Lecture 4;
Neural Networks and
Backpropagation
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Administrative: Assignment 1
Due 1/22 11:59pm

- K-Nearest Neighbor
- Linear classifiers: SVM, Softmax
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Administrative: EdStem

Please make sure to check and read all pinned EdStem posts.

We will be posting a google form to help people find project
partners soon
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Administrative: Fridays

This Friday 9:30-10:30am and again 12:30-1:30pm

Backprop (A review of what we are going over today)
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Recap: from last time
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f(x,W) = Wx + b

Array of 32x32x3 numbers
(3072 numbers total)

Lecture 4 -5

f(x, W) ——>

T
W

parameters
or weights

10 numbers giving
class scores
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Recap: loss functions
s — f(g; W) — W  Linear score function
Ly; = Z max (0, 8; — 8y, + 1) SVMloss (or softmax)
I#Yi

1 N
= N E L; + A\ E WAQ data loss + regularization
i=1 k
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Recap: Softmax vs. SVM hinge loss (SVM)
-2.85
matrix multiply + bias offset max(0, -2.85 - 0.28 + 1) +
—»{ | 0.86 max(0, 0.86 - 0.28 + 1)
0.01 | -0.05 | 0.1 | 0.05 15 0.0 =
0.25 1.58
0.7 0.2 0.05 | 0.16
22 + 0.2
00 | -045 | -0.2 | 0.03 -44 203 cross-entropy loss (Softmax)
-2.85 0.058 0.016
144 56 b
ex normalize
> | 0.86 _i 236 |— 5 | 0631 | -109(0:353)
w’b (to sum =
to one) 0.452
0.28 1.32 0.353
Yi | 2
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Wrap up from last lecture...
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Softmax Classifier (Multinomial Logistic Regression)

- Want to interpret raw classifier scores as probabilities
| S —= f(wz; W) P(Y = le — gjl) ., (GF Softmax

S; .
>_;j €7 | Function

S o0 mestami L= —lePY =ulX =2)

cat 3.2 24.5 0.13 > compare <—| 1,00
car 51 |—-{164.0™ 0.87 0.00
frog -1.7 0.18 0.00 0.00
Unnormalized unnormalized probabilities Correct
log-probabilities / logits  probabilities orobs

A. Farhadi, S. Pratt Lecture 4 -9 Jan 15, 2026



Softmax Classifier (Multinomial Logistic Regression)

. Want to interpret raw classifier scores as probabilities
S —= f(wz; W) P(Y = le — gjl) ., (GF Softmax

S; .
>_; €7 | Function

Probabilities Probabilities
EG must be >= 0 mustsumto 1 ¢ = ~10g P(Y = [ X = z:)
cat 3.2 24.5 0.13 [ compare <—1 1 00

exp

car 5.1 ——[164.0|"™=% 0.87 | “Gesens | 0.00
fog | -1.7 | |0.18 0.00 | =<1 0.00

. : P(y) log
Unnormalized unnormalized probabilities ; Q(y) Correct

log-probabilities / logits probabilities probs
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Softmax Classifier (Multinomial Logistic Regression)

- Want to interpret raw classifier scores as probabilities
S —= f(wz; W) P(Y = le — gjl) ., (GF Softmax

S; .
>_;j €7 | Function

Probabilities Probabilities
must be >=0 must sum to 1 La=—log Y = gl X =)
cat 3.2 24.5 0.13 [ comeare~— 1,00
exp I
car 51 —+164.0|——| 0.87 | crossenrory | 0.00
H(P,Q) =

fog | -1.7 0.18 0.00 |10, =5 iy | 0.00
Unnormalized unnormalized probabilities Correct
log-probabilities / logits probabilities probs
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Softmax Classifier (Multinomial Logistic Regression)

7 Want to interpret raw classifier scores as probabilities
S —= f(a:?,; W) P(Y = le — gjl) ., (GF Softmax

S .
>_; €7 | Function

g . - Maximize probability of correct class Putting it all together:
Li = —log P(Y = 4| X = z;) L: = —1lo e
2. g S
cat 3.2 ( 3 € )

car 5.1
frog -1.7
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Softmax Classifier (Multinomial Logistic Regression)

7 Want to interpret raw classifier scores as probabilities
S —= f(a:?,; W) P(Y = le — gjl) ., (GF Softmax

S; .
>_;j €7 | Function

. Maximize probability of correct class Putting it all together:
Cat 3-2 l g( Zj e’ )
Q1: What is the min/max possible softmax loss L.?
car 5.1 i
frog -1.7
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Softmax Classifier (Multinomial Logistic Regression)

7 Want to interpret raw classifier scores as probabilities
S —= f(a:?,; W) P(Y = le — gjl) ., (GF Softmax

S; .
>_;j €7 | Function

. Maximize probability of correct class Putting it all together:
L; =—10gP(Y=yi|X=.’Bi) L: = —1lo e%Yi ‘
cat 3.2 : 8( > e )
Q1: What is the min/max possible softmax loss L.?
car 5.1 i
fro 17 Q2: At initialization all 8, will be approximately equal;
9 what is the softmax loss L, assuming C classes?
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Softmax Classifier (Multinomial Logistic Regression)

~ Want to interpret raw classifier scores as probabilities
_ e = — ».) — €% | Softmax
= f(a:?,y W) P(Y - le N wl) B Zj e’ Function

. Maximize probability of correct class Putting it all together:
Li=—logP(Y =y|X =2i) [, = _log(=~
= g Y
cat 3.2 5o

5 1 Q2: At initialization all s will be
car : . _ .
approximately equal; what is the loss?

frog -1.7 | A:-log(1/C) = log(C),
If C =10, then L. =1og(10) = 2.3
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Softmax vs. SVM hinge loss (SVM)
-2.85
matrix multiply + bias offset max(0, -2.85 - 0.28 + 1) +
—»| | 0.86 max(0, 0.86 - 0.28 + 1)
0.01 | -0.05 | 0.1 | 0.05 15 0.0 =
08 1.58
07 | 02 | 005 | 0.16 22 + 0.2
00 | -045 | -0.2 | 0.03 -44 203 cross-entropy loss (Softmax)
-2.85 0.058 0.016
%4 56 b
ex normalize
> | 0.86 _i 236 |— 5 |0631 | -109(0353)
w’b (to sum =
to one) 0.452
0.28 1.32 0.353
Y | 2
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Softmax vs. SVM

L; = —log( gjye] ) i = Dz, max(0,85 — sy, +1)
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Softmax vs. SVM

L log( zsye 8; ) LZ = E]#yz maX(O, Sj — Sy, —+ ]_)

assume scores: Q: What is the SVM loss?
10, -2, 3]

10, 9, 9]

10, -100, -100]

and y, =0
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Softmax vs. SVM

L log( Z c;] ) LZ — E]#yz maX(O, Sj — Sy, —+ ]_)
assume scores: Q: What is the SVM loss?

» 0, -2, 3] Q: Is the Softmax loss zero for
: 0,9, 9] any of them?

10, -100, -100]

and 1y, =0
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Summary:

- We have some dataset of (x,y) eq.
- We have a score function: s = f(z; W) =Wz
- We have a loss function:

Softmax

L == log( Z e ) SVM regularization loss

LZ = : max O S; — Sy. + ]. W_ score function - Y
Z]#yz ( »5d Yi ) >uf(xi,W) data loss o7

.
-

= -]17 Zf\il L; + R(W) FEullloss i)
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Summary; How do we find the best W?

