3 filter

convolve (slide) over all
spatial locations

activation maps

1

28

28

consider a second, green filter

40

A. Farhadi, S. Pratt Lecture 6 - Jan 22, 2026

Preview [Zeiler and Fergus 2013] Visualization of VGG-16 by Lane McIntosh. VGG-16

architecture from [Simonyan and Zisserman 2014].

41

A. Farhadi, S. Pratt Lecture 6 - Jan 22, 2026

N

NF

F

Output size:
(N - F) / stride + 1

e.g. N = 7, F = 3:
stride 1 => (7 - 3)/1 + 1 = 5
stride 2 => (7 - 3)/2 + 1 = 3
stride 3 => (7 - 3)/3 + 1 = 2.33 :\

42

A. Farhadi, S. Pratt Lecture 6 - Jan 22, 2026

In practice: Common to zero pad the border
0 0 0 0 0 0

0

0

0

0

e.g. input 7x7
3x3 filter, applied with stride 1
pad with 1 pixel border => what is the output?

(recall:)
(N - F) / stride + 1

43

A. Farhadi, S. Pratt Lecture 6 - Jan 22, 2026

In practice: Common to zero pad the border

e.g. input 7x7
3x3 filter, applied with stride 1
pad with 1 pixel border => what is the output?

7x7 output!

0 0 0 0 0 0

0

0

0

0

(recall:)
(N + 2P - F) / stride + 1

44

A. Farhadi, S. Pratt Lecture 6 - Jan 22, 2026

In practice: Common to zero pad the border

e.g. input 7x7
3x3 filter, applied with stride 1
pad with 1 pixel border => what is the output?

7x7 output!
in general, common to see CONV layers with
stride 1, filters of size FxF, and zero-padding with
(F-1)/2. (will preserve size spatially)
e.g. F = 3 => zero pad with 1
 F = 5 => zero pad with 2
 F = 7 => zero pad with 3

0 0 0 0 0 0

0

0

0

0

45

A. Farhadi, S. Pratt Lecture 6 - Jan 22, 2026

Remember back to…
E.g. 32x32 input convolved repeatedly with 5x5 filters shrinks volumes spatially!
(32 -> 28 -> 24 ...).

32

32

3

CONV,
ReLU
e.g. 6
5x5x3
filters 28

28

6

CONV,
ReLU
e.g. 10
5x5x6
filters

CONV,
ReLU

….

10

24

24

46

A. Farhadi, S. Pratt Lecture 6 - Jan 22, 2026

Examples time:

Input volume: 32x32x3
10 5x5 filters with stride 1, pad 2

Let’s assume output size is HxWxD.
What is D?

47

A. Farhadi, S. Pratt Lecture 6 - Jan 22, 2026

Examples time:

Input volume: 32x32x3
10 5x5 filters with stride 1, pad 2

Let’s assume output size is HxWxD.
What is D? 10

48

A. Farhadi, S. Pratt Lecture 6 - Jan 22, 2026

Examples time:

Input volume: 32x32x3
10 5x5 filters with stride 1, pad 2

Let’s assume output size is HxWxD.
What is D? 10
What is H or W?

49

A. Farhadi, S. Pratt Lecture 6 - Jan 22, 2026

Examples time:

Input volume: 32x32x3
10 5x5 filters with stride 1, pad 2

Let’s assume output size is HxWxD.
What is D? 10
What is H or W? (32+2*2-5)/1+1 = 32

50

A. Farhadi, S. Pratt Lecture 6 - Jan 22, 2026

Examples time:

Input volume: 32x32x3
10 5x5 filters with stride 1, pad 2

Let’s assume output size is HxWxD.
What is D? 10
What is H or W? (32+2*2-5)/1+1 = 32
So the total output size is: 32x32x10

51

A. Farhadi, S. Pratt Lecture 6 - Jan 22, 2026

Examples time:

Input volume: 32x32x3
10 5x5 filters with stride 1, pad 2

Number of parameters in this layer?

