Lecture 4;
Neural Networks and
Backpropagation

A. Farhadi, S. Pratt Lecture 4 - 1 Jan 15, 2026

Administrative: Assignment 1
Due 1/22 11:59pm

- K-Nearest Neighbor
- Linear classifiers: SVM, Softmax

A. Farhadi, S. Pratt Lecture 4 -2 Jan 15, 2026

Administrative: EdStem

Please make sure to check and read all pinned EdStem posts.

We will be posting a google form to help people find project
partners soon

A. Farhadi, S. Pratt Lecture 4 -3 Jan 15, 2026

Administrative: Fridays

This Friday 9:30-10:30am and again 12:30-1:30pm

Backprop (A review of what we are going over today)

A. Farhadi, S. Pratt Lecture 4 -4 Jan 15, 2026

Recap: from last time

airplane H w==ﬁ-ﬁ.
automobile“!ﬁﬁ@ﬁgﬁ
bird q."? E!Fn&-
cat T et N R O
deer WS AEARNEE
dog EEREFEER AN
g HENe®-RESE
horse m“l@&!g
ship Eﬁ@d—!‘iﬂzﬂ@
truck ‘Im‘-Vﬁh

A. Farhadi, S. Pratt

f(x,W) = Wx + b

Array of 32x32x3 numbers
(3072 numbers total)

Lecture 4 -5

f(x, W) ——>

T
W

parameters
or weights

10 numbers giving
class scores

Jan 15, 2026

Recap: loss functions
s — f(g; W) — W Linear score function
Ly; = Z max (0, 8; — 8y, + 1) SVMloss (or softmax)
I#Yi

1 N
= N E L; + A\ E WAQ data loss + regularization
i=1 k

A. Farhadi, S. Pratt Lecture 4 -6 Jan 15, 2026

Recap: Softmax vs. SVM hinge loss (SVM)
-2.85
matrix multiply + bias offset max(0, -2.85 - 0.28 + 1) +
—»{ | 0.86 max(0, 0.86 - 0.28 + 1)
0.01 | -0.05 | 0.1 | 0.05 15 0.0 =
0.25 1.58
0.7 0.2 0.05 | 0.16
22 + 0.2
00 | -045 | -0.2 | 0.03 -44 203 cross-entropy loss (Softmax)
-2.85 0.058 0.016
144 56 b
ex normalize
> | 0.86 _i 236 |— 5 | 0631 | -109(0:353)
w’b (to sum =
to one) 0.452
0.28 1.32 0.353
Yi | 2

A. Farhadi, S. Pratt Lecture 4 - Jan 15, 2026

Wrap up from last lecture...

A. Farhadi, S. Pratt Lecture 4 -8 Jan 15, 2026

Softmax Classifier (Multinomial Logistic Regression)

- Want to interpret raw classifier scores as probabilities
| S —= f(wz; W) P(Y = le — gjl) ., (GF Softmax

S; .
>_;j €7 | Function

S o0 mestami L= —lePY =ulX =2)

cat 3.2 24.5 0.13 > compare <—| 1,00
car 51 |—-{164.0™ 0.87 0.00
frog -1.7 0.18 0.00 0.00
Unnormalized unnormalized probabilities Correct
log-probabilities / logits probabilities orobs

A. Farhadi, S. Pratt Lecture 4 -9 Jan 15, 2026

Softmax Classifier (Multinomial Logistic Regression)

. Want to interpret raw classifier scores as probabilities
S —= f(wz; W) P(Y = le — gjl) ., (GF Softmax

S; .
>_; €7 | Function

Probabilities Probabilities
EG must be >= 0 mustsumto 1 ¢ = ~10g P(Y = [X = z:)
cat 3.2 24.5 0.13 [compare <—1 1 00

exp

car 5.1 ——[164.0|"™=% 0.87 | “Gesens | 0.00
fog | -1.7 | |0.18 0.00 | =<1 0.00

. : P(y) log
Unnormalized unnormalized probabilities ; Q(y) Correct

log-probabilities / logits probabilities probs

A. Farhadi, S. Pratt Lecture 4 - 10 Jan 15, 2026

Softmax Classifier (Multinomial Logistic Regression)

- Want to interpret raw classifier scores as probabilities
S —= f(wz; W) P(Y = le — gjl) ., (GF Softmax

S; .
>_;j €7 | Function

Probabilities Probabilities
must be >=0 must sum to 1 La=—log Y = gl X =)
cat 3.2 24.5 0.13 [comeare~— 1,00
exp I
car 51 —+164.0|——| 0.87 | crossenrory | 0.00
H(P,Q) =

fog | -1.7 0.18 0.00 |10, =5 iy | 0.00
Unnormalized unnormalized probabilities Correct
log-probabilities / logits probabilities probs

A. Farhadi, S. Pratt Lecture 4 - 11 Jan 15, 2026

Softmax Classifier (Multinomial Logistic Regression)

7 Want to interpret raw classifier scores as probabilities
S —= f(a:?,; W) P(Y = le — gjl) ., (GF Softmax

S .
>_; €7 | Function

g . - Maximize probability of correct class Putting it all together:
Li = —log P(Y = 4| X = z;) L: = —1lo e
2. g S
cat 3.2 (3 €)

car 5.1
frog -1.7

A. Farhadi, S. Pratt Lecture 4 -12 Jan 15, 2026

Softmax Classifier (Multinomial Logistic Regression)

7 Want to interpret raw classifier scores as probabilities
S —= f(a:?,; W) P(Y = le — gjl) ., (GF Softmax

S; .
>_;j €7 | Function

. Maximize probability of correct class Putting it all together:
Cat 3-2 l g(Zj e’)
Q1: What is the min/max possible softmax loss L.?
car 5.1 i
frog -1.7

A. Farhadi, S. Pratt Lecture 4 -13 Jan 15, 2026

Softmax Classifier (Multinomial Logistic Regression)

7 Want to interpret raw classifier scores as probabilities
S —= f(a:?,; W) P(Y = le — gjl) ., (GF Softmax

S; .
>_;j €7 | Function

. Maximize probability of correct class Putting it all together:
L; =—10gP(Y=yi|X=.’Bi) L: = —1lo e%Yi ‘
cat 3.2 : 8(> e)
Q1: What is the min/max possible softmax loss L.?
car 5.1 i
fro 17 Q2: At initialization all 8, will be approximately equal;
9 what is the softmax loss L, assuming C classes?

A. Farhadi, S. Pratt Lecture 4 - 14 Jan 15, 2026

Softmax Classifier (Multinomial Logistic Regression)

~ Want to interpret raw classifier scores as probabilities
_ e = — ».) — €% | Softmax
= f(a:?,y W) P(Y - le N wl) B Zj e’ Function

. Maximize probability of correct class Putting it all together:
Li=—logP(Y =y|X =2i) [, = _log(=~
= g Y
cat 3.2 5o

5 1 Q2: At initialization all s will be
car : . _ .
approximately equal; what is the loss?

frog -1.7 | A:-log(1/C) = log(C),
If C =10, then L. =1og(10) = 2.3

A. Farhadi, S. Pratt Lecture 4 - Jan 15, 2026

Softmax vs. SVM hinge loss (SVM)
-2.85
matrix multiply + bias offset max(0, -2.85 - 0.28 + 1) +
—»| | 0.86 max(0, 0.86 - 0.28 + 1)
0.01 | -0.05 | 0.1 | 0.05 15 0.0 =
08 1.58
07 | 02 | 005 | 0.16 22 + 0.2
00 | -045 | -0.2 | 0.03 -44 203 cross-entropy loss (Softmax)
-2.85 0.058 0.016
%4 56 b
ex normalize
> | 0.86 _i 236 |— 5 |0631 | -109(0353)
w’b (to sum =
to one) 0.452
0.28 1.32 0.353
Y | 2

A. Farhadi, S. Pratt Lecture 4 - Jan 15, 2026

Softmax vs. SVM

L; = —log(gjye]) i = Dz, max(0,85 — sy, +1)

A. Farhadi, S. Pratt Lecture 4 - Jan 15, 2026

Softmax vs. SVM

L log(zsye 8;) LZ = E]#yz maX(O, Sj — Sy, —+]_)

assume scores: Q: What is the SVM loss?
10, -2, 3]

10, 9, 9]

10, -100, -100]

and y, =0

A. Farhadi, S. Pratt Lecture 4 - Jan 15, 2026

Softmax vs. SVM

L log(Z c;]) LZ — E]#yz maX(O, Sj — Sy, —+]_)
assume scores: Q: What is the SVM loss?

» 0, -2, 3] Q: Is the Softmax loss zero for
: 0,9, 9] any of them?

10, -100, -100]

and 1y, =0

A. Farhadi, S. Pratt Lecture 4 - Jan 15, 2026

Summary:

- We have some dataset of (x,y) eq.
- We have a score function: s = f(z; W) =Wz
- We have a loss function:

Softmax

L == log(Z e) SVM regularization loss

LZ = : max O S; — Sy. +]. W_ score function - Y
Z]#yz (»5d Yi) >uf(xi,W) data loss o7

.
-

= -]17 Zf\il L; + R(W) FEullloss i)

A. Farhadi, S. Pratt Lecture 4 - Jan 15, 2026

Summary; How do we find the best W?