- We have some dataset of (x,y) a
- We have a score function: s = f(z; W) =Wz
- We have a loss function:

Softmax

L; = —log(=

Z 8 SVM regularization loss

LZ = : max O S; — Sy. + ]. W_ score function - Y
Z]#yz ( »5d Yi ) >uf(xi,W) data loss o7

.
>

= -]17 Zf\il L; + R(W) FEullloss i)
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Optimization
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This image is CC0O 1
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http://maxpixel.freegreatpicture.com/Mountains-Valleys-Landscape-Hills-Grass-Green-699369
https://creativecommons.org/publicdomain/zero/1.0/

Walking man image is CC0 1.0
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http://www.publicdomainpictures.net/view-image.php?image=139314&picture=walking-man
https://creativecommons.org/publicdomain/zero/1.0/

Strategy #1: A first very bad idea solution: Random search

bestloss = float("inf")
for num in xrange(1000):
W = np.random.randn(10, 3073) * 0.0001
loss = L(X train, Y_train, W)
if loss < bestloss:
bestloss = loss
bestW = W
print 'in attempt %d the loss was %f, best %f' % (num, loss, bestloss)

A. Farhadi, S. Pratt Lecture 4 - 25 Jan 15, 2026



Lets see how well this works on the test set...

scores = Wbest.dot(Xte cols) #
Yte predict = np.argmax(scores, axis = 0)

np.mean(Yte predict == Yte)

15.5% accuracy! not bad!
(SOTA is ~99.7%)
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Strategy #2: Follow the slope
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Strategy #2: Follow the slope

In 1-dimension, the derivative of a function:

df@) . f@+h) - f()
dx h —0 h

In multiple dimensions, the gradient is the vector of (partial derivatives) along
each dimension

The slope in any direction is the dot product of the direction with the gradient
The direction of steepest descent is the negative gradient
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current W: gradient dW:

[0.34,

-1.11,

0.78,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,...]

loss 1.25347

D

D D D ) ) D ) Y

~
[]
[]
(=

A. Farhadi, S. Pratt Lecture 4 - 29 Jan 15, 2026



current W: W + h (first dim): gradient dW:
[0.34, [0.34 + 0.0001, [?,
-1.11, -1.11, ?,
0.78, 0.78, ?,
0.12, 0.12, ?,
0.55, 0.55, ?,
2.81, 2.81, ?,
-3.1, -3.1, ?,
1.5, -1.5, ?,
0.33,...] 0.33,...] ?,...]
loss 1.25347 loss 1.25322
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current W:

[0.34,

-1.11,

0.78,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,...]

loss 1.25347

W + h (first dim):

[0.34 + 0.0001,
-1.11,

0.78,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,...]

loss 1.25322

gradient dW:

[-2.5,

.o

(1.25322 - 1.25347)/0.0001
=-2.5

af(z) _ . f@+h) - f(@)
h

dx h —0

A. Farhadi, S. Pratt
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current W: W + h (second dim): gradient dW:
[0.34, [0.34, [-2.5,
-1.11, -1.11 + 0.0001, ?,
0.78, 0.78, ?,
0.12, 0.12, ?,
0.55, 0.55, ?,
2.81, 2.81, ?,
-3.1, -3.1, ?,
-1.5, -1.5, ?,
0.33,...] 0.33,...] ?,...]
loss 1.25347 | loss 1.25353
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current W: W + h (second dim): gradient dW:
[0.34, [0.34, [-2.5,

-1.11, -1.11 + 0.0001, 0.6,

0.78, 0.78, ?, \

0.12, 0.12, ?.

0.55, 0.55, (1.25353 - 1.25347)/0.0001
2.81, 2.81, =0.6

-3.1, -3.1, df(z) _ . f@+h)~f(@)
-1.5, -1.5, T
0.33,...] 0.33,...] ?,...]

loss 1.25347 | loss 1.25353
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current W:

[0.34,

-1.11,

0.78,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,...]

loss 1.25347

W + h (third dim):

[0.34,

-1.11,

0.78 + 0.0001,
0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,...]

loss 1.25347

gradient dW:

> N
- On

DN N NI Y Y VO

~
[]
[]
(=
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current W:

[0.34,

-1.11,

0.78,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,...]

loss 1.25347

W + h (third dim):

[0.34,

-1.11,

0.78 + 0.0001,
0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,...]

loss 1.25347

gradient dW:

[-2.5,
0.6,
0,

N

(1.25347 - 1.25347)/0.0001
=0

af(z) _ . f@+h) - f(@)
h

dx h —0
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current W:

[0.34,

-1.11,

0.78,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,...]

loss 1.25347

W + h (third dim):

[0.34,

-1.11,

0.78 + 0.0001,
0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,...]

loss 1.25347

gradient dW:

[-2.5,
0.6,

0,
f)

=

Numeric Gradient
- Slow! Need to loop over
all dimensions
- Approximate

7]
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This is silly. The loss is just a function of W.

N
L=535L00+X, W
Lz = Zﬁéyi max(O, Sj — Sy, —+ 1)
s=f(z; W) =Wz

want Vy L
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This is silly. The loss is just a function of W.
L=+ Li+YX,W

Li = ,., max(0,s; — sy, +1)

s=f(z; W) =Wz

want Vy L

Use calculus to compute an
analytic gradient
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https://en.wikipedia.org/wiki/Isaac_Newton#/media/File:GodfreyKneller-IsaacNewton-1689.jpg
https://en.wikipedia.org/wiki/Gottfried_Wilhelm_Leibniz#/media/File:Gottfried_Wilhelm_Leibniz,_Bernhard_Christoph_Francke.jpg

current ¥y: gradient dW:
[0.34, [-2.5,
-1.11, dW = ... | 0.6.
0.78, (some function 0.

0.12, data and W) 0.2
0.55, 0.7
281, \ s
-3, 1.1,
-1.5, 1.3,
0.33,...] 21,
loss 1.25347
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In summary:

- Numerical gradient: approximate, slow, easy to write

- Analytic gradient: exact, fast, error-prone

=>

In_practice: Always use analytic gradient, but check
iImplementation with numerical gradient. This is called a
gradient check.
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Gradient Descent

while
weights grad = evaluate gradient(loss fun, data, weights)
weights += - step size * weights grad - ' '
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original W

o

negative gradient direction
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Stochastic Gradient Descent (SGD)

1 XN Full sum expensive
L(W) = > Li(wi, i, W) + AR(W) when N is large!
i=1

1 N Approximate sum
VwL(W) = + > " VwLi(zi, ys, W) + AVw R(W) gi:r?];er:mlbatch of

i=1 32 /64 /128 common

while
data batch = sample training data(data, 256)
weights grad = evaluate gradient(loss fun, data batch, weights)
weights += - step size * weights grad * i
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Calculating the analytical gradient requires calculus!
s = f(x;W) = Wax  Linear score function

L; = E max(O, Sj — Sy, - 1) SVM loss (or softmax)
J#Yi

1 N

= N E L; + A\ E WAQ data loss + regularization

i=1 k

How to find the best W? Vw.L

A. Farhadi, S. Pratt Lecture 4 -44 Jan 15, 2026



Before we discuss how to calculate
gradients analytically,

let’s introduce neural networks
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Problem: Linear Classifiers are not very powerful

Visual Viewpoint

plane car bird cat er
s
ea . ¥ Y
dog frog horse v ship truck

Linear classifiers learn
one template per class

Geometric Viewpoint

Linear classifiers
can only draw linear
decision boundaries

Jan 15, 2026
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Pixel Features

»  Class
scores
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Image Features

f(x) = WXx

—> HHHHHHHHHU Hu” ”HUHHHUHHHHL, |_||-|L|I_I —> Class
o - scores
Feature Representation
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Image Features: Motivation

Cannot separate red
and blue points with
linear classifier
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Features become linearly separable through a

non-linear transformation

o y
° [
° 24° o f(x, y) = (r(x, y), 8(x, y))
® ) ® s
X . °l® .
[ [
Y [

Cannot separate red
and blue points with
linear classifier

A. Farhadi, S. Pratt
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g ©

o
[
o
[

After applying feature
transform, points can
be separated by linear
classifier
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Example: Color Histogram
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Example: Histogram of Oriented Gradients (HoG)

Divide image into 8x8 pixel regions Example: 320x240 image gets divided
Within each region quantize edge into 40x30 bins; in each bin there are
direction into 9 bins 9 numbers so feature vector has

30409 = 10,800 numbers

Lowe, “Object recognition from local scale-invariant features”, ICCV 1999
Dalal and Triggs, "Histograms of oriented gradients for human detection," CVPR 2005
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Example: Bag of Words

Step 1: Build codebook

. Clust tches t - ...‘
uster patches to
Extract random - - form “codebook” =.nl==l
patches = of “visual words”
g | L |
N l-llll

Fei-Fei and Perona, “A bayesian hierarchical model for learning natural scene categories”, CVPR 2005
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Combine many different features if unsure which
features are better

[l e
:_ — H H i HH HHH h— HHHHH Hn” HU Hﬂn illn_ s

[IULIUU il

\ Hﬂuuﬂmmﬂ /
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Image features vs neural networks

Feature Extraction

f

_>

e

training

10 numbers giving
scores for classes

I~ N x4 |
W l N [l
pat X
) y mil\i
[ o3 R
® Max
1a " Ma. poo
ling pox

-

training

Sutskever, and Hinton, 2012

l Krizhevsky, Sutskever, and Hinton, “Imagenet classification
B -
P 1 with deep convolutional neural networks”, NIPS 2012
y \ ec
/ 2648 \/ o7 \dense
X X
1

4/ Pt
{

-

.

