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Lecture 5:
Backprop + Convolutional 
Neural Networks
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Administrative: EdStem

Please make sure to check and read all pinned EdStem posts.
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Due 1/22 11:59pm

- K-Nearest Neighbor
- Linear classifiers: SVM, Softmax

Administrative: Assignment 1
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Administrative: Fridays
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This Friday 

Convolutions & Vectorization
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Project proposal due 1/29 11:59pm 

“Is X a valid project for 493G1?” 

- Anything related to deep learning or computer vision
- Maximum of 3 students per team
- Make a EdStem private post or come to TA Office Hours

More info on the website

Form to help make groups posted, please fill out by Thursday if interested. 

Administrative: Course Project
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Linear score function:

2-layer Neural Network
      

Last time: Neural Networks

x hW1 sW2

3072 100 10
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original W

negative gradient direction
W_1

W_2
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Stochastic Gradient Descent (SGD)

8

Full sum expensive 
when N is large!

Approximate sum 
using a minibatch of 
examples
32 / 64 / 128 common
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(Bad) Idea: Derive             on paper

Problem: What if we want to 
change loss? E.g. use softmax 
instead of SVM? Need to 
re-derive from scratch =(

Problem: Very tedious: Lots of 
matrix calculus, need lots of paper

Problem: Not feasible for very 
complex models!
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input image

loss

weights

Convolutional network
(AlexNet)

Figure copyright Alex Krizhevsky, Ilya Sutskever, and 

Geoffrey Hinton, 2012. Reproduced with permission. 
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Really complex neural networks!!

Figure reproduced with permission from a Twitter post by Andrej Karpathy.

input image

loss

https://twitter.com/karpathy/status/597631909930242048?lang=en
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x

W

hinge 
loss

R

+ L
s (scores)

Better Idea: Computational graphs + Backpropagation

*
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Solution: Backpropagation
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Backpropagation: a simple example
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Backpropagation: a simple example
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e.g. x = -2, y = 5, z = -4

Backpropagation: a simple example
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Want: 

Backpropagation: a simple example
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e.g. x = -2, y = 5, z = -4

Want: 

Backpropagation: a simple example

Chain rule:

Upstream 
gradient

Local
gradient
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gradient
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e.g. x = -2, y = 5, z = -4
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Backpropagation: a simple example
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Chain rule:

e.g. x = -2, y = 5, z = -4

Want: 

Backpropagation: a simple example

Upstream 
gradient

Local
gradient
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f
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f

“local gradient”
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f

“local gradient”

“Upstream
gradient”
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f

“local gradient”

“Upstream
gradient”

“Downstream
gradients”
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f

“local gradient”

“Upstream
gradient”

“Downstream
gradients”
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f

“local gradient”

“Upstream
gradient”

“Downstream
gradients”
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Another example:
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Another example:
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Another example:
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Another example:
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Another example:
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Another example:

Upstream 
gradient

Local
gradient
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Another example:
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Another example:

Upstream 
gradient

Local
gradient
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Another example:
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Another example:

Upstream 
gradient

Local
gradient
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Another example:
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Another example:

Upstream 
gradient

Local
gradient
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Another example:
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Another example:

[upstream gradient] x [local gradient]
[0.2] x [1] = 0.2
[0.2] x [1] = 0.2  (both inputs!)
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Another example:
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Another example:

[upstream gradient] x [local gradient]
w0: [0.2] x [-1] = -0.2
x0: [0.2] x [2] = 0.4
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Another example:

Sigmoid

Sigmoid 
function

Computational graph 
representation may not 
be unique. Choose one 
where local gradients at 
each node can be easily 
expressed!
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Another example:

Sigmoid

Sigmoid 
function

Sigmoid local 
gradient:

Computational graph 
representation may not 
be unique. Choose one 
where local gradients at 
each node can be easily 
expressed!
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Another example:

Sigmoid

Sigmoid 
function

Sigmoid local 
gradient:

Computational graph 
representation may not 
be unique. Choose one 
where local gradients at 
each node can be easily 
expressed!