- We have some dataset of (x,y) a
- We have a score function: s = f(z; W) =Wz
- We have a loss function:

Softmax

L; = —log(=

Z 8 SVM regularization loss

LZ = : max O S; — Sy. +]. W_ score function - Y
Z]#yz (»5d Yi) >uf(xi,W) data loss o7

.
>

= -]17 Zf\il L; + R(W) FEullloss i)

A. Farhadi, S. Pratt Lecture 4 - Jan 15, 2026

Optimization

A. Farhadi, S. Pratt Lecture 4 - Jan 15, 2026

This image is CC0O 1

A. Farhadi, S. Pratt Lecture 4 - 23 Jan 15, 2026

http://maxpixel.freegreatpicture.com/Mountains-Valleys-Landscape-Hills-Grass-Green-699369
https://creativecommons.org/publicdomain/zero/1.0/

Walking man image is CC0 1.0

A. Farhadi, S. Pratt Lecture 4 - 24 Jan 15, 2026

http://www.publicdomainpictures.net/view-image.php?image=139314&picture=walking-man
https://creativecommons.org/publicdomain/zero/1.0/

Strategy #1: A first very bad idea solution: Random search

bestloss = float("inf")
for num in xrange(1000):
W = np.random.randn(10, 3073) * 0.0001
loss = L(X train, Y_train, W)
if loss < bestloss:
bestloss = loss
bestW = W
print 'in attempt %d the loss was %f, best %f' % (num, loss, bestloss)

A. Farhadi, S. Pratt Lecture 4 - 25 Jan 15, 2026

Lets see how well this works on the test set...

scores = Wbest.dot(Xte cols) #
Yte predict = np.argmax(scores, axis = 0)

np.mean(Yte predict == Yte)

15.5% accuracy! not bad!
(SOTA is ~99.7%)

A. Farhadi, S. Pratt Lecture 4 - 26 Jan 15, 2026

Strategy #2: Follow the slope

A. Farhadi, S. Pratt Lecture 4 - 27 Jan 15, 2026

Strategy #2: Follow the slope

In 1-dimension, the derivative of a function:

df@) . f@+h) - f()
dx h —0 h

In multiple dimensions, the gradient is the vector of (partial derivatives) along
each dimension

The slope in any direction is the dot product of the direction with the gradient
The direction of steepest descent is the negative gradient

A. Farhadi, S. Pratt Lecture 4 - 28 Jan 15, 2026

current W: gradient dW:

[0.34,

-1.11,

0.78,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,...]

loss 1.25347

D

D D D)) D) Y

~
[]
[]
(=

A. Farhadi, S. Pratt Lecture 4 - 29 Jan 15, 2026

current W: W + h (first dim): gradient dW:
[0.34, [0.34 + 0.0001, [?,
-1.11, -1.11, ?,
0.78, 0.78, ?,
0.12, 0.12, ?,
0.55, 0.55, ?,
2.81, 2.81, ?,
-3.1, -3.1, ?,
1.5, -1.5, ?,
0.33,...] 0.33,...] ?,...]
loss 1.25347 loss 1.25322

A. Farhadi, S. Pratt Lecture 4 - 30 Jan 15, 2026

current W:

[0.34,

-1.11,

0.78,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,...]

loss 1.25347

W + h (first dim):

[0.34 + 0.0001,
-1.11,

0.78,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,...]

loss 1.25322

gradient dW:

[-2.5,

.o

(1.25322 - 1.25347)/0.0001
=-2.5

af(z) _ . f@+h) - f(@)
h

dx h —0

A. Farhadi, S. Pratt

Lecture 4 - 31

Jan 15, 2026

current W: W + h (second dim): gradient dW:
[0.34, [0.34, [-2.5,
-1.11, -1.11 + 0.0001, ?,
0.78, 0.78, ?,
0.12, 0.12, ?,
0.55, 0.55, ?,
2.81, 2.81, ?,
-3.1, -3.1, ?,
-1.5, -1.5, ?,
0.33,...] 0.33,...] ?,...]
loss 1.25347 | loss 1.25353

A. Farhadi, S. Pratt Lecture 4 - 32 Jan 15, 2026

current W: W + h (second dim): gradient dW:
[0.34, [0.34, [-2.5,

-1.11, -1.11 + 0.0001, 0.6,

0.78, 0.78, ?, \

0.12, 0.12, ?.

0.55, 0.55, (1.25353 - 1.25347)/0.0001
2.81, 2.81, =0.6

-3.1, -3.1, df(z) _ . f@+h)~f(@)
-1.5, -1.5, T
0.33,...] 0.33,...] ?,...]

loss 1.25347 | loss 1.25353

A. Farhadi, S. Pratt Lecture 4 - 33 Jan 15, 2026

current W:

[0.34,

-1.11,

0.78,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,...]

loss 1.25347

W + h (third dim):

[0.34,

-1.11,

0.78 + 0.0001,
0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,...]

loss 1.25347

gradient dW:

> N
- On

DN N NI Y Y VO

~
[]
[]
(=

A. Farhadi, S. Pratt

Lecture 4 -

Jan 15, 2026

current W:

[0.34,

-1.11,

0.78,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,...]

loss 1.25347

W + h (third dim):

[0.34,

-1.11,

0.78 + 0.0001,
0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,...]

loss 1.25347

gradient dW:

[-2.5,
0.6,
0,

N

(1.25347 - 1.25347)/0.0001
=0

af(z) _ . f@+h) - f(@)
h

dx h —0

A. Farhadi, S. Pratt

Lecture 4 -

Jan 15, 2026

current W:

[0.34,

-1.11,

0.78,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,...]

loss 1.25347

W + h (third dim):

[0.34,

-1.11,

0.78 + 0.0001,
0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,...]

loss 1.25347

gradient dW:

[-2.5,
0.6,

0,
f)

=

Numeric Gradient
- Slow! Need to loop over
all dimensions
- Approximate

7]

A. Farhadi, S. Pratt

Lecture 4 -

Jan 15, 2026

This is silly. The loss is just a function of W.

N
L=535L00+X, W
Lz = Zﬁéyi max(O, Sj — Sy, —+ 1)
s=f(z; W) =Wz

want Vy L

A. Farhadi, S. Pratt Lecture 4 - Jan 15, 2026

This is silly. The loss is just a function of W.
L=+ Li+YX,W

Li = ,., max(0,s; — sy, +1)

s=f(z; W) =Wz

want Vy L

Use calculus to compute an
analytic gradient

A. Farhadi, S. Pratt Lecture 4 - Jan 15, 2026

https://en.wikipedia.org/wiki/Isaac_Newton#/media/File:GodfreyKneller-IsaacNewton-1689.jpg
https://en.wikipedia.org/wiki/Gottfried_Wilhelm_Leibniz#/media/File:Gottfried_Wilhelm_Leibniz,_Bernhard_Christoph_Francke.jpg

current ¥y: gradient dW:
[0.34, [-2.5,
-1.11, dW = ... | 0.6.
0.78, (some function 0.

0.12, data and W) 0.2
0.55, 0.7
281, \ s
-3, 1.1,
-1.5, 1.3,
0.33,...] 21,
loss 1.25347

A. Farhadi, S. Pratt Lecture 4 - Jan 15, 2026

In summary:

- Numerical gradient: approximate, slow, easy to write

- Analytic gradient: exact, fast, error-prone

=>

In_practice: Always use analytic gradient, but check
iImplementation with numerical gradient. This is called a
gradient check.

A. Farhadi, S. Pratt Lecture 4 - Jan 15, 2026

Gradient Descent

while
weights grad = evaluate gradient(loss fun, data, weights)
weights += - step size * weights grad - ' '

A. Farhadi, S. Pratt Lecture 4 - Jan 15, 2026

original W

o

negative gradient direction

A. Farhadi, S. Pratt Lecture 4 - Jan 15, 2026

Stochastic Gradient Descent (SGD)

1 XN Full sum expensive
L(W) = > Li(wi, i, W) + AR(W) when N is large!
i=1

1 N Approximate sum
VwL(W) = + > " VwLi(zi, ys, W) + AVw R(W) gi:r?];er:mlbatch of

i=1 32 /64 /128 common

while
data batch = sample training data(data, 256)
weights grad = evaluate gradient(loss fun, data batch, weights)
weights += - step size * weights grad * i

A. Farhadi, S. Pratt Lecture 4 - Jan 15, 2026

Calculating the analytical gradient requires calculus!
s = f(x;W) = Wax Linear score function

L; = E max(O, Sj — Sy, - 1) SVM loss (or softmax)
J#Yi

1 N

= N E L; + A\ E WAQ data loss + regularization

i=1 k

How to find the best W? Vw.L

A. Farhadi, S. Pratt Lecture 4 -44 Jan 15, 2026

Before we discuss how to calculate
gradients analytically,

let’s introduce neural networks

A. Farhadi, S. Pratt Lecture 4 - Jan 15, 2026

Problem: Linear Classifiers are not very powerful

Visual Viewpoint

plane car bird cat er
s
ea . ¥ Y
dog frog horse v ship truck

Linear classifiers learn
one template per class

Geometric Viewpoint

Linear classifiers
can only draw linear
decision boundaries

Jan 15, 2026

A. Farhadi, S. Pratt

Lecture 4 -46

Pixel Features

» Class
scores

A. Farhadi, S. Pratt Lecture 4 -47 Jan 15, 2026

Image Features

f(x) = WXx

—> HHHHHHHHHU Hu” ”HUHHHUHHHHL, |_||-|L|I_I —> Class
o - scores
Feature Representation

A. Farhadi, S. Pratt Lecture 4 -48 Jan 15, 2026

Image Features: Motivation

Cannot separate red
and blue points with
linear classifier

A. Farhadi, S. Pratt Lecture 4 -49 Jan 15, 2026

Features become linearly separable through a

non-linear transformation

o y
° [
° 24° o f(x, y) = (r(x, y), 8(x, y))
®) ® s
X . °l® .
[[
Y [

Cannot separate red
and blue points with
linear classifier

A. Farhadi, S. Pratt

Lecture 4 - 50

g ©

o
[
o
[

After applying feature
transform, points can
be separated by linear
classifier

Jan 15, 2026

Example: Color Histogram

A. Farhadi, S. Pratt Lecture 4 - 51 Jan 15, 2026

Example: Histogram of Oriented Gradients (HoG)

Divide image into 8x8 pixel regions Example: 320x240 image gets divided
Within each region quantize edge into 40x30 bins; in each bin there are
direction into 9 bins 9 numbers so feature vector has

30409 = 10,800 numbers

Lowe, “Object recognition from local scale-invariant features”, ICCV 1999
Dalal and Triggs, "Histograms of oriented gradients for human detection," CVPR 2005

A. Farhadi, S. Pratt Lecture 4 - 52 Jan 15, 2026

Example: Bag of Words

Step 1: Build codebook

. Clust tches t - ...‘
uster patches to
Extract random - - form “codebook” =.nl==l
patches = of “visual words”
g | L |
N l-llll

Fei-Fei and Perona, “A bayesian hierarchical model for learning natural scene categories”, CVPR 2005

A. Farhadi, S. Pratt Lecture 4 - 53 Jan 15, 2026

Combine many different features if unsure which
features are better

[l e
:_ — H H i HH HHH h— HHHHH Hn” HU Hﬂn illn_ s

[IULIUU il

\ Hﬂuuﬂmmﬂ /

A. Farhadi, S. Pratt Lecture 4 - 54 Jan 15, 2026

Image features vs neural networks

Feature Extraction

f

_>

e

training

10 numbers giving
scores for classes

I~ N x4 |
W l N [l
pat X
) y mil\i
[o3 R
® Max
1a " Ma. poo
ling pox

-

training

Sutskever, and Hinton, 2012

l Krizhevsky, Sutskever, and Hinton, “Imagenet classification
B -
P 1 with deep convolutional neural networks”, NIPS 2012
y \ ec
/ 2648 \/ o7 \dense
X X
1

4/ Pt
{

-

.