10 numbers giving
scores for classes

A. Farhadi, S. Pratt
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One Solution: Non-linear feature transformation

s’ f(x, y) = (r(x, y), 6(x, y)) 5 8
o‘ o 4 > : ..o
— ".'- < Transform data with a cleverly o
. ° e chosen feature transform f, S -
o o then apply linear classifier S
Color Histogram Histogram of Oriented Gradients (HoG)

A. Farhadi, S. Pratt Lecture 4 - 56 Jan 15, 2026



Neural Networks
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Neural networks: the original linear classifier

(Before) Linear score function: f — W2

r e RP. W e ROXP
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Neural networks: 2 layers

(Before) Linear score function: f — W2
(Now) 2-layer Neural Network  f = Wy max(0, Wiz)

p& RY Wy ERZ®E W & REXE

(In practice we will usually add a learnable bias at each layer as well)
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Neural networks: also called fully connected network

(Before) Linear score function: f — W2
(Now) 2-layer Neural Network  f = Wy max(0, Wiz)

we RY, Wy & RER2, Wh & ROXE

“Neural Network” is a very broad term; these are more accurately called
“fully-connected networks” or sometimes “multi-layer perceptrons” (MLP)

(In practice we will usually add a learnable bias at each layer as well)
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Neural networks: 3 layers

(Before) Linear score function: f — W2

(Now) 2-layer Neural Network  f = Wy max(0, Wiz)
or 3-layer Neural Network

f — W3 maX(O, WZ ma'X(Oa W]iB))

r € RP W, e REWXDP W, ¢ RH2XH1 17, ¢ ROXH2

(In practice we will usually add a learnable bias at each layer as well)
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Neural networks: hierarchical computation
(Before) Linear score function: f — W2
(Now) 2-layer Neural Network  f = Wy max(0, Wiz)

X W1 | ph| w2 |g

3072 100 10

€ R, Wy € RFXP W, € RC*H
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Neural networks: learning 100s of templates
(Before) Linear score function: f — W
(Now) 2-layer Neural Network  f = W5 max(0, Wix)

X W1 |h| W2 |g

3072 100

plane car bird cat er dog frog horse ship truck
. = L * ' . q "'

Learn 100 templates instead of 10. Share templates between classes
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Examples of templates from real neural networks

A'n

Springenberg et al, “Striving for Simplicity: The All Convolutional Net”, ICLR Workshop 2015
Figure copyright Jost Tobias Springenberg, Alexey Dosovitskiy, Thomas Brox, Martin Riedmiller, 2015; reproduced with permission.
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Neural networks: why is max operator important?
(Before) Linear score function: f — W2
(Now) 2-layer Neural Network ~ f = Walmax(0,|W;z)

The function max(0, z) is called the activation function.
Q: What if we try to build a neural network without one?

f — WQWl.TE
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Neural networks: why is max operator important?
(Before) Linear score function: f — W2
(Now) 2-layer Neural Network ~ f = Walmax(0,|W;z)

The function max(0, z) is called the activation function.
Q: What if we try to build a neural network without one?

[ =WaelWix W3 = WoW; € RCXH, f =Wsx

A: We end up with a linear classifier again!
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Activation functions

S|gmo|d 1 Leaky RelLU )
_ 1 max(0.1z, x)
O'(ZB) T 14e—*

—lo——r]
tanh GelLU
tanh (:U) 0.5a:(1 1 ta.nh[\/2/_7r(w p 0.044715w3)])
RelLU ELU
0 x x>0
maX( ’ ZIZ) : {Oz(e‘” —1) <0
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: . . RelLU is a good default
Activation functions choice for most problems

Sigmoid 1 Leaky RelLU )
1 max(0.1x, x)
O'(%)  14e =

ta"?l( ) GelLU
ann\x ~io ﬂ To 0.5a:(1+tanh[\/2/_7r(:c+0.044715w3)])

ReLU ELU
max(0,2) ey 2
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: . : GelLU is the default choice
Activation functions for transformers

S|gmo|d 1 Leaky RelLU )
1 max(0.1z, x)
O'(%) T 14e—*

ta"?l( ) GelLU
ann\x ~io ﬂ To 0.5a:(1+tanh[\/2/_7r(:c+0.044715w3)])

RelLU ELU
max(0,) ey 220
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Neural networks: Architectures

\
;/0
%
?}‘{194
o‘o}c

SO
S~ X
/X:; ‘%‘
a o 7
output layer ‘

tput layer
input layer input layer

hidden layer hidden layer 1 hidden layer 2

“3-layer Neural Net”, or
“2-layer Neural Net”, or “2-hidden-layer Neural Net”

“1-hidden-layer Neural Net” “Fully-connected” layers

%
<

)
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Example feed-forward computation of a neural network

e N ’/&
ig .

N\

Vi e
e~ 2’%’:*:’
tput layer

input layer
hidden layer 1 hidden layer 2

f = lambda x: 1.0/(1.0 + np.exp(-x)) # act
X = np.random.randn(3, 1) # r m 1 :
hl = f(np.dot(Wl, x) + bl) _

h2 = f(np.dot(W2, hl) + b2) # calcul

out = np.dot(W3, h2) + b3 #
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Example feed-forward computation of a neural network

P
X
;.;‘

output layer

s
b
0§

input layer
hidden layer 1 hidden layer 2

[f = lambda x: 1.0/(1.0 + np.exp(-x)) # activatiol
X = np.random.randn(3, 1) # random I t vectc
hl = f(np.dot(Wl, x) + bl) ¢ ulat

h2 = f(np.dot(W2, hl) + b2) # calcul

out = np.dot(W3, h2) + b3 #
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Example feed-forward computation of a neural network

P
X
;.;‘

output layer

s
b
0§

input layer
hidden layer 1 hidden layer 2

f = lambda x: 1.0/(1.0 + np.exp(-x)) # activatior
[x = np.random.randn(3, 1) # random 1 F vectc
hl = f(np.dot(Wl, x) + bl) ¢ ulat

h2 = f(np.dot(W2, hl) + b2) # calcul

out = np.dot(W3, h2) + b3 #
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Example feed-forward computation of a neural network

P
X
;.;‘

output layer

s
b
0§

input layer
hidden layer 1 hidden layer 2

f = lambda x: 1.0/(1.0 + np.exp(-x)) # activatior
X = np.random.randn(3, 1) # random I t vectc
[h1l = f(np.dot(Wl, x) + bl) # ulat

h2 = f(np.dot(W2, hl) + b2) # calcul

out = np.dot(W3, h2) + b3 #
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Example feed-forward computation of a neural network

P
X
;.;‘

output layer

s
b
0§

input layer
hidden layer 1 hidden layer 2

f = lambda x: 1.0/(1.0 + np.exp(-x)) # activatior
X = np.random.randn(3, 1) # random I t vectc
hl = f(np.dot(Wl, x) + bl) ¢ ulat

[h2 = f(np.dot(W2, hl) + b2) # calcul

out = np.dot(W3, h2) + b3 #
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Example feed-forward computation of a neural network

P
X
;.;‘

output layer

s
b
0§

input layer
hidden layer 1 hidden layer 2

f = lambda x: 1.0/(1.0 + np.exp(-x)) # activatior
X = np.random.randn(3, 1) # random I t vectc
hl = f(np.dot(Wl, x) + bl) ¢ ulat

h2 = f(np.dot(W2, hl) + b2) # calcul

[out = np.dot(W3, h2) + b3 #

A. Farhadi, S. Pratt Lecture 4 - 76 Jan 15, 2026



Full implementation of training a 2-layer Neural Network needs ~20 lines:

import numpy as np
from numpy.random import randn

N, D_in, H, D_out = 64, 1000, 100, 10
X, y = randn(N, D_in), randn(N, D_out)
wl, w2 = randn(D_in, H), randn(H, D_out)

for t in range(2000):
h=1/ (1+ np.exp(-x.dot(wl)))
y_pred = h.dot(w2)
loss = np.square(y_pred - y).sum()
print(t, loss)

grad_y_pred = 2.0 x (y_pred - y)
grad_w2 = h.T.dot(grad_y_pred)

grad_h = grad_y_pred.dot(w2.T)

grad_wl = x.T.dot(grad_h * h x (1 - h))

wl —= le-4 * grad_wl
w2 —= le-4 * grad_w2
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Full implementation of training a 2-layer Neural Network needs ~20 lines:

import numpy as np
from numpy.random import randn

N, D_in, H, D_out = 64, 1000, 100, 10
X, y = randn(N, D_in), randn(N, D_out) Define the network
wl, w2 = randn(D_in, H), randn(H, D_out)

for t in range(2000):
h=1/ (1+ np.exp(-x.dot(wl)))
y_pred = h.dot(w2)
loss = np.square(y_pred - y).sum()
print(t, loss)

grad_y_pred = 2.0 x (y_pred - y)
grad_w2 = h.T.dot(grad_y_pred)

grad_h = grad_y_pred.dot(w2.T)

grad_wl = x.T.dot(grad_h * h x (1 - h))

wl —= le-4 * grad_wl
w2 —= le-4 * grad_w2
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Full implementation of training a 2-layer Neural Network needs ~20 lines:

import numpy as np
from numpy.random import randn

N, D_in, H, D_out = 64, 1000, 100, 10
X, y = randn(N, D_in), randn(N, D_out) Define the network
wl, w2 = randn(D_in, H), randn(H, D_out)

for t in range(2000):
h=1/ (1+ np.exp(-x.dot(wl)))

y_pred = h.dot(w2) Forward pass
loss = np.square(y_pred - y).sum()

print(t, loss)

grad_y_pred = 2.0 x (y_pred - y)
grad_w2 = h.T.dot(grad_y_pred)

grad_h = grad_y_pred.dot(w2.T)

grad_wl = x.T.dot(grad_h * h x (1 - h))

wl —= le-4 * grad_wl
w2 —= le-4 * grad_w2
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Full implementation of training a 2-layer Neural Network needs ~20 lines:

import numpy as np
from numpy.random import randn

N, D_in, H, D_out = 64, 1000, 100, 10
X, y = randn(N, D_in), randn(N, D_out) Define the network
wl, w2 = randn(D_in, H), randn(H, D_out)

for t in range(2000):
h=1/ (1+ np.exp(-x.dot(wl)))
y_pred = h.dot(w2) Forward pass
loss = np.square(y_pred - y).sum()
print(t, loss)

grad_y_pred = 2.0 x (y_pred - y)
grad_w2 = h.T.dot(grad_y_pred)

grad_h = grad_y_pred.dot(w2.T)

grad_wl = x.T.dot(grad_h *x h x (1 - h))

Calculate the analytical gradients

wl —= le-4 * grad_wl
w2 —= le-4 * grad_w2
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Full implementation of training a 2-layer Neural Network needs ~20 lines:

import numpy as np
from numpy.random import randn

N, D_in, H, D_out = 64, 1000, 100, 10
X, y = randn(N, D_in), randn(N, D_out) Define the network
wl, w2 = randn(D_in, H), randn(H, D_out)

for t in range(2000):
h=1/ (1+ np.exp(-x.dot(wl)))
y_pred = h.dot(w2) Forward pass
loss = np.square(y_pred - y).sum()
print(t, loss)

grad_y_pred = 2.0 x (y_pred - y)
grad_w2 = h.T.dot(grad_y_pred)

grad_h = grad_y_pred.dot(w2.T)

grad_wl = x.T.dot(grad_h * h x (1 - h))

Calculate the analytical gradients

wl —= le-4 * grad_wl

92 == L G EEH W Gradient descent
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Setting the number of layers and their sizes

3 hidden neurons 6 hidden neurons 20 hidden neurons
") <) e © e
® ] [&]
® ® ® ® @ ®
() (& @ é (5]
® @ @ J
® © e @ e © %
@ @® @
5] =]
® ® @ ® ® @
() @ L)
© ® @

more neurons = more capacity
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Do not use size of neural network as a regularizer. Use stronger regularization instead:

A =0.001

A =0.01

A=0.1

@ ®

@

]

L(W) = % ZLi(f(fEia W), y:) + AR(W)

A. Farhadi, S. Pratt

Lecture 4 -

Jan 15, 2026



This image by Eotis Bobolas is
licensed under CC-BY 2.0
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https://www.flickr.com/photos/fbobolas/3822222947
https://www.flickr.com/photos/fbobolas
https://creativecommons.org/licenses/by/2.0/

Impulses carried toward cell body

\ dendrite
presynaptic
terminal

axon

cell body—

Impulses carried away
from cell body

This image by Felipe Perucho
is licensed under CC-BY 3.0
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https://thenounproject.com/term/neuron/214105/
https://creativecommons.org/licenses/by/3.0/us/

Impulses carried toward cell body

\ dendrite
presynaptic
terminal

axon

cell body—

Impulses carried away

from cell body o wo

@

axon from a neuron i
woIo

This image by Felipe Perucho
is licensed under CC-BY 3.0

cell body

f (Z w;T; + b)
j{:1uiwi-+-b :

output axon

activation
function

w11

Y

(LX)
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Impulses carried toward cell body

\ dendrite
presynaptic
terminal

axon

cell body—

Impulses carried away
from cell body

Lo wo

>@ synapse
axon from a neuron
woTo

This image by Felipe Perucho
is licensed under CC-BY 3.0

1.0 cell body f (Z wiz; + b)
08 w11 Z b 5

> w;T; + >
0.6 . . . . . ; o output axon
0.4 sigmoid activation function activation
o 1 Wy s function
0.0 l+e™™

—-10 -5 0 5 10
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Impulses carried toward cell body

\ dendrite
presynaptic

terminal

cell body—

Impulses carried away
from cell body

Zo wo
This image by Felipe Perucho L
is licensed under CC-BY 3.0 @ synapse

axon from a neuron
Wox0

cell body

f (Z w;T; + b)
j{:1uiwi-+-b :

output axon

activation
function

w11

class Neuron:

Y

def neuron_tick(inputs):

" assume inputs and weights are 1-D numpy arrays and bias is a number """
cell body sum = np.sum(inputs * .weights) + .bias 11)2{B2
firing rate = 1.0 / (1.0 + math.exp(-cell body sum)) r I
return firing rate
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Biological Neurons: Neurons in a neural network:
Complex connectivity patterns Organized into regular layers for
| computational efficiency

input layer
hidden layer 1 hidden layer 2
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https://www.maxpixel.net/Brain-Structure-Neurons-Brain-Network-Brain-Cells-582052
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Biological Neurons: But neural networks with random
Complex connectivity patterns connections can work too!

foav

I
AN

This image is CCO Public D
Smas s I Xie et al, “Exploring Randomly Wired Neural Networks for Image Recognition”, arXiv 2019
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https://www.maxpixel.net/Brain-Structure-Neurons-Brain-Network-Brain-Cells-582052
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Be very careful with your brain analogies!

Biological Neurons:
e Many different types
e Dendrites can perform complex non-linear computations
e Synapses are not a single weight but a complex non-linear dynamical
system

[Dendritic Computation. London and Hausser]
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Now let's calculate the
analytical gradients
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Plugging in neural networks with loss functions

s = f(x; Wy, Ws) = Woymax(0, Wix) Nonlinear score function

Ly = Z max(0,s; —s,, +1) SVM Loss on predictions
J7#Yi
R(W) = Z W7 Regularization
k

N
L = % Z L; + AR(W7) + AR(W,) Total loss: data loss + regularization
i=1
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Problem: How to compute gradients?

s = f(x; Wy, Ws) = Woymax(0, Wix) Nonlinear score function

Ly = Z max(0,s; —s,, +1) SVM Loss on predictions
J7#Yi
R(W) = Z W7 Regularization
k

N
L = % Z L; + A\R(W7) + AR(W,) Total loss: data loss + regularization
i=1

oL OL

If we can compute
W PUe o, o,

then we can learn W1 and W2
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(Bad) ldea: Derive V/y;, [ on paper

s = fla; W) = Wz Problem: Very tedious: Lots of

matrix calculus, need lots of paper
L; = Z max(0, s; — 8y, + 1) pap

iy Problem: What if we want to
= max(0,W;. -z + W, . -z+1) change loss? E.g. use softmax
iy instead of SVM? Need to
N : —
1 re-derive from scratch =
L=7=> Li+AY W} _ (
N &~ : Problem: Not feasible for very
1 X ; complex models!
:NZ max (0, W;. - x + W, 1)+A2Wk
=1 j#y;
VwlL = VW< ZZmaXOW x4+ W, x+1)+AZW5>
i=1 j#yi k
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Better Idea: Computational graphs + Backpropagation

f:W

Lg = E#y max(0, s; —

Sy, + 1)

s (scores)

A. Farhadi, S. Pratt
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Convolutional network
(AlexNet)

iInput image

weights ———

—>

loss
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Really complex neural /
networks!! oS

iInput image/

loss \

Figure reproduced with permission from a Twitter post by Andrej Karpathy.
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https://twitter.com/karpathy/status/597631909930242048?lang=en