[upstream gradient] x [local gradient]
[1.00] x [(1 - 1/(1+e1)) (1/(1+e1))] = 0.2
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Another example:

Sigmoid

Sigmoid 
function

Sigmoid local 
gradient:

Computational graph 
representation may not 
be unique. Choose one 
where local gradients at 
each node can be easily 
expressed!

[upstream gradient] x [local gradient]
[1.00] x [(1 - 0.73) (0.73)] = 0.2
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add gate: gradient distributor

Patterns in gradient flow

+
3

4
7
2

2

2
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add gate: gradient distributor

Patterns in gradient flow

+
3

4
7
2

2

2

mul gate: “swap multiplier”

×
2

3
6
5

5*3=15

2*5=10
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add gate: gradient distributor

Patterns in gradient flow

+
3

4
7
2

2

2

mul gate: “swap multiplier”

copy gate: gradient adder

×
2

3
6
5

5*3=15

2*5=10

7

7
7

4+2=6

4

2
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add gate: gradient distributor

Patterns in gradient flow

+
3

4
7
2

2

2

mul gate: “swap multiplier”

max gate: gradient router

max

copy gate: gradient adder

×
2

3
6
5

5*3=15

2*5=10

4

5
5
9

0

9

7

7
7

4+2=6

4

2
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Backprop Implementation: 
“Flat” code Forward pass:

Compute output

Backward pass:
Compute grads
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Backprop Implementation: 
“Flat” code Forward pass:

Compute output

Base case
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Backprop Implementation: 
“Flat” code Forward pass:

Compute output

Sigmoid
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Backprop Implementation: 
“Flat” code Forward pass:

Compute output

Add gate
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Backprop Implementation: 
“Flat” code Forward pass:

Compute output

Add gate
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Backprop Implementation: 
“Flat” code Forward pass:

Compute output

Multiply gate
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Backprop Implementation: 
“Flat” code Forward pass:

Compute output

Multiply gate
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Stage your forward/backward computation!
E.g. for the SVM:

margins

“Flat” Backprop: Do this for assignment 1!
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“Flat” Backprop: Do this for assignment 1!

E.g. for two-layer neural net:
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Backprop Implementation: Modularized API

Graph (or Net) object  (rough pseudo code)
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(x,y,z are scalars)

x

y

z
*

Modularized implementation: forward / backward API

Need to stash 
some values for 
use in backward

Gate / Node / Function object: Actual PyTorch code

Upstream 
gradient

Multiply upstream 
and local gradients
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Example: PyTorch operators
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Source

Forward

PyTorch sigmoid layer

https://github.com/pytorch/pytorch/blob/517c7c98610402e2746586c78987c64c28e024aa/aten/src/THNN/generic/Sigmoid.c
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PyTorch sigmoid layer

Source

Forward

Forward actually 
defined elsewhere...

https://github.com/pytorch/pytorch/blob/517c7c98610402e2746586c78987c64c28e024aa/aten/src/THNN/generic/Sigmoid.c
https://github.com/pytorch/pytorch/blob/82b570528db0a43fc04bb90f5d4538c01e4a5582/aten/src/ATen/native/cpu/UnaryOpsKernel.cpp
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Source

Forward

Backward

PyTorch sigmoid layer

Forward actually 
defined elsewhere...

https://github.com/pytorch/pytorch/blob/517c7c98610402e2746586c78987c64c28e024aa/aten/src/THNN/generic/Sigmoid.c
https://github.com/pytorch/pytorch/blob/82b570528db0a43fc04bb90f5d4538c01e4a5582/aten/src/ATen/native/cpu/UnaryOpsKernel.cpp
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So far: backprop with scalars

What about vector-valued functions?
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Recap: Vector derivatives
Scalar to Scalar

Regular derivative:

If x changes by a 
small amount, how 
much will y change?
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Recap: Vector derivatives
Scalar to Scalar

Regular derivative:

If x changes by a 
small amount, how 
much will y change?

Vector to Scalar

Derivative is Gradient:

For each element of x, 
if it changes by a small 
amount then how much 
will y change?
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Returning to this example

Sigmoid

Vector to Scalar Derivative is Gradient:

-0.40

-0.60

-0.60

0.40

-2.00

-1.00
0.73
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Recap: Vector derivatives
Scalar to Scalar

Regular derivative:

If x changes by a 
small amount, how 
much will y change?

