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Lecture 4:
Neural Networks and 
Backpropagation
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Due 1/22 11:59pm

- K-Nearest Neighbor
- Linear classifiers: SVM, Softmax

Administrative: Assignment 1
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Administrative: EdStem

Please make sure to check and read all pinned EdStem posts.

We will be posting a google form to help people find project 
partners soon
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This Friday 9:30-10:30am and again 12:30-1:30pm 

Backprop (A review of what we are going over today)

Administrative: Fridays
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Recap: from last time

f(x,W) = Wx + b
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Linear score function

SVM loss (or softmax)

data loss + regularization

Recap: loss functions 
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Recap: Softmax vs. SVM
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Wrap up from last lecture…
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Softmax Classifier (Multinomial Logistic Regression)

cat

frog

car

3.2
5.1
-1.7

Want to interpret raw classifier scores as probabilities
Softmax 
Function

24.5
164.0
0.18

0.13
0.87
0.00

exp normalize

unnormalized 
probabilities

Probabilities 
must be >= 0

Probabilities 
must sum to 1

probabilitiesUnnormalized 
log-probabilities / logits

1.00
0.00
0.00
Correct 
probs

compare
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Softmax Classifier (Multinomial Logistic Regression)

cat

frog

car

3.2
5.1
-1.7

Want to interpret raw classifier scores as probabilities
Softmax 
Function

24.5
164.0
0.18

0.13
0.87
0.00

exp normalize

unnormalized 
probabilities

Probabilities 
must be >= 0

Probabilities 
must sum to 1

probabilitiesUnnormalized 
log-probabilities / logits

1.00
0.00
0.00
Correct 
probs

compare

Kullback–Leibler 
divergence
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Softmax Classifier (Multinomial Logistic Regression)

cat

frog

car

3.2
5.1
-1.7

Want to interpret raw classifier scores as probabilities
Softmax 
Function

24.5
164.0
0.18

0.13
0.87
0.00

exp normalize

unnormalized 
probabilities

Probabilities 
must be >= 0

Probabilities 
must sum to 1

probabilitiesUnnormalized 
log-probabilities / logits

1.00
0.00
0.00
Correct 
probs

compare

Cross Entropy
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Softmax Classifier (Multinomial Logistic Regression)

cat

frog

car

3.2
5.1
-1.7

Want to interpret raw classifier scores as probabilities
Softmax 
Function

Maximize probability of correct class Putting it all together:
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Q1: What is the min/max possible softmax loss Li?
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Softmax Classifier (Multinomial Logistic Regression)

cat

frog

car

3.2
5.1
-1.7

Want to interpret raw classifier scores as probabilities
Softmax 
Function

Maximize probability of correct class Putting it all together:
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Softmax Classifier (Multinomial Logistic Regression)

cat

frog

car

3.2
5.1
-1.7

Want to interpret raw classifier scores as probabilities
Softmax 
Function

Maximize probability of correct class Putting it all together:

Q1: What is the min/max possible softmax loss Li?

Q2: At initialization all sj will be approximately equal; 
what is the softmax loss Li, assuming C classes?
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Softmax Classifier (Multinomial Logistic Regression)

cat

frog

car

3.2
5.1
-1.7

Want to interpret raw classifier scores as probabilities
Softmax 
Function

Maximize probability of correct class Putting it all together:

Q2: At initialization all s will be 
approximately equal; what is the loss?
A: -log(1/C) = log(C), 
If C = 10, then Li = log(10) ≈ 2.3
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Softmax vs. SVM
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Softmax vs. SVM
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Softmax vs. SVM

assume scores:
[10, -2, 3]
[10, 9, 9]
[10, -100, -100]
and 

Q: What is the SVM loss? 
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Softmax vs. SVM

assume scores:
[10, -2, 3]
[10, 9, 9]
[10, -100, -100]
and 

Q: What is the SVM loss? 

Q: Is the Softmax loss zero for 
any of them?
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Summary:
- We have some dataset of (x,y)
- We have a score function: 
- We have a loss function: 

e.g.

Softmax

SVM

Full loss
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Summary:
- We have some dataset of (x,y)
- We have a score function: 
- We have a loss function: 

e.g.

