

Lecture 3: Loss Functions

Administrative: Assignment 1

Due 1/22 11:59pm

- K-Nearest Neighbor
- Linear classifiers: SVM, Softmax

Last time: Image Classification: A core task in Computer Vision

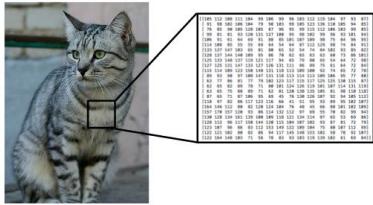
This image by Nikita is
licensed under CC-BY 2.0

(assume given a set of labels)
{dog, cat, truck, plane, ...}

cat
dog
bird
deer
truck

Recall from last time: Challenges of recognition

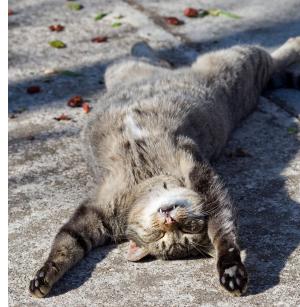
Viewpoint



Illumination

[This image](#) is CC0 1.0 public domain

Deformation



[This image](#) by Umberto Salvagnin
is licensed under CC-BY 2.0

Occlusion

[This image](#) by ionsson is licensed
under CC-BY 2.0

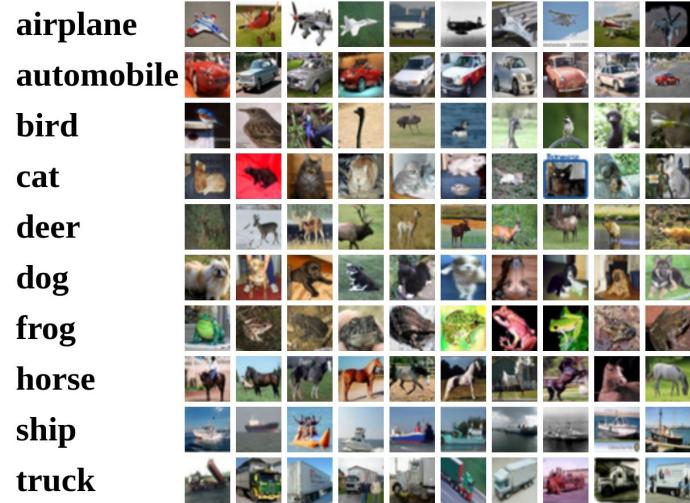
Clutter

[This image](#) is CC0 1.0 public domain

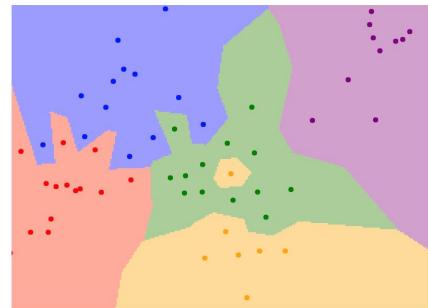
Intraclass Variation

[This image](#) is CC0 1.0 public domain

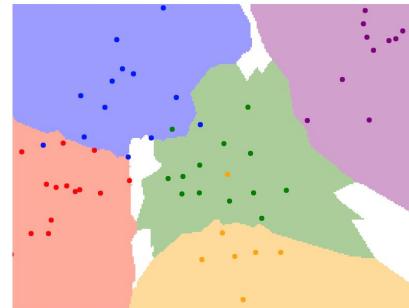
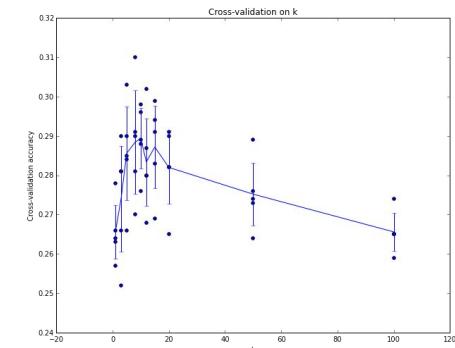
Recall from last time: data-driven approach, kNN



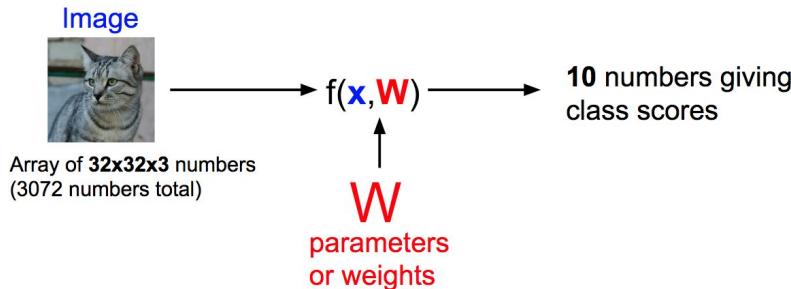
1-NN classifier



5-NN classifier



Recall from last time: Linear Classifier



$$f(x, W) = Wx + b$$

Algebraic Viewpoint

$$f(x, W) = Wx$$

Stretch pixels into column:

Input image

Stretch pixels into column:

$x = \begin{bmatrix} 56 & 231 \\ 24 & 2 \end{bmatrix}$

$W = \begin{bmatrix} 0.2 & -0.5 & 0.1 & 2.0 \\ 1.5 & 1.3 & 2.1 & 0.0 \\ 0 & 0.25 & 0.2 & -0.3 \end{bmatrix}$

$b = \begin{bmatrix} 56 \\ 231 \\ 24 \\ 2 \end{bmatrix}$

$Wx = \begin{bmatrix} 56 & 231 \\ 24 & 2 \end{bmatrix} \begin{bmatrix} 0.2 & -0.5 & 0.1 & 2.0 \\ 1.5 & 1.3 & 2.1 & 0.0 \\ 0 & 0.25 & 0.2 & -0.3 \end{bmatrix} = \begin{bmatrix} 96.8 \\ 437.9 \\ 61.95 \end{bmatrix}$