Vector to Scalar

Derivative is Gradient:

For each element of x, 
if it changes by a small 
amount then how much 
will y change?

Vector to Vector

Derivative is Jacobian:

For each element of x, if it 
changes by a small amount 
then how much will each 
element of y change?
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f

Backprop with Vectors

Loss L still a scalar!
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f

Backprop with Vectors

Dx

Dy

Dz

Loss L still a scalar!
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f

“Upstream gradient”

Backprop with Vectors

Dx

Dy

Dz

Loss L still a scalar!
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f

“Upstream gradient”

Dx

Dy

Dz

Dz

Loss L still a scalar!

For each element of z, how 
much does it influence L?

Backprop with Vectors
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f

“Upstream gradient”

Dx

Dy

Dz

Dz

Loss L still a scalar!

For each element of z, how 
much does it influence L?

“Downstream 
gradients”

Backprop with Vectors
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f

“local 
gradients”

“Upstream gradient”

Dx

Dy

Dz

Dz

Loss L still a scalar!

For each element of z, how 
much does it influence L?

“Downstream 
gradients”

Backprop with Vectors
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f

“local 
gradients”

“Upstream gradient”

Dx

Dy

Dz

Dz

Loss L still a scalar!

[Dy x Dz] 

[Dx x Dz] 

Jacobian 
matrices

For each element of z, how 
much does it influence L?

“Downstream 
gradients”

Backprop with Vectors
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f

“local 
gradients”

“Upstream gradient”

“Downstream 
gradients”

Dx

Dy

Dz

Dz

Loss L still a scalar!

[Dy x Dz] 

[Dx x Dz] 

Jacobian 
matrices

For each element of z, how 
much does it influence L?

Dy

Dx

Matrix-vector
multiply

Backprop with Vectors
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f

“Upstream gradient”

Dx

Dy

Dz

Dz

Loss L still a scalar!

For each element of z, how 
much does it influence L?

Dy

Dx

Gradients of variables wrt loss have same dims as the original variable
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f(x) = max(0,x)
(elementwise)

4D input x:
[  1  ]
[ -2  ]
[  3  ]
[  -1 ]

Backprop with Vectors

4D output z: 
[  1  ]
[  0  ]
[  3  ]
[  0  ]
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f(x) = max(0,x)
(elementwise)

4D input x:
[  1  ]
[ -2  ]
[  3  ]
[  -1 ]

Backprop with Vectors

4D output z: 
[  1  ]
[  0  ]
[  3  ]
[  0  ]

4D dL/dz: 
[  4  ]
[  -1 ]
[  5  ]
[  9  ]

Upstream
gradient
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f(x) = max(0,x)
(elementwise)

4D input x:
[  1  ]
[ -2  ]
[  3  ]
[  -1 ]

Backprop with Vectors

4D output z: 
[  1  ]
[  0  ]
[  3  ]
[  0  ]

4D dL/dz: 
[  4  ]
[  -1 ]
[  5  ]
[  9  ]

Jacobian dz/dx
[ 1 0 0 0 ] 
[ 0 0 0 0 ] 
[ 0 0 1 0 ] 
[ 0 0 0 0 ] 

Upstream
gradient
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f(x) = max(0,x)
(elementwise)

4D input x:
[  1  ]
[ -2  ]
[  3  ]
[  -1 ]

Backprop with Vectors

4D output z: 
[  1  ]
[  0  ]
[  3  ]
[  0  ]

4D dL/dz: 
[  4  ]
[  -1 ]
[  5  ]
[  9  ]

[dz/dx] [dL/dz]
[ 1 0 0 0 ] [ 4  ]
[ 0 0 0 0 ] [ -1 ]
[ 0 0 1 0 ] [ 5  ]
[ 0 0 0 0 ] [ 9  ]

Upstream
gradient
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f(x) = max(0,x)
(elementwise)

4D input x:
[  1  ]
[ -2  ]
[  3  ]
[  -1 ]