Softmax

SVM

Full loss

How do we find the best W?
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Optimization
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This image is CC0 1.0 public domain

http://maxpixel.freegreatpicture.com/Mountains-Valleys-Landscape-Hills-Grass-Green-699369
https://creativecommons.org/publicdomain/zero/1.0/
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Walking man image is CC0 1.0 public domain

http://www.publicdomainpictures.net/view-image.php?image=139314&picture=walking-man
https://creativecommons.org/publicdomain/zero/1.0/
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Strategy #1: A first very bad idea solution: Random search
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Lets see how well this works on the test set...

15.5% accuracy! not bad!
(SOTA is ~99.7%)
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Strategy #2: Follow the slope
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Strategy #2: Follow the slope

In 1-dimension, the derivative of a function:

In multiple dimensions, the gradient is the vector of (partial derivatives) along 
each dimension

The slope in any direction is the dot product of the direction with the gradient
The direction of steepest descent is the negative gradient
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current W:

[0.34,
-1.11,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…] 
loss 1.25347

gradient dW:

[?,
?,
?,
?,
?,
?,
?,
?,
?,…]
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current W:

[0.34,
-1.11,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…] 
loss 1.25347

W + h (first dim):

[0.34 + 0.0001,
-1.11,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…] 
loss 1.25322

gradient dW:

[?,
?,
?,
?,
?,
?,
?,
?,
?,…]
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gradient dW:

[-2.5,
?,
?,
?,
?,
?,
?,
?,
?,…]

(1.25322 - 1.25347)/0.0001
= -2.5

current W:

[0.34,
-1.11,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…] 
loss 1.25347

W + h (first dim):

[0.34 + 0.0001,
-1.11,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…] 
loss 1.25322
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gradient dW:

[-2.5,
?,
?,
?,
?,
?,
?,
?,
?,…]

current W:

[0.34,
-1.11,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…] 
loss 1.25347

W + h (second dim):

[0.34,
-1.11 + 0.0001,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…] 
loss 1.25353
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gradient dW:

[-2.5,
0.6,
?,
?,
?,
?,
?,
?,
?,…]

current W:

[0.34,
-1.11,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…] 
loss 1.25347

W + h (second dim):

[0.34,
-1.11 + 0.0001,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…] 
loss 1.25353

(1.25353 - 1.25347)/0.0001
= 0.6
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gradient dW:

[-2.5,
0.6,
?,
?,
?,
?,
?,
?,
?,…]

current W:

[0.34,
-1.11,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…] 
loss 1.25347

W + h (third dim):

[0.34,
-1.11,
0.78 + 0.0001,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…] 
loss 1.25347
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gradient dW:

[-2.5,
0.6,
0,
?,
?,
?,
?,
?,
?,…]

current W:

[0.34,
-1.11,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…] 
loss 1.25347

W + h (third dim):

[0.34,
-1.11,
0.78 + 0.0001,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…] 
loss 1.25347

(1.25347 - 1.25347)/0.0001
= 0
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gradient dW:

[-2.5,
0.6,
0,
?,
?,
?,
?,
?,
?,…]

current W:

[0.34,
-1.11,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…] 
loss 1.25347

W + h (third dim):

[0.34,
-1.11,
0.78 + 0.0001,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…] 
loss 1.25347

Numeric Gradient
- Slow! Need to loop over 

all dimensions
- Approximate
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This is silly. The loss is just a function of W:

want
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This is silly. The loss is just a function of W:

want

This image is in the public domain This image is in the public domain

Use calculus to compute an 
analytic gradient

https://en.wikipedia.org/wiki/Isaac_Newton#/media/File:GodfreyKneller-IsaacNewton-1689.jpg
https://en.wikipedia.org/wiki/Gottfried_Wilhelm_Leibniz#/media/File:Gottfried_Wilhelm_Leibniz,_Bernhard_Christoph_Francke.jpg
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gradient dW:

[-2.5,
0.6,
0,
0.2,
0.7,
-0.5,
1.1,
1.3,
-2.1,…]

current W:

[0.34,
-1.11,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…] 
loss 1.25347

dW = ...
(some function 
data and W)
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In summary:
- Numerical gradient: approximate, slow, easy to write

- Analytic gradient: exact, fast, error-prone

=>

In practice: Always use analytic gradient, but check 
implementation with numerical gradient. This is called a 
gradient check.
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Gradient Descent
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original W

negative gradient direction
W_1

W_2
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Stochastic Gradient Descent (SGD)

43

Full sum expensive 
when N is large!