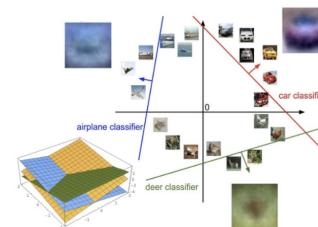
$f(x, W) = Wx + b = \begin{bmatrix} 96.8 \\ 437.9 \\ 61.95 \end{bmatrix} + \begin{bmatrix} 1.1 \\ 3.2 \\ -1.2 \end{bmatrix} = \begin{bmatrix} -95.7 \\ 441.1 \\ 63.15 \end{bmatrix}$

Visual Viewpoint

One template per class

Geometric Viewpoint

Hyperplanes cutting up space

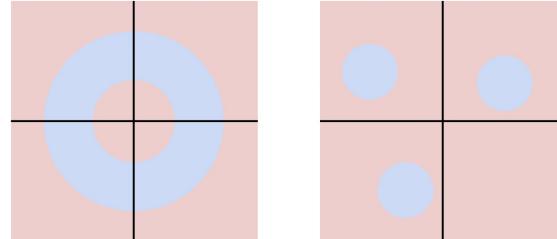


Class 1:
 $1 \leq L2 \text{ norm} \leq 2$

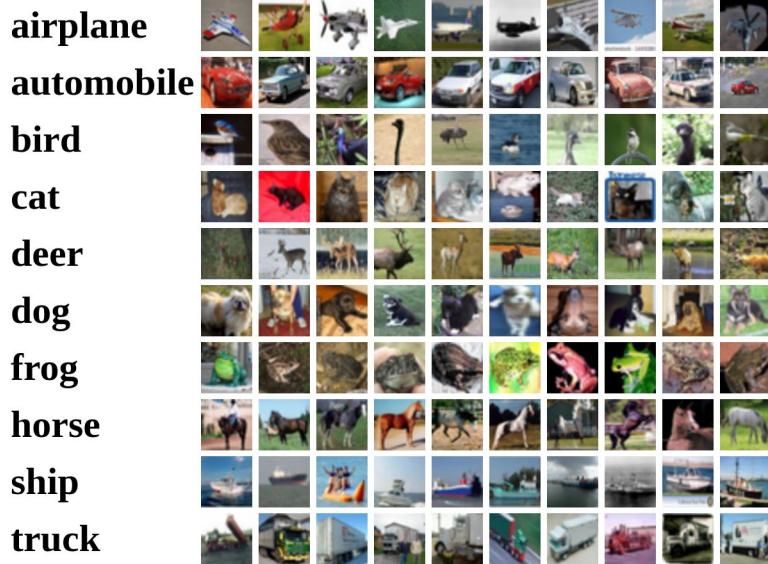
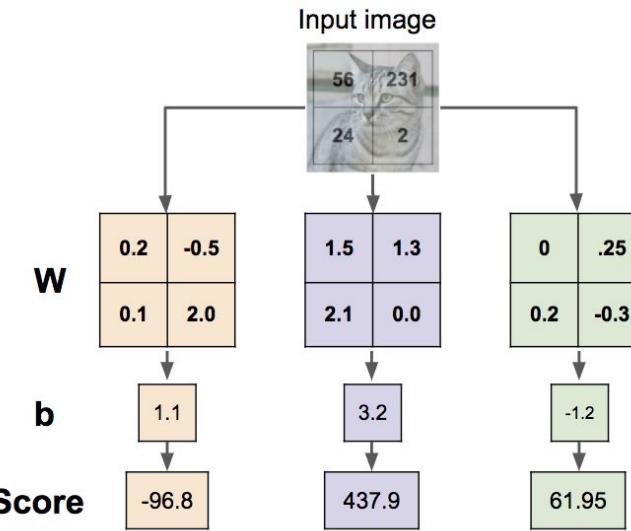
Class 2:
Everything else

Class 1:
Three modes

Class 2:
Everything else



Interpreting a Linear Classifier: Visual Viewpoint



Example with an image with 4 pixels, and 3 classes (cat/dog/ship)

Algebraic Viewpoint

$$f(x, W) = Wx$$

Stretch pixels into column

Input image: A 2x2 image of a cat with pixel values 56, 231, 24, 2.

W (Weights): A 4x4 matrix of weights.

b (Bias): A 4x1 vector of bias values.

Calculation:

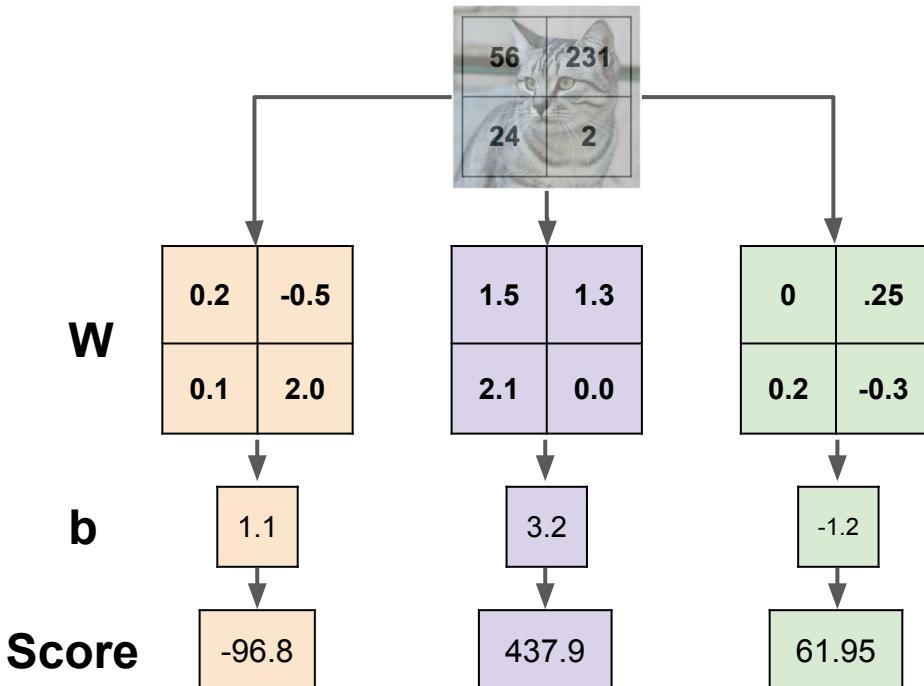
$$\begin{matrix} 56 & 231 \\ 24 & 2 \end{matrix} \xrightarrow{\text{Stretch pixels into column}} \begin{matrix} 0.2 & -0.5 & 0.1 & 2.0 \\ 1.5 & 1.3 & 2.1 & 0.0 \\ 0 & 0.25 & 0.2 & -0.3 \end{matrix} \quad \begin{matrix} 56 \\ 231 \\ 24 \\ 2 \end{matrix} + \begin{matrix} 1.1 \\ 3.2 \\ -1.2 \end{matrix} = \begin{matrix} -96.8 \\ 437.9 \\ 61.95 \end{matrix}$$

Output scores:

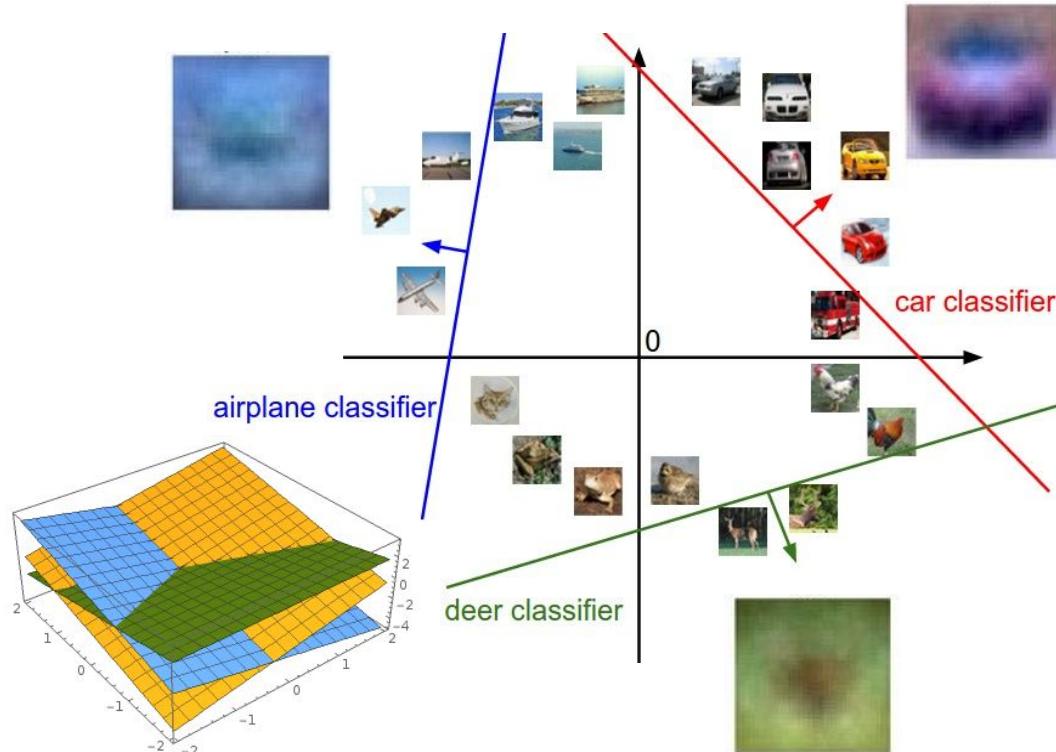
- Cat score: -96.8
- Dog score: 437.9
- Ship score: 61.95

Visual Viewpoint

Input image



Interpreting a Linear Classifier: Geometric Viewpoint



$$f(x, W) = Wx + b$$

Array of **32x32x3** numbers
(3072 numbers total)

Plot created using [Wolfram Cloud](#)

[Cat image](#) by [Nikita](#) is licensed under [CC-BY 2.0](#)

Linear Classifier

Parametric Approach

Image

Array of **32x32x3** numbers
(3072 numbers total)

$$\xrightarrow{f(x, W)}$$

W
parameters
or weights

10 numbers giving
class scores

Parametric Approach: Linear Classifier

Image

$$f(x, W) = Wx$$

Array of **32x32x3** numbers
(3072 numbers total)

$$f(\mathbf{x}, \mathbf{W})$$

10 numbers giving
class scores

W
parameters
or weights

Parametric Approach: Linear Classifier

Image

$$f(x, W) = Wx$$

10×1 10×3072

3072×1

Array of $32 \times 32 \times 3$ numbers
(3072 numbers total)