Backprop with Vectors

4D output z: 
[  1  ]
[  0  ]
[  3  ]
[  0  ]

4D dL/dz: 
[  4  ]
[  -1 ]
[  5  ]
[  9  ]

[dz/dx] [dL/dz]
[ 1 0 0 0 ] [ 4  ]
[ 0 0 0 0 ] [ -1 ]
[ 0 0 1 0 ] [ 5  ]
[ 0 0 0 0 ] [ 9  ]

Upstream
gradient

4D dL/dx: 
[ 4 ]
[ 0 ]
[ 5 ]
[ 0 ]



A. Farhadi, S. Pratt Jan 20, 2026Lecture 5 - 94

f(x) = max(0,x)
(elementwise)

4D input x:
[  1  ]
[ -2  ]
[  3  ]
[  -1 ]

Backprop with Vectors

4D output z: 
[  1  ]
[  0  ]
[  3  ]
[  0  ]

4D dL/dz: 
[  4  ]
[  -1 ]
[  5  ]
[  9  ]

[dz/dx] [dL/dz]
[ 1 0 0 0 ] [ 4  ]
[ 0 0 0 0 ] [ -1 ]
[ 0 0 1 0 ] [ 5  ]
[ 0 0 0 0 ] [ 9  ]

Upstream
gradient

Jacobian is sparse: 
off-diagonal entries 
always zero! Never 
explicitly form 
Jacobian -- instead 
use implicit 
multiplication

4D dL/dx: 
[ 4 ]
[ 0 ]
[ 5 ]
[ 0 ]
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f(x) = max(0,x)
(elementwise)

4D input x:
[  1  ]
[ -2  ]
[  3  ]
[  -1 ]

Backprop with Vectors

4D output z: 
[  1  ]
[  0  ]
[  3  ]
[  0  ]

4D dL/dz: 
[  4  ]
[  -1 ]
[  5  ]
[  9  ]

[dz/dx] [dL/dz]4D dL/dx: 
[ 4 ]
[ 0 ]
[ 5 ]
[ 0 ]

Upstream
gradient

Jacobian is sparse: 
off-diagonal entries 
always zero! Never 
explicitly form 
Jacobian -- instead 
use implicit 
multiplication

z
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f

Backprop with Matrices (or Tensors)

[Dx×Mx]

Loss L still a scalar!

Jacobian 
matrices

Matrix-vector
multiply

[Dy×My]

[Dz×Mz]

dL/dx always has the 
same shape as x!
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f

“Upstream gradient”

“Downstream 
gradients”

Backprop with Matrices (or Tensors)

[Dx×Mx]

Loss L still a scalar!

Jacobian 
matrices

For each element of z, how 
much does it influence L?

Matrix
multiply

[Dy×My]

[Dz×Mz]

[Dz×Mz]

[Dx×Mx]

[Dy×My]

dL/dx always has the 
same shape as x!
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“local 
gradients”

“Upstream gradient”

“Downstream 
gradients”

Backprop with Matrices (or Tensors)

[Dx×Mx]

Loss L still a scalar!

Jacobian 
matrices

For each element of z, how 
much does it influence L?

For each element of y, how much 
does it influence each element of z?

Matrix
multiply

[Dy×My]

[Dz×Mz]

[Dz×Mz]

[Dx×Mx]

[Dy×My]

dL/dx always has the 
same shape as x!
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“local 
gradients”

“Upstream gradient”

“Downstream 
gradients”

Backprop with Matrices (or Tensors)

[Dx×Mx]

Loss L still a scalar!

[(Dx×Mx)×(Dz×Mz)] 

Jacobian 
matrices

For each element of z, how 
much does it influence L?

For each element of y, how much 
does it influence each element of z?