10 numbers giving
scores for classes

A. Farhadi, S. Pratt

Lecture 4 - 55

Jan 15, 2026

One Solution: Non-linear feature transformation

s’ f(x, y) = (r(x, y), 6(x, y)) 5 8
o‘ o 4 > : ..o
— ".'- < Transform data with a cleverly o
. ° e chosen feature transform f, S -
o o then apply linear classifier S
Color Histogram Histogram of Oriented Gradients (HoG)

A. Farhadi, S. Pratt Lecture 4 - 56 Jan 15, 2026

Neural Networks

A. Farhadi, S. Pratt Lecture 4 - 57 Jan 15, 2026

Neural networks: the original linear classifier

(Before) Linear score function: f — W2

r e RP. W e ROXP

A. Farhadi, S. Pratt Lecture 4 - 58 Jan 15, 2026

Neural networks: 2 layers

(Before) Linear score function: f — W2
(Now) 2-layer Neural Network f = Wy max(0, Wiz)

p& RY Wy ERZ®E W & REXE

(In practice we will usually add a learnable bias at each layer as well)

A. Farhadi, S. Pratt Lecture 4 - 59 Jan 15, 2026

Neural networks: also called fully connected network

(Before) Linear score function: f — W2
(Now) 2-layer Neural Network f = Wy max(0, Wiz)

we RY, Wy & RER2, Wh & ROXE

“Neural Network” is a very broad term; these are more accurately called
“fully-connected networks” or sometimes “multi-layer perceptrons” (MLP)

(In practice we will usually add a learnable bias at each layer as well)

A. Farhadi, S. Pratt Lecture 4 - 60 Jan 15, 2026

Neural networks: 3 layers

(Before) Linear score function: f — W2

(Now) 2-layer Neural Network f = Wy max(0, Wiz)
or 3-layer Neural Network

f — W3 maX(O, WZ ma'X(Oa W]iB))

r € RP W, e REWXDP W, ¢ RH2XH1 17, ¢ ROXH2

(In practice we will usually add a learnable bias at each layer as well)

A. Farhadi, S. Pratt Lecture 4 - 61 Jan 15, 2026

Neural networks: hierarchical computation
(Before) Linear score function: f — W2
(Now) 2-layer Neural Network f = Wy max(0, Wiz)

X W1 | ph| w2 |g

3072 100 10

€ R, Wy € RFXP W, € RC*H

A. Farhadi, S. Pratt Lecture 4 - 62 Jan 15, 2026

Neural networks: learning 100s of templates
(Before) Linear score function: f — W
(Now) 2-layer Neural Network f = W5 max(0, Wix)

X W1 |h| W2 |g

3072 100

plane car bird cat er dog frog horse ship truck
. = L * ' . q "'

Learn 100 templates instead of 10. Share templates between classes

A. Farhadi, S. Pratt Lecture 4 - 63 Jan 15, 2026

Examples of templates from real neural networks

A'n

Springenberg et al, “Striving for Simplicity: The All Convolutional Net”, ICLR Workshop 2015
Figure copyright Jost Tobias Springenberg, Alexey Dosovitskiy, Thomas Brox, Martin Riedmiller, 2015; reproduced with permission.

A. Farhadi, S. Pratt Lecture 4 - 64 Jan 15, 2026

Neural networks: why is max operator important?
(Before) Linear score function: f — W2
(Now) 2-layer Neural Network ~ f = Walmax(0,|W;z)

The function max(0, z) is called the activation function.
Q: What if we try to build a neural network without one?

f — WQWl.TE

A. Farhadi, S. Pratt Lecture 4 - 65 Jan 15, 2026

Neural networks: why is max operator important?
(Before) Linear score function: f — W2
(Now) 2-layer Neural Network ~ f = Walmax(0,|W;z)

The function max(0, z) is called the activation function.
Q: What if we try to build a neural network without one?

[=WaelWix W3 = WoW; € RCXH, f =Wsx

A: We end up with a linear classifier again!

A. Farhadi, S. Pratt Lecture 4 - 66 Jan 15, 2026

Activation functions

S|gmo|d 1 Leaky RelLU)
_ 1 max(0.1z, x)
O'(ZB) T 14e—*

—lo——r]
tanh GelLU
tanh (:U) 0.5a:(1 1 ta.nh[\/2/_7r(w p 0.044715w3)])
RelLU ELU
0 x x>0
maX(’ ZIZ) : {Oz(e‘” —1) <0

A. Farhadi, S. Pratt Lecture 4 - 67 Jan 15, 2026

: . . RelLU is a good default
Activation functions choice for most problems

Sigmoid 1 Leaky RelLU)
1 max(0.1x, x)
O'(%) 14e =

ta"?l() GelLU
ann\x ~io ﬂ To 0.5a:(1+tanh[\/2/_7r(:c+0.044715w3)])

ReLU ELU
max(0,2) ey 2

A. Farhadi, S. Pratt Lecture 4 - 68 Jan 15, 2026

: . : GelLU is the default choice
Activation functions for transformers

S|gmo|d 1 Leaky RelLU)
1 max(0.1z, x)
O'(%) T 14e—*

ta"?l() GelLU
ann\x ~io ﬂ To 0.5a:(1+tanh[\/2/_7r(:c+0.044715w3)])

RelLU ELU
max(0,) ey 220

A. Farhadi, S. Pratt Lecture 4 - 69 Jan 15, 2026

Neural networks: Architectures

\
;/0
%
?}‘{194
o‘o}c

SO
S~ X
/X:; ‘%‘
a o 7
output layer ‘

tput layer
input layer input layer

hidden layer hidden layer 1 hidden layer 2

“3-layer Neural Net”, or
“2-layer Neural Net”, or “2-hidden-layer Neural Net”

“1-hidden-layer Neural Net” “Fully-connected” layers

%
<

)

A. Farhadi, S. Pratt Lecture 4 - 70 Jan 15, 2026

Example feed-forward computation of a neural network

e N ’/&
ig .

N\

Vi e
e~ 2’%’:*:’
tput layer

input layer
hidden layer 1 hidden layer 2

f = lambda x: 1.0/(1.0 + np.exp(-x)) # act
X = np.random.randn(3, 1) # r m 1 :
hl = f(np.dot(Wl, x) + bl) _

h2 = f(np.dot(W2, hl) + b2) # calcul

out = np.dot(W3, h2) + b3 #

A. Farhadi, S. Pratt Lecture 4 - 71 Jan 15, 2026

Example feed-forward computation of a neural network

P
X
;.;‘

output layer

s
b
0§

input layer
hidden layer 1 hidden layer 2

[f = lambda x: 1.0/(1.0 + np.exp(-x)) # activatiol
X = np.random.randn(3, 1) # random I t vectc
hl = f(np.dot(Wl, x) + bl) ¢ ulat

h2 = f(np.dot(W2, hl) + b2) # calcul

out = np.dot(W3, h2) + b3 #

A. Farhadi, S. Pratt Lecture 4 - 72 Jan 15, 2026

Example feed-forward computation of a neural network

P
X
;.;‘

output layer

s
b
0§

input layer
hidden layer 1 hidden layer 2

f = lambda x: 1.0/(1.0 + np.exp(-x)) # activatior
[x = np.random.randn(3, 1) # random 1 F vectc
hl = f(np.dot(Wl, x) + bl) ¢ ulat

h2 = f(np.dot(W2, hl) + b2) # calcul

out = np.dot(W3, h2) + b3 #

A. Farhadi, S. Pratt Lecture 4 -73 Jan 15, 2026

Example feed-forward computation of a neural network

P
X
;.;‘

output layer

s
b
0§

input layer
hidden layer 1 hidden layer 2

f = lambda x: 1.0/(1.0 + np.exp(-x)) # activatior
X = np.random.randn(3, 1) # random I t vectc
[h1l = f(np.dot(Wl, x) + bl) # ulat

h2 = f(np.dot(W2, hl) + b2) # calcul

out = np.dot(W3, h2) + b3 #

A. Farhadi, S. Pratt Lecture 4 - 74 Jan 15, 2026

Example feed-forward computation of a neural network

P
X
;.;‘

output layer

s
b
0§

input layer
hidden layer 1 hidden layer 2

f = lambda x: 1.0/(1.0 + np.exp(-x)) # activatior
X = np.random.randn(3, 1) # random I t vectc
hl = f(np.dot(Wl, x) + bl) ¢ ulat

[h2 = f(np.dot(W2, hl) + b2) # calcul

out = np.dot(W3, h2) + b3 #

A. Farhadi, S. Pratt Lecture 4 - 75 Jan 15, 2026

Example feed-forward computation of a neural network

P
X
;.;‘

output layer

s
b
0§

input layer
hidden layer 1 hidden layer 2

f = lambda x: 1.0/(1.0 + np.exp(-x)) # activatior
X = np.random.randn(3, 1) # random I t vectc
hl = f(np.dot(Wl, x) + bl) ¢ ulat

h2 = f(np.dot(W2, hl) + b2) # calcul

[out = np.dot(W3, h2) + b3 #

A. Farhadi, S. Pratt Lecture 4 - 76 Jan 15, 2026

Full implementation of training a 2-layer Neural Network needs ~20 lines:

import numpy as np
from numpy.random import randn

N, D_in, H, D_out = 64, 1000, 100, 10
X, y = randn(N, D_in), randn(N, D_out)
wl, w2 = randn(D_in, H), randn(H, D_out)

for t in range(2000):
h=1/ (1+ np.exp(-x.dot(wl)))
y_pred = h.dot(w2)
loss = np.square(y_pred - y).sum()
print(t, loss)

grad_y_pred = 2.0 x (y_pred - y)
grad_w2 = h.T.dot(grad_y_pred)

grad_h = grad_y_pred.dot(w2.T)

grad_wl = x.T.dot(grad_h * h x (1 - h))

wl —= le-4 * grad_wl
w2 —= le-4 * grad_w2

A. Farhadi, S. Pratt Lecture 4 - 77 Jan 15, 2026

Full implementation of training a 2-layer Neural Network needs ~20 lines:

import numpy as np
from numpy.random import randn

N, D_in, H, D_out = 64, 1000, 100, 10
X, y = randn(N, D_in), randn(N, D_out) Define the network
wl, w2 = randn(D_in, H), randn(H, D_out)

