
A. Farhadi, S. Pratt Jan 20, 2026Lecture 5 -

Lecture 5:
Backprop + Convolutional
Neural Networks

1

A. Farhadi, S. Pratt Jan 20, 2026Lecture 5 -

Administrative: EdStem

Please make sure to check and read all pinned EdStem posts.

2

A. Farhadi, S. Pratt Jan 20, 2026Lecture 5 -

Due 1/22 11:59pm

- K-Nearest Neighbor
- Linear classifiers: SVM, Softmax

Administrative: Assignment 1

3

A. Farhadi, S. Pratt Jan 20, 2026Lecture 5 -

Administrative: Fridays

4

This Friday

Convolutions & Vectorization

A. Farhadi, S. Pratt Jan 20, 2026Lecture 5 -

Project proposal due 1/29 11:59pm

“Is X a valid project for 493G1?”

- Anything related to deep learning or computer vision
- Maximum of 3 students per team
- Make a EdStem private post or come to TA Office Hours

More info on the website

Form to help make groups posted, please fill out by Thursday if interested.

Administrative: Course Project

5

A. Farhadi, S. Pratt Jan 20, 2026Lecture 5 -

Linear score function:

2-layer Neural Network

Last time: Neural Networks

x hW1 sW2

3072 100 10

6

A. Farhadi, S. Pratt Jan 20, 2026Lecture 5 - 7

original W

negative gradient direction
W_1

W_2

A. Farhadi, S. Pratt Jan 20, 2026Lecture 5 -

Stochastic Gradient Descent (SGD)

8

Full sum expensive
when N is large!

Approximate sum
using a minibatch of
examples
32 / 64 / 128 common

A. Farhadi, S. Pratt Jan 20, 2026Lecture 5 - 9

(Bad) Idea: Derive on paper

Problem: What if we want to
change loss? E.g. use softmax
instead of SVM? Need to
re-derive from scratch =(

Problem: Very tedious: Lots of
matrix calculus, need lots of paper

Problem: Not feasible for very
complex models!

A. Farhadi, S. Pratt Jan 20, 2026Lecture 5 - 10

input image

loss

weights

Convolutional network
(AlexNet)

Figure copyright Alex Krizhevsky, Ilya Sutskever, and

Geoffrey Hinton, 2012. Reproduced with permission.

A. Farhadi, S. Pratt Jan 20, 2026Lecture 5 - 11

Really complex neural networks!!

Figure reproduced with permission from a Twitter post by Andrej Karpathy.

input image

loss

https://twitter.com/karpathy/status/597631909930242048?lang=en

A. Farhadi, S. Pratt Jan 20, 2026Lecture 5 - 12

x

W

hinge
loss

R

+ L
s (scores)

Better Idea: Computational graphs + Backpropagation

*

A. Farhadi, S. Pratt Jan 20, 2026Lecture 5 - 13

Solution: Backpropagation

A. Farhadi, S. Pratt Jan 20, 2026Lecture 5 - 14

Backpropagation: a simple example

A. Farhadi, S. Pratt Jan 20, 2026Lecture 5 - 15

Backpropagation: a simple example

A. Farhadi, S. Pratt Jan 20, 2026Lecture 5 - 16

e.g. x = -2, y = 5, z = -4

Backpropagation: a simple example

A. Farhadi, S. Pratt Jan 20, 2026Lecture 5 - 17

e.g. x = -2, y = 5, z = -4

Backpropagation: a simple example

A. Farhadi, S. Pratt Jan 20, 2026Lecture 5 - 18

e.g. x = -2, y = 5, z = -4

Backpropagation: a simple example

A. Farhadi, S. Pratt Jan 20, 2026Lecture 5 - 19

e.g. x = -2, y = 5, z = -4

Want:

Backpropagation: a simple example

A. Farhadi, S. Pratt Jan 20, 2026Lecture 5 - 20

e.g. x = -2, y = 5, z = -4

Want:

Backpropagation: a simple example

A. Farhadi, S. Pratt Jan 20, 2026Lecture 5 - 21

e.g. x = -2, y = 5, z = -4

Want:

Backpropagation: a simple example

A. Farhadi, S. Pratt Jan 20, 2026Lecture 5 - 22

e.g. x = -2, y = 5, z = -4

Want:

Backpropagation: a simple example

A. Farhadi, S. Pratt Jan 20, 2026Lecture 5 - 23

e.g. x = -2, y = 5, z = -4

Want:

Backpropagation: a simple example

A. Farhadi, S. Pratt Jan 20, 2026Lecture 5 - 24

e.g. x = -2, y = 5, z = -4

Want:

Backpropagation: a simple example

A. Farhadi, S. Pratt Jan 20, 2026Lecture 5 - 25

e.g. x = -2, y = 5, z = -4

Want:

Backpropagation: a simple example

A. Farhadi, S. Pratt Jan 20, 2026Lecture 5 - 26

e.g. x = -2, y = 5, z = -4

Want:

Backpropagation: a simple example

Chain rule:

Upstream
gradient

Local
gradient

A. Farhadi, S. Pratt Jan 20, 2026Lecture 5 - 27

Chain rule:

e.g. x = -2, y = 5, z = -4

Want:

Backpropagation: a simple example

Upstream
gradient

Local
gradient

A. Farhadi, S. Pratt Jan 20, 2026Lecture 5 - 28

e.g. x = -2, y = 5, z = -4

Want:

Backpropagation: a simple example

Chain rule:

Upstream
gradient

Local
gradient

A. Farhadi, S. Pratt Jan 20, 2026Lecture 5 - 29

Chain rule:

e.g. x = -2, y = 5, z = -4

Want:

Backpropagation: a simple example

Upstream
gradient

Local
gradient

A. Farhadi, S. Pratt Jan 20, 2026Lecture 5 - 30

f

A. Farhadi, S. Pratt Jan 20, 2026Lecture 5 - 31

f

“local gradient”

A. Farhadi, S. Pratt Jan 20, 2026Lecture 5 - 32

f

“local gradient”

“Upstream
gradient”

A. Farhadi, S. Pratt Jan 20, 2026Lecture 5 - 33

f

“local gradient”

“Upstream
gradient”

“Downstream
gradients”

A. Farhadi, S. Pratt Jan 20, 2026Lecture 5 - 34

f

“local gradient”

“Upstream
gradient”

“Downstream
gradients”

A. Farhadi, S. Pratt Jan 20, 2026Lecture 5 - 35

f

“local gradient”

“Upstream
gradient”

“Downstream
gradients”

A. Farhadi, S. Pratt Jan 20, 2026Lecture 5 - 36

Another example:

A. Farhadi, S. Pratt Jan 20, 2026Lecture 5 - 37

Another example:

A. Farhadi, S. Pratt Jan 20, 2026Lecture 5 - 38

Another example:

A. Farhadi, S. Pratt Jan 20, 2026Lecture 5 - 39

Another example:

A. Farhadi, S. Pratt Jan 20, 2026Lecture 5 - 40

Another example:

A. Farhadi, S. Pratt Jan 20, 2026Lecture 5 - 41

Another example:

Upstream
gradient

Local
gradient

A. Farhadi, S. Pratt Jan 20, 2026Lecture 5 - 42

Another example:

A. Farhadi, S. Pratt Jan 20, 2026Lecture 5 - 43

Another example:

Upstream
gradient

Local
gradient

A. Farhadi, S. Pratt Jan 20, 2026Lecture 5 - 44

Another example:

A. Farhadi, S. Pratt Jan 20, 2026Lecture 5 - 45

Another example:

Upstream
gradient

Local
gradient

A. Farhadi, S. Pratt Jan 20, 2026Lecture 5 - 46

Another example:

A. Farhadi, S. Pratt Jan 20, 2026Lecture 5 - 47

Another example:

Upstream
gradient

Local
gradient

A. Farhadi, S. Pratt Jan 20, 2026Lecture 5 - 48

Another example:

A. Farhadi, S. Pratt Jan 20, 2026Lecture 5 - 49

Another example:

[upstream gradient] x [local gradient]
[0.2] x [1] = 0.2
[0.2] x [1] = 0.2 (both inputs!)

A. Farhadi, S. Pratt Jan 20, 2026Lecture 5 - 50

Another example:

A. Farhadi, S. Pratt Jan 20, 2026Lecture 5 - 51

Another example:

[upstream gradient] x [local gradient]
w0: [0.2] x [-1] = -0.2
x0: [0.2] x [2] = 0.4

A. Farhadi, S. Pratt Jan 20, 2026Lecture 5 - 52

Another example:

Sigmoid

Sigmoid
function

Computational graph
representation may not
be unique. Choose one
where local gradients at
each node can be easily
expressed!

A. Farhadi, S. Pratt Jan 20, 2026Lecture 5 - 53

Another example:

Sigmoid

Sigmoid
function

Sigmoid local
gradient:

Computational graph
representation may not
be unique. Choose one
where local gradients at
each node can be easily
expressed!

A. Farhadi, S. Pratt Jan 20, 2026Lecture 5 - 54

Another example:

Sigmoid

Sigmoid
function

Sigmoid local
gradient:

Computational graph
representation may not
be unique. Choose one
where local gradients at
each node can be easily
expressed!

[upstream gradient] x [local gradient]
[1.00] x [(1 - 1/(1+e1)) (1/(1+e1))] = 0.2

A. Farhadi, S. Pratt Jan 20, 2026Lecture 5 - 55

Another example:

Sigmoid

Sigmoid
function

Sigmoid local
gradient:

Computational graph
representation may not
be unique. Choose one
where local gradients at
each node can be easily
expressed!

[upstream gradient] x [local gradient]
[1.00] x [(1 - 0.73) (0.73)] = 0.2

A. Farhadi, S. Pratt Jan 20, 2026Lecture 5 - 56

add gate: gradient distributor

Patterns in gradient flow

+
3

4
7
2

2

2

A. Farhadi, S. Pratt Jan 20, 2026Lecture 5 - 57

add gate: gradient distributor

Patterns in gradient flow

+
3

4
7
2

2

2

mul gate: “swap multiplier”

×
2

3
6
5

5*3=15

2*5=10

A. Farhadi, S. Pratt Jan 20, 2026Lecture 5 - 58

add gate: gradient distributor

Patterns in gradient flow

+
3

4
7
2

2

2

mul gate: “swap multiplier”

copy gate: gradient adder

×
2

3
6
5

5*3=15

2*5=10

7

7
7

4+2=6

4

2

A. Farhadi, S. Pratt Jan 20, 2026Lecture 5 - 59

add gate: gradient distributor

Patterns in gradient flow

+
3

4
7
2

2

2

mul gate: “swap multiplier”

max gate: gradient router

max

copy gate: gradient adder

×
2

3
6
5

5*3=15

2*5=10

4

5
5
9

0

9

7

7
7

4+2=6

4

2

A. Farhadi, S. Pratt Jan 20, 2026Lecture 5 - 60

Backprop Implementation:
“Flat” code Forward pass:

Compute output

Backward pass:
Compute grads

A. Farhadi, S. Pratt Jan 20, 2026Lecture 5 - 61

Backprop Implementation:
“Flat” code Forward pass:

Compute output

Base case

A. Farhadi, S. Pratt Jan 20, 2026Lecture 5 - 62

Backprop Implementation:
“Flat” code Forward pass:

Compute output

Sigmoid

A. Farhadi, S. Pratt Jan 20, 2026Lecture 5 - 63

Backprop Implementation:
“Flat” code Forward pass:

Compute output

Add gate

A. Farhadi, S. Pratt Jan 20, 2026Lecture 5 - 64

Backprop Implementation:
“Flat” code Forward pass:

Compute output

Add gate

A. Farhadi, S. Pratt Jan 20, 2026Lecture 5 - 65

Backprop Implementation:
“Flat” code Forward pass:

Compute output

Multiply gate

A. Farhadi, S. Pratt Jan 20, 2026Lecture 5 - 66

Backprop Implementation:
“Flat” code Forward pass:

Compute output

Multiply gate

A. Farhadi, S. Pratt Jan 20, 2026Lecture 5 - 67

Stage your forward/backward computation!
E.g. for the SVM:

margins

“Flat” Backprop: Do this for assignment 1!

A. Farhadi, S. Pratt Jan 20, 2026Lecture 5 - 68

“Flat” Backprop: Do this for assignment 1!

E.g. for two-layer neural net:

A. Farhadi, S. Pratt Jan 20, 2026Lecture 5 - 69

Backprop Implementation: Modularized API

Graph (or Net) object (rough pseudo code)

A. Farhadi, S. Pratt Jan 20, 2026Lecture 5 - 70

(x,y,z are scalars)

x

y

z
*

Modularized implementation: forward / backward API

Need to stash
some values for
use in backward

Gate / Node / Function object: Actual PyTorch code

Upstream
gradient

Multiply upstream
and local gradients

A. Farhadi, S. Pratt Jan 20, 2026Lecture 5 - 71

Example: PyTorch operators

A. Farhadi, S. Pratt Jan 20, 2026Lecture 5 - 72

Source

Forward

PyTorch sigmoid layer

https://github.com/pytorch/pytorch/blob/517c7c98610402e2746586c78987c64c28e024aa/aten/src/THNN/generic/Sigmoid.c

A. Farhadi, S. Pratt Jan 20, 2026Lecture 5 - 73

PyTorch sigmoid layer

Source

Forward

Forward actually
defined elsewhere...

https://github.com/pytorch/pytorch/blob/517c7c98610402e2746586c78987c64c28e024aa/aten/src/THNN/generic/Sigmoid.c
https://github.com/pytorch/pytorch/blob/82b570528db0a43fc04bb90f5d4538c01e4a5582/aten/src/ATen/native/cpu/UnaryOpsKernel.cpp

A. Farhadi, S. Pratt Jan 20, 2026Lecture 5 - 74

Source

Forward

Backward

PyTorch sigmoid layer

Forward actually
defined elsewhere...

https://github.com/pytorch/pytorch/blob/517c7c98610402e2746586c78987c64c28e024aa/aten/src/THNN/generic/Sigmoid.c
https://github.com/pytorch/pytorch/blob/82b570528db0a43fc04bb90f5d4538c01e4a5582/aten/src/ATen/native/cpu/UnaryOpsKernel.cpp

A. Farhadi, S. Pratt Jan 20, 2026Lecture 5 - 75

So far: backprop with scalars

What about vector-valued functions?

A. Farhadi, S. Pratt Jan 20, 2026Lecture 5 - 76

Recap: Vector derivatives
Scalar to Scalar

Regular derivative:

If x changes by a
small amount, how
much will y change?

A. Farhadi, S. Pratt Jan 20, 2026Lecture 5 - 77

Recap: Vector derivatives
Scalar to Scalar

Regular derivative:

If x changes by a
small amount, how
much will y change?

Vector to Scalar

Derivative is Gradient:

For each element of x,
if it changes by a small
amount then how much
will y change?

A. Farhadi, S. Pratt Jan 20, 2026Lecture 5 - 78

Returning to this example

Sigmoid

Vector to Scalar Derivative is Gradient:

-0.40

-0.60

-0.60

0.40

-2.00

-1.00
0.73

A. Farhadi, S. Pratt Jan 20, 2026Lecture 5 - 79

Recap: Vector derivatives
Scalar to Scalar

Regular derivative:

If x changes by a
small amount, how
much will y change?

Vector to Scalar

Derivative is Gradient:

For each element of x,
if it changes by a small
amount then how much
will y change?

Vector to Vector

Derivative is Jacobian:

For each element of x, if it
changes by a small amount
then how much will each
element of y change?

A. Farhadi, S. Pratt Jan 20, 2026Lecture 5 - 80

f

Backprop with Vectors

Loss L still a scalar!

A. Farhadi, S. Pratt Jan 20, 2026Lecture 5 - 81

f

Backprop with Vectors

Dx

Dy

Dz

Loss L still a scalar!

A. Farhadi, S. Pratt Jan 20, 2026Lecture 5 - 82

f

“Upstream gradient”

Backprop with Vectors

Dx

Dy

Dz

Loss L still a scalar!

A. Farhadi, S. Pratt Jan 20, 2026Lecture 5 - 83

f

“Upstream gradient”

Dx

Dy

Dz

Dz

Loss L still a scalar!

For each element of z, how
much does it influence L?

Backprop with Vectors

A. Farhadi, S. Pratt Jan 20, 2026Lecture 5 - 84

f

“Upstream gradient”

Dx

Dy

Dz

Dz

Loss L still a scalar!

For each element of z, how
much does it influence L?