$$f(x, W)$$

W
parameters
or weights

10 numbers giving
class scores

Parametric Approach: Linear Classifier

Image

$$f(x, W) = Wx + b$$

3072x1
10x1 10x3072
b 10x1

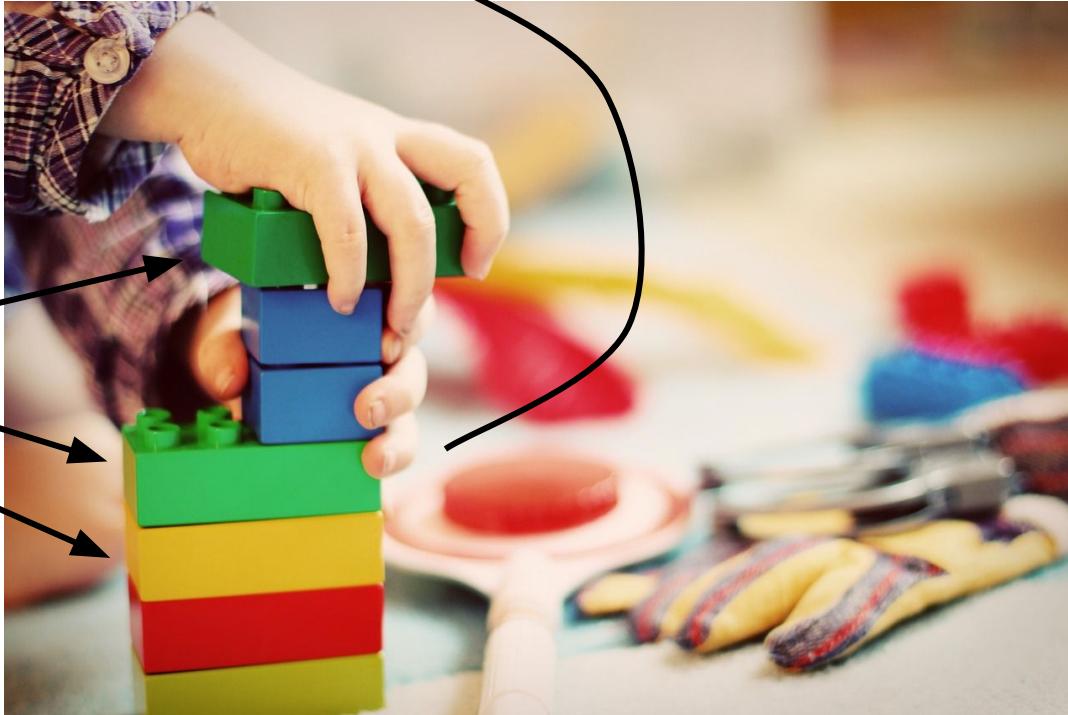
Array of **32x32x3** numbers
(3072 numbers total)

W
parameters
or weights

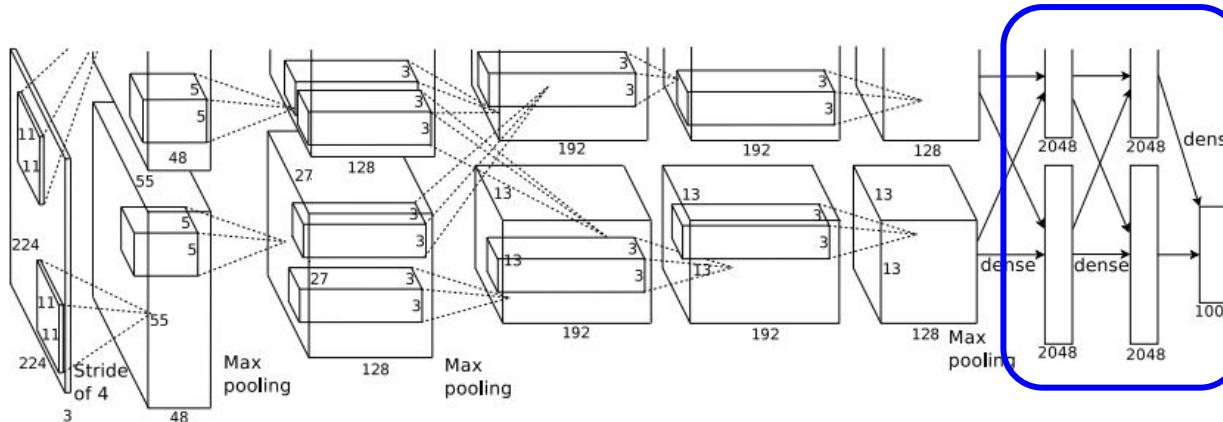
10 numbers giving
class scores

Neural Network

Linear
classifiers

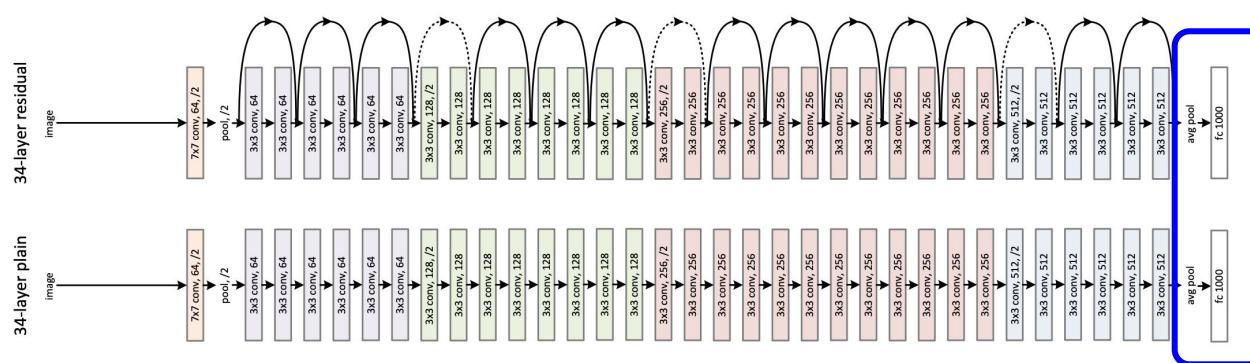


[This image](#) is [CC0 1.0](#) public domain



[Krizhevsky et al. 2012]

Linear layers



[He et al. 2015]

Recall CIFAR10

airplane

automobile

bird

cat

deer

dog

frog

horse

ship

truck

50,000 training images
each image is **32x32x3**

10,000 test images.