for t in range(2000):
h=1/ (1+ np.exp(-x.dot(wl)))
y_pred = h.dot(w2)
loss = np.square(y_pred - y).sum()
print(t, loss)

grad_y_pred = 2.0 x (y_pred - y)
grad_w2 = h.T.dot(grad_y_pred)

grad_h = grad_y_pred.dot(w2.T)

grad_wl = x.T.dot(grad_h * h x (1 - h))

wl —= le-4 * grad_wl
w2 —= le-4 * grad_w2

A. Farhadi, S. Pratt Lecture 4 - 78 Jan 15, 2026

Full implementation of training a 2-layer Neural Network needs ~20 lines:

import numpy as np
from numpy.random import randn

N, D_in, H, D_out = 64, 1000, 100, 10
X, y = randn(N, D_in), randn(N, D_out) Define the network
wl, w2 = randn(D_in, H), randn(H, D_out)

for t in range(2000):
h=1/ (1+ np.exp(-x.dot(wl)))

y_pred = h.dot(w2) Forward pass
loss = np.square(y_pred - y).sum()

print(t, loss)

grad_y_pred = 2.0 x (y_pred - y)
grad_w2 = h.T.dot(grad_y_pred)

grad_h = grad_y_pred.dot(w2.T)

grad_wl = x.T.dot(grad_h * h x (1 - h))

wl —= le-4 * grad_wl
w2 —= le-4 * grad_w2

A. Farhadi, S. Pratt Lecture 4 - 79 Jan 15, 2026

Full implementation of training a 2-layer Neural Network needs ~20 lines:

import numpy as np
from numpy.random import randn

N, D_in, H, D_out = 64, 1000, 100, 10
X, y = randn(N, D_in), randn(N, D_out) Define the network
wl, w2 = randn(D_in, H), randn(H, D_out)

for t in range(2000):
h=1/ (1+ np.exp(-x.dot(wl)))
y_pred = h.dot(w2) Forward pass
loss = np.square(y_pred - y).sum()
print(t, loss)

grad_y_pred = 2.0 x (y_pred - y)
grad_w2 = h.T.dot(grad_y_pred)

grad_h = grad_y_pred.dot(w2.T)

grad_wl = x.T.dot(grad_h *x h x (1 - h))

Calculate the analytical gradients

wl —= le-4 * grad_wl
w2 —= le-4 * grad_w2

A. Farhadi, S. Pratt Lecture 4 - 80 Jan 15, 2026

Full implementation of training a 2-layer Neural Network needs ~20 lines:

import numpy as np
from numpy.random import randn

N, D_in, H, D_out = 64, 1000, 100, 10
X, y = randn(N, D_in), randn(N, D_out) Define the network
wl, w2 = randn(D_in, H), randn(H, D_out)

for t in range(2000):
h=1/ (1+ np.exp(-x.dot(wl)))
y_pred = h.dot(w2) Forward pass
loss = np.square(y_pred - y).sum()
print(t, loss)

grad_y_pred = 2.0 x (y_pred - y)
grad_w2 = h.T.dot(grad_y_pred)

grad_h = grad_y_pred.dot(w2.T)

grad_wl = x.T.dot(grad_h * h x (1 - h))

Calculate the analytical gradients

wl —= le-4 * grad_wl

92 == L G EEH W Gradient descent

A. Farhadi, S. Pratt Lecture 4 - 81 Jan 15, 2026

Setting the number of layers and their sizes

3 hidden neurons 6 hidden neurons 20 hidden neurons
") <) e © e
®] [&]
® ® ® ® @ ®
() (& @ é (5]
® @ @ J
® © e @ e © %
@ @® @
5] =]
® ® @ ® ® @
() @ L)
© ® @

more neurons = more capacity

A. Farhadi, S. Pratt Lecture 4 - Jan 15, 2026

Do not use size of neural network as a regularizer. Use stronger regularization instead:

A =0.001

A =0.01

A=0.1

@ ®

@

]

L(W) = % ZLi(f(fEia W), y:) + AR(W)

A. Farhadi, S. Pratt

Lecture 4 -

Jan 15, 2026

This image by Eotis Bobolas is
licensed under CC-BY 2.0

A. Farhadi, S. Pratt Lecture 4 - 84 Jan 15, 2026

https://www.flickr.com/photos/fbobolas/3822222947
https://www.flickr.com/photos/fbobolas
https://creativecommons.org/licenses/by/2.0/

Impulses carried toward cell body

\ dendrite
presynaptic
terminal

axon

cell body—

Impulses carried away
from cell body

This image by Felipe Perucho
is licensed under CC-BY 3.0

A. Farhadi, S. Pratt Lecture 4 -85 Jan 15, 2026

https://thenounproject.com/term/neuron/214105/
https://creativecommons.org/licenses/by/3.0/us/

Impulses carried toward cell body

\ dendrite
presynaptic
terminal

axon

cell body—

Impulses carried away

from cell body o wo

@

axon from a neuron i
woIo

This image by Felipe Perucho
is licensed under CC-BY 3.0

cell body

f (Z w;T; + b)
j{:1uiwi-+-b :

output axon

activation
function

w11

Y

(LX)

A. Farhadi, S. Pratt Lecture 4 - 86 Jan 15, 2026

https://thenounproject.com/term/neuron/214105/
https://creativecommons.org/licenses/by/3.0/us/

Impulses carried toward cell body

\ dendrite
presynaptic
terminal

axon

cell body—

Impulses carried away
from cell body

Lo wo

>@ synapse
axon from a neuron
woTo

This image by Felipe Perucho
is licensed under CC-BY 3.0

1.0 cell body f (Z wiz; + b)
08 w11 Z b 5

> w;T; + >
0.6 ; o output axon
0.4 sigmoid activation function activation
o 1 Wy s function
0.0 l+e™™

—-10 -5 0 5 10

A. Farhadi, S. Pratt Lecture 4 - 87 Jan 15, 2026

https://thenounproject.com/term/neuron/214105/
https://creativecommons.org/licenses/by/3.0/us/

Impulses carried toward cell body

\ dendrite
presynaptic

terminal

cell body—

Impulses carried away
from cell body

Zo wo
This image by Felipe Perucho L
is licensed under CC-BY 3.0 @ synapse

axon from a neuron
Wox0

cell body

f (Z w;T; + b)
j{:1uiwi-+-b :

output axon

activation
function

w11

class Neuron:

Y

def neuron_tick(inputs):

" assume inputs and weights are 1-D numpy arrays and bias is a number """
cell body sum = np.sum(inputs * .weights) + .bias 11)2{B2
firing rate = 1.0 / (1.0 + math.exp(-cell body sum)) r I
return firing rate

A. Farhadi, S. Pratt Lecture 4 - 88 Jan 15, 2026

https://thenounproject.com/term/neuron/214105/
https://creativecommons.org/licenses/by/3.0/us/

Biological Neurons: Neurons in a neural network:
Complex connectivity patterns Organized into regular layers for
| computational efficiency

input layer
hidden layer 1 hidden layer 2

A. Farhadi, S. Pratt Lecture 4 - 89 Jan 15, 2026

https://www.maxpixel.net/Brain-Structure-Neurons-Brain-Network-Brain-Cells-582052
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Biological Neurons: But neural networks with random
Complex connectivity patterns connections can work too!

foav

I
AN

This image is CCO Public D
Smas s I Xie et al, “Exploring Randomly Wired Neural Networks for Image Recognition”, arXiv 2019

A. Farhadi, S. Pratt Lecture 4 - 90 Jan 15, 2026

https://www.maxpixel.net/Brain-Structure-Neurons-Brain-Network-Brain-Cells-582052
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Be very careful with your brain analogies!

Biological Neurons:
e Many different types
e Dendrites can perform complex non-linear computations
e Synapses are not a single weight but a complex non-linear dynamical
system

[Dendritic Computation. London and Hausser]

A. Farhadi, S. Pratt Lecture 4 - 91 Jan 15, 2026

Now let's calculate the
analytical gradients

A. Farhadi, S. Pratt Lecture 4 - 92 Jan 15, 2026

Plugging in neural networks with loss functions

s = f(x; Wy, Ws) = Woymax(0, Wix) Nonlinear score function

Ly = Z max(0,s; —s,, +1) SVM Loss on predictions
J7#Yi
R(W) = Z W7 Regularization
k

N
L = % Z L; + AR(W7) + AR(W,) Total loss: data loss + regularization
i=1

A. Farhadi, S. Pratt Lecture 4 - 93 Jan 15, 2026

Problem: How to compute gradients?

s = f(x; Wy, Ws) = Woymax(0, Wix) Nonlinear score function

Ly = Z max(0,s; —s,, +1) SVM Loss on predictions
J7#Yi
R(W) = Z W7 Regularization
k

N
L = % Z L; + A\R(W7) + AR(W,) Total loss: data loss + regularization
i=1

oL OL

If we can compute
W PUe o, o,

then we can learn W1 and W2

A. Farhadi, S. Pratt Lecture 4 - 94 Jan 15, 2026

(Bad) ldea: Derive V/y;, [on paper

s = fla; W) = Wz Problem: Very tedious: Lots of

matrix calculus, need lots of paper
L; = Z max(0, s; — 8y, + 1) pap

iy Problem: What if we want to
= max(0,W;. -z + W, . -z+1) change loss? E.g. use softmax
iy instead of SVM? Need to
N : —
1 re-derive from scratch =
L=7=> Li+AY W} _ (
N &~ : Problem: Not feasible for very
1 X ; complex models!
:NZ max (0, W;. - x + W, 1)+A2Wk
=1 j#y;
VwlL = VW< ZZmaXOW x4+ W, x+1)+AZW5>
i=1 j#yi k

A. Farhadi, S. Pratt Lecture 4 - 95 Jan 15, 2026

Better Idea: Computational graphs + Backpropagation

f:W

Lg = E#y max(0, s; —

Sy, + 1)

s (scores)

A. Farhadi, S. Pratt

Lecture 4 - 96

Jan 15, 2026

Convolutional network
(AlexNet)

iInput image

weights ———

—>

loss

A. Farhadi, S. Pratt Lecture 4 - 97 Jan 15, 2026

Really complex neural /
networks!! oS

iInput image/

loss \

Figure reproduced with permission from a Twitter post by Andrej Karpathy.