Solution: Backpropagation
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Backpropagation: a simple example

fz,y,2) = (z +y)z
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Backpropagation: a simple example | x

f(@,9,2) = (2 +1)2 D@
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Backpropagation: a simple example | x -2

f(z,y,2) = (z+y)z yD@Q3

eg.x=-2,y=95,z=-4

=12
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Backpropagation: a simple example | x -2

f(@,y,2) = ( +)2 D@

f -12
eg.x=-2,y=95,z=-4
Z -4
0 0
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Backpropagation: a simple example | x -2
4 )92
y o

fz,y,2) = (z +y)z

f -12
eg.x=-2,y=95,z=-4
z 4
of of
f=gqz 9 2o 4

Jan 15, 2026
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Backpropagation: a simple example | x -2
4 )92
fl@:2) = (z + )2 D@
f -12

eg.x=-2,y=95,z=-4

qg=—+Y %:1,%:1

of of
f=gqz 9 2o 4

. Oof of of
Want: -, 9 B2
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Backpropagation: a simple example | x -2
4 )92
fl@:2) = (z + )2 D@
f -12

eg.x=-2,y=95,z=-4

z 4
0q 0q /
ox Oy 5
of of of
f=gqz 9 2o 4
of of Oof

Want: -, 9 B2
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Backpropagation: a simple example | x -2
g 3
fl@:2) = (z + )2 D@

eg.x=-2,y=95,z=-4

0q 0q /
ox oy i
of of of
f=gqz 9 2o 4
of Of of

Want: -, 9 B2
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Backpropagation: a simple example
g 3
f(@ ) = (z+1)2 DQ
f -12

eg.x=-2,y=5,z=+4

z 4
g=z+y F =15 =1 —
By
of
of  _ of _ 0z
f=qz 0= %5 — 4
of of of

Want: Do’ By’ e

Jan 15, 2026

Lecture 4 - 108

A. Farhadi, S. Pratt



Backpropagation: a simple example
g 3
f(@ ) = (z+1)2 DQ
f -12

eg.x=-2,y=5,z=+4

z 4
g=z+y D=10-1 | —
dy
o
of  _ of _ 0z
f=qz 0= %5 — 4
of of of

Want: Do’ By’ e

Jan 15, 2026
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Backpropagation: a simple example | x -2
g 3
fl@:2) = (z + )2 D@

eg.x=-2,y=95,z=-4

qg=—+Y %:1,%:1

of of
f=gqz 9 2o 4

. Oof of of
Want: -, 9 B2
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Backpropagation: a simple example | x -2
q
f(m,y,z):(l'+y)z YD@ ;

eg.x=-2,y=95,z=-4

qg=—+Y %:1,%:1

of of
f=gqz 9 2o 4

. Oof of of
Want: -, 9 B2
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Backpropagation: a simple example | x -2

flz,y,2) = (z + y)=
eg.x=-2,y=95,z=-4

o dqg dq
B of  _ of Chain rule: Oy
f—qz aq_z’az_q ﬂ_@f dq
want. 0L O Of by &4 o
ant- or Oy’ Oz Upstéam LSCaI
gradient gradient

Jan 15, 2026
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Backpropagation: a simple example | x -2

flz,y,2) = (z + y)=
eg.x=-2,y=95,z=-4

o dqg dq
B of  _ of Chain rule: Oy
f—qz aq_z’az_q ﬂ_@f dq
want. 0L O Of by &4 o
ant- or Oy’ Oz Upstéam LSCaI
gradient gradient

Jan 15, 2026
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Backpropagation: a simple example

f(z,y,2) = (. +y)z
eg.x=-2,y=95,z=-4

_ 9 . Oqg
of of Chain rule: Oz
— _— z, —_—
S o _ of o
wWant. 2L O O dr ~— g Ox
ant: Oz’ Oy’ 0Oz Upstéam LSCaI
gradient gradient
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Backpropagation: a simple example

f(z,y,2) = (. +y)z
eg.x=-2,y=95,z=-4

_ 9 . Oqg
of of Chain rule: Oz
— _— z, —_—
S o _ of o
wWant. 2L O O dr ~— g Ox
ant: Oz’ Oy’ 0Oz Upstéam LSCaI
gradient gradient
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“local gradient”
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“local gradient”

Z

oL
0z

%
“Upstream

gradient”
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“local gradient”
= .8

Z
“‘Downstream -
gradients oL
% i
“Upstream
gradient”
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“local gradient”
= .8

“Downstream
gradients”

Z

oL
0z

B ==
oL “Upstream
gradient”
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“local gradient”
= .8

“Downstream
gradients”

Z

oL
0z

B ==
oL “Upstream
gradient”
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1

- 1 _|_e—('w0;ro+'wl:cl+'w2)

Another example: flw, )

w0
x0

w1

x1

w2
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1

- 1 _|_e—('w0:1:0+'wl:cl+'w2)

Another example: flw, )

w0 2.00

©
®
®
®
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1

- 1 _|_e—('w0:1:0+'wl:cl+'w2)

Another example: flw, )

w0 2.00
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1

- 1 _|_e—(~w0:130+'wl:r1+'w2)

Another example: flw, )
w0 2.00
x0 -1.00

w1l -3.00

x1 -2.00

w2 -3.00

f@) = ~ G | 10-1 . LAY
fo(@) = az =2 Z—iza f.(x)=¢c+= i %_1
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1

- 1 +e—('u'0mg+'u11:r1+w2)

Another example: flw, )
w0 2.00
x0 -1.0(

w1l -3.00

f@) = ~ oo | |10-12 . LAY
fo(@) = az = Z—i::a f(x) =613 s %_1
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1

- 1 +e—('u'0mg+w1:r1+w2)

Another example: flw, )

w0 2.00

Upstream Local
gradient  gradient
~ / 1

(100)(3 572

) = —0.53

f@) = ~ oo | |10-12 . LAY
fo(@) = az = Z—iza f(x)=c+= - %_1
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1

- 1 +e—('u'0mg+'u11:r1+w2)

Another example: flw, )

w0 2.00

x0 -1.0(

w1 -3.00
w2 -3.0(
=z mil df oz 1 df )
flz)=e - == fl@) == o 3 /e
d
Julel oz 7 d_:Jz:t:a fe)=e+= - %—1
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1

- 1 +e—('u'0mg+w1:r1+w2)

Another example: flw, )

w0 2.00

Upstream Local

gradient  gradient
~ /
(—0.53)(1) = —0.53

100 A7) 100 @ 037 (1) 137 @ 0.73
NS |08 N/ 058 N 1.0

f@) = ~ oo | 10-1 . LAY
fo(@) = az = Z—iza f(x)=c+= - %_1
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1

- 1 +e—('u'0mg+'u11:r1+w2)

Another example: flw, )
w0 2.00
x0 -1.0(

w1l -3.00

x1 -2.00

= a % aal fle) =~ % Z—i— = -1/a"
fo(@) = az = Z—i::a f(x)=c+= - %_1
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1

- 1 +e—('u'0mg+w1:r1+w2)

Another example: flw, )

w0 2.00

Upstream Local

gradient  gradient
~ /

(—0.53)(e~1) = —0.20

10 23 1 27
\__/ |-020 \Y/ -053 \D -0.53

f@) = ~ el | 10-12 . LAY
fo(@) = az = Z—iza f(x)=c+= - %_1
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1

- 1 +e—('u'0mg+'u11:r1+w2)

Another example: flw, )

w0 2.00

x0 -1.0(

w1l -3.00
w2 -3.0(
: df _ 1 7 2
— % o 1 af _
flz)=e == fl@) =~ " i _ e
d
fa(w)_aw — d—i:a fc(m):c+w s %_1
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1

- 1 +e—('u'0mg+w1:r1+w2)

Another example: flw, )

w0 2.00

Upstream Local

gradient  gradient
~

(—0.20)(—1) = 0.20

x0 -1.0(

w1l -3.00

x1 -2.00

w2 -3.0(

f@) = ~ oo | 10-1 . LAY
fo(@) = az = Z—iza f(x)=c+= - %_1
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1

- 1 _i_e—('wo:zzg+'wl:r1+'w2)

Another example: flw, )

f@) = ~ G | 10-1 . LAY
fo(@) = az =2 Z—iza f.(x)=¢c+= i %_1
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1

- 1 +e—('u'0mg+'u11:r1+w2)

Another example: flw, )

[upstream gradient] x [local gradient]
[0.2] x[1] = 0.2
[0.2] x [1] = 0.2 (both inputs!)