Matrix
multiply

[Dy×My]

[Dz×Mz]

[Dz×Mz]
[(Dy×My)×(Dz×Mz)] 

[Dx×Mx]

[Dy×My]

dL/dx always has the 
same shape as x!
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Backprop with Matrices
x: [N×D]

[  2   1  -3 ]
[ -3   4   2 ]
w: [D×M]

[  3  2  1 -1]
[  2  1  3  2]
[  3  2  1 -2]

Matrix Multiply

y: [N×M]
[-1  -1  2  6 ]
[  5  2  11  1 ]

dL/dy: [N×M]
[  2  3 -3  9 ]
[ -8  1  4  6 ]
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Backprop with Matrices
x: [N×D]

[  2   1  -3 ]
[ -3   4   2 ]
w: [D×M]

[  3  2  1 -1]
[  2  1  3  2]
[  3  2  1 -2]

Matrix Multiply

dL/dy: [N×M]
[  2  3 -3  9 ]
[ -8  1  4  6 ]Jacobians:

dy/dx: [(N×D)×(N×M)]
dy/dw: [(D×M)×(N×M)]

For a neural net we may have 
N=64, D=M=4096

Each Jacobian takes ~256 GB of 
memory! Must work with them implicitly!

y: [N×M]
[-1  -1  2  6 ]
[  5  2  11  1 ]
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Backprop with Matrices
x: [N×D]

[  2   1  -3 ]
[ -3   4   2 ]
w: [D×M]

[  3  2  1 -1]
[  2  1  3  2]
[  3  2  1 -2]

Matrix Multiply

dL/dy: [N×M]
[  2  3 -3  9 ]
[ -8  1  4  6 ]Q: What parts of y 

are affected by one 
element of x?

y: [N×M]
[-1  -1  2  6 ]
[  5  2  11  1 ]
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Backprop with Matrices
x: [N×D]

[  2   1  -3 ]
[ -3   4   2 ]
w: [D×M]

[  3  2  1 -1]
[  2  1  3  2]
[  3  2  1 -2]

Matrix Multiply

dL/dy: [N×M]
[  2  3 -3  9 ]
[ -8  1  4  6 ]Q: What parts of y 

are affected by one 
element of x?
A:          affects the 
whole row  

y: [N×M]
[-1  -1  2  6 ]
[  5  2  11  1 ]
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Backprop with Matrices
x: [N×D]

[  2   1  -3 ]
[ -3   4   2 ]
w: [D×M]

[  3  2  1 -1]
[  2  1  3  2]
[  3  2  1 -2]

Matrix Multiply

dL/dy: [N×M]
[  2  3 -3  9 ]
[ -8  1  4  6 ]Q: What parts of y 

are affected by one 
element of x?
A:          affects the 
whole row  

Q: How much 
does        
affect          ?  

y: [N×M]
[-1  -1  2  6 ]
[  5  2  11  1 ]
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Backprop with Matrices
x: [N×D]

[  2   1  -3 ]
[ -3   4   2 ]
w: [D×M]

[  3  2  1 -1]
[  2  1  3  2]
[  3  2  1 -2]

Matrix Multiply

dL/dy: [N×M]
[  2  3 -3  9 ]
[ -8  1  4  6 ]Q: What parts of y 

are affected by one 
element of x?
A:          affects the 
whole row  

Q: How much 
does        
affect          ?
A:   

y: [N×M]
[-1  -1  2  6 ]
[  5  2  11  1 ]
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Backprop with Matrices
x: [N×D]

[  2   1  -3 ]
[ -3   4   2 ]
w: [D×M]

[  3  2  1 -1]
[  2  1  3  2]
[  3  2  1 -2]

Matrix Multiply

dL/dy: [N×M]
[  2  3 -3  9 ]
[ -8  1  4  6 ]Q: What parts of y 

are affected by one 
element of x?
A:          affects the 
whole row  

Q: How much 
does        
affect          ?
A:   

[N×D]  [N×M] [M×D]  

y: [N×M]
[-1  -1  2  6 ]
[  5  2  11  1 ]
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Backprop with Matrices
x: [N×D]

[  2   1  -3 ]
[ -3   4   2 ]
w: [D×M]

[  3  2  1 -1]
[  2  1  3  2]
[  3  2  1 -2]

Matrix Multiply

dL/dy: [N×M]
[  2  3 -3  9 ]
[ -8  1  4  6 ]

[N×D]  [N×M] [M×D]  [D×M]  [D×N] [N×M]  