Algebraic viewpoint: Example with an image with 4 pixels, and 3 classes (cat/dog/ship)

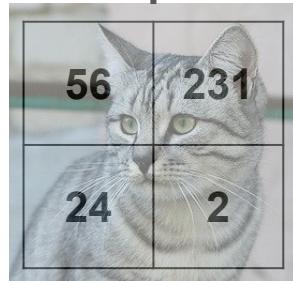
Flatten tensors into a vector



Input image

Algebraic viewpoint: Example with an image with 4 pixels, and 3 classes (cat/dog/ship)

Flatten tensors into a vector



Input image

0.2	-0.5	0.1	2.0
1.5	1.3	2.1	0.0
0	0.25	0.2	-0.3

W

56
231
24
2

+

1.1
3.2
-1.2

=

-96.8
437.9
61.95

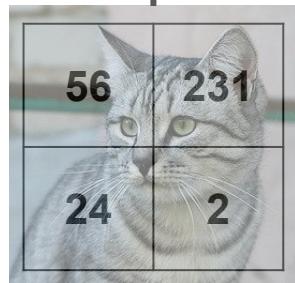
Cat score

Dog score

Ship score

Algebraic viewpoint: Example with an image with 4 pixels, and 3 classes (cat/dog/ship)

Flatten tensors into a vector



Input image

(2,2)

0.2	-0.5	0.1	2.0
1.5	1.3	2.1	0.0
0	0.25	0.2	-0.3

W

(3,4)

56
231
24
2

(4,)

b

(3,)

+

1.1
3.2
-1.2

-96.8
437.9
61.95

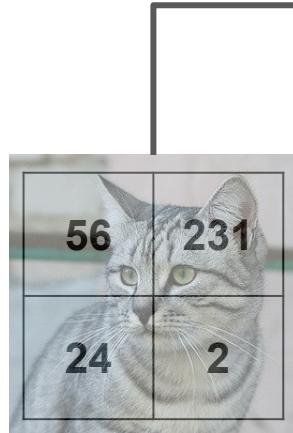
Cat score

Dog score

Ship score

Algebraic viewpoint: Example with an image with 4 pixels, and 3 classes (cat/dog/ship)