52

A. Farhadi, S. Pratt Lecture 6 - Jan 22, 2026

Examples time:

Input volume: 32x32x3
10 5x5 filters with stride 1, pad 2

Number of parameters in this layer?
each filter has 5*5*3 + 1 = 76 params (+1 for bias)

=> 76*10 = 760

53

A. Farhadi, S. Pratt Lecture 6 - Jan 22, 202654

Convolution layer: summary

Let’s assume input is W1 x H1 x C
Conv layer needs 4 hyperparameters:
- Number of filters K
- The filter size F
- The stride S
- The zero padding P

This will produce an output of W2 x H2 x K
where:
- W2 = (W1 - F + 2P)/S + 1
- H2 = (H1 - F + 2P)/S + 1

Number of parameters: F2KC and K biases

A. Farhadi, S. Pratt Lecture 6 - Jan 22, 202655

Convolution layer: summary

Let’s assume input is W1 x H1 x C
Conv layer needs 4 hyperparameters:
- Number of filters K
- The filter size F
- The stride S
- The zero padding P

This will produce an output of W2 x H2 x K
where:
- W2 = (W1 - F + 2P)/S + 1
- H2 = (H1 - F + 2P)/S + 1

Number of parameters: F2CK and K biases

Common settings:

K = (powers of 2, e.g. 32, 64, 128, 512)
- F = 3, S = 1, P = 1
- F = 5, S = 1, P = 2
- F = 5, S = 2, P = ? (whatever fits)
- F = 1, S = 1, P = 0

A. Farhadi, S. Pratt Lecture 6 - Jan 22, 2026

(btw, 1x1 convolution layers are very useful)

64

56

56
1x1 CONV
with 32 filters

32
56

56
(each filter has size
1x1x64, and performs a
64-dimensional dot
product)

56

A. Farhadi, S. Pratt Lecture 6 - Jan 22, 2026

(btw, 1x1 convolution layers are a very useful)

64

56

56
1x1 CONV
with 32 filters

32
56

56
(each filter has size
1x1x64, and performs a
64-dimensional dot
product)

57

A. Farhadi, S. Pratt Lecture 6 - Jan 22, 2026

Conv layer needs 4 hyperparameters:
- Number of filters K
- The filter size F
- The stride S
- The zero padding P

Example: CONV
layer in PyTorch

PyTorch is licensed under BSD 3-clause.

58

https://pytorch.org/
https://github.com/pytorch/examples/blob/master/LICENSE

A. Farhadi, S. Pratt Lecture 6 - Jan 22, 2026

Receptive field

32

32

3

An activation map is a 28x28 sheet of neuron
outputs:
1. Each is connected to a small region in the input
2. All of them share parameters

“5x5 filter” -> “5x5 receptive field for each neuron”28

28

59

A. Farhadi, S. Pratt Lecture 6 - Jan 22, 2026

FOUR layers in total: CONV/ReLU/POOL/FC

60

A. Farhadi, S. Pratt Lecture 6 - Jan 22, 2026

Pooling layer
- makes the representations smaller and more manageable
- operates over each activation map independently:

61

A. Farhadi, S. Pratt Lecture 6 - Jan 22, 2026

1 1 2 4

5 6 7 8

3 2 1 0

1 2 3 4

Single depth slice

x

y

max pool with 2x2 filters
and stride 2 6 8

3 4

MAX POOLING

62

A. Farhadi, S. Pratt Lecture 6 - Jan 22, 202663

Pooling layer: summary

Let’s assume input is W1 x H1 x C
Conv layer needs 2 hyperparameters:
- The spatial extent F
- The stride S

This will produce an output of W2 x H2 x C where:
- W2 = (W1 - F)/S + 1
- H2 = (H1 - F)/S + 1

Number of parameters: 0

A. Farhadi, S. Pratt Lecture 6 - Jan 22, 2026

Fully Connected Layer (FC layer)
- Contains neurons that connect to the entire input volume, as in ordinary Neural

Networks

64

A. Farhadi, S. Pratt Lecture 6 - Jan 22, 2026

Summary

- ConvNets stack CONV,POOL,FC layers
- Trend towards smaller filters and deeper architectures
- Trend towards getting rid of POOL/FC layers (just CONV)
- Between 2012-2016 architectures looked like

[(CONV-RELU)*N-POOL?]*M-(FC-RELU)*K,SOFTMAX
 where N is usually up to ~5, M is large, 0 <= K <= 2.

- but recent advances such as ResNet/GoogLeNet
have challenged this paradigm

65

A. Farhadi, S. Pratt Lecture 6 - Jan 22, 2026

Activation Functions

66

A. Farhadi, S. Pratt Lecture 6 - Jan 22, 2026

Activation Functions
Sigmoid

tanh

ReLU

Leaky ReLU

ELU

67

GeLU

A. Farhadi, S. Pratt Lecture 6 - Jan 22, 2026

Sigmoid

Sigmoid

- Squashes numbers to range [0,1]
- Historically popular since they

have nice interpretation as a
saturating “firing rate” of a neuron

68

A. Farhadi, S. Pratt Lecture 6 - Jan 22, 2026

Sigmoid

Sigmoid

- Squashes numbers to range [0,1]
- Historically popular since they

have nice interpretation as a
saturating “firing rate” of a neuron

3 problems:

1. Saturated neurons “kill” the
gradients

69

A. Farhadi, S. Pratt Lecture 6 - Jan 22, 2026

sigmoid
gate

x

70

A. Farhadi, S. Pratt Lecture 6 - Jan 22, 2026

sigmoid
gate

x

What happens when x = -10?