“Downstream
gradients”

Backprop with Vectors

A. Farhadi, S. Pratt Jan 20, 2026Lecture 5 - 85

f

“local
gradients”

“Upstream gradient”

Dx

Dy

Dz

Dz

Loss L still a scalar!

For each element of z, how
much does it influence L?

“Downstream
gradients”

Backprop with Vectors

A. Farhadi, S. Pratt Jan 20, 2026Lecture 5 - 86

f

“local
gradients”

“Upstream gradient”

Dx

Dy

Dz

Dz

Loss L still a scalar!

[Dy x Dz]

[Dx x Dz]

Jacobian
matrices

For each element of z, how
much does it influence L?

“Downstream
gradients”

Backprop with Vectors

A. Farhadi, S. Pratt Jan 20, 2026Lecture 5 - 87

f

“local
gradients”

“Upstream gradient”

“Downstream
gradients”

Dx

Dy

Dz

Dz

Loss L still a scalar!

[Dy x Dz]

[Dx x Dz]

Jacobian
matrices

For each element of z, how
much does it influence L?

Dy

Dx

Matrix-vector
multiply

Backprop with Vectors

A. Farhadi, S. Pratt Jan 20, 2026Lecture 5 - 88

f

“Upstream gradient”

Dx

Dy

Dz

Dz

Loss L still a scalar!

For each element of z, how
much does it influence L?

Dy

Dx

Gradients of variables wrt loss have same dims as the original variable

A. Farhadi, S. Pratt Jan 20, 2026Lecture 5 - 89

f(x) = max(0,x)
(elementwise)

4D input x:
[1]
[-2]
[3]
[-1]

Backprop with Vectors

4D output z:
[1]
[0]
[3]
[0]

A. Farhadi, S. Pratt Jan 20, 2026Lecture 5 - 90

f(x) = max(0,x)
(elementwise)

4D input x:
[1]
[-2]
[3]
[-1]

Backprop with Vectors

4D output z:
[1]
[0]
[3]
[0]

4D dL/dz:
[4]
[-1]
[5]
[9]

Upstream
gradient

A. Farhadi, S. Pratt Jan 20, 2026Lecture 5 - 91

f(x) = max(0,x)
(elementwise)

4D input x:
[1]
[-2]
[3]
[-1]

Backprop with Vectors

4D output z:
[1]
[0]
[3]
[0]

4D dL/dz:
[4]
[-1]
[5]
[9]

Jacobian dz/dx
[1 0 0 0]
[0 0 0 0]
[0 0 1 0]
[0 0 0 0]

Upstream
gradient

A. Farhadi, S. Pratt Jan 20, 2026Lecture 5 - 92

f(x) = max(0,x)
(elementwise)

4D input x:
[1]
[-2]
[3]
[-1]

Backprop with Vectors

4D output z:
[1]
[0]
[3]
[0]

4D dL/dz:
[4]
[-1]
[5]
[9]

[dz/dx] [dL/dz]
[1 0 0 0] [4]
[0 0 0 0] [-1]
[0 0 1 0] [5]
[0 0 0 0] [9]

Upstream
gradient

A. Farhadi, S. Pratt Jan 20, 2026Lecture 5 - 93

f(x) = max(0,x)
(elementwise)

4D input x:
[1]
[-2]
[3]
[-1]

Backprop with Vectors

4D output z:
[1]
[0]
[3]
[0]

4D dL/dz:
[4]
[-1]
[5]
[9]

[dz/dx] [dL/dz]
[1 0 0 0] [4]
[0 0 0 0] [-1]
[0 0 1 0] [5]
[0 0 0 0] [9]

Upstream
gradient

4D dL/dx:
[4]
[0]
[5]
[0]

A. Farhadi, S. Pratt Jan 20, 2026Lecture 5 - 94

f(x) = max(0,x)
(elementwise)

4D input x:
[1]
[-2]
[3]
[-1]

Backprop with Vectors

4D output z:
[1]
[0]
[3]
[0]

4D dL/dz:
[4]
[-1]
[5]
[9]

[dz/dx] [dL/dz]
[1 0 0 0] [4]
[0 0 0 0] [-1]
[0 0 1 0] [5]
[0 0 0 0] [9]

Upstream
gradient

Jacobian is sparse:
off-diagonal entries
always zero! Never
explicitly form
Jacobian -- instead
use implicit
multiplication

4D dL/dx:
[4]
[0]
[5]
[0]

A. Farhadi, S. Pratt Jan 20, 2026Lecture 5 - 95

f(x) = max(0,x)
(elementwise)

4D input x:
[1]
[-2]
[3]
[-1]

Backprop with Vectors

4D output z:
[1]
[0]
[3]
[0]

4D dL/dz:
[4]
[-1]
[5]
[9]

[dz/dx] [dL/dz]4D dL/dx:
[4]
[0]
[5]
[0]

Upstream
gradient

Jacobian is sparse:
off-diagonal entries
always zero! Never
explicitly form
Jacobian -- instead
use implicit
multiplication

z

A. Farhadi, S. Pratt Jan 20, 2026Lecture 5 - 96

f

Backprop with Matrices (or Tensors)

[Dx×Mx]

Loss L still a scalar!

Jacobian
matrices

Matrix-vector
multiply

[Dy×My]

[Dz×Mz]

dL/dx always has the
same shape as x!

A. Farhadi, S. Pratt Jan 20, 2026Lecture 5 - 97

f

“Upstream gradient”

“Downstream
gradients”

Backprop with Matrices (or Tensors)

[Dx×Mx]

Loss L still a scalar!

Jacobian
matrices

For each element of z, how
much does it influence L?

Matrix
multiply

[Dy×My]

[Dz×Mz]

[Dz×Mz]

[Dx×Mx]

[Dy×My]

dL/dx always has the
same shape as x!