Flatten tensors into a vector



Input image

0.2	-0.5	0.1	2.0
1.5	1.3	2.1	0.0
0	0.25	0.2	-0.3

W

56
231
24
2

+

1.1
3.2
-1.2

b

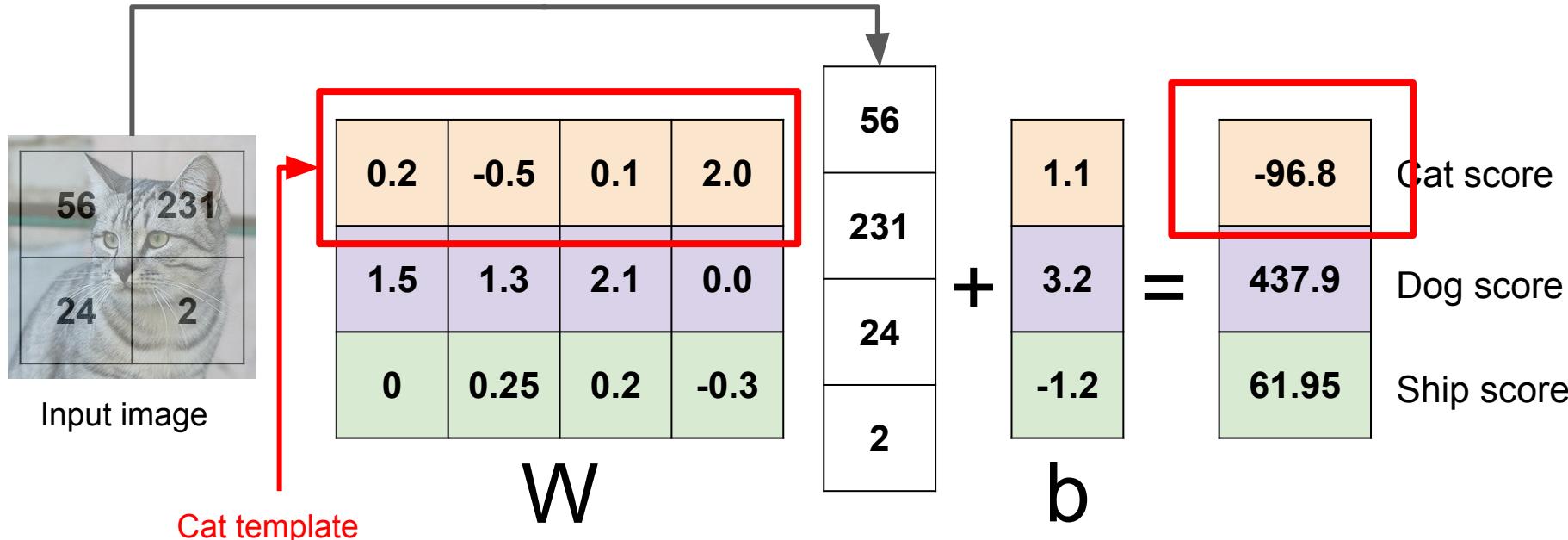
Likelihood of being a cat

-96.8
437.9
61.95

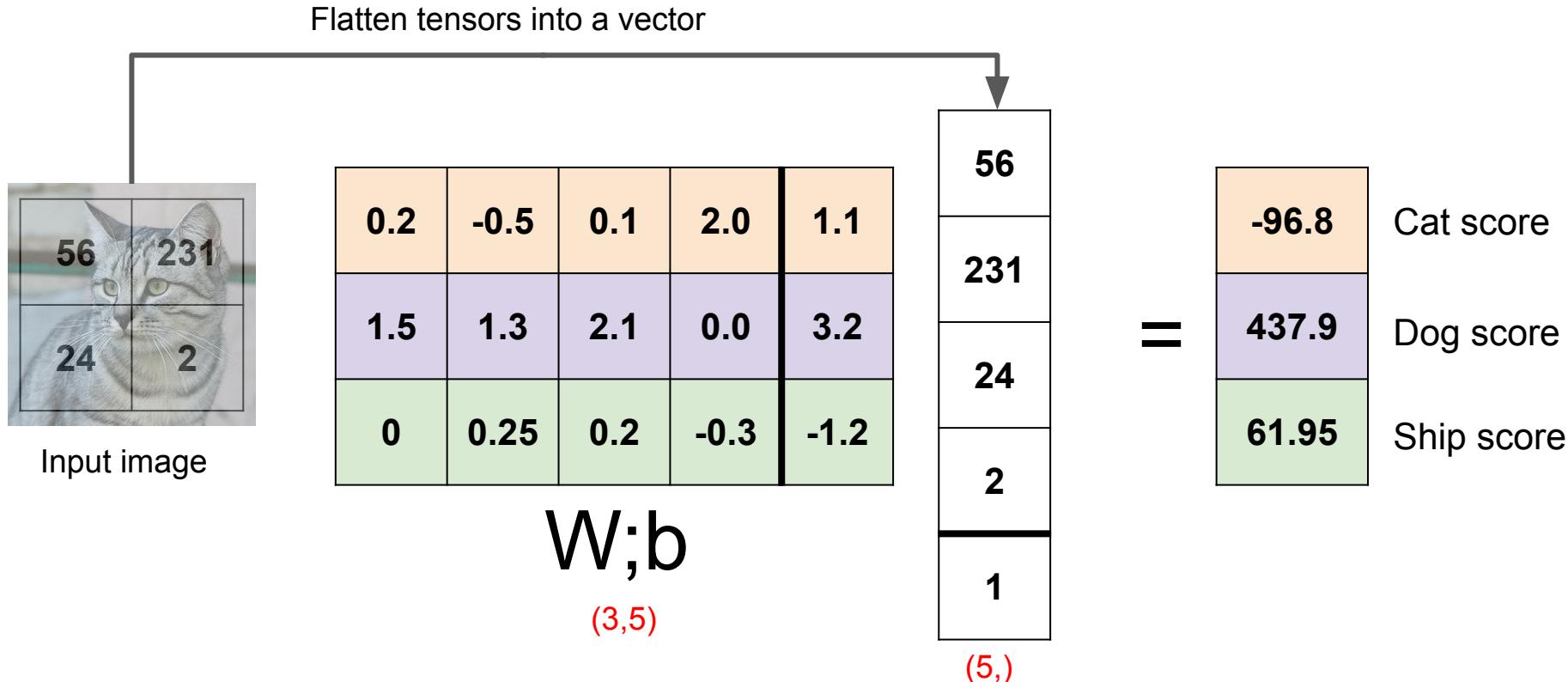
Cat score
Dog score
Ship score

Algebraic viewpoint: Example with an image with 4 pixels, and 3 classes (cat/dog/ship)

Flatten tensors into a vector



Algebraic viewpoint: Bias trick to simplify computation

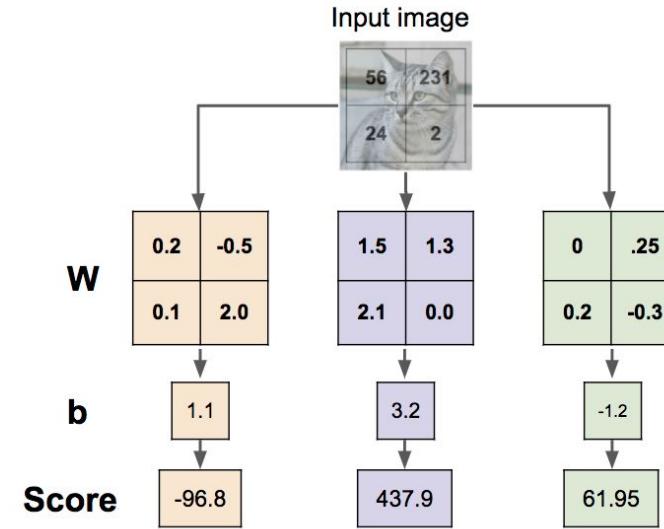


Visual Viewpoint: learning templates

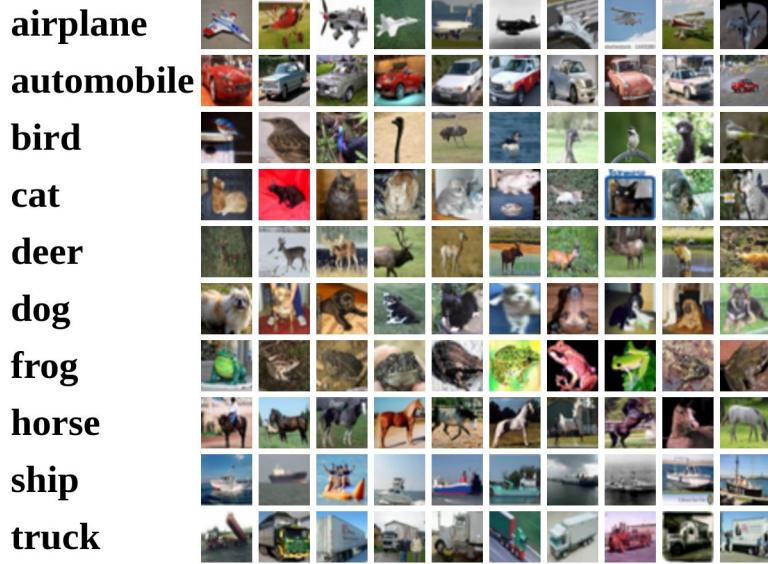
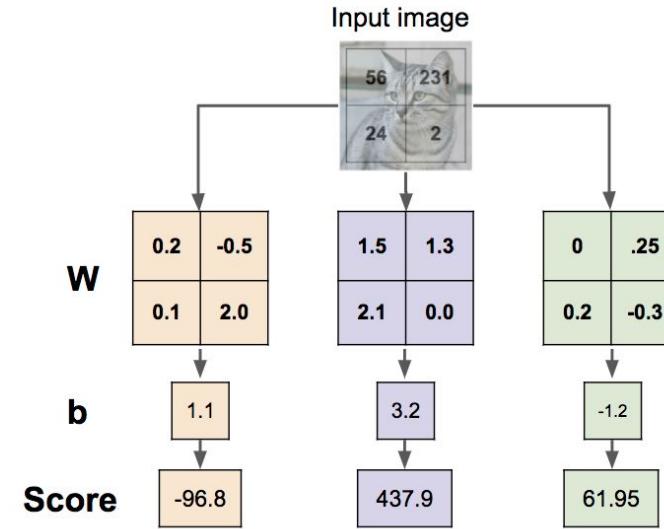
Algebraic viewpoint:

Stretch pixels into column

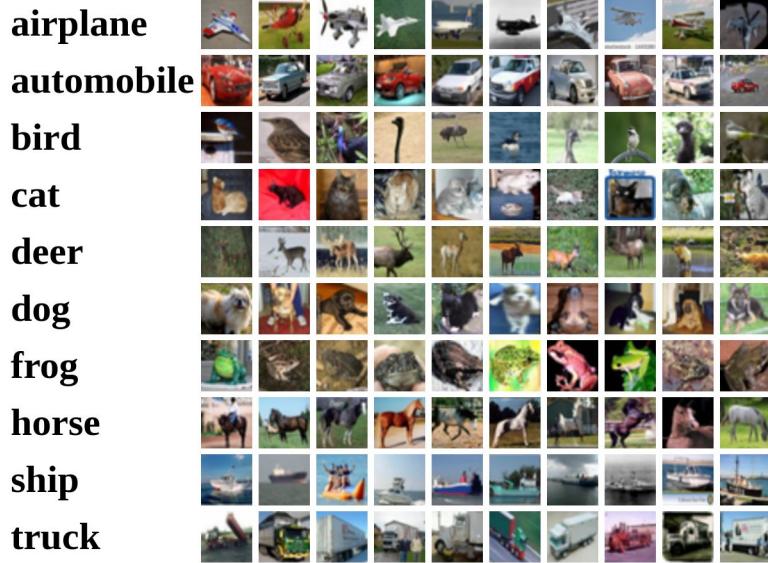
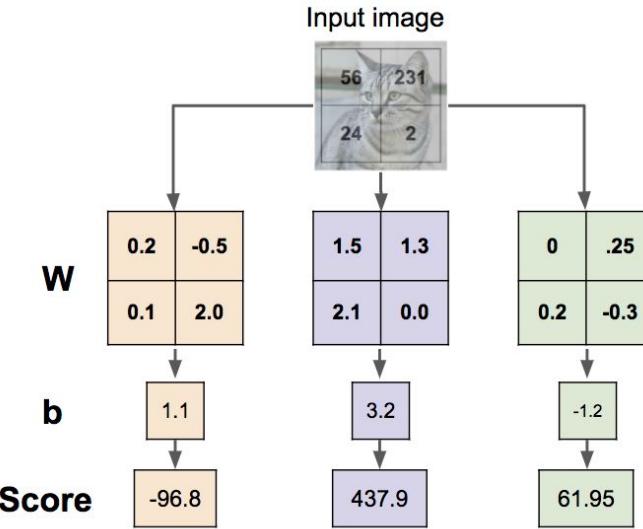
$$\begin{array}{c} \text{Input image} \\ (2,2) \end{array} \xrightarrow{\text{Stretch pixels into column}} \begin{array}{c} \begin{matrix} 56 & 231 \\ 24 & 2 \end{matrix} \\ \begin{matrix} 0.2 & -0.5 & 0.1 & 2.0 \\ 1.5 & 1.3 & 2.1 & 0.0 \\ 0 & 0.25 & 0.2 & -0.3 \end{matrix} \\ W \ (3,4) \end{array} + \begin{array}{c} \begin{matrix} 56 \\ 231 \\ 24 \\ 2 \end{matrix} \\ (4,) \end{array} \begin{array}{c} \begin{matrix} 1.1 \\ 3.2 \\ -1.2 \end{matrix} \\ b \ (3,1) \end{array} = \begin{array}{c} \begin{matrix} -96.8 \\ 437.9 \\ 61.95 \end{matrix} \\ (3,1) \end{array}$$