A. Farhadi, S. Pratt Lecture 4 - 98 Jan 15, 2026

https://twitter.com/karpathy/status/597631909930242048?lang=en

Solution: Backpropagation

A. Farhadi, S. Pratt Lecture 4 - 99 Jan 15, 2026

Backpropagation: a simple example

fz,y,2) = (z +y)z

A. Farhadi, S. Pratt Lecture 4 - 100 Jan 15, 2026

Backpropagation: a simple example | x

f(@,9,2) = (2 +1)2 D@

A. Farhadi, S. Pratt Lecture 4 - 101 Jan 15, 2026

Backpropagation: a simple example | x -2

f(z,y,2) = (z+y)z yD@Q3

eg.x=-2,y=95,z=-4

=12

A. Farhadi, S. Pratt Lecture 4 - 102 Jan 15, 2026

Backpropagation: a simple example | x -2

f(@,y,2) = (+)2 D@

f -12
eg.x=-2,y=95,z=-4
Z -4
0 0

A. Farhadi, S. Pratt Lecture 4 - 103 Jan 15, 2026

Backpropagation: a simple example | x -2
4)92
y o

fz,y,2) = (z +y)z

f -12
eg.x=-2,y=95,z=-4
z 4
of of
f=gqz 9 2o 4

Jan 15, 2026

A. Farhadi, S. Pratt

Lecture 4 - 104

Backpropagation: a simple example | x -2
4)92
fl@:2) = (z +)2 D@
f -12

eg.x=-2,y=95,z=-4

qg=—+Y %:1,%:1

of of
f=gqz 9 2o 4

. Oof of of
Want: -, 9 B2

A. Farhadi, S. Pratt Lecture 4 - 105 Jan 15, 2026

Backpropagation: a simple example | x -2
4)92
fl@:2) = (z +)2 D@
f -12

eg.x=-2,y=95,z=-4

z 4
0q 0q /
ox Oy 5
of of of
f=gqz 9 2o 4
of of Oof

Want: -, 9 B2

A. Farhadi, S. Pratt Lecture 4 - 106 Jan 15, 2026

Backpropagation: a simple example | x -2
g 3
fl@:2) = (z +)2 D@

eg.x=-2,y=95,z=-4

0q 0q /
ox oy i
of of of
f=gqz 9 2o 4
of Of of

Want: -, 9 B2

A. Farhadi, S. Pratt Lecture 4 - 107 Jan 15, 2026

Backpropagation: a simple example
g 3
f(@) = (z+1)2 DQ
f -12

eg.x=-2,y=5,z=+4

z 4
g=z+y F =15 =1 —
By
of
of _ of _ 0z
f=qz 0= %5 — 4
of of of

Want: Do’ By’ e

Jan 15, 2026

Lecture 4 - 108

A. Farhadi, S. Pratt

Backpropagation: a simple example
g 3
f(@) = (z+1)2 DQ
f -12

eg.x=-2,y=5,z=+4

z 4
g=z+y D=10-1 | —
dy
o
of _ of _ 0z
f=qz 0= %5 — 4
of of of

Want: Do’ By’ e

Jan 15, 2026

Lecture 4 - 109

A. Farhadi, S. Pratt

Backpropagation: a simple example | x -2
g 3
fl@:2) = (z +)2 D@

eg.x=-2,y=95,z=-4

qg=—+Y %:1,%:1

of of
f=gqz 9 2o 4

. Oof of of
Want: -, 9 B2

A. Farhadi, S. Pratt Lecture 4 - 110 Jan 15, 2026

Backpropagation: a simple example | x -2
q
f(m,y,z):(l'+y)z YD@ ;

eg.x=-2,y=95,z=-4

qg=—+Y %:1,%:1

of of
f=gqz 9 2o 4

. Oof of of
Want: -, 9 B2

A. Farhadi, S. Pratt Lecture 4 - 111 Jan 15, 2026

Backpropagation: a simple example | x -2

flz,y,2) = (z + y)=
eg.x=-2,y=95,z=-4

o dqg dq
B of _ of Chain rule: Oy
f—qz aq_z’az_q ﬂ_@f dq
want. 0L O Of by &4 o
ant- or Oy’ Oz Upstéam LSCaI
gradient gradient

Jan 15, 2026

A. Farhadi, S. Pratt

Lecture 4 - 112

Backpropagation: a simple example | x -2

flz,y,2) = (z + y)=
eg.x=-2,y=95,z=-4

o dqg dq
B of _ of Chain rule: Oy
f—qz aq_z’az_q ﬂ_@f dq
want. 0L O Of by &4 o
ant- or Oy’ Oz Upstéam LSCaI
gradient gradient

Jan 15, 2026

A. Farhadi, S. Pratt

Lecture 4 - 113

Backpropagation: a simple example

f(z,y,2) = (. +y)z
eg.x=-2,y=95,z=-4

_ 9 . Oqg
of of Chain rule: Oz
— _— z, —_—
S o _ of o
wWant. 2L O O dr ~— g Ox
ant: Oz’ Oy’ 0Oz Upstéam LSCaI
gradient gradient

Jan 15, 2026

A. Farhadi, S. Pratt

Lecture 4 - 114

Backpropagation: a simple example

f(z,y,2) = (. +y)z
eg.x=-2,y=95,z=-4

_ 9 . Oqg
of of Chain rule: Oz
— _— z, —_—
S o _ of o
wWant. 2L O O dr ~— g Ox
ant: Oz’ Oy’ 0Oz Upstéam LSCaI
gradient gradient

Jan 15, 2026

A. Farhadi, S. Pratt

Lecture 4 - 115

A. Farhadi, S. Pratt Lecture 4 - 116 Jan 15, 2026

“local gradient”

A. Farhadi, S. Pratt Lecture 4 - 117 Jan 15, 2026

“local gradient”

Z

oL
0z

%
“Upstream

gradient”

A. Farhadi, S. Pratt Lecture 4 - 118 Jan 15, 2026

“local gradient”
= .8

Z
“‘Downstream -
gradients oL
% i
“Upstream
gradient”

A. Farhadi, S. Pratt Lecture 4 - 119 Jan 15, 2026

“local gradient”
= .8

“Downstream
gradients”

Z

oL
0z

B ==
oL “Upstream
gradient”

A. Farhadi, S. Pratt Lecture 4 - 120 Jan 15, 2026

“local gradient”
= .8

“Downstream
gradients”

Z

oL
0z

B ==
oL “Upstream
gradient”

irhadi, S. Pratt Lecture 4 - 121 Jan 15, 2026

1

- 1 _|_e—('w0;ro+'wl:cl+'w2)

Another example: flw,)

w0
x0

w1

x1

w2

A. Farhadi, S. Pratt Lecture 4 - 122 Jan 15, 2026

1

- 1 _|_e—('w0:1:0+'wl:cl+'w2)

Another example: flw,)

w0 2.00

©
®
®
®

A. Farhadi, S. Pratt Lecture 4 - 123 Jan 15, 2026

1

- 1 _|_e—('w0:1:0+'wl:cl+'w2)

Another example: flw,)

w0 2.00

A. Farhadi, S. Pratt Lecture 4 - 124 Jan 15, 2026

1

- 1 _|_e—(~w0:130+'wl:r1+'w2)

Another example: flw,)
w0 2.00
x0 -1.00

w1l -3.00

x1 -2.00

w2 -3.00

f@) = ~ G | 10-1 . LAY
fo(@) = az =2 Z—iza f.(x)=¢c+= i %_1

A. Farhadi, S. Pratt Lecture 4 - 125 Jan 15, 2026

1

- 1 +e—('u'0mg+'u11:r1+w2)

Another example: flw,)
w0 2.00
x0 -1.0(

w1l -3.00

f@) = ~ oo | |10-12 . LAY
fo(@) = az = Z—i::a f(x) =613 s %_1

A. Farhadi, S. Pratt Lecture 4 - 126 Jan 15, 2026

1

- 1 +e—('u'0mg+w1:r1+w2)

Another example: flw,)

w0 2.00

Upstream Local
gradient gradient
~ / 1

(100)(3 572

) = —0.53

f@) = ~ oo | |10-12 . LAY
fo(@) = az = Z—iza f(x)=c+= - %_1

A. Farhadi, S. Pratt Lecture 4 - 127 Jan 15, 2026

1

- 1 +e—('u'0mg+'u11:r1+w2)

Another example: flw,)

w0 2.00

x0 -1.0(

w1 -3.00
w2 -3.0(
=z mil df oz 1 df)
flz)=e - == fl@) == o 3 /e
d
Julel oz 7 d_:Jz:t:a fe)=e+= - %—1

A. Farhadi, S. Pratt Lecture 4 - 128 Jan 15, 2026

1

- 1 +e—('u'0mg+w1:r1+w2)

Another example: flw,)

w0 2.00

Upstream Local

gradient gradient
~ /
(—0.53)(1) = —0.53

100 A7) 100 @ 037 (1) 137 @ 0.73
NS |08 N/ 058 N 1.0

f@) = ~ oo | 10-1 . LAY
fo(@) = az = Z—iza f(x)=c+= - %_1

A. Farhadi, S. Pratt Lecture 4 - 129 Jan 15, 2026

1

- 1 +e—('u'0mg+'u11:r1+w2)

Another example: flw,)
w0 2.00
x0 -1.0(

w1l -3.00

x1 -2.00

= a % aal fle) =~ % Z—i— = -1/a"
fo(@) = az = Z—i::a f(x)=c+= - %_1

A. Farhadi, S. Pratt Lecture 4 - 130 Jan 15, 2026

1

- 1 +e—('u'0mg+w1:r1+w2)

Another example: flw,)

w0 2.00

Upstream Local

gradient gradient
~ /

(—0.53)(e~1) = —0.20

10 23 1 27
__/ |-020 \Y/ -053 \D -0.53

f@) = ~ el | 10-12 . LAY
fo(@) = az = Z—iza f(x)=c+= - %_1

A. Farhadi, S. Pratt Lecture 4 - 131 Jan 15, 2026

1

- 1 +e—('u'0mg+'u11:r1+w2)

Another example: flw,)

w0 2.00

x0 -1.0(

w1l -3.00
w2 -3.0(
: df _ 1 7 2
— % o 1 af _
flz)=e == fl@) =~ " i _ e
d
fa(w)_aw — d—i:a fc(m):c+w s %_1

A. Farhadi, S. Pratt Lecture 4 - 132 Jan 15, 2026

1

- 1 +e—('u'0mg+w1:r1+w2)

Another example: flw,)

w0 2.00

Upstream Local

gradient gradient
~

(—0.20)(—1) = 0.20

x0 -1.0(

w1l -3.00

x1 -2.00

w2 -3.0(

f@) = ~ oo | 10-1 . LAY
fo(@) = az = Z—iza f(x)=c+= - %_1

A. Farhadi, S. Pratt Lecture 4 - 133 Jan 15, 2026

1

- 1 _i_e—('wo:zzg+'wl:r1+'w2)

Another example: flw,)

f@) = ~ G | 10-1 . LAY
fo(@) = az =2 Z—iza f.(x)=¢c+= i %_1

A. Farhadi, S. Pratt Lecture 4 - 134 Jan 15, 2026

1

- 1 +e—('u'0mg+'u11:r1+w2)

Another example: flw,)

[upstream gradient] x [local gradient]
[0.2] x[1] = 0.2
[0.2] x [1] = 0.2 (both inputs!)