100 A7) 100 @ 037 (1) 137 @ 0.73
020] \_/ -020 U 053 \_/ 053 \_J 100

f@) = ~ oo | 10-1 . LAY
fo(@) = az = Z—i::a f(x)=c+= - %_1
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1

- 1 _i_e—('wo:zzg+'wl:r1+'w2)

Another example: flw, )

w0 2.00
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_ 1
Another example: flw,z) = |+ o—(mzorwrz o)

w0 2.00

% [upstream gradient] x [local gradient]
X0 ;)1:2)0 N wO: [02] X [-1] =-0.2
x0:[0.2] x[2] =0.4

wl -3.00

100 A\ -100 2N 037 /N 137 ) 073

x1 -2.00 020 \_J 020 XS5 \ 0 Y 00
w2 -3.00
0.20
v i df PO 1 df 2
flz)=e — o= =e flz)=— o = =1/z
d
fo(@) = az =5 d—iza f(x)=c+=x —> %_1

Jan 15, 2026
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1

Another example:  f(w,z) Computational graph

1+ e~ (wozotwizi+wy) representation may not
be unique. Choose one
w022 Sigmoid 1 where local gradients at
function o(z) = 1+e-=| €achnode can be easily
0 LD expressed!
2 Sigmoid
1.00 @ 100 /037 C_l\ 1.37 /l/\ 0.73
x1 -2.00 020 | \_J 020 s \ 05 \ M 100
w2 -3.00

0.20
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Another example:

w0 2.00

x0 -1.00
wl -3.00
x1 -2.00

w2 -3.00
0.20

Sigmoid local

1

flw,z) = Computational graph
’ 1 + e~ (wozo+wiz1+wy) representation may not
be unique. Choose one
Sigmoid 1 where local gradients at
function o(z) = 1+ e-=| e€achnode can be easily
expressed!
Sigmoid
100 | /& ). -100 037 (TN 137 1ML 073
020 |\ 020 P05\ T 0ss T o0

gradient:
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1

Another example:  f(w,z) Computational graph

1 + e~ (wozo+wizy +wy) representation may not
be unique. Choose one
w02 Sigmoid 1 where local gradients at
function o(z) = 1+ e-=| e€achnode can be easily
- expressed!
- Sigmoid
1.00 gl\ -1.00 @ 0.37 @ 1.37 Y073
x1 -2.00 020 | \_J 020 XS5 \ 053 1.00
i [upstream gradient] x [local gradient]
[1.00] x [(1 - 1/(1+e")) (1/(1+e"))] = 0.2
: : d a l1+e ™ -1 1
Sigmoid local o(z) e __ ( +ie - ) ( _Z) T T
gradient: dx (1+e7?) 1€ l1+e
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1

Another example:  f(w,z) Computational graph

1 + e~ (wozo+wizy +wy) representation may not
be unique. Choose one
w02 Sigmoid 1 where local gradients at
function o(z) = 1+ e-=| e€achnode can be easily
- expressed!
- Sigmoid
100 | /% 2\ -100 /N 037 /T 137 0.73 |
x1 -2.00 0.20 \) 0.20 @ 0.53 \i_lj 053 iz 1.00
i [upstream gradient] x [local gradient]
[1.00] x[(1-0.73) (0.73)] = 0.2
: : d a l1+e ™ -1 1
Sigmoid local o(z) e __ ( +ie - ) ( _Z) T T
gradient: dx (1+e7?) 1€ l1+e
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Patterns in gradient flow
add gate: gradient distributor

3

2 .
O e
2
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Patterns in gradient flow

add gate: gradient distributor mul gate: “swap multiplier”
3 2
2 ~a 7 5%3=15 ™\ 6
= (05—~
Nl Rl
2 2*5=10
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Patterns in gradient flow

add gate: gradient distributor mul gate: “swap multiplier”
3 2
2 ~a 7 5%3=15 ™\ 6
= (05—~
Nl Rl
2 2*5=10

copy gate: gradient adder

v
—_—
7 / 4
—_—
4+2=6 V4
2
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Patterns in gradient flow

add gate: gradient distributor mul gate: “swap multiplier”
3 2
2 ~a 7 9*3=15 ™ 6
Onne (05—~
Nl Rl
2 2*5=10
copy gate: gradient adder max gate: gradient router
7 4
4+2=6 7 5 , 9
2 9
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def f(wd, x0, wl, x1, w2):

Backprop Implementation: P———
“Flat” code Forward pass: i e
s2 = s@ + sl

Compute output oy o 8 o

w0 2.00

L = sigmoid(s3)

grad_L = 1.0
grad_L x (1 - L) x L
grad_w2 = grad_s3

grad_s3

grad_s2 = grad_s3

A @?gg Backward pass:

Dz rad_s@ = grad_s2
Compute grads A RS 2t

grad_sl1l = grad_s2

0.20 grad_wl = grad_sl x x1
grad_x1 = grad_sl x wl
grad_w@ = grad_s@ * x0
grad_x0 = grad_s@ x wo@
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def f(wd, x0, wl, x1, w2):

Backprop Implementation: P———
“Flat” code Forward pass: i e
s2 = s@ + sl

Compute output
S3 = 52 + w2
w0 2.00 L = sigmoid(s3)

X0 -1.00 Base case | grad_L = 1.0
| grad_s3 = grad_L *x (1 - L) * L
wl -3.00 grad_w2 = grad_s3
- grad_s2 = grad_s3
x1 -2.00 1.00

20.60 grad_s® = grad_s2

grad_sl1l = grad_s2
w2 -3.00

0.20 grad_wl = grad_sl x x1
grad_x1 = grad_sl x wl
grad_w@ = grad_s@ * x0
grad_x0 = grad_s@ x wo@
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def f(wd, x0, wl, x1, w2):

Backprop Implementation: prP—
Flat” code Forward pass: i
Compute output | °2 = ¢ * =1

s3 = 52 + w2

w0 2.00

||L = sigmoid(s3)

. grad L = 1.0
Sigmoid grad_s3 = grad_L * (1 - L) % L
i grad_w2 = grad_s3
1.00 073 grad_s2 = grad_s3
Xl ﬁgg 0.20 Loo| grad_s@ = grad_s2

grad_sl1l = grad_s2

wzag? grad_wl = grad_sl x x1
grad_x1 = grad_sl x wl
grad_w@ = grad_s@ * x0
grad_x0 = grad_s@ x wo@
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def f(wd, x0, wl, x1, w2):

Backprop Implementation: P———
“Flat” code Forward pass: i e
s2 = s@ + sl

Compute output e B o oo

w0 2.00

L = sigmoid(s3)

grad_L = 1.0
rad s3 rad L x (1 - L) x L
grad_w2 = grad_s3

4.00
0.20

Add gate

N Lm)/:;\\073 grad_s2 = grad_s3
0200 \__/ 1.00 grad_s@ = grad_s2

grad_sl1l = grad_s2

-0.60

w2| -3.00

0.20 grad_wl = grad_sl x x1
grad_x1 = grad_sl x wl
grad_w@ = grad_s@ x x0
grad_x0 = grad_s@ x wo@
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def f(wd, x0, wl, x1, w2):

Backprop Implementation: prP—
Flat” code Forward pass: LW e X
Compute output  |22= 52 * =1

s3 = s2 + w2

Wojg§i><::>_ L = sigmoid(s3)
-2.00
x0 -1.00
S grad_L = 1.0
grad_s3 = grad_L *x (1 - L) * L
wl -3.00
T grad_w2 = grad_s3
o 5 " 321/?;\\?33 grad_s2 = grad_s3
A 2 - rad_s@ = grad_s2
0.60 Add gate Sk 970
grad_sl1l = grad_s2
wzag? grad_wl = grad_sl x x1
grad_x1 = grad_sl x wl
grad_w@ = grad_s@ x x0
grad_x0 = grad_s@ x wo@
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Backprop Implementation:

Flat COde Forward pass:
Compute output

w0 2.00

wl -3.00
-0.40 -
5 1.00 @ 0.73
5l el 0.20 1.00
-0.60
0.20 Multiply gate

X0, wl, x1, w2):

def f(wo,
SO = wd * x0
s1 = wl % x1
s2 = sO + sl
s3 = 52 + w2
L = sigmoid(s3)

grad_L = 1.0

grad_s3 = grad_L *x (1 - L) * L
grad_w2 = grad_s3

grad_s2 = grad_s3

grad_s® = grad_s2

grad s1 = grad s2

grad_wl = grad_sl x x1

grad_x1 = grad_sl x wl

grad_w@ = grad_s@ x x0

grad_x0 = grad_s@ x wo@
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i def (w0, X0, wl, x1, w2):
Backprop Implementation: of 1(u6, 10, M1, 21, v
“Flat” code Forward pass: | £ 7 A
s2 = sO + sl

Compute output oy o 8 o

Woiﬁi L = sigmoid(s3)
-2.00
0 -1.00 =
e grad_L = 1.0
grad_s3 = grad_L *x (1 - L) * L

wl -

grad_w2 = grad_s3

Lm)/:;\\073 grad_s2 = grad_s3
e sl grad_s@ = grad_s2

x1 -2.
-0.60
grad_sl1l = grad_s2

wzag? grad_wl = grad_sl x x1
grad_x1 = grad_sl x wl

. grad_w@ = grad_s@ *x x0

Multiply gate grad_x0 = grad_s@ x wo@
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“Flat” Backprop: Do this for assignment 2!

Stage your forward/backward computation!

E.g. for the SVM:

# receive W (weights), X (da
# forward pass (we hav 1in€s)
scores = #...
margins = #...
data loss = #...
reg loss = #...
loss = data loss + reg loss

# backward pass (we have 5 lines)
dmargins = # ...
dscores = #...

dw = #. ..