71

A. Farhadi, S. Pratt Lecture 6 - Jan 22, 2026

sigmoid
gate

x

What happens when x = -10?

72

A. Farhadi, S. Pratt Lecture 6 - Jan 22, 2026

sigmoid
gate

x

What happens when x = -10?
What happens when x = 0?

73

A. Farhadi, S. Pratt Lecture 6 - Jan 22, 2026

sigmoid
gate

x

What happens when x = -10?
What happens when x = 0?
What happens when x = 10?

74

A. Farhadi, S. Pratt Lecture 6 - Jan 22, 2026

sigmoid
gate

x

What happens when x = -10?
What happens when x = 0?
What happens when x = 10?

75

A. Farhadi, S. Pratt Lecture 6 - Jan 22, 2026

sigmoid
gate

x

What happens when x = -10?
What happens when x = 0?
What happens when x = 10?

76

A. Farhadi, S. Pratt Lecture 6 - Jan 22, 2026

Why is this a problem?
If all the gradients flowing back will be
zero and weights will never change

sigmoid
gate

x

77

A. Farhadi, S. Pratt Lecture 6 - Jan 22, 2026

Sigmoid

Sigmoid

- Squashes numbers to range [0,1]
- Historically popular since they

have nice interpretation as a
saturating “firing rate” of a neuron

3 problems:

1. Saturated neurons “kill” the
gradients

2. Sigmoid outputs are not
zero-centered

78

A. Farhadi, S. Pratt Lecture 6 - Jan 22, 2026

Consider what happens when the input to a neuron is
always positive...

What can we say about the gradients for that neuron (i.e. a row of w)?

Neuron/row = (vector size n)
Input = x (vector size n, all positive)
Output = z (what shape?)
dL/dz = (what shape?)
dL/dw = (what shape?)

79

A. Farhadi, S. Pratt Lecture 6 - Jan 22, 2026

Consider what happens when the input to a neuron is
always positive...

What can we say about the gradients for that neuron (i.e. a row of w)?

Neuron/row = (vector size n)
Input = x (vector size n, all positive)
Output = z (what shape?)
dL/dz = (what shape?)
dL/dw = (what shape?)

80

Scalar (+ or -)

A. Farhadi, S. Pratt Lecture 6 - Jan 22, 2026

Consider what happens when the input to a neuron is
always positive...

What can we say about the gradients for that neuron (i.e. a row of w)?

Neuron/row = (vector size n)
Input = x (vector size n, all positive)
Output = z (what shape?)
dL/dz = (what shape?)
dL/dw = (what shape?)

81

Scalar (+ or -)X (all +)

A. Farhadi, S. Pratt Lecture 6 - Jan 22, 2026

Consider what happens when the input to a neuron is
always positive...

What can we say about the gradients for that neuron (i.e. a row of w)?

Neuron/row = (vector size n)
Input = x (vector size n, all positive)
Output = z (what shape?)
dL/dz = (what shape?)
dL/dw = (what shape?)

82

Scalar (+ or -)X (all +)(all + or -)

A. Farhadi, S. Pratt Lecture 6 - Jan 22, 2026

Consider what happens when the input to a neuron is
always positive...

What can we say about the gradients on w?
Always all positive or all negative :(

hypothetical
optimal w
vector

zig zag path

allowed
gradient
update
directions

allowed
gradient
update
directions

83

A. Farhadi, S. Pratt Lecture 6 - Jan 22, 202684

Consider what happens when the input to a neuron is
always positive...

What can we say about the gradients on w?
Always all positive or all negative :(
(For a single element! Minibatches help)

hypothetical
optimal w
vector

zig zag path

allowed
gradient
update
directions

allowed
gradient
update
directions

84

A. Farhadi, S. Pratt Lecture 6 - Jan 22, 2026

Sigmoid

Sigmoid

- Squashes numbers to range [0,1]
- Historically popular since they

have nice interpretation as a
saturating “firing rate” of a neuron

3 problems:

1. Saturated neurons “kill” the
gradients

2. Sigmoid outputs are not
zero-centered

3. exp() is a bit compute expensive

85

A. Farhadi, S. Pratt Lecture 6 - Jan 22, 2026

Tanh

tanh(x)

- Squashes numbers to range [-1,1]
- zero centered (nice)
- still kills gradients when saturated :(

[LeCun et al., 1991]