100 A7) 100 @ 037 (1) 137 @ 0.73
020] _/ -020 U 053 _/ 053 _J 100

f@) = ~ oo | 10-1 . LAY
fo(@) = az = Z—i::a f(x)=c+= - %_1

A. Farhadi, S. Pratt Lecture 4 - 135 Jan 15, 2026

1

- 1 _i_e—('wo:zzg+'wl:r1+'w2)

Another example: flw,)

w0 2.00

A. Farhadi, S. Pratt Lecture 4 - 136 Jan 15, 2026

_ 1
Another example: flw,z) = |+ o—(mzorwrz o)

w0 2.00

% [upstream gradient] x [local gradient]
X0 ;)1:2)0 N wO: [02] X [-1] =-0.2
x0:[0.2] x[2] =0.4

wl -3.00

100 A\ -100 2N 037 /N 137) 073

x1 -2.00 020 _J 020 XS5 \ 0 Y 00
w2 -3.00
0.20
v i df PO 1 df 2
flz)=e — o= =e flz)=— o = =1/z
d
fo(@) = az =5 d—iza f(x)=c+=x —> %_1

Jan 15, 2026

A. Farhadi, S. Pratt Lecture 4 - 137

1

Another example: f(w,z) Computational graph

1+ e~ (wozotwizi+wy) representation may not
be unique. Choose one
w022 Sigmoid 1 where local gradients at
function o(z) = 1+e-=| €achnode can be easily
0 LD expressed!
2 Sigmoid
1.00 @ 100 /037 C_l\ 1.37 /l/\ 0.73
x1 -2.00 020 | _J 020 s \ 05 \ M 100
w2 -3.00

0.20

A. Farhadi, S. Pratt Lecture 4 - 138 Jan 15, 2026

Another example:

w0 2.00

x0 -1.00
wl -3.00
x1 -2.00

w2 -3.00
0.20

Sigmoid local

1

flw,z) = Computational graph
’ 1 + e~ (wozo+wiz1+wy) representation may not
be unique. Choose one
Sigmoid 1 where local gradients at
function o(z) = 1+ e-=| e€achnode can be easily
expressed!
Sigmoid
100 | /&). -100 037 (TN 137 1ML 073
020 |\ 020 P05\ T 0ss T o0

gradient:

A. Farhadi, S. Pratt

Lecture 4 - 139

Jan 15, 2026

1

Another example: f(w,z) Computational graph

1 + e~ (wozo+wizy +wy) representation may not
be unique. Choose one
w02 Sigmoid 1 where local gradients at
function o(z) = 1+ e-=| e€achnode can be easily
- expressed!
- Sigmoid
1.00 gl\ -1.00 @ 0.37 @ 1.37 Y073
x1 -2.00 020 | _J 020 XS5 \ 053 1.00
i [upstream gradient] x [local gradient]
[1.00] x [(1 - 1/(1+e")) (1/(1+e"))] = 0.2
: : d a l1+e ™ -1 1
Sigmoid local o(z) e __ (+ie -) (_Z) T T
gradient: dx (1+e7?) 1€ l1+e

A. Farhadi, S. Pratt Lecture 4 - 140 Jan 15, 2026

1

Another example: f(w,z) Computational graph

1 + e~ (wozo+wizy +wy) representation may not
be unique. Choose one
w02 Sigmoid 1 where local gradients at
function o(z) = 1+ e-=| e€achnode can be easily
- expressed!
- Sigmoid
100 | /% 2\ -100 /N 037 /T 137 0.73 |
x1 -2.00 0.20 \) 0.20 @ 0.53 \i_lj 053 iz 1.00
i [upstream gradient] x [local gradient]
[1.00] x[(1-0.73) (0.73)] = 0.2
: : d a l1+e ™ -1 1
Sigmoid local o(z) e __ (+ie -) (_Z) T T
gradient: dx (1+e7?) 1€ l1+e

A. Farhadi, S. Pratt Lecture 4 - 141 Jan 15, 2026

Patterns in gradient flow
add gate: gradient distributor

3

2 .
O e
2

A. Farhadi, S. Pratt Lecture 4 - 142 Jan 15, 2026

Patterns in gradient flow

add gate: gradient distributor mul gate: “swap multiplier”
3 2
2 ~a 7 5%3=15 ™\ 6
= (05—~
Nl Rl
2 2*5=10

A. Farhadi, S. Pratt Lecture 4 - 143 Jan 15, 2026

Patterns in gradient flow

add gate: gradient distributor mul gate: “swap multiplier”
3 2
2 ~a 7 5%3=15 ™\ 6
= (05—~
Nl Rl
2 2*5=10

copy gate: gradient adder

v
—_—
7 / 4
—_—
4+2=6 V4
2

A. Farhadi, S. Pratt Lecture 4 - 144 Jan 15, 2026

Patterns in gradient flow

add gate: gradient distributor mul gate: “swap multiplier”
3 2
2 ~a 7 9*3=15 ™ 6
Onne (05—~
Nl Rl
2 2*5=10
copy gate: gradient adder max gate: gradient router
7 4
4+2=6 7 5 , 9
2 9

A. Farhadi, S. Pratt Lecture 4 - 145 Jan 15, 2026

def f(wd, x0, wl, x1, w2):

Backprop Implementation: P———
“Flat” code Forward pass: i e
s2 = s@ + sl

Compute output oy o 8 o

w0 2.00

L = sigmoid(s3)

grad_L = 1.0
grad_L x (1 - L) x L
grad_w2 = grad_s3

grad_s3

grad_s2 = grad_s3

A @?gg Backward pass:

Dz rad_s@ = grad_s2
Compute grads A RS 2t

grad_sl1l = grad_s2

0.20 grad_wl = grad_sl x x1
grad_x1 = grad_sl x wl
grad_w@ = grad_s@ * x0
grad_x0 = grad_s@ x wo@

A. Farhadi, S. Pratt Lecture 4 - 146 Jan 15, 2026

def f(wd, x0, wl, x1, w2):

Backprop Implementation: P———
“Flat” code Forward pass: i e
s2 = s@ + sl

Compute output
S3 = 52 + w2
w0 2.00 L = sigmoid(s3)

X0 -1.00 Base case | grad_L = 1.0
| grad_s3 = grad_L *x (1 - L) * L
wl -3.00 grad_w2 = grad_s3
- grad_s2 = grad_s3
x1 -2.00 1.00

20.60 grad_s® = grad_s2

grad_sl1l = grad_s2
w2 -3.00

0.20 grad_wl = grad_sl x x1
grad_x1 = grad_sl x wl
grad_w@ = grad_s@ * x0
grad_x0 = grad_s@ x wo@

A. Farhadi, S. Pratt Lecture 4 - 147 Jan 15, 2026

def f(wd, x0, wl, x1, w2):

Backprop Implementation: prP—
Flat” code Forward pass: i
Compute output | °2 = ¢ * =1

s3 = 52 + w2

w0 2.00

||L = sigmoid(s3)

. grad L = 1.0
Sigmoid grad_s3 = grad_L * (1 - L) % L
i grad_w2 = grad_s3
1.00 073 grad_s2 = grad_s3
Xl ﬁgg 0.20 Loo| grad_s@ = grad_s2

grad_sl1l = grad_s2

wzag? grad_wl = grad_sl x x1
grad_x1 = grad_sl x wl
grad_w@ = grad_s@ * x0
grad_x0 = grad_s@ x wo@

A. Farhadi, S. Pratt Lecture 4 - 148 Jan 15, 2026

def f(wd, x0, wl, x1, w2):

Backprop Implementation: P———
“Flat” code Forward pass: i e
s2 = s@ + sl

Compute output e B o oo

w0 2.00

L = sigmoid(s3)

grad_L = 1.0
rad s3 rad L x (1 - L) x L
grad_w2 = grad_s3

4.00
0.20

Add gate

N Lm)/:;\\073 grad_s2 = grad_s3
0200 __/ 1.00 grad_s@ = grad_s2

grad_sl1l = grad_s2

-0.60

w2| -3.00

0.20 grad_wl = grad_sl x x1
grad_x1 = grad_sl x wl
grad_w@ = grad_s@ x x0
grad_x0 = grad_s@ x wo@

A. Farhadi, S. Pratt Lecture 4 - 149 Jan 15, 2026

def f(wd, x0, wl, x1, w2):

Backprop Implementation: prP—
Flat” code Forward pass: LW e X
Compute output |22= 52 * =1

s3 = s2 + w2

Wojg§i><::>_ L = sigmoid(s3)
-2.00
x0 -1.00
S grad_L = 1.0
grad_s3 = grad_L *x (1 - L) * L
wl -3.00
T grad_w2 = grad_s3
o 5 " 321/?;\\?33 grad_s2 = grad_s3
A 2 - rad_s@ = grad_s2
0.60 Add gate Sk 970
grad_sl1l = grad_s2
wzag? grad_wl = grad_sl x x1
grad_x1 = grad_sl x wl
grad_w@ = grad_s@ x x0
grad_x0 = grad_s@ x wo@

A. Farhadi, S. Pratt Lecture 4 - 150 Jan 15, 2026

Backprop Implementation:

Flat COde Forward pass:
Compute output

w0 2.00

wl -3.00
-0.40 -
5 1.00 @ 0.73
5l el 0.20 1.00
-0.60
0.20 Multiply gate

X0, wl, x1, w2):

def f(wo,
SO = wd * x0
s1 = wl % x1
s2 = sO + sl
s3 = 52 + w2
L = sigmoid(s3)

grad_L = 1.0

grad_s3 = grad_L *x (1 - L) * L
grad_w2 = grad_s3

grad_s2 = grad_s3

grad_s® = grad_s2

grad s1 = grad s2

grad_wl = grad_sl x x1

grad_x1 = grad_sl x wl

grad_w@ = grad_s@ x x0

grad_x0 = grad_s@ x wo@

A. Farhadi, S. Pratt Lecture 4 - 151

Jan 15, 2026

i def (w0, X0, wl, x1, w2):
Backprop Implementation: of 1(u6, 10, M1, 21, v
“Flat” code Forward pass: | £ 7 A
s2 = sO + sl

Compute output oy o 8 o

Woiﬁi L = sigmoid(s3)
-2.00
0 -1.00 =
e grad_L = 1.0
grad_s3 = grad_L *x (1 - L) * L

wl -

grad_w2 = grad_s3

Lm)/:;\\073 grad_s2 = grad_s3
e sl grad_s@ = grad_s2

x1 -2.
-0.60
grad_sl1l = grad_s2

wzag? grad_wl = grad_sl x x1
grad_x1 = grad_sl x wl

. grad_w@ = grad_s@ *x x0

Multiply gate grad_x0 = grad_s@ x wo@

A. Farhadi, S. Pratt Lecture 4 - 152 Jan 15, 2026

“Flat” Backprop: Do this for assignment 2!