Approximate sum 
using a minibatch of 
examples
32 / 64 / 128 common
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How to find the best W?

Linear score function

SVM loss (or softmax)

data loss + regularization

Calculating the analytical gradient requires calculus!
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Before we discuss how to calculate 
gradients analytically, 

let’s introduce neural networks



A. Farhadi, S. Pratt Lecture 4 - Jan 15, 2026

Problem: Linear Classifiers are not very powerful

46

Visual Viewpoint

Linear classifiers learn 
one template per class

Geometric Viewpoint

Linear classifiers 
can only draw linear 
decision boundaries
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Pixel Features

47

f(x) = Wx
Class 
scores
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Image Features

48

f(x) = Wx
Class 
scores

Feature Representation
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Image Features: Motivation

49

x

y

Cannot separate red 
and blue points with 
linear classifier
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Features become linearly separable through a 
non-linear transformation

50

x

y

r

θ

f(x, y) = (r(x, y), θ(x, y)) 

Cannot separate red 
and blue points with 
linear classifier

After applying feature 
transform, points can 
be separated by linear 
classifier
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Example: Color Histogram

51

+1
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Example: Histogram of Oriented Gradients (HoG)

52

Divide image into 8x8 pixel regions
Within each region quantize edge 
direction into 9 bins

Example: 320x240 image gets divided 
into 40x30 bins; in each bin there are 
9 numbers so feature vector has 
30*40*9 = 10,800 numbers

Lowe, “Object recognition from local scale-invariant features”, ICCV 1999
Dalal and Triggs, "Histograms of oriented gradients for human detection," CVPR 2005
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Example: Bag of Words

53

Extract random 
patches 

Cluster patches to 
form “codebook” 
of “visual words”

Step 1: Build codebook

Step 2: Encode images

Fei-Fei and Perona, “A bayesian hierarchical model for learning natural scene categories”, CVPR 2005
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Combine many different features if unsure which 
features are better

54



A. Farhadi, S. Pratt Lecture 4 - Jan 15, 2026

Feature Extraction

Image features vs neural networks

55

f
10 numbers giving 
scores for classes

training

training

10 numbers giving 
scores for classes

Krizhevsky, Sutskever, and Hinton, “Imagenet classification 
with deep convolutional neural networks”, NIPS 2012.
Figure copyright Krizhevsky, Sutskever, and Hinton, 2012. 
Reproduced with permission.



A. Farhadi, S. Pratt Lecture 4 - Jan 15, 2026

One Solution: Non-linear feature transformation

56

f(x, y) = (r(x, y), θ(x, y)) 

Transform data with a cleverly 
chosen feature transform f, 
then apply linear classifier

Color Histogram Histogram of Oriented Gradients (HoG)
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Neural Networks
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Neural networks: the original linear classifier

(Before) Linear score function:
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(Before) Linear score function:

(Now) 2-layer Neural Network
      

Neural networks: 2 layers

(In practice we will usually add a learnable bias at each layer as well)
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(Before) Linear score function:

(Now) 2-layer Neural Network
      

Neural networks: also called fully connected network

(In practice we will usually add a learnable bias at each layer as well)

“Neural Network” is a very broad term; these are more accurately called 
“fully-connected networks” or sometimes “multi-layer perceptrons” (MLP)
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Neural networks: 3 layers

(Before) Linear score function:

(Now) 2-layer Neural Network
  or 3-layer Neural Network

      

(In practice we will usually add a learnable bias at each layer as well)
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(Before) Linear score function:

(Now) 2-layer Neural Network
      

Neural networks: hierarchical computation

x hW1 sW2

3072 100 10
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(Before) Linear score function:

(Now) 2-layer Neural Network
      

Neural networks: learning 100s of templates

x hW1 sW2

3072 100 10

Learn 100 templates instead of 10.                               Share templates between classes
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Examples of templates from real neural networks 

Springenberg et al, “Striving for Simplicity: The All Convolutional Net”, ICLR Workshop 2015
Figure copyright Jost Tobias Springenberg, Alexey Dosovitskiy, Thomas Brox, Martin Riedmiller, 2015; reproduced with permission.
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The function                   is called the activation function.
Q: What if we try to build a neural network without one?