= Zj#yi max(0,s; — sy, + 1)

[\f\— Wzl |Li

S o
/@g
4

) L

A4

(optionally, we go direct to dscores)
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“Flat” Backprop: Do this for assignment 1!

E.g. for two-layer neural net:

# receive W1,W2,bl,b2 (weights/biases), X (data)

# forward pass:

hl = #... function of X,W1,6bl

scores = #... function of hl,W2,b2

loss = #... (several lines of code to evaluate Softmax loss)
# backward pass:

dscores = #...

dhl,dw2,db2 = #..

dwl,dbl = #...
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Backprop Implementation: Modularized API

Graph (or Net) object (rough pseudo code)

class ComputationalGraph(object):

o

w0 2.00

def forward(inputs):
# 1. [pass inputs to input gates...]
# 2. forward the computational graph:
for gate in self.graph.nodes topologically sorted():
gate.forward()
return loss # the final gate in the graph outputs the loss

def backward():

for gate in reversed(self.graph.nodes topologically sorted()):
gate.backward() # little piece of backprop (chain rule applied)

return inputs gradients
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Modularized implementation: forward / backward API
Gate / Node / Function object: Actual PyTorch code

class Multiply(torch.autograd.Function):
X @staticmethod

v def forward(ctx, x, y): Need to stash

ctx.save_for_backward(x, y) €«—————| some values for
use in backward

Z=X%xY
y return z
@staticmethod
(Xx,y,z are scalars) def backward(ctx, grad_z): grzzt{sstm

X, y = ctx.saved_tensors

y % grad_z # dz/dx % dL/dz Multiply upstream
X % grad_z # dz/dy x dL/dz | and local gradients

grad_x

grad_y

return grad_x, grad_y
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Example: PyTorch operators

pytorch / pytorch @Watch~ 1,221 * Unstar 26,770 YFork 6,340 ) SpatialClassNLLCriterion.c Canonicalize all includes in PyTorch. (#14849) 4 months ago
) SpatialC allincludes in PyTorch. (#14849) 4 months ago
© pull i i insigh
Code Issues 2,286 ull requests 561 Projects 4 Wik nsights ) SpatiaiDistedCanvoltr lize all includes in PyTorch. (#14849) 4 months ago
) ) SpatialC g9.c c allincludes in PyTorch. (#14849) 4 months ago
Tree: 517c7¢9861~  pytorch / aten / src / THNN / generic / Upload files ~ Find file ~ History
spati c c all includes in PyTorch. (#14849) 4 months ago
B35 ezyang and facebook-github-bot Canonicalize allincludes in PyTorch. (#14849) == Latest commit 517¢7c9 on Dec 8, 2018 £ spatialFullDilatedConvolution.c Canonicalize all includes in PyTorch. (#14849) 4 months ago
E) SpatialMaxUnpooling.c Canonicalize all includes in PyTorch. (#14849) 4 months ago
E) AbsCriterion.c Canonicalize all includes in PyTorch. (#14849) 4 months ago 2 - c lize all includes in PyTorch. (#14849) 4 months ago
E) BCECriterion.c Canonicalize all includes in PyTorch. (#14849) 4 months ago & 9.c C; allincludes in PyTorch. (#14849) 4 months ago
) Spatiall # nths a
[E) ClassNLLCriterion.c Canonicalize all includes in PyTorch. (#14849) 4 months ago ] Spat & allinchides in PyTorch: (#14849) 4 monthsago;
) Spatiall # —

[ Col2im.c Canonicalize all includes in PyTorch. (#14849) 4 months ago i allioekides I pyTorchi (#14649). 4 momheagY
m ) THNN.h Canonicalize all includes in PyTorch. (#14849) 4 months ago
) ELU.C Canonicalize all includes in PyTorch. (#14849) 4 months ago i ¢ ) :

5 Tanh.c Canonicalize all includes in PyTorch. (#14849) 4 months ago

[E) FeatureLPPooling.c Canonicalize all includes in PyTorch. (#14849) 4 months ago
) c [ all includes in PyTorch. (#14849) 4 months ago
[ GatedLinearUnit.c Canonicalize all includes in PyTorch. (#14849) 4 months ago
B g.c (o allincludes in PyTorch. (#14849) 4 months ago
[E) HardTanh.c Canonicalize all includes in PyTorch. (#14849) 4 months ago
B nvolution.c allincludes in PyTorch. (#14849) 4 months ago
[E)Im2Col.c Canonicalize all includes in PyTorch. (#14849) 4 months ago
=) TemporalUpSamplingLinear.c Canonicalize all includes in PyTorch. (#14849) 4 months ago
) IndexLinear.c Canonicalize all includes in PyTorch. (#14849) 4 months ago
2) Temporall c all includes in PyTorch. (#14849) 4months ago
) LeakyReLU.c Canonicalize all includes in PyTorch. (#14849) 4 months ago R
) s allincludes in PyTorch. (#14849) 4 months ago
[ LogSigmoid.c Canonicalize all includes in PyTorch. (#14849) 4 months ago
B gc G allincludes in PyTorch. (#14849) 4 months ago
[E) MSECriterion.c Canonicalize all includes in PyTorch. (#14849) 4 months ago
2 9.c c lize all includes in PyTorch. (#14849) 4 months ago
B MultiL riterion.c c allincludes in PyTorch. (#14849) 4 months ago
) VolumetricC: & all includes in PyTorch. (#14849) 4 months ago
) MultiMarginCriteri ize all includes in PyTorch. (#1484 4 months a
) MultiMarginCriterion.c Canonicalize all includes in PyTorch. (#14849) onths ago i VoRme TToONSIBaCEmoNonD z S lncides it PyTereh, WAsas) P
E) RReLU.c Canonicalize all includes in PyTorch. (#14849) 4 months ago ot oo all nchudes i PyTorch: (#14540) P —
) Sigmoid.c Canonicalize all includes in PyTorch. (#14849) 4 months ago ” P allincludes in PyTorch. (#14849) & months ago
=) SmoothL1Criterion.c Canonicalize all includes in PyTorch. (#14849) 4 months ago E) VolumetricFullDilatedConvolution.c  Canonicalize all includes in PyTorch. (#14849) 4 months ago
[ SoftMarginCriterion.c Canonicalize all includes in PyTorch. (#14849) 4 months ago o) F—— allincludes in PyTorch. (#14849) 4 months ago
[ SoftPlus.c Canonicalize all includes in PyTorch. (#14849) 4 months ago B c allincludes in PyTorch. (#14849) 4 months ago
E) SoftShrink.c Canonicalize all includes in PyTorch. (#14849) 4 months ago lumetrict ¢ all includes in PyTorch. (#14849) 4 months ago
) SparseLinear.c Canonicalize all includes in PyTorch. (#14849) 4 months ago ) VolumetricUpSampling Trilinear.c lize all includes in PyTorch. (#14849) 4 months ago
) gc  C allincludes in PyTorch. (#14849) 4 months ago E) linear_upsampling.h Implement nn.functional.interpolate based on upsample. (#8591) 9 months ago
B g.c c all includes in PyTorch. (#14849) 4 months ago ) pooling_shape.h Use integer math to compute output size of pooling operations (#14405) 4 months ago
) S g.c Ci allincludes in PyTorch. (#14849) 4 months ago [ unfold.c Canonicalize all includes in PyTorch. (#14849) 4 months ago
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#ifndef TH_GENERIC_FILE

#define TH_GENERIC_FILE "THNN/generic/Sigmoid.c" PyTO rCh Singid Iayer

#else
void THNN_(Sigmoid_updateOutput) ( rw
THNNState *state, FO ard
THTensor *input, ].
THTensor xoutput) _
{ 0'((13) - 1 —
THTensor_(sigmoid) (output, input); —+_ €

}

void THNN_(Sigmoid_updateGradInput) (
THNNState *state,
THTensor *xgradOutput,
THTensor *xgradInput,
THTensor xoutput)

THNN_CHECK_NELEMENT (output, gradOutput);

THTensor_(resizeAs) (gradInput, output);

TH_TENSOR_APPLY3(scalar_t, gradInput, scalar_t, gradOutput, scalar_t, output,
scalar_t z = xoutput_data;
*gradInput_data = *kgradOutput_data * (1. - z) * z;

)i

#endif Source
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https://github.com/pytorch/pytorch/blob/517c7c98610402e2746586c78987c64c28e024aa/aten/src/THNN/generic/Sigmoid.c