By similar logic:

These formulas are 
easy to remember: they 
are the only way to 
make shapes match up!

y: [N×M]
[-1  -1  2  6 ]
[  5  2  11  1 ]
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Linear score function:

2-layer Neural Network
      

Wrapping up: Neural Networks

x hW1 sW2

3072 100 10
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Next: Convolutional Neural Networks

Illustration of LeCun et al. 1998
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3072
1

Recap: Fully Connected Layer
32x32x3 image -> stretch to 3072 x 1 

10 x 3072 
weights

activationinput

1
10
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3072
1

Fully Connected Layer
32x32x3 image -> stretch to 3072 x 1 

10 x 3072 
weights

activationinput

1 number: 
the result of taking a dot product 
between a row of W and the input 
(a 3072-dimensional dot product)

1
10
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32

32

3

Convolution Layer
32x32x3 image -> preserve spatial structure

width

height

depth

112

Main idea: only look at 
small patches of an image
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32

32

3

Convolution Layer

5x5x3 filter

32x32x3 image

Convolve the filter with the image
i.e. “slide over the image spatially, 
computing dot products”
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32

32

3

Convolution Layer

5x5x3 filter

32x32x3 image

Convolve the filter with the image
i.e. “slide over the image spatially, 
computing dot products”

Filters always extend the full 
depth of the input volume
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32

32

3

Convolution Layer
32x32x3 image
5x5x3 filter

1 number: 
the result of taking a dot product between the 
filter and a small 5x5x3 chunk of the image
(i.e. 5*5*3 = 75-dimensional dot product + bias)
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32

32

3

Convolution Layer
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32

32

3

Convolution Layer
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32

32

3

Convolution Layer
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32

32

3

Convolution Layer
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32

32

3

Convolution Layer
32x32x3 image
5x5x3 filter

convolve (slide) over all 
spatial locations

activation map

1

28

28
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32

32

3

Convolution Layer
32x32x3 image
5x5x3 filter

convolve (slide) over all 
spatial locations

activation maps

1

28

28

consider a second, green filter

121



A. Farhadi, S. Pratt Jan 20, 2026Lecture 5 -

32

32

3

Convolution Layer

activation maps

6

28

28

For example, if we had 6 5x5 filters, we’ll get 6 separate activation maps:

We stack these up to get a “new image” of size 28x28x6!
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Preview: ConvNet is a sequence of Convolution Layers, interspersed with 
activation functions

32

32

3

28

28

6

CONV,
ReLU
e.g. 6 
5x5x3 
filters
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Preview: ConvNet is a sequence of Convolution Layers, interspersed with 
activation functions

32

32

3

CONV,
ReLU
e.g. 6 
5x5x3 
filters 28

28

6

CONV,
ReLU
e.g. 10 
5x5x6 
filters

CONV,
ReLU

….

10

24

24
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Preview [Zeiler and Fergus 2013] Visualization of VGG-16 by Lane McIntosh. VGG-16 

architecture from [Simonyan and Zisserman 2014].
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Preview
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example 5x5 filters
(32 total)

We call the layer convolutional 
because it is related to convolution 
of two signals:

elementwise multiplication and sum of 
a filter and the signal (image)

one filter => 
one activation map

Figure copyright Andrej Karpathy.
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preview:
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A closer look at spatial dimensions:

32

32

3

32x32x3 image
5x5x3 filter

convolve (slide) over all 
spatial locations

activation map

1

28

28
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7x7 input (spatially)
assume 3x3 filter

7

7

A closer look at spatial dimensions:
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7x7 input (spatially)
assume 3x3 filter

7

7

A closer look at spatial dimensions:
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7x7 input (spatially)
assume 3x3 filter

7

7

A closer look at spatial dimensions:
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7x7 input (spatially)
assume 3x3 filter

7

7

A closer look at spatial dimensions:
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7x7 input (spatially)
assume 3x3 filter

=> 5x5 output

7

7

A closer look at spatial dimensions:
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7x7 input (spatially)
assume 3x3 filter
applied with stride 2

7

7

A closer look at spatial dimensions:
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7x7 input (spatially)
assume 3x3 filter
applied with stride 2

7

7

A closer look at spatial dimensions:
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7x7 input (spatially)
assume 3x3 filter
applied with stride 2
=> 3x3 output!