65

(Before) Linear score function:

(Now) 2-layer Neural Network
      

Neural networks: why is max operator important?
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The function                   is called the activation function.
Q: What if we try to build a neural network without one?

66

(Before) Linear score function:

(Now) 2-layer Neural Network
      

Neural networks: why is max operator important?

A: We end up with a linear classifier again!
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Sigmoid

tanh

ReLU

Leaky ReLU

GeLU

ELU

Activation functions



A. Farhadi, S. Pratt Lecture 4 - Jan 15, 202668

Sigmoid

tanh

ReLU

Leaky ReLU

ELU

Activation functions ReLU is a good default 
choice for most problems

GeLU
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Sigmoid

tanh

ReLU

Leaky ReLU

ELU

Activation functions GeLU is the default choice 
for transformers

GeLU
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“Fully-connected” layers
“2-layer Neural Net”, or
“1-hidden-layer Neural Net”

“3-layer Neural Net”, or
“2-hidden-layer Neural Net”

Neural networks: Architectures
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Example feed-forward computation of a neural network
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Example feed-forward computation of a neural network
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Example feed-forward computation of a neural network
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Example feed-forward computation of a neural network
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Example feed-forward computation of a neural network
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Example feed-forward computation of a neural network
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Full implementation of training a 2-layer Neural Network needs ~20 lines:
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Full implementation of training a 2-layer Neural Network needs ~20 lines:

Define the network
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Full implementation of training a 2-layer Neural Network needs ~20 lines:

Define the network

Forward pass
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Full implementation of training a 2-layer Neural Network needs ~20 lines:

Define the network

Forward pass

Calculate the analytical gradients
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Full implementation of training a 2-layer Neural Network needs ~20 lines:

Define the network

Gradient descent

Forward pass

Calculate the analytical gradients
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Setting the number of layers and their sizes

more neurons = more capacity
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Do not use size of neural network as a regularizer. Use stronger regularization instead:
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This image by Fotis Bobolas is 
licensed under CC-BY 2.0

https://www.flickr.com/photos/fbobolas/3822222947
https://www.flickr.com/photos/fbobolas
https://creativecommons.org/licenses/by/2.0/
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Impulses carried toward cell body

Impulses carried away 
from cell body

This image by Felipe Perucho
is licensed under CC-BY 3.0

dendrite

cell body

axon

presynaptic   
  terminal

https://thenounproject.com/term/neuron/214105/
https://creativecommons.org/licenses/by/3.0/us/
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Impulses carried toward cell body

Impulses carried away 
from cell body

This image by Felipe Perucho
is licensed under CC-BY 3.0

dendrite

cell body

axon

presynaptic   
  terminal

https://thenounproject.com/term/neuron/214105/
https://creativecommons.org/licenses/by/3.0/us/
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sigmoid activation function

Impulses carried toward cell body

Impulses carried away 
from cell body

This image by Felipe Perucho
is licensed under CC-BY 3.0

dendrite

cell body

axon

presynaptic   
  terminal

https://thenounproject.com/term/neuron/214105/
https://creativecommons.org/licenses/by/3.0/us/
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Impulses carried toward cell body

Impulses carried away 
from cell body

This image by Felipe Perucho
is licensed under CC-BY 3.0

dendrite

cell body

axon

presynaptic   
  terminal

https://thenounproject.com/term/neuron/214105/
https://creativecommons.org/licenses/by/3.0/us/
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This image is CC0 Public Domain

Biological Neurons: 
Complex connectivity patterns

Neurons in a neural network:
Organized into regular layers for 
computational efficiency

https://www.maxpixel.net/Brain-Structure-Neurons-Brain-Network-Brain-Cells-582052
https://creativecommons.org/publicdomain/zero/1.0/deed.en
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This image is CC0 Public Domain

Biological Neurons: 
Complex connectivity patterns

But neural networks with random 
connections can work too!