86

A. Farhadi, S. Pratt Lecture 6 - Jan 22, 2026

ReLU - Computes f(x) = max(0,x)

- Does not saturate (in +region)
- Very computationally efficient
- Converges much faster than

sigmoid/tanh in practice (e.g. 6x)

ReLU
(Rectified Linear Unit)

[Krizhevsky et al., 2012]

87

A. Farhadi, S. Pratt Lecture 6 - Jan 22, 2026

ReLU

ReLU
(Rectified Linear Unit)

- Computes f(x) = max(0,x)

- Does not saturate (in +region)
- Very computationally efficient
- Converges much faster than

sigmoid/tanh in practice (e.g. 6x)

- Not zero-centered output

88

A. Farhadi, S. Pratt Lecture 6 - Jan 22, 2026

ReLU

ReLU
(Rectified Linear Unit)

- Computes f(x) = max(0,x)

- Does not saturate (in +region)
- Very computationally efficient
- Converges much faster than

sigmoid/tanh in practice (e.g. 6x)

- Not zero-centered output
- An annoyance:

hint: what is the gradient when x < 0?

89

A. Farhadi, S. Pratt Lecture 6 - Jan 22, 2026

ReLU
gate

x

What happens when x = -10?
What happens when x = 0?
What happens when x = 10?

90

A. Farhadi, S. Pratt Lecture 6 - Jan 22, 2026

INPUT DATA
TO ReLU

active ReLU

dead ReLU
will never activate
=> never update

91

ReLU

A. Farhadi, S. Pratt Lecture 6 - Jan 22, 2026

INPUT DATA
TO ReLU

active ReLU

dead ReLU
will never activate
=> never update

=> people like to initialize
ReLU neurons with slightly
positive biases (e.g. 0.01)

92

ReLU

A. Farhadi, S. Pratt Lecture 6 - Jan 22, 2026

Leaky ReLU

Leaky ReLU

- Does not saturate
- Computationally efficient
- Converges much faster than

sigmoid/tanh in practice! (e.g. 6x)
- will not “die”.

[Mass et al., 2013]
[He et al., 2015]

93

A. Farhadi, S. Pratt Lecture 6 - Jan 22, 2026

Leaky ReLU

Leaky ReLU

- Does not saturate
- Computationally efficient
- Converges much faster than

sigmoid/tanh in practice! (e.g. 6x)
- will not “die”.

Parametric Rectifier (PReLU)

backprop into \alpha
(parameter)

[Mass et al., 2013]
[He et al., 2015]

94

A. Farhadi, S. Pratt Lecture 6 - Jan 22, 2026

- All benefits of ReLU
- Closer to zero mean outputs

- Computation requires exp()
- Negative saturation can kill

gradients for large negative

ELU
Exponential Linear Units (ELU)

[Clevert et al., 2015]

95

(Alpha default = 1)

A. Farhadi, S. Pratt Lecture 6 - Jan 22, 2026

SELU
Scaled Exponential Linear Units (SELU)

- Scaled versionof ELU that
works better for deep networks

- “Self-normalizing” property;
- Can train deep SELU networks

without BatchNorm
- (will discuss more later)

[Klambauer et al. ICLR 2017]

96

α = 1.6733, λ = 1.0507

A. Farhadi, S. Pratt Lecture 6 - Jan 22, 2026

Maxout “Neuron”
- Does not have the basic form of dot product ->

nonlinearity
- Generalizes ReLU and Leaky ReLU
- Linear Regime! Does not saturate! Does not die!

Problem: doubles the number of parameters/weights :(

[Goodfellow et al., 2013]

97

A. Farhadi, S. Pratt Lecture 6 - Jan 22, 2026

Swish

Swish

- They trained a neural network
to generate and test out
different non-linearities.

- Swish outperformed all other
options for CIFAR-10 accuracy

[Ramachandran et al. 2018]

98

A. Farhadi, S. Pratt Lecture 6 - Jan 22, 2026

- Idea: combine the best parts
of sigmoid and relu.