7

7

A closer look at spatial dimensions:
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7x7 input (spatially)
assume 3x3 filter
applied with stride 3?

7

7

A closer look at spatial dimensions:
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7x7 input (spatially)
assume 3x3 filter
applied with stride 3?

7

7

A closer look at spatial dimensions:

doesn’t fit! 
cannot apply 3x3 filter on 
7x7 input with stride 3.

139
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N

NF

F

Output size:
(N - F) / stride + 1

e.g. N = 7, F = 3:
stride 1 => (7 - 3)/1 + 1 = 5
stride 2 => (7 - 3)/2 + 1 = 3
stride 3 => (7 - 3)/3 + 1 = 2.33 :\
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In practice: Common to zero pad the border
0 0 0 0 0 0

0

0

0

0

e.g. input 7x7
3x3 filter, applied with stride 1 
pad with 1 pixel border => what is the output?

(recall:)
(N - F) / stride + 1

141
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In practice: Common to zero pad the border

e.g. input 7x7
3x3 filter, applied with stride 1 
pad with 1 pixel border => what is the output?

7x7 output!

0 0 0 0 0 0

0

0

0

0

(recall:)
(N + 2P - F) / stride + 1
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In practice: Common to zero pad the border

e.g. input 7x7
3x3 filter, applied with stride 1 
pad with 1 pixel border => what is the output?

7x7 output!
in general, common to see CONV layers with 
stride 1, filters of size FxF, and zero-padding with 
(F-1)/2. (will preserve size spatially)
e.g. F = 3 => zero pad with 1
       F = 5 => zero pad with 2
       F = 7 => zero pad with 3

0 0 0 0 0 0

0

0

0

0
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Remember back to… 
E.g. 32x32 input convolved repeatedly with 5x5 filters shrinks volumes spatially!
(32 -> 28 -> 24 ...). 

32

32

3

CONV,
ReLU
e.g. 6 
5x5x3 
filters 28

28

6

CONV,
ReLU
e.g. 10 
5x5x6 
filters

CONV,
ReLU

….

10

24

24
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Examples time:

Input volume: 32x32x3
10 5x5 filters with stride 1, pad 2

Let’s assume output size is HxWxD.
What is D?
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Examples time:

Input volume: 32x32x3
10 5x5 filters with stride 1, pad 2

Let’s assume output size is HxWxD.
What is D? 10
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Examples time:

Input volume: 32x32x3
10 5x5 filters with stride 1, pad 2

Let’s assume output size is HxWxD.
What is D? 10
What is H or W?
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Examples time:

Input volume: 32x32x3
10 5x5 filters with stride 1, pad 2

Let’s assume output size is HxWxD.
What is D? 10
What is H or W? (32+2*2-5)/1+1 = 32
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Examples time:

Input volume: 32x32x3
10 5x5 filters with stride 1, pad 2

Let’s assume output size is HxWxD.
What is D? 10
What is H or W? (32+2*2-5)/1+1 = 32
So the total output size is: 32x32x10
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Examples time:

Input volume: 32x32x3
10 5x5 filters with stride 1, pad 2

Number of parameters in this layer?
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Examples time:

Input volume: 32x32x3
10 5x5 filters with stride 1, pad 2

Number of parameters in this layer?
each filter has 5*5*3 + 1 = 76 params      (+1 for bias)

=> 76*10 = 760
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Convolution layer: summary

Let’s assume input is W1 x H1 x C
Conv layer needs 4 hyperparameters:
- Number of filters K
- The filter size F
- The stride S
- The zero padding P

This will produce an output of W2 x H2 x K 
where:
- W2 = (W1 - F + 2P)/S + 1
- H2 = (H1 - F + 2P)/S + 1

Number of parameters: F2KC and K biases
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Convolution layer: summary

Let’s assume input is W1 x H1 x C
Conv layer needs 4 hyperparameters:
- Number of filters K
- The filter size F
- The stride S
- The zero padding P