Xie et al, “Exploring Randomly Wired Neural Networks for Image Recognition”, arXiv 2019

https://www.maxpixel.net/Brain-Structure-Neurons-Brain-Network-Brain-Cells-582052
https://creativecommons.org/publicdomain/zero/1.0/deed.en
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Biological Neurons:
● Many different types
● Dendrites can perform complex non-linear computations
● Synapses are not a single weight but a complex non-linear dynamical 

system

[Dendritic Computation. London and Hausser]

Be very careful with your brain analogies!



A. Farhadi, S. Pratt Lecture 4 - Jan 15, 202692

Now let’s calculate the
analytical gradients
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Plugging in neural networks with loss functions

Nonlinear score function

SVM Loss on predictions

Regularization

Total loss: data loss + regularization
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If we can compute                     then we can learn W1 and W2 

94

Problem: How to compute gradients? 

Nonlinear score function

SVM Loss on predictions

Regularization

Total loss: data loss + regularization
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(Bad) Idea: Derive             on paper

Problem: What if we want to 
change loss? E.g. use softmax 
instead of SVM? Need to 
re-derive from scratch =(

Problem: Very tedious: Lots of 
matrix calculus, need lots of paper

Problem: Not feasible for very 
complex models!
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x

W

hinge 
loss

R

+ L
s (scores)

Better Idea: Computational graphs + Backpropagation

*
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input image

loss

weights

Convolutional network
(AlexNet)

Figure copyright Alex Krizhevsky, Ilya Sutskever, and 

Geoffrey Hinton, 2012. Reproduced with permission. 
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Really complex neural 
networks!!

Figure reproduced with permission from a Twitter post by Andrej Karpathy.

input image

loss

https://twitter.com/karpathy/status/597631909930242048?lang=en


A. Farhadi, S. Pratt Lecture 4 - Jan 15, 202699

Solution: Backpropagation
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Backpropagation: a simple example
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gradient

Local
gradient
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Chain rule:

e.g. x = -2, y = 5, z = -4

Want: 

Backpropagation: a simple example

Upstream 
gradient

Local
gradient
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f
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f

“local gradient”
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f

“local gradient”

“Upstream
gradient”
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f

“local gradient”

“Upstream
gradient”

“Downstream
gradients”
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f

“local gradient”

“Upstream
gradient”

“Downstream
gradients”
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f

“local gradient”

“Upstream
gradient”

“Downstream
gradients”
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Another example:
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Another example:
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Another example:
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Another example:
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Another example:
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Another example:

Upstream 
gradient

Local
gradient
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Another example:
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Another example:

Upstream 
gradient

Local
gradient
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Another example:
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Another example:

Upstream 
gradient

Local
gradient
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Another example:
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Another example:

Upstream 
gradient

Local
gradient
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Another example:
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Another example:

[upstream gradient] x [local gradient]
[0.2] x [1] = 0.2
[0.2] x [1] = 0.2  (both inputs!)
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Another example:
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Another example:

[upstream gradient] x [local gradient]
w0: [0.2] x [-1] = -0.2
x0: [0.2] x [2] = 0.4
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Another example:

Sigmoid

Sigmoid 
function

Computational graph 
representation may not 
be unique. Choose one 
where local gradients at 
each node can be easily 
expressed!
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gradient:

Computational graph 
representation may not 
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Another example:

Sigmoid

Sigmoid 
function

Sigmoid local 
gradient:

Computational graph 
representation may not 
be unique. Choose one 
where local gradients at 
each node can be easily 
expressed!

[upstream gradient] x [local gradient]
[1.00] x [(1 - 1/(1+e1)) (1/(1+e1))] = 0.2



A. Farhadi, S. Pratt Lecture 4 - Jan 15, 2026141

Another example:

Sigmoid

Sigmoid 
function

Sigmoid local 
gradient:

Computational graph 
representation may not 
be unique. Choose one 
where local gradients at 
each node can be easily 
expressed!