- GELU transitions more
smoothly

- It weights each input
according to the Gaussian
(Normal) CDF

GeLU
Gaussian Error Linear Units

[Hendrycks and Gimpel, Gaussian Error Linear Units (GELUs), 2016]

99

A. Farhadi, S. Pratt Lecture 6 - Jan 22, 2026

Mathematically,

where Φ(𝑥) is the cumulative
distribution function (CDF) of a
standard normal distribution 𝑁
(0,1)

It is approximated as

GeLU [Hendrycks and Gimpel, Gaussian Error Linear Units (GELUs), 2016]

100

A. Farhadi, S. Pratt Lecture 6 - Jan 22, 2026

Activation Functions
GeLU

[Hendrycks and Gimpel, Gaussian Error Linear Units (GELUs), 2016]

101

- More continuous version of
ReLU. It scales the input 𝑥 by
a probability factor
dependent on 𝑥

- Avoid dead neurons
- Empirically stable training
- Very common in

Transformers (BERT, GPT,
ViT)

A. Farhadi, S. Pratt Lecture 6 - Jan 22, 2026

TLDR: In practice:

- Use ReLU. Be careful with your learning rates
- Use GeLU when using transformers
- Try out Leaky ReLU / Maxout / ELU / SELU

- To squeeze out some marginal gains
- Don’t use sigmoid or tanh

102

A. Farhadi, S. Pratt Lecture 6 - Jan 22, 2026

Data Preprocessing

103

A. Farhadi, S. Pratt Lecture 6 - Jan 22, 2026

Data Preprocessing

(Assume X [NxD] is data matrix,
each example in a row)

104

A. Farhadi, S. Pratt Lecture 6 - Jan 22, 2026

Remember: Consider what happens when
the input to a neuron is always positive...

What can we say about the gradients on w?
Always all positive or all negative :(
(this is also why you want zero-mean data!)

hypothetical
optimal w
vector

zig zag path

allowed
gradient
update
directions

allowed
gradient
update
directions

105

A. Farhadi, S. Pratt Lecture 6 - Jan 22, 2026
10
6

Data Preprocessing
Before normalization: classification loss
very sensitive to changes in weight matrix;
hard to optimize

After normalization: less sensitive to small
changes in weights; easier to optimize

A. Farhadi, S. Pratt Lecture 6 - Jan 22, 2026
10
7

Data Preprocessing
Before normalization: classification loss
very sensitive to changes in weight matrix;
hard to optimize

After normalization: less sensitive to small
changes in weights; easier to optimize

A. Farhadi, S. Pratt Lecture 6 - Jan 22, 2026

(Assume X [NxD] is data matrix, each example in a row)

Data Preprocessing

108

A. Farhadi, S. Pratt Lecture 6 - Jan 22, 2026

Data Preprocessing
In practice, you may also see PCA and Whitening of the data

(data has diagonal
covariance matrix)

(covariance matrix is the
identity matrix)

109

A. Farhadi, S. Pratt Lecture 6 - Jan 22, 2026

TLDR: In practice for Images: center only

- Subtract the mean image (e.g. AlexNet)
(mean image = [32,32,3] array)

- Subtract per-channel mean (e.g. VGGNet)
(mean along each channel = 3 numbers)

- Subtract per-channel mean and
Divide by per-channel std (e.g. ResNet)
(mean along each channel = 3 numbers)

e.g. consider CIFAR-10 example with [32,32,3] images

Not common
to do PCA or
whitening

110

A. Farhadi, S. Pratt Lecture 6 - Jan 22, 2026

Weight Initialization

111

A. Farhadi, S. Pratt Lecture 6 - Jan 22, 2026

- Q: what happens when W=constant init is used?

112

A. Farhadi, S. Pratt Lecture 6 - Jan 22, 2026

- First idea: Small random numbers
(gaussian with zero mean and 1e-2 standard deviation)

113

A. Farhadi, S. Pratt Lecture 6 - Jan 22, 2026

- First idea: Small random numbers
(gaussian with zero mean and 1e-2 standard deviation)

Works ~okay for small networks, but problems with
deeper networks.

114

A. Farhadi, S. Pratt Lecture 6 - Jan 22, 2026

Weight Initialization: Activation statistics
Forward pass for a 6-layer
net with hidden size 4096

115

What will happen to the activations for the last layer?

A. Farhadi, S. Pratt Lecture 6 - Jan 22, 2026

Weight Initialization: Activation statistics
Forward pass for a 6-layer
net with hidden size 4096

All activations tend to zero
for deeper network layers

Q: What do the gradients
dL/dW look like?

116

A. Farhadi, S. Pratt Lecture 6 - Jan 22, 2026

Weight Initialization: Activation statistics
Forward pass for a 6-layer
net with hidden size 4096

All activations tend to zero
for deeper network layers

Q: What do the gradients
dL/dW look like?

A: All zero, no learning =(

117

A. Farhadi, S. Pratt Lecture 6 - Jan 22, 2026

Weight Initialization: Activation statistics
Increase std of initial
weights from 0.01 to 0.05

118

What will happen to the activations when the weights are
initialized with larger values?

A. Farhadi, S. Pratt Lecture 6 - Jan 22, 2026

Weight Initialization: Activation statistics
Increase std of initial
weights from 0.01 to 0.05

All activations saturate

Q: What do the gradients
look like?