This will produce an output of W2 x H2 x K 
where:
- W2 = (W1 - F + 2P)/S + 1
- H2 = (H1 - F + 2P)/S + 1

Number of parameters: F2CK and K biases

Common settings:

K = (powers of 2, e.g. 32, 64, 128, 512)
- F = 3, S = 1, P = 1
- F = 5, S = 1, P = 2
- F = 5, S = 2, P = ? (whatever fits)
- F = 1, S = 1, P = 0
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(btw, 1x1 convolution layers are very useful)

64

56

56
1x1 CONV
with 32 filters

32
56

56
(each filter has size 
1x1x64, and performs a 
64-dimensional dot 
product)
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(btw, 1x1 convolution layers are a very useful)

64

56

56
1x1 CONV
with 32 filters

32
56

56
(each filter has size 
1x1x64, and performs a 
64-dimensional dot 
product)
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Conv layer needs 4 hyperparameters:
- Number of filters K
- The filter size F
- The stride S
- The zero padding P

Example: CONV 
layer in PyTorch

PyTorch is licensed under BSD 3-clause.

156

https://pytorch.org/
https://github.com/pytorch/examples/blob/master/LICENSE
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Example: CONV 
layer in Keras

Keras is licensed under the MIT license.

157

Conv layer needs 4 hyperparameters:
- Number of filters K
- The filter size F
- The stride S
- The zero padding P

https://keras.io/
https://github.com/keras-team/keras/blob/master/LICENSE
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The brain/neuron view of CONV Layer

32

32

3

32x32x3 image
5x5x3 filter

1 number: 
the result of taking a dot product between 
the filter and this part of the image
(i.e. 5*5*3 = 75-dimensional dot product)
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The brain/neuron view of CONV Layer

32

32

3

32x32x3 image
5x5x3 filter

1 number: 
the result of taking a dot product between 
the filter and this part of the image
(i.e. 5*5*3 = 75-dimensional dot product)

It’s just a neuron with local 
connectivity... 
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Receptive field

32

32

3

An activation map is a 28x28 sheet of neuron 
outputs:
1. Each is connected to a small region in the input
2. All of them share parameters

“5x5 filter” -> “5x5 receptive field for each neuron”28

28
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The brain/neuron view of CONV Layer

32

32

3

28

28

E.g. with 5 filters,
CONV layer consists of 
neurons arranged in a 3D grid
(28x28x5)

There will be 5 different 
neurons all looking at the same 
region in the input volume5
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3072
1

Fully connected layer is a special convolution

32x32x3 image -> stretch to 3072 x 1 

10 x 3072 
weights

activationinput

1 number: 
the result of taking a dot product 
between a row of W and the input 
(a 3072-dimensional dot product)

1
10

Each neuron 
looks at the full 
input volume 
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FOUR layers in total: CONV/ReLU/POOL/FC
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Pooling layer
- makes the representations smaller and more manageable 
- operates over each activation map independently:
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1 1 2 4

5 6 7 8

3 2 1 0

1 2 3 4

Single depth slice

x

y

max pool with 2x2 filters 
and stride 2 6 8

3 4

MAX POOLING
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Pooling layer: summary

Let’s assume input is W1 x H1 x C
Conv layer needs 2 hyperparameters:
- The spatial extent F
- The stride S

This will produce an output of W2 x H2 x C where:
- W2 = (W1 - F )/S + 1
- H2 = (H1 - F)/S + 1

Number of parameters: 0
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Fully Connected Layer (FC layer)
- Contains neurons that connect to the entire input volume, as in ordinary Neural 

Networks
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Summary

- ConvNets stack CONV,POOL,FC layers
- Trend towards smaller filters and deeper architectures
- Trend towards getting rid of POOL/FC layers (just CONV)
- Between 2012-2016 architectures looked like 

[(CONV-RELU)*N-POOL?]*M-(FC-RELU)*K,SOFTMAX
      where N is usually up to ~5, M is large, 0 <= K <= 2.

- but recent advances such as ResNet/GoogLeNet 
have challenged this paradigm
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