#ifndef TH_GENERIC_FILE

#define TH_GENERIC_FILE "THNN/generic/Sigmoid.c" PyTO rCh Singid Iayer

#else
static void sigmoid_kernel(TensorIterator& iter) {
void THNN_(Sigmoid_updateOutput) ( Forward ATaziiPATCH_FLOATING_TYPES(1ter.dtype(), "sigmoid_cpu", [&I() {
THNNState *state, )_l';:imel‘vec‘
THTensor *input, 1 [=](;ca1ar_t a) -> scalar_t {[return (1 / (1 + std::exp((-a))));]},
THTensor *output) 0'(:1,') _ [=](Vec256<scalar_t> a) {
{ - 1 + e_x a = Vec256<scalar_t>((scalar_t)(0)) - a;
THTensor_(sigmoid) (output, input); a = a.exp();
a = Vec256<scalar_t>((scalar_t)(1)) + a;
} as= a.reciprocal(;; B
void THNN_(Sigmoid_updateGradInput) ( });retum * Forward aCtua”y
THWNState xstate, B defined elsewhere...
THTensor xgradOutput, }
THTensor *xgradInput,
THTensor xoutput) return (1 / (1 ) Std: :exp((_a))));
{
THNN_CHECK_NELEMENT (output, gradOutput);
THTensor_(resizeAs)(gradInput, output);
TH_TENSOR_APPLY3(scalar_t, gradInput, scalar_t, gradOutput, scalar_t, output,
scalar_t z = xoutput_data;
*gradInput_data = *kgradOutput_data * (1. - z) * z;
)i
¥
#endif Source
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https://github.com/pytorch/pytorch/blob/517c7c98610402e2746586c78987c64c28e024aa/aten/src/THNN/generic/Sigmoid.c
https://github.com/pytorch/pytorch/blob/82b570528db0a43fc04bb90f5d4538c01e4a5582/aten/src/ATen/native/cpu/UnaryOpsKernel.cpp

#ifndef TH_GENERIC_FILE
#define TH_GENERIC_FILE "THNN/generic/Sigmoid.c"
#else

void THNN_(Sigmoid_updateOutput) (
THNNState *state,

PyTorch sigmoid layer

static void sigmoid_kernel(TensorIterator& iter) {
AT_DISPATCH_FLOATING_TYPES(iter.dtype(), "sigmoid_cpu", [&]() {

Forwa rd unary_kernel_vec(

THTensor *input,

THTensor_(sigmoid) (output, input);

THTensor xoutput)
{ 0'(:1:) —

iter,

[=](scalar_t a) -> scalar_t { return (1 / (1 + std::exp((-a)))); },
[=](Vec256<scalar_t> a) {

a=
ai=
a=

Vec256<scalar_t>((scalar_t)(0)) - a;
a.exp();
Vec256<scalar_t>((scalar_t) (1)) + a;

} a = a.reciprocal();
void THNN_(Sigmoid_updateGradInput) ( });retum * Forward aCtua”y
THaELAElastate, B defined elsewhere...
THTensor xgradOutput, Y
THTensor *xgradInput,
THTensor xoutput)
{
THNN_CHECK_NELEMENT (output, gradOutput);
THTensor_(resizeAs)(gradInput, output); E3E3(3F(\A/Eir(j
TH_TENSOR_APPLY3(scalar_t, gradInput, scalar_t, gradOutput, scalar_t, output,
scalar_t z = xoutput_data;
*gradInput_data = *kgradOutput_data * (1. - z) * z;
" — (1 —o(z))o(z)
¥
#endif Source
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https://github.com/pytorch/pytorch/blob/517c7c98610402e2746586c78987c64c28e024aa/aten/src/THNN/generic/Sigmoid.c
https://github.com/pytorch/pytorch/blob/82b570528db0a43fc04bb90f5d4538c01e4a5582/aten/src/ATen/native/cpu/UnaryOpsKernel.cpp

Summary for today:

e (Fully-connected) Neural Networks are stacks of linear functions and
nonlinear activation functions; they have much more representational
power than linear classifiers

e backpropagation = recursive application of the chain rule along a
computational graph to compute the gradients of all
inputs/parameters/intermediates

e implementations maintain a graph structure, where the nodes implement
the forward() / backward() API

e forward: compute result of an operation and save any intermediates
needed for gradient computation in memory

e backward: apply the chain rule to compute the gradient of the loss
function with respect to the inputs

A. Farhadi, S. Pratt Lecture 4 - 161 Jan 15, 2026



So far: backprop with scalars

Next time: vector-valued functions!
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Next Time: Convolutional neural networks
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A vectorized example: f(z, W) = ||W - z||? = > (W - z)?
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A vectorized example: f(z, W) = ||W - z||? = > (W - z)?

E ]R'n E Ran
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A vectorized example: f(z, W) = ||W - z||? = > (W - z)?

\WY%
(17)
5 Y (L2}
) N
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A vectorized example: f(z, W) = ||W - z||? = > (W - z)?

0.1 0.5
—-0.3 0.8

Y
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A vectorized example: f(z, W) = ||W - z||? = > (W - z)?
0.1 0.5 =
{ ~0.3 0.8 }
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A vectorized example: f(z, W) = ||W - z||? = > (W - z)?
0.1 0.5 =
{ ~0.3 0.8 }
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A vectorized example: f(z, W) = ||W - z||? = > (W - z)?

0.1 0.5
—-0.3 0.8
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A vectorized example: f(z, W) = ||W - z||? = > (W - z)?
0.1 0.5 =
{ ~0.3 0.8 }
W ~ -
0.22

0.26

| 0.26 | 0.116
0.2 e Ve (12)

0.44 \__/ 1.00

X | 0.52

Wiizr+ -+ WinZn gf}% = 2gq;
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A vectorized example: f(z, W) = ||W - z||? = > (W - z)?
0.1 0.5 =
{ ~0.3 0.8 }
W ~ -
0.22

0.26

| 0.26 | 0.116
0.2 e Ve (12)

0.44 \__/ 1.00

Wiizr+ -+ WinZn
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A vectorized example: f(z, W) = ||W - z||? = > (W - z)?
0.1 0.5
{ ~0.3 0.8 }
W ~ -
0.22
026 ] 77N 0.116
[0'2 * o =\L_2j 1.00
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A vectorized example: f(z, W) = ||W - z||? = > (W - z)?

0.1 0.5
~03 08 |
B
' T | 0.26 | 77 R 0.116
02 >}< —> - > L2 >
0.4 0.44 \__/ 1.00
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A vectorized example: f(z, W) = ||W - z||? = > (W - z)?

{ 0.1 0.5
—0.3 08 | T
[ 0.088 0.176 W e vWf =2q-x
0.104 0.208 '
- | 0.26 | 77 R 0.116
02 >}< —> - > L2 >
0.4 0.44 \__/ 1.00
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A vectorized example: f(z, W) = ||W - z||? = > (W - z)?

[ 0.1 05
—0.3 0.8 T
[ 0.088 0.176 1V 099 Vwf=2q-z
0.104 0.208 | 0.26 | /\ 0.116 Always check: The
0.2 | K - - 1.2 }— gradient with
0.4 [ 0.44 ] U 1.00 respect to a variable
- X 0.59 o should have the
| VYl gk 1 - same shape as the
8W ,J — tk=ilj variable
W1,133'1 + -+ Wl,nxn E 0qy
=Wz = ] BWZJ kaquWzJ
_ 2 _ 2 2 k
flag=ldf=a+ -+ =2qz'$j
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A vectorized example: f(z, W) = |[W - z||? =Y , (W - 1)?

0.1 0.5 =1 ¢
~0.3 08 |
B
| - | 0.26 ] 77 R 0.116
02 sk —> - - L2 >
0.4 0.44 \__/ 1.00
- X | 0.52 |
Oqx .
= Wk
Wiiz1 + -+ W1 a2y ox;
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A vectorized example: f(z, W) = |[W - z||? =Y , (W - 1)?

?

0.1 0.5 =1 ¢
~0.3 08 |
B
| - | 0.26 ] 77 R 0.116
02 sk —> - - L2 >
0.4 0.44 \__/ 1.00
- X | 0.52 |
Oqx .
= Wk
Wiiz1 + -+ W1 a2y 0z;
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A vectorized example: f(z, W) = ||W - z||? = > (W - z)?

{ 0.1 0.5
~03 08 -
[ 0.088 0.176 1V oy - V.f=2W" -q
0.104 0.208 '
- | 0.26 77 R 0.116
02 >}< —> - > L2 >
0.4 0.44 \__/ 1.00
o112 ] * | 0.52
0.636 | Ogr _ »
Wiiz1 + -+ W1 a2y 0z; ,

| df _ x~ 0f Oy
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In discussion section: A matrix example...
21 — XWl ’

hl = ReLU(zl) » ‘ @
Yy = hiWo ‘ °

L=l3ll3 "
oL

oWy ?

oL o

8W1 -
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