119

A. Farhadi, S. Pratt Lecture 6 - Jan 22, 2026

Weight Initialization: Activation statistics
Increase std of initial
weights from 0.01 to 0.05

All activations saturate

Q: What do the gradients
look like?

A: Local gradients all zero,
no learning =(

120

A. Farhadi, S. Pratt Lecture 6 - Jan 22, 2026

Weight Initialization: “Xavier” Initialization
“Xavier” initialization:
std = 1/sqrt(Din)

Glorot and Bengio, “Understanding the difficulty of training deep feedforward neural networks”, AISTAT 2010

121

A. Farhadi, S. Pratt Lecture 6 - Jan 22, 2026

“Just right”: Activations are
nicely scaled for all layers!

“Xavier” initialization:
std = 1/sqrt(Din)

Glorot and Bengio, “Understanding the difficulty of training deep feedforward neural networks”, AISTAT 2010

Weight Initialization: “Xavier” Initialization

122

A. Farhadi, S. Pratt Lecture 6 - Jan 22, 2026

“Just right”: Activations are
nicely scaled for all layers!

For conv layers, Din is
filter_size2 * input_channels

“Xavier” initialization:
std = 1/sqrt(Din)

Glorot and Bengio, “Understanding the difficulty of training deep feedforward neural networks”, AISTAT 2010

Weight Initialization: “Xavier” Initialization

123

A. Farhadi, S. Pratt Lecture 6 - Jan 22, 2026

“Xavier” initialization:
std = 1/sqrt(Din)

Glorot and Bengio, “Understanding the difficulty of training deep feedforward neural networks”, AISTAT 2010

Weight Initialization: “Xavier” Initialization

Let: y = x1w1+x2w2+...+xDinwDin

“Just right”: Activations are
nicely scaled for all layers!

For conv layers, Din is
filter_size2 * input_channels

124

A. Farhadi, S. Pratt Lecture 6 - Jan 22, 2026

“Xavier” initialization:
std = 1/sqrt(Din)

Glorot and Bengio, “Understanding the difficulty of training deep feedforward neural networks”, AISTAT 2010

Weight Initialization: “Xavier” Initialization

Let: y = x1w1+x2w2+...+xDinwDin

“Just right”: Activations are
nicely scaled for all layers!

For conv layers, Din is
filter_size2 * input_channels

125

Assume: Var(x1) = Var(x2)= …=Var(xDin)

A. Farhadi, S. Pratt Lecture 6 - Jan 22, 2026

“Xavier” initialization:
std = 1/sqrt(Din)

Glorot and Bengio, “Understanding the difficulty of training deep feedforward neural networks”, AISTAT 2010

Weight Initialization: “Xavier” Initialization

Let: y = x1w1+x2w2+...+xDinwDin

“Just right”: Activations are
nicely scaled for all layers!

For conv layers, Din is
filter_size2 * input_channels

126

Assume: Var(x1) = Var(x2)= …=Var(xDin)

We want: Var(y) = Var(xi)

A. Farhadi, S. Pratt Lecture 6 - Jan 22, 2026

“Xavier” initialization:
std = 1/sqrt(Din)

Glorot and Bengio, “Understanding the difficulty of training deep feedforward neural networks”, AISTAT 2010

Weight Initialization: “Xavier” Initialization

Var(y) = Var(x1w1+x2w2+...+xDinwDin)
[substituting value of y]

Let: y = x1w1+x2w2+...+xDinwDin

“Just right”: Activations are
nicely scaled for all layers!

For conv layers, Din is
filter_size2 * input_channels

127

Assume: Var(x1) = Var(x2)= …=Var(xDin)

We want: Var(y) = Var(xi)

A. Farhadi, S. Pratt Lecture 6 - Jan 22, 2026

“Xavier” initialization:
std = 1/sqrt(Din)

Glorot and Bengio, “Understanding the difficulty of training deep feedforward neural networks”, AISTAT 2010

Weight Initialization: “Xavier” Initialization

Var(y) = Var(x1w1+x2w2+...+xDinwDin)
 = Din Var(xiwi)
[Assume all xi, wi are iid]

Let: y = x1w1+x2w2+...+xDinwDin

“Just right”: Activations are
nicely scaled for all layers!