[upstream gradient] x [local gradient]
[1.00] x [(1 - 0.73) (0.73)] = 0.2
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add gate: gradient distributor

Patterns in gradient flow

+
3

4
7
2

2

2
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7
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add gate: gradient distributor

Patterns in gradient flow

+
3

4
7
2

2

2

mul gate: “swap multiplier”

copy gate: gradient adder

×
2

3
6
5

5*3=15

2*5=10

7

7
7

4+2=6

4

2
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add gate: gradient distributor

Patterns in gradient flow

+
3

4
7
2

2

2

mul gate: “swap multiplier”

max gate: gradient router

max

copy gate: gradient adder

×
2

3
6
5

5*3=15

2*5=10

4

5
5
9

0

9

7

7
7

4+2=6

4

2
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Backprop Implementation: 
“Flat” code Forward pass:

Compute output

Backward pass:
Compute grads
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Backprop Implementation: 
“Flat” code Forward pass:

Compute output

Base case
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Backprop Implementation: 
“Flat” code Forward pass:

Compute output

Sigmoid
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Compute output

Add gate
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Backprop Implementation: 
“Flat” code Forward pass:

Compute output

Add gate
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Backprop Implementation: 
“Flat” code Forward pass:

Compute output

Multiply gate
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Backprop Implementation: 
“Flat” code Forward pass:

Compute output

Multiply gate
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Stage your forward/backward computation!
E.g. for the SVM:

margins

“Flat” Backprop: Do this for assignment 2!
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“Flat” Backprop: Do this for assignment 1!
E.g. for two-layer neural net:
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Backprop Implementation: Modularized API

Graph (or Net) object  (rough pseudo code)
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(x,y,z are scalars)

x

y

z
*

Modularized implementation: forward / backward API

Need to stash 
some values for 
use in backward

Gate / Node / Function object: Actual PyTorch code

Upstream 
gradient

Multiply upstream 
and local gradients
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Example: PyTorch operators
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Source

Forward

PyTorch sigmoid layer

https://github.com/pytorch/pytorch/blob/517c7c98610402e2746586c78987c64c28e024aa/aten/src/THNN/generic/Sigmoid.c
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PyTorch sigmoid layer

Source

Forward

Forward actually 
defined elsewhere...

https://github.com/pytorch/pytorch/blob/517c7c98610402e2746586c78987c64c28e024aa/aten/src/THNN/generic/Sigmoid.c
https://github.com/pytorch/pytorch/blob/82b570528db0a43fc04bb90f5d4538c01e4a5582/aten/src/ATen/native/cpu/UnaryOpsKernel.cpp
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Source

Forward

Backward

PyTorch sigmoid layer

Forward actually 
defined elsewhere...

https://github.com/pytorch/pytorch/blob/517c7c98610402e2746586c78987c64c28e024aa/aten/src/THNN/generic/Sigmoid.c
https://github.com/pytorch/pytorch/blob/82b570528db0a43fc04bb90f5d4538c01e4a5582/aten/src/ATen/native/cpu/UnaryOpsKernel.cpp
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● (Fully-connected) Neural Networks are stacks of linear functions and 
nonlinear activation functions; they have much more representational 
power than linear classifiers

● backpropagation = recursive application of the chain rule along a 
computational graph to compute the gradients of all 
inputs/parameters/intermediates

● implementations maintain a graph structure, where the nodes implement 
the forward() / backward() API

● forward: compute result of an operation and save any intermediates 
needed for gradient computation in memory

● backward: apply the chain rule to compute the gradient of the loss 
function with respect to the inputs

Summary for today:
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So far: backprop with scalars

Next time: vector-valued functions!
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Next Time: Convolutional neural networks

163
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A vectorized example:
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A vectorized example:
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A vectorized example:
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A vectorized example:
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A vectorized example:
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A vectorized example:
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A vectorized example:
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A vectorized example:
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A vectorized example:
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A vectorized example:
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A vectorized example:



A. Farhadi, S. Pratt Lecture 4 - Jan 15, 2026175

A vectorized example:
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A vectorized example:

Always check: The 
gradient with 
respect to a variable 
should have the 
same shape as the 
variable
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A vectorized example:
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A vectorized example:
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A vectorized example:
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In discussion section: A matrix example...

?

?