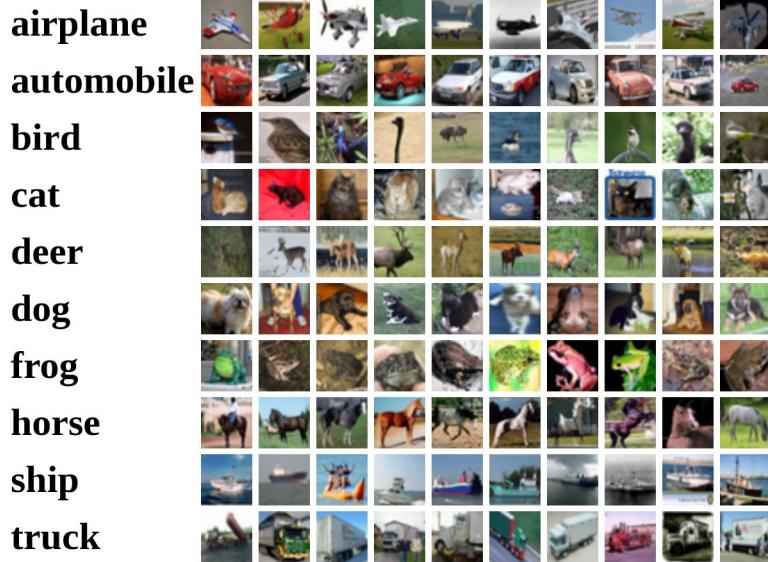
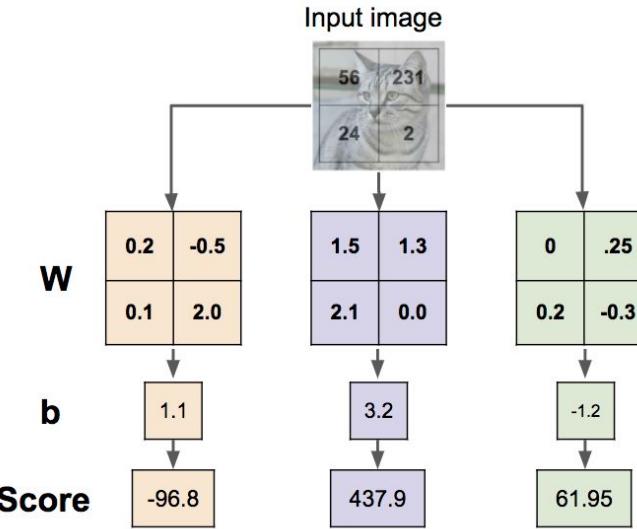
Visual Viewpoint: learning templates



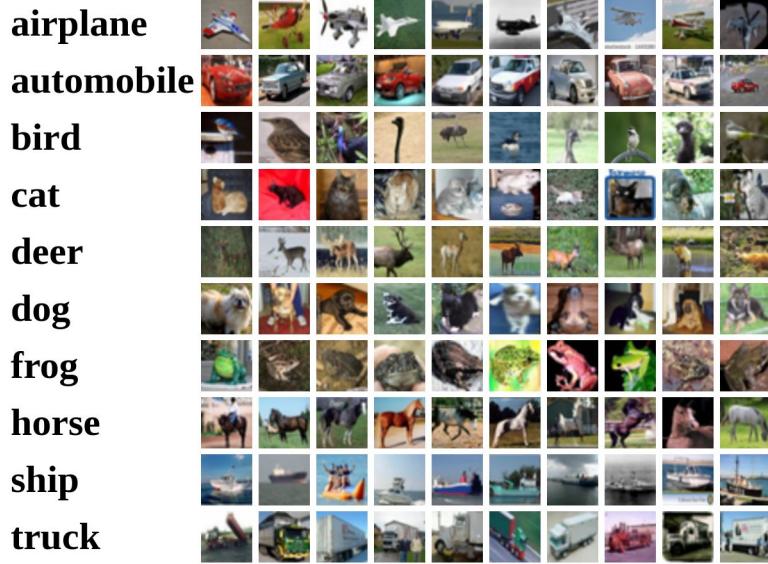
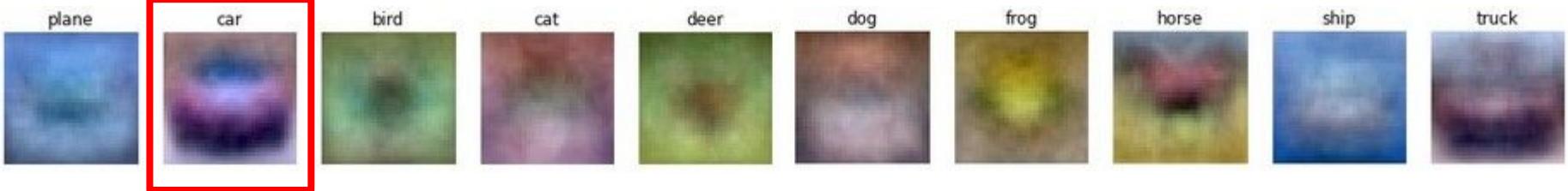
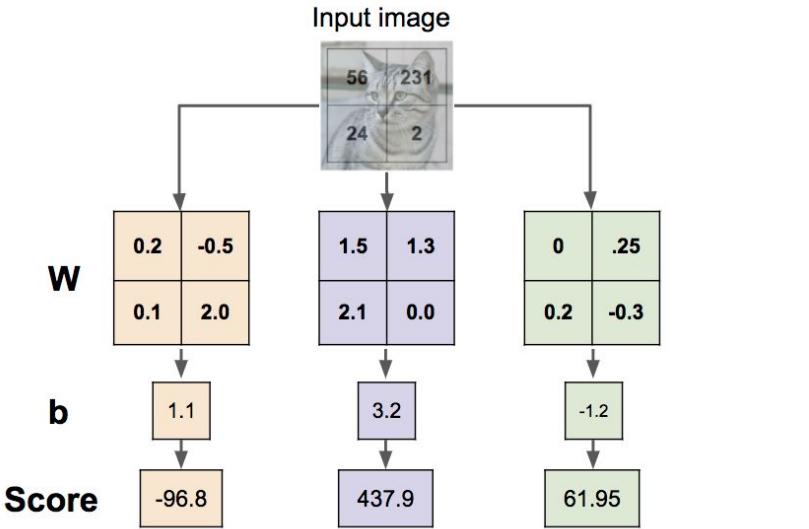
Visual Viewpoint: learning templates