For conv layers, Din is
filter_size2 * input_channels

128

Assume: Var(x1) = Var(x2)= …=Var(xDin)

We want: Var(y) = Var(xi)

A. Farhadi, S. Pratt Lecture 6 - Jan 22, 2026

“Xavier” initialization:
std = 1/sqrt(Din)

Glorot and Bengio, “Understanding the difficulty of training deep feedforward neural networks”, AISTAT 2010

Weight Initialization: “Xavier” Initialization

Var(y) = Var(x1w1+x2w2+...+xDinwDin)
 = Din Var(xiwi)
 = Din Var(xi) Var(wi)
[Assume all xi, wi are zero mean]

Let: y = x1w1+x2w2+...+xDinwDin

“Just right”: Activations are
nicely scaled for all layers!

For conv layers, Din is
filter_size2 * input_channels

129

Assume: Var(x1) = Var(x2)= …=Var(xDin)

We want: Var(y) = Var(xi)

A. Farhadi, S. Pratt Lecture 6 - Jan 22, 2026

“Xavier” initialization:
std = 1/sqrt(Din)

Glorot and Bengio, “Understanding the difficulty of training deep feedforward neural networks”, AISTAT 2010

Weight Initialization: “Xavier” Initialization

Var(y) = Var(x1w1+x2w2+...+xDinwDin)
 = Din Var(xiwi)
 = Din Var(xi) Var(wi)
[Assume all xi, wi are iid]

Let: y = x1w1+x2w2+...+xDinwDin

“Just right”: Activations are
nicely scaled for all layers!

For conv layers, Din is
filter_size2 * input_channels

130

Assume: Var(x1) = Var(x2)= …=Var(xDin)

We want: Var(y) = Var(xi)

So, Var(y) = Var(xi) only when Var(wi) = 1/Din

A. Farhadi, S. Pratt Lecture 6 - Jan 22, 2026

Weight Initialization: What about ReLU?

Change from tanh to ReLU

131

A. Farhadi, S. Pratt Lecture 6 - Jan 22, 2026

Weight Initialization: What about ReLU?

Xavier assumes zero
centered activation function

Activations collapse to zero
again, no learning =(

Change from tanh to ReLU

132

A. Farhadi, S. Pratt Lecture 6 - Jan 22, 2026

Weight Initialization: Kaiming / MSRA Initialization

ReLU correction: std = sqrt(2 / Din)

He et al, “Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification”, ICCV 2015

“Just right”: Activations are
nicely scaled for all layers!

133

A. Farhadi, S. Pratt Lecture 6 - Jan 22, 2026

Proper initialization is an active area of research…
Understanding the difficulty of training deep feedforward neural networks
by Glorot and Bengio, 2010

Exact solutions to the nonlinear dynamics of learning in deep linear neural networks by Saxe et al, 2013

Random walk initialization for training very deep feedforward networks by Sussillo and Abbott, 2014

Delving deep into rectifiers: Surpassing human-level performance on ImageNet classification by He et
al., 2015

Data-dependent Initializations of Convolutional Neural Networks by Krähenbühl et al., 2015

All you need is a good init, Mishkin and Matas, 2015

Fixup Initialization: Residual Learning Without Normalization, Zhang et al, 2019

The Lottery Ticket Hypothesis: Finding Sparse, Trainable Neural Networks, Frankle and Carbin, 2019

134

A. Farhadi, S. Pratt Lecture 6 - Jan 22, 2026

Batch Normalization

135

A. Farhadi, S. Pratt Lecture 6 - Jan 22, 2026

Batch Normalization
“you want zero-mean unit-variance activations? just make them so.”

[Ioffe and Szegedy, 2015]

consider a batch of activations at some layer. To make
each dimension zero-mean unit-variance, apply:

this is a vanilla
differentiable function...

136

A. Farhadi, S. Pratt Lecture 6 - Jan 22, 2026

Input: Per-channel mean,
shape is D

Per-channel var,
shape is D

Normalized x,
Shape is N x D

Batch Normalization [Ioffe and Szegedy, 2015]

XN

D

137

A. Farhadi, S. Pratt Lecture 6 - Jan 22, 2026

Input: Per-channel mean,
shape is D

Per-channel var,
shape is D

Normalized x,
Shape is N x D

Batch Normalization [Ioffe and Szegedy, 2015]

XN

D Problem: What if zero-mean, unit
variance is too hard of a constraint?

138

A. Farhadi, S. Pratt Lecture 6 - Jan 22, 2026

Input: Per-channel mean,
shape is D

Per-channel var,
shape is D

Normalized x,
Shape is N x D

Batch Normalization [Ioffe and Szegedy, 2015]

Learnable scale and
shift parameters:

Output,
Shape is N x D

Learning = ,
 = will recover the
identity function!

139

A. Farhadi, S. Pratt Lecture 6 - Jan 22, 2026

Input: Per-channel mean,
shape is D

Per-channel var,
shape is D

Normalized x,
Shape is N x D

Batch Normalization: Test-Time

Learnable scale and
shift parameters:

Output,
Shape is N x D

Learning = ,
 = will recover the
identity function!