Stage your forward/backward computation!

E.g. for the SVM:

receive W (weights), X (da
forward pass (we hav 1in€s)
scores = #...
margins = #...
data loss = #...
reg loss = #...
loss = data loss + reg loss

backward pass (we have 5 lines)
dmargins = # ...
dscores = #...

dw = #. ..

= Zj#yi max(0,s; — sy, + 1)

[\f\— Wzl |Li

S o
/@g
4

) L

A4

(optionally, we go direct to dscores)

A. Farhadi, S. Pratt

Lecture 4 - 153

Jan 15, 2026

“Flat” Backprop: Do this for assignment 1!

E.g. for two-layer neural net:

receive W1,W2,bl,b2 (weights/biases), X (data)

forward pass:

hl = #... function of X,W1,6bl

scores = #... function of hl,W2,b2

loss = #... (several lines of code to evaluate Softmax loss)
backward pass:

dscores = #...

dhl,dw2,db2 = #..

dwl,dbl = #...

A. Farhadi, S. Pratt Lecture 4 - 154 Jan 15, 2026

Backprop Implementation: Modularized API

Graph (or Net) object (rough pseudo code)

class ComputationalGraph(object):

o

w0 2.00

def forward(inputs):
1. [pass inputs to input gates...]
2. forward the computational graph:
for gate in self.graph.nodes topologically sorted():
gate.forward()
return loss # the final gate in the graph outputs the loss

def backward():

for gate in reversed(self.graph.nodes topologically sorted()):
gate.backward() # little piece of backprop (chain rule applied)

return inputs gradients

A. Farhadi, S. Pratt Lecture 4 - 155 Jan 15, 2026

Modularized implementation: forward / backward API
Gate / Node / Function object: Actual PyTorch code

class Multiply(torch.autograd.Function):
X @staticmethod

v def forward(ctx, x, y): Need to stash

ctx.save_for_backward(x, y) €«—————| some values for
use in backward

Z=X%xY
y return z
@staticmethod
(Xx,y,z are scalars) def backward(ctx, grad_z): grzzt{sstm

X, y = ctx.saved_tensors

y % grad_z # dz/dx % dL/dz Multiply upstream
X % grad_z # dz/dy x dL/dz | and local gradients

grad_x

grad_y

return grad_x, grad_y

A. Farhadi, S. Pratt Lecture 4 - 156 Jan 15, 2026

Example: PyTorch operators

pytorch / pytorch @Watch~ 1,221 * Unstar 26,770 YFork 6,340) SpatialClassNLLCriterion.c Canonicalize all includes in PyTorch. (#14849) 4 months ago
) SpatialC allincludes in PyTorch. (#14849) 4 months ago
© pull i i insigh
Code Issues 2,286 ull requests 561 Projects 4 Wik nsights) SpatiaiDistedCanvoltr lize all includes in PyTorch. (#14849) 4 months ago
)) SpatialC g9.c c allincludes in PyTorch. (#14849) 4 months ago
Tree: 517c7¢9861~ pytorch / aten / src / THNN / generic / Upload files ~ Find file ~ History
spati c c all includes in PyTorch. (#14849) 4 months ago
B35 ezyang and facebook-github-bot Canonicalize allincludes in PyTorch. (#14849) == Latest commit 517¢7c9 on Dec 8, 2018 £ spatialFullDilatedConvolution.c Canonicalize all includes in PyTorch. (#14849) 4 months ago
E) SpatialMaxUnpooling.c Canonicalize all includes in PyTorch. (#14849) 4 months ago
E) AbsCriterion.c Canonicalize all includes in PyTorch. (#14849) 4 months ago 2 - c lize all includes in PyTorch. (#14849) 4 months ago
E) BCECriterion.c Canonicalize all includes in PyTorch. (#14849) 4 months ago & 9.c C; allincludes in PyTorch. (#14849) 4 months ago
) Spatiall # nths a
[E) ClassNLLCriterion.c Canonicalize all includes in PyTorch. (#14849) 4 months ago] Spat & allinchides in PyTorch: (#14849) 4 monthsago;
) Spatiall # —

[Col2im.c Canonicalize all includes in PyTorch. (#14849) 4 months ago i allioekides I pyTorchi (#14649). 4 momheagY
m) THNN.h Canonicalize all includes in PyTorch. (#14849) 4 months ago
) ELU.C Canonicalize all includes in PyTorch. (#14849) 4 months ago i ¢) :

5 Tanh.c Canonicalize all includes in PyTorch. (#14849) 4 months ago

[E) FeatureLPPooling.c Canonicalize all includes in PyTorch. (#14849) 4 months ago
) c [all includes in PyTorch. (#14849) 4 months ago
[GatedLinearUnit.c Canonicalize all includes in PyTorch. (#14849) 4 months ago
B g.c (o allincludes in PyTorch. (#14849) 4 months ago
[E) HardTanh.c Canonicalize all includes in PyTorch. (#14849) 4 months ago
B nvolution.c allincludes in PyTorch. (#14849) 4 months ago
[E)Im2Col.c Canonicalize all includes in PyTorch. (#14849) 4 months ago
=) TemporalUpSamplingLinear.c Canonicalize all includes in PyTorch. (#14849) 4 months ago
) IndexLinear.c Canonicalize all includes in PyTorch. (#14849) 4 months ago
2) Temporall c all includes in PyTorch. (#14849) 4months ago
) LeakyReLU.c Canonicalize all includes in PyTorch. (#14849) 4 months ago R
) s allincludes in PyTorch. (#14849) 4 months ago
[LogSigmoid.c Canonicalize all includes in PyTorch. (#14849) 4 months ago
B gc G allincludes in PyTorch. (#14849) 4 months ago
[E) MSECriterion.c Canonicalize all includes in PyTorch. (#14849) 4 months ago
2 9.c c lize all includes in PyTorch. (#14849) 4 months ago
B MultiL riterion.c c allincludes in PyTorch. (#14849) 4 months ago
) VolumetricC: & all includes in PyTorch. (#14849) 4 months ago
) MultiMarginCriteri ize all includes in PyTorch. (#1484 4 months a
) MultiMarginCriterion.c Canonicalize all includes in PyTorch. (#14849) onths ago i VoRme TToONSIBaCEmoNonD z S lncides it PyTereh, WAsas) P
E) RReLU.c Canonicalize all includes in PyTorch. (#14849) 4 months ago ot oo all nchudes i PyTorch: (#14540) P —
) Sigmoid.c Canonicalize all includes in PyTorch. (#14849) 4 months ago ” P allincludes in PyTorch. (#14849) & months ago
=) SmoothL1Criterion.c Canonicalize all includes in PyTorch. (#14849) 4 months ago E) VolumetricFullDilatedConvolution.c Canonicalize all includes in PyTorch. (#14849) 4 months ago
[SoftMarginCriterion.c Canonicalize all includes in PyTorch. (#14849) 4 months ago o) F—— allincludes in PyTorch. (#14849) 4 months ago
[SoftPlus.c Canonicalize all includes in PyTorch. (#14849) 4 months ago B c allincludes in PyTorch. (#14849) 4 months ago
E) SoftShrink.c Canonicalize all includes in PyTorch. (#14849) 4 months ago lumetrict ¢ all includes in PyTorch. (#14849) 4 months ago
) SparseLinear.c Canonicalize all includes in PyTorch. (#14849) 4 months ago) VolumetricUpSampling Trilinear.c lize all includes in PyTorch. (#14849) 4 months ago
) gc C allincludes in PyTorch. (#14849) 4 months ago E) linear_upsampling.h Implement nn.functional.interpolate based on upsample. (#8591) 9 months ago
B g.c c all includes in PyTorch. (#14849) 4 months ago) pooling_shape.h Use integer math to compute output size of pooling operations (#14405) 4 months ago
) S g.c Ci allincludes in PyTorch. (#14849) 4 months ago [unfold.c Canonicalize all includes in PyTorch. (#14849) 4 months ago

A. Farhadi, S. Pratt Lecture 4 - 157 Jan 15, 2026

#ifndef TH_GENERIC_FILE

#define TH_GENERIC_FILE "THNN/generic/Sigmoid.c" PyTO rCh Singid Iayer

#else
void THNN_(Sigmoid_updateOutput) (rw
THNNState *state, FO ard
THTensor *input,].
THTensor xoutput) _
{ 0'((13) - 1 —
THTensor_(sigmoid) (output, input); —+_ €

}

void THNN_(Sigmoid_updateGradInput) (
THNNState *state,
THTensor *xgradOutput,
THTensor *xgradInput,
THTensor xoutput)

THNN_CHECK_NELEMENT (output, gradOutput);

THTensor_(resizeAs) (gradInput, output);

TH_TENSOR_APPLY3(scalar_t, gradInput, scalar_t, gradOutput, scalar_t, output,
scalar_t z = xoutput_data;
*gradInput_data = *kgradOutput_data * (1. - z) * z;

)i

#endif Source

A. Farhadi, S. Pratt Lecture 4 - 158 Jan 15, 2026

https://github.com/pytorch/pytorch/blob/517c7c98610402e2746586c78987c64c28e024aa/aten/src/THNN/generic/Sigmoid.c