A. Farhadi, S. Pratt Jan 20, 2026Lecture 5 - 98

“local
gradients”

“Upstream gradient”

“Downstream
gradients”

Backprop with Matrices (or Tensors)

[Dx×Mx]

Loss L still a scalar!

Jacobian
matrices

For each element of z, how
much does it influence L?

For each element of y, how much
does it influence each element of z?

Matrix
multiply

[Dy×My]

[Dz×Mz]

[Dz×Mz]

[Dx×Mx]

[Dy×My]

dL/dx always has the
same shape as x!

A. Farhadi, S. Pratt Jan 20, 2026Lecture 5 - 99

“local
gradients”

“Upstream gradient”

“Downstream
gradients”

Backprop with Matrices (or Tensors)

[Dx×Mx]

Loss L still a scalar!

[(Dx×Mx)×(Dz×Mz)]

Jacobian
matrices

For each element of z, how
much does it influence L?

For each element of y, how much
does it influence each element of z?

Matrix
multiply

[Dy×My]

[Dz×Mz]

[Dz×Mz]
[(Dy×My)×(Dz×Mz)]

[Dx×Mx]

[Dy×My]

dL/dx always has the
same shape as x!

A. Farhadi, S. Pratt Jan 20, 2026Lecture 5 - 100

Backprop with Matrices
x: [N×D]

[2 1 -3]
[-3 4 2]
w: [D×M]

[3 2 1 -1]
[2 1 3 2]
[3 2 1 -2]

Matrix Multiply

y: [N×M]
[-1 -1 2 6]
[5 2 11 1]

dL/dy: [N×M]
[2 3 -3 9]
[-8 1 4 6]

A. Farhadi, S. Pratt Jan 20, 2026Lecture 5 - 101

Backprop with Matrices
x: [N×D]

[2 1 -3]
[-3 4 2]
w: [D×M]

[3 2 1 -1]
[2 1 3 2]
[3 2 1 -2]

Matrix Multiply

dL/dy: [N×M]
[2 3 -3 9]
[-8 1 4 6]Jacobians:

dy/dx: [(N×D)×(N×M)]
dy/dw: [(D×M)×(N×M)]

For a neural net we may have
N=64, D=M=4096

Each Jacobian takes ~256 GB of
memory! Must work with them implicitly!

y: [N×M]
[-1 -1 2 6]
[5 2 11 1]

A. Farhadi, S. Pratt Jan 20, 2026Lecture 5 - 102

Backprop with Matrices
x: [N×D]

[2 1 -3]
[-3 4 2]
w: [D×M]

[3 2 1 -1]
[2 1 3 2]
[3 2 1 -2]

Matrix Multiply

dL/dy: [N×M]
[2 3 -3 9]
[-8 1 4 6]Q: What parts of y

are affected by one
element of x?

y: [N×M]
[-1 -1 2 6]
[5 2 11 1]

A. Farhadi, S. Pratt Jan 20, 2026Lecture 5 - 103

Backprop with Matrices
x: [N×D]

[2 1 -3]
[-3 4 2]
w: [D×M]

[3 2 1 -1]
[2 1 3 2]
[3 2 1 -2]

Matrix Multiply

dL/dy: [N×M]
[2 3 -3 9]
[-8 1 4 6]Q: What parts of y

are affected by one
element of x?
A: affects the
whole row

y: [N×M]
[-1 -1 2 6]
[5 2 11 1]

A. Farhadi, S. Pratt Jan 20, 2026Lecture 5 - 104

Backprop with Matrices
x: [N×D]

[2 1 -3]
[-3 4 2]
w: [D×M]

[3 2 1 -1]
[2 1 3 2]
[3 2 1 -2]

Matrix Multiply

dL/dy: [N×M]
[2 3 -3 9]
[-8 1 4 6]Q: What parts of y

are affected by one
element of x?
A: affects the
whole row

Q: How much
does
affect ?

y: [N×M]
[-1 -1 2 6]
[5 2 11 1]

A. Farhadi, S. Pratt Jan 20, 2026Lecture 5 - 105

Backprop with Matrices
x: [N×D]

[2 1 -3]
[-3 4 2]
w: [D×M]

[3 2 1 -1]
[2 1 3 2]
[3 2 1 -2]

Matrix Multiply

dL/dy: [N×M]
[2 3 -3 9]
[-8 1 4 6]Q: What parts of y

are affected by one
element of x?
A: affects the
whole row

Q: How much
does
affect ?
A:

y: [N×M]
[-1 -1 2 6]
[5 2 11 1]

A. Farhadi, S. Pratt Jan 20, 2026Lecture 5 - 106

Backprop with Matrices
x: [N×D]

[2 1 -3]
[-3 4 2]
w: [D×M]

[3 2 1 -1]
[2 1 3 2]
[3 2 1 -2]

Matrix Multiply

dL/dy: [N×M]
[2 3 -3 9]
[-8 1 4 6]Q: What parts of y

are affected by one
element of x?
A: affects the
whole row

Q: How much
does
affect ?
A:

[N×D] [N×M] [M×D]

y: [N×M]
[-1 -1 2 6]
[5 2 11 1]

A. Farhadi, S. Pratt Jan 20, 2026Lecture 5 - 107

Backprop with Matrices
x: [N×D]

[2 1 -3]
[-3 4 2]
w: [D×M]

[3 2 1 -1]
[2 1 3 2]
[3 2 1 -2]

Matrix Multiply

dL/dy: [N×M]
[2 3 -3 9]
[-8 1 4 6]

[N×D] [N×M] [M×D] [D×M] [D×N] [N×M]