Estimates depend on minibatch;
can’t do this at test-time!

140

A. Farhadi, S. Pratt Lecture 6 - Jan 22, 2026

Input: Per-channel mean,
shape is D

Per-channel var,
shape is D

Normalized x,
Shape is N x D

Batch Normalization: Test-Time

Learnable scale and
shift parameters:

Output,
Shape is N x D

(Running) average of
values seen during training

(Running) average of
values seen during training

During testing batchnorm
becomes a linear operator!
Can be fused with the previous
fully-connected or conv layer

141

A. Farhadi, S. Pratt Lecture 6 - Jan 22, 2026

Batch Normalization [Ioffe and Szegedy, 2015]

FC

BN

tanh

FC

BN

tanh

...

Usually inserted after Fully
Connected or Convolutional layers,
and before nonlinearity.

142

A. Farhadi, S. Pratt Lecture 6 - Jan 22, 2026

Batch Normalization [Ioffe and Szegedy, 2015]

FC

BN

tanh

FC

BN

tanh

...

- Makes deep networks much easier to train!
- Improves gradient flow
- Allows higher learning rates, faster convergence
- Networks become more robust to initialization
- Acts as regularization during training
- Zero overhead at test-time: can be fused with conv!
- Behaves differently during training and testing: this

is a very common source of debugging!

143

A. Farhadi, S. Pratt Lecture 6 - Jan 22, 2026

Batch Normalization for convolutions

 x: N × D

𝞵,𝝈: 1 × D
ɣ,β: 1 × D
y = ɣ(x-𝞵)/𝝈+β

 x: N×C×H×W

𝞵,𝝈: 1×C×1×1
ɣ,β: 1×C×1×1
y = ɣ(x-𝞵)/𝝈+β

Normalize Normalize

Batch Normalization for
fully-connected networks

Batch Normalization for
convolutional networks
(Spatial Batchnorm, BatchNorm2D)

144

A. Farhadi, S. Pratt Lecture 6 - Jan 22, 2026

Layer Normalization

145

A. Farhadi, S. Pratt Lecture 6 - Jan 22, 2026

Layer Normalization for MLPs

 x: N × D

𝞵,𝝈: 1 × D
ɣ,β: 1 × D
y = ɣ(x-𝞵)/𝝈+β

 x: N × D

𝞵,𝝈: N × 1
ɣ,β: 1 × D
y = ɣ(x-𝞵)/𝝈+β

Normalize Normalize

Layer Normalization for
fully-connected networks
Same behavior at train and test!
Often used in transformers

Batch Normalization for
fully-connected networks

Ba, Kiros, and Hinton, “Layer Normalization”, arXiv 2016

146

A. Farhadi, S. Pratt Lecture 6 - Jan 22, 2026

Instance Normalization

147

A. Farhadi, S. Pratt Lecture 6 - Jan 22, 2026

Instance Normalization for Convolutions

 x: N×C×H×W

𝞵,𝝈: 1×C×1×1
ɣ,β: 1×C×1×1
y = ɣ(x-𝞵)/𝝈+β

 x: N×C×H×W

𝞵,𝝈: N×C×1×1
ɣ,β: 1×C×1×1
y = ɣ(x-𝞵)/𝝈+β

Normalize Normalize

Instance Normalization for
convolutional networks
Same behavior at train / test!

Batch Normalization for
convolutional networks

Ulyanov et al, Improved Texture Networks: Maximizing Quality and Diversity in Feed-forward Stylization and Texture Synthesis, CVPR 2017

148

A. Farhadi, S. Pratt Lecture 6 - Jan 22, 2026

Comparison of Normalization Layers

Wu and He, “Group Normalization”, ECCV 2018

149

A. Farhadi, S. Pratt Lecture 6 - Jan 22, 2026

Group Normalization

Wu and He, “Group Normalization”, ECCV 2018

150

A. Farhadi, S. Pratt Lecture 6 - Jan 22, 2026

Summary
We looked in detail at:

- Activation Functions (use ReLU or GeLU)
- Data Preprocessing (images: subtract mean)
- Weight Initialization (use Xavier/He init)
- Batch Normalization (use this!)
- Layer Normalization (used in transformers!)

TLDRs

151

A. Farhadi, S. Pratt Lecture 6 - Jan 22, 2026

Next time: Optimizers
- Parameter update schemes
- Learning rate schedules
- Gradient checking
- Regularization (Dropout etc.)
- Babysitting learning
- Evaluation (Ensembles etc.)
- Hyperparameter Optimization

152