#ifndef TH_GENERIC_FILE

#define TH_GENERIC_FILE "THNN/generic/Sigmoid.c" PyTO rCh Singid Iayer

#else
static void sigmoid_kernel(TensorIterator& iter) {
void THNN_(Sigmoid_updateOutput) (Forward ATaziiPATCH_FLOATING_TYPES(1ter.dtype(), "sigmoid_cpu", [&I() {
THNNState *state,)_l';:imel‘vec‘
THTensor *input, 1 [=](;ca1ar_t a) -> scalar_t {[return (1 / (1 + std::exp((-a))));]},
THTensor *output) 0'(:1,') _ [=](Vec256<scalar_t> a) {
{ - 1 + e_x a = Vec256<scalar_t>((scalar_t)(0)) - a;
THTensor_(sigmoid) (output, input); a = a.exp();
a = Vec256<scalar_t>((scalar_t)(1)) + a;
} as= a.reciprocal(;; B
void THNN_(Sigmoid_updateGradInput) (});retum * Forward aCtua”y
THWNState xstate, B defined elsewhere...
THTensor xgradOutput, }
THTensor *xgradInput,
THTensor xoutput) return (1 / (1) Std: :exp((_a))));
{
THNN_CHECK_NELEMENT (output, gradOutput);
THTensor_(resizeAs)(gradInput, output);
TH_TENSOR_APPLY3(scalar_t, gradInput, scalar_t, gradOutput, scalar_t, output,
scalar_t z = xoutput_data;
*gradInput_data = *kgradOutput_data * (1. - z) * z;
)i
¥
#endif Source

A. Farhadi, S. Pratt Lecture 4 - 159 Jan 15, 2026

https://github.com/pytorch/pytorch/blob/517c7c98610402e2746586c78987c64c28e024aa/aten/src/THNN/generic/Sigmoid.c
https://github.com/pytorch/pytorch/blob/82b570528db0a43fc04bb90f5d4538c01e4a5582/aten/src/ATen/native/cpu/UnaryOpsKernel.cpp

#ifndef TH_GENERIC_FILE
#define TH_GENERIC_FILE "THNN/generic/Sigmoid.c"
#else

void THNN_(Sigmoid_updateOutput) (
THNNState *state,

PyTorch sigmoid layer

static void sigmoid_kernel(TensorIterator& iter) {
AT_DISPATCH_FLOATING_TYPES(iter.dtype(), "sigmoid_cpu", [&]() {

Forwa rd unary_kernel_vec(

THTensor *input,

THTensor_(sigmoid) (output, input);

THTensor xoutput)
{ 0'(:1:) —

iter,

[=](scalar_t a) -> scalar_t { return (1 / (1 + std::exp((-a)))); },
[=](Vec256<scalar_t> a) {

a=
ai=
a=

Vec256<scalar_t>((scalar_t)(0)) - a;
a.exp();
Vec256<scalar_t>((scalar_t) (1)) + a;

} a = a.reciprocal();
void THNN_(Sigmoid_updateGradInput) (});retum * Forward aCtua”y
THaELAElastate, B defined elsewhere...
THTensor xgradOutput, Y
THTensor *xgradInput,
THTensor xoutput)
{
THNN_CHECK_NELEMENT (output, gradOutput);
THTensor_(resizeAs)(gradInput, output); E3E3(3F(\A/Eir(j
TH_TENSOR_APPLY3(scalar_t, gradInput, scalar_t, gradOutput, scalar_t, output,
scalar_t z = xoutput_data;
*gradInput_data = *kgradOutput_data * (1. - z) * z;
" — (1 —o(z))o(z)
¥
#endif Source

A. Farhadi, S. Pratt

Lecture 4 - 160

Jan 15, 2026

https://github.com/pytorch/pytorch/blob/517c7c98610402e2746586c78987c64c28e024aa/aten/src/THNN/generic/Sigmoid.c
https://github.com/pytorch/pytorch/blob/82b570528db0a43fc04bb90f5d4538c01e4a5582/aten/src/ATen/native/cpu/UnaryOpsKernel.cpp

Summary for today:

e (Fully-connected) Neural Networks are stacks of linear functions and
nonlinear activation functions; they have much more representational
power than linear classifiers

e backpropagation = recursive application of the chain rule along a
computational graph to compute the gradients of all
inputs/parameters/intermediates

e implementations maintain a graph structure, where the nodes implement
the forward() / backward() API

e forward: compute result of an operation and save any intermediates
needed for gradient computation in memory

e backward: apply the chain rule to compute the gradient of the loss
function with respect to the inputs

A. Farhadi, S. Pratt Lecture 4 - 161 Jan 15, 2026

So far: backprop with scalars

Next time: vector-valued functions!

A. Farhadi, S. Pratt Lecture 4 - 162 Jan 15, 2026

Next Time: Convolutional neural networks

+ |
p { .'
i k|, 11
' _; (53 ‘(jer
| \o? \ R
I | A \
't’ .'I »
1 1 '] 4
A Ma)

A. Farhadi, S. Pratt Lecture 4 - 163 Jan 15, 2026

A vectorized example: f(z, W) = ||W - z||? = > (W - z)?

A. Farhadi, S. Pratt Lecture 4 - 164 Jan 15, 2026

A vectorized example: f(z, W) = ||W - z||? = > (W - z)?

E]R'n E Ran

A. Farhadi, S. Pratt Lecture 4 - 165 Jan 15, 2026

A vectorized example: f(z, W) = ||W - z||? = > (W - z)?

\WY%
(17)
5 Y (L2}
) N

A. Farhadi, S. Pratt Lecture 4 - 166 Jan 15, 2026

A vectorized example: f(z, W) = ||W - z||? = > (W - z)?

0.1 0.5
—-0.3 0.8

Y

A. Farhadi, S. Pratt Lecture 4 - 167 Jan 15, 2026

A vectorized example: f(z, W) = ||W - z||? = > (W - z)?
0.1 0.5 =
{ ~0.3 0.8 }

A. Farhadi, S. Pratt

Lecture 4 - 168 Jan 15, 2026

A vectorized example: f(z, W) = ||W - z||? = > (W - z)?
0.1 0.5 =
{ ~0.3 0.8 }

A. Farhadi, S. Pratt

Lecture 4 - 169 Jan 15, 2026

A vectorized example: f(z, W) = ||W - z||? = > (W - z)?

0.1 0.5
—-0.3 0.8

A. Farhadi, S. Pratt Lecture 4 -170 Jan 15, 2026

A vectorized example: f(z, W) = ||W - z||? = > (W - z)?
0.1 0.5 =
{ ~0.3 0.8 }
W ~ -
0.22

0.26

| 0.26 | 0.116
0.2 e Ve (12)

0.44 __/ 1.00

X | 0.52

Wiizr+ -+ WinZn gf}% = 2gq;

A. Farhadi, S. Pratt Lecture 4 - 171 Jan 15, 2026

A vectorized example: f(z, W) = ||W - z||? = > (W - z)?
0.1 0.5 =
{ ~0.3 0.8 }
W ~ -
0.22

0.26

| 0.26 | 0.116
0.2 e Ve (12)

0.44 __/ 1.00

Wiizr+ -+ WinZn

A. Farhadi, S. Pratt Lecture 4 -172 Jan 15, 2026

A vectorized example: f(z, W) = ||W - z||? = > (W - z)?
0.1 0.5
{ ~0.3 0.8 }
W ~ -
0.22
026] 77N 0.116
[0'2 * o =\L_2j 1.00

A. Farhadi, S. Pratt Lecture 4 -173 Jan 15, 2026

A vectorized example: f(z, W) = ||W - z||? = > (W - z)?

0.1 0.5
~03 08 |
B
' T | 0.26 | 77 R 0.116
02 >}< —> - > L2 >
0.4 0.44 __/ 1.00

A. Farhadi, S. Pratt Lecture 4 - 174 Jan 15, 2026

A vectorized example: f(z, W) = ||W - z||? = > (W - z)?

{ 0.1 0.5
—0.3 08 | T
[0.088 0.176 W e vWf =2q-x
0.104 0.208 '
- | 0.26 | 77 R 0.116
02 >}< —> - > L2 >
0.4 0.44 __/ 1.00

A. Farhadi, S. Pratt Lecture 4 -175 Jan 15, 2026

A vectorized example: f(z, W) = ||W - z||? = > (W - z)?

[0.1 05
—0.3 0.8 T
[0.088 0.176 1V 099 Vwf=2q-z
0.104 0.208 | 0.26 | /\ 0.116 Always check: The
0.2 | K - - 1.2 }— gradient with
0.4 [0.44] U 1.00 respect to a variable
- X 0.59 o should have the
| VYl gk 1 - same shape as the
8W ,J — tk=ilj variable
W1,133'1 + -+ Wl,nxn E 0qy
=Wz =] BWZJ kaquWzJ
_ 2 _ 2 2 k
flag=ldf=a+ -+ =2qz'$j

A. Farhadi, S. Pratt Lecture 4 - 176 Jan 15, 2026

A vectorized example: f(z, W) = |[W - z||? =Y , (W - 1)?

0.1 0.5 =1 ¢
~0.3 08 |
B
| - | 0.26] 77 R 0.116
02 sk —> - - L2 >
0.4 0.44 __/ 1.00
- X | 0.52 |
Oqx .
= Wk
Wiiz1 + -+ W1 a2y ox;

A. Farhadi, S. Pratt Lecture 4 -177 Jan 15, 2026

A vectorized example: f(z, W) = |[W - z||? =Y , (W - 1)?

?

0.1 0.5 =1 ¢
~0.3 08 |
B
| - | 0.26] 77 R 0.116
02 sk —> - - L2 >
0.4 0.44 __/ 1.00
- X | 0.52 |
Oqx .
= Wk
Wiiz1 + -+ W1 a2y 0z;

A. Farhadi, S. Pratt Lecture 4 -178 Jan 15, 2026

A vectorized example: f(z, W) = ||W - z||? = > (W - z)?

{ 0.1 0.5
~03 08 -
[0.088 0.176 1V oy - V.f=2W" -q
0.104 0.208 '
- | 0.26 77 R 0.116
02 >}< —> - > L2 >
0.4 0.44 __/ 1.00
o112] * | 0.52
0.636 | Ogr _ »
Wiiz1 + -+ W1 a2y 0z; ,

| df _ x~ 0f Oy

A. Farhadi, S. Pratt Lecture 4 -179 Jan 15, 2026

In discussion section: A matrix example...
21 — XWl ’

hl = ReLU(zl) » ‘ @
Yy = hiWo ‘ °

L=l3ll3 "
oL

oWy ?

oL o

8W1 -

A. Farhadi, S. Pratt Lecture 4 - 180 Jan 15, 2026