By similar logic:

These formulas are
easy to remember: they
are the only way to
make shapes match up!

y: [N×M]
[-1 -1 2 6]
[5 2 11 1]

A. Farhadi, S. Pratt Jan 20, 2026Lecture 5 -

Linear score function:

2-layer Neural Network

Wrapping up: Neural Networks

x hW1 sW2

3072 100 10

108

A. Farhadi, S. Pratt Jan 20, 2026Lecture 5 -

Next: Convolutional Neural Networks

Illustration of LeCun et al. 1998

109

A. Farhadi, S. Pratt Jan 20, 2026Lecture 5 -

3072
1

Recap: Fully Connected Layer
32x32x3 image -> stretch to 3072 x 1

10 x 3072
weights

activationinput

1
10

110

A. Farhadi, S. Pratt Jan 20, 2026Lecture 5 -

3072
1

Fully Connected Layer
32x32x3 image -> stretch to 3072 x 1

10 x 3072
weights

activationinput

1 number:
the result of taking a dot product
between a row of W and the input
(a 3072-dimensional dot product)

1
10

111

A. Farhadi, S. Pratt Jan 20, 2026Lecture 5 -

32

32

3

Convolution Layer
32x32x3 image -> preserve spatial structure

width

height

depth

112

Main idea: only look at
small patches of an image

A. Farhadi, S. Pratt Jan 20, 2026Lecture 5 -

32

32

3

Convolution Layer

5x5x3 filter

32x32x3 image

Convolve the filter with the image
i.e. “slide over the image spatially,
computing dot products”

113

A. Farhadi, S. Pratt Jan 20, 2026Lecture 5 -

32

32

3

Convolution Layer

5x5x3 filter

32x32x3 image

Convolve the filter with the image
i.e. “slide over the image spatially,
computing dot products”

Filters always extend the full
depth of the input volume

114

A. Farhadi, S. Pratt Jan 20, 2026Lecture 5 -

32

32

3

Convolution Layer
32x32x3 image
5x5x3 filter

1 number:
the result of taking a dot product between the
filter and a small 5x5x3 chunk of the image
(i.e. 5*5*3 = 75-dimensional dot product + bias)

115

A. Farhadi, S. Pratt Jan 20, 2026Lecture 5 -

32

32

3

Convolution Layer

116

A. Farhadi, S. Pratt Jan 20, 2026Lecture 5 -

32

32

3

Convolution Layer

117

A. Farhadi, S. Pratt Jan 20, 2026Lecture 5 -

32

32

3

Convolution Layer

118

A. Farhadi, S. Pratt Jan 20, 2026Lecture 5 -

32

32

3

Convolution Layer

119

A. Farhadi, S. Pratt Jan 20, 2026Lecture 5 -

32

32

3

Convolution Layer
32x32x3 image
5x5x3 filter

convolve (slide) over all
spatial locations

activation map

1

28

28

120

A. Farhadi, S. Pratt Jan 20, 2026Lecture 5 -

32

32

3

Convolution Layer
32x32x3 image
5x5x3 filter

convolve (slide) over all
spatial locations

activation maps

1

28

28

consider a second, green filter

121

A. Farhadi, S. Pratt Jan 20, 2026Lecture 5 -

32

32

3

Convolution Layer

activation maps

6

28

28

For example, if we had 6 5x5 filters, we’ll get 6 separate activation maps:

We stack these up to get a “new image” of size 28x28x6!

122

A. Farhadi, S. Pratt Jan 20, 2026Lecture 5 -

Preview: ConvNet is a sequence of Convolution Layers, interspersed with
activation functions

32

32

3

28

28

6

CONV,
ReLU
e.g. 6
5x5x3
filters

123

A. Farhadi, S. Pratt Jan 20, 2026Lecture 5 -

Preview: ConvNet is a sequence of Convolution Layers, interspersed with
activation functions

32

32

3

CONV,
ReLU
e.g. 6
5x5x3
filters 28

28

6

CONV,
ReLU
e.g. 10
5x5x6
filters

CONV,
ReLU

….

10

24

24

124

A. Farhadi, S. Pratt Jan 20, 2026Lecture 5 -

Preview [Zeiler and Fergus 2013] Visualization of VGG-16 by Lane McIntosh. VGG-16

architecture from [Simonyan and Zisserman 2014].

125

A. Farhadi, S. Pratt Jan 20, 2026Lecture 5 -

Preview

126

A. Farhadi, S. Pratt Jan 20, 2026Lecture 5 -

example 5x5 filters
(32 total)

We call the layer convolutional
because it is related to convolution
of two signals:

elementwise multiplication and sum of
a filter and the signal (image)

one filter =>
one activation map

Figure copyright Andrej Karpathy.

127

A. Farhadi, S. Pratt Jan 20, 2026Lecture 5 -

preview:

128

A. Farhadi, S. Pratt Jan 20, 2026Lecture 5 -

A closer look at spatial dimensions:

32

32

3

32x32x3 image
5x5x3 filter

convolve (slide) over all
spatial locations

activation map

1

28

28

129

A. Farhadi, S. Pratt Jan 20, 2026Lecture 5 -

7x7 input (spatially)
assume 3x3 filter

7

7

A closer look at spatial dimensions:

130

A. Farhadi, S. Pratt Jan 20, 2026Lecture 5 -

7x7 input (spatially)
assume 3x3 filter

7

7

A closer look at spatial dimensions:

131

A. Farhadi, S. Pratt Jan 20, 2026Lecture 5 -

7x7 input (spatially)
assume 3x3 filter

7

7

A closer look at spatial dimensions:

132

A. Farhadi, S. Pratt Jan 20, 2026Lecture 5 -

7x7 input (spatially)
assume 3x3 filter

7

7

A closer look at spatial dimensions:

133

A. Farhadi, S. Pratt Jan 20, 2026Lecture 5 -

7x7 input (spatially)
assume 3x3 filter

=> 5x5 output

7

7

A closer look at spatial dimensions:

134

A. Farhadi, S. Pratt Jan 20, 2026Lecture 5 -

7x7 input (spatially)
assume 3x3 filter
applied with stride 2

7

7

A closer look at spatial dimensions:

135

A. Farhadi, S. Pratt Jan 20, 2026Lecture 5 -

7x7 input (spatially)
assume 3x3 filter
applied with stride 2

7

7

A closer look at spatial dimensions:

136

A. Farhadi, S. Pratt Jan 20, 2026Lecture 5 -

7x7 input (spatially)
assume 3x3 filter
applied with stride 2
=> 3x3 output!

7

7

A closer look at spatial dimensions:

137

A. Farhadi, S. Pratt Jan 20, 2026Lecture 5 -

7x7 input (spatially)
assume 3x3 filter
applied with stride 3?

7

7

A closer look at spatial dimensions:

138

A. Farhadi, S. Pratt Jan 20, 2026Lecture 5 -

7x7 input (spatially)
assume 3x3 filter
applied with stride 3?

7

7

A closer look at spatial dimensions:

doesn’t fit!
cannot apply 3x3 filter on
7x7 input with stride 3.

139

A. Farhadi, S. Pratt Jan 20, 2026Lecture 5 -

N

NF

F

Output size:
(N - F) / stride + 1

e.g. N = 7, F = 3:
stride 1 => (7 - 3)/1 + 1 = 5
stride 2 => (7 - 3)/2 + 1 = 3
stride 3 => (7 - 3)/3 + 1 = 2.33 :\

140

A. Farhadi, S. Pratt Jan 20, 2026Lecture 5 -

In practice: Common to zero pad the border
0 0 0 0 0 0

0

0

0

0

e.g. input 7x7
3x3 filter, applied with stride 1
pad with 1 pixel border => what is the output?

(recall:)
(N - F) / stride + 1

141

A. Farhadi, S. Pratt Jan 20, 2026Lecture 5 -

In practice: Common to zero pad the border

e.g. input 7x7
3x3 filter, applied with stride 1
pad with 1 pixel border => what is the output?

7x7 output!

0 0 0 0 0 0

0

0

0

0

(recall:)
(N + 2P - F) / stride + 1

142

A. Farhadi, S. Pratt Jan 20, 2026Lecture 5 -

In practice: Common to zero pad the border

e.g. input 7x7
3x3 filter, applied with stride 1
pad with 1 pixel border => what is the output?

7x7 output!
in general, common to see CONV layers with
stride 1, filters of size FxF, and zero-padding with
(F-1)/2. (will preserve size spatially)
e.g. F = 3 => zero pad with 1
 F = 5 => zero pad with 2
 F = 7 => zero pad with 3

0 0 0 0 0 0

0

0

0

0

143

A. Farhadi, S. Pratt Jan 20, 2026Lecture 5 -

Remember back to…
E.g. 32x32 input convolved repeatedly with 5x5 filters shrinks volumes spatially!
(32 -> 28 -> 24 ...).

32

32

3

CONV,
ReLU
e.g. 6
5x5x3
filters 28

28

6

CONV,
ReLU
e.g. 10
5x5x6
filters

CONV,
ReLU

….

10

24

24

144

A. Farhadi, S. Pratt Jan 20, 2026Lecture 5 -

Examples time:

Input volume: 32x32x3
10 5x5 filters with stride 1, pad 2

Let’s assume output size is HxWxD.
What is D?

145

A. Farhadi, S. Pratt Jan 20, 2026Lecture 5 -

Examples time:

Input volume: 32x32x3
10 5x5 filters with stride 1, pad 2

Let’s assume output size is HxWxD.
What is D? 10

146

A. Farhadi, S. Pratt Jan 20, 2026Lecture 5 -

Examples time:

Input volume: 32x32x3
10 5x5 filters with stride 1, pad 2

Let’s assume output size is HxWxD.
What is D? 10
What is H or W?

147

A. Farhadi, S. Pratt Jan 20, 2026Lecture 5 -

Examples time:

Input volume: 32x32x3
10 5x5 filters with stride 1, pad 2

Let’s assume output size is HxWxD.
What is D? 10
What is H or W? (32+2*2-5)/1+1 = 32

148

A. Farhadi, S. Pratt Jan 20, 2026Lecture 5 -

Examples time:

Input volume: 32x32x3
10 5x5 filters with stride 1, pad 2

Let’s assume output size is HxWxD.
What is D? 10
What is H or W? (32+2*2-5)/1+1 = 32
So the total output size is: 32x32x10

149

A. Farhadi, S. Pratt Jan 20, 2026Lecture 5 -

Examples time:

Input volume: 32x32x3
10 5x5 filters with stride 1, pad 2

Number of parameters in this layer?

150

A. Farhadi, S. Pratt Jan 20, 2026Lecture 5 -

Examples time:

Input volume: 32x32x3
10 5x5 filters with stride 1, pad 2

Number of parameters in this layer?
each filter has 5*5*3 + 1 = 76 params (+1 for bias)

=> 76*10 = 760

151

A. Farhadi, S. Pratt Jan 20, 2026Lecture 5 - 152

Convolution layer: summary

Let’s assume input is W1 x H1 x C
Conv layer needs 4 hyperparameters:
- Number of filters K
- The filter size F
- The stride S
- The zero padding P

This will produce an output of W2 x H2 x K
where:
- W2 = (W1 - F + 2P)/S + 1
- H2 = (H1 - F + 2P)/S + 1

Number of parameters: F2KC and K biases

A. Farhadi, S. Pratt Jan 20, 2026Lecture 5 - 153

Convolution layer: summary

Let’s assume input is W1 x H1 x C
Conv layer needs 4 hyperparameters:
- Number of filters K
- The filter size F
- The stride S
- The zero padding P

This will produce an output of W2 x H2 x K
where:
- W2 = (W1 - F + 2P)/S + 1
- H2 = (H1 - F + 2P)/S + 1

Number of parameters: F2CK and K biases

Common settings:

K = (powers of 2, e.g. 32, 64, 128, 512)
- F = 3, S = 1, P = 1
- F = 5, S = 1, P = 2
- F = 5, S = 2, P = ? (whatever fits)
- F = 1, S = 1, P = 0

A. Farhadi, S. Pratt Jan 20, 2026Lecture 5 -

(btw, 1x1 convolution layers are very useful)

64

56

56
1x1 CONV
with 32 filters

32
56

56
(each filter has size
1x1x64, and performs a
64-dimensional dot
product)

154

A. Farhadi, S. Pratt Jan 20, 2026Lecture 5 -

(btw, 1x1 convolution layers are a very useful)

64

56

56
1x1 CONV
with 32 filters

32
56

56
(each filter has size
1x1x64, and performs a
64-dimensional dot
product)

155

A. Farhadi, S. Pratt Jan 20, 2026Lecture 5 -

Conv layer needs 4 hyperparameters:
- Number of filters K
- The filter size F
- The stride S
- The zero padding P

Example: CONV
layer in PyTorch

PyTorch is licensed under BSD 3-clause.

156

https://pytorch.org/
https://github.com/pytorch/examples/blob/master/LICENSE

A. Farhadi, S. Pratt Jan 20, 2026Lecture 5 -

Example: CONV
layer in Keras

Keras is licensed under the MIT license.

157

Conv layer needs 4 hyperparameters:
- Number of filters K
- The filter size F
- The stride S
- The zero padding P

https://keras.io/
https://github.com/keras-team/keras/blob/master/LICENSE

A. Farhadi, S. Pratt Jan 20, 2026Lecture 5 -

The brain/neuron view of CONV Layer

32

32

3

32x32x3 image
5x5x3 filter

1 number:
the result of taking a dot product between
the filter and this part of the image
(i.e. 5*5*3 = 75-dimensional dot product)

158

A. Farhadi, S. Pratt Jan 20, 2026Lecture 5 -

The brain/neuron view of CONV Layer

32

32

3

32x32x3 image
5x5x3 filter

1 number:
the result of taking a dot product between
the filter and this part of the image
(i.e. 5*5*3 = 75-dimensional dot product)

It’s just a neuron with local
connectivity...

159

A. Farhadi, S. Pratt Jan 20, 2026Lecture 5 -

Receptive field

32

32

3

An activation map is a 28x28 sheet of neuron
outputs:
1. Each is connected to a small region in the input
2. All of them share parameters

“5x5 filter” -> “5x5 receptive field for each neuron”28

28

160

A. Farhadi, S. Pratt Jan 20, 2026Lecture 5 -

The brain/neuron view of CONV Layer

32

32

3

28

28

E.g. with 5 filters,
CONV layer consists of
neurons arranged in a 3D grid
(28x28x5)

There will be 5 different
neurons all looking at the same
region in the input volume5

161

A. Farhadi, S. Pratt Jan 20, 2026Lecture 5 -

3072
1

Fully connected layer is a special convolution

32x32x3 image -> stretch to 3072 x 1

10 x 3072
weights

activationinput

1 number:
the result of taking a dot product
between a row of W and the input
(a 3072-dimensional dot product)

1
10

Each neuron
looks at the full
input volume

162

A. Farhadi, S. Pratt Jan 20, 2026Lecture 5 -

FOUR layers in total: CONV/ReLU/POOL/FC

163

A. Farhadi, S. Pratt Jan 20, 2026Lecture 5 -

Pooling layer
- makes the representations smaller and more manageable
- operates over each activation map independently:

164

A. Farhadi, S. Pratt Jan 20, 2026Lecture 5 -

1 1 2 4

5 6 7 8

3 2 1 0

1 2 3 4

Single depth slice

x

y

max pool with 2x2 filters
and stride 2 6 8

3 4

MAX POOLING

165

A. Farhadi, S. Pratt Jan 20, 2026Lecture 5 - 166

Pooling layer: summary

Let’s assume input is W1 x H1 x C
Conv layer needs 2 hyperparameters:
- The spatial extent F
- The stride S

This will produce an output of W2 x H2 x C where:
- W2 = (W1 - F)/S + 1
- H2 = (H1 - F)/S + 1

Number of parameters: 0

A. Farhadi, S. Pratt Jan 20, 2026Lecture 5 -

Fully Connected Layer (FC layer)
- Contains neurons that connect to the entire input volume, as in ordinary Neural

Networks

167

A. Farhadi, S. Pratt Jan 20, 2026Lecture 5 -

Summary

- ConvNets stack CONV,POOL,FC layers
- Trend towards smaller filters and deeper architectures
- Trend towards getting rid of POOL/FC layers (just CONV)
- Between 2012-2016 architectures looked like

[(CONV-RELU)*N-POOL?]*M-(FC-RELU)*K,SOFTMAX
 where N is usually up to ~5, M is large, 0 <= K <= 2.

- but recent advances such as ResNet/GoogLeNet
have challenged this paradigm

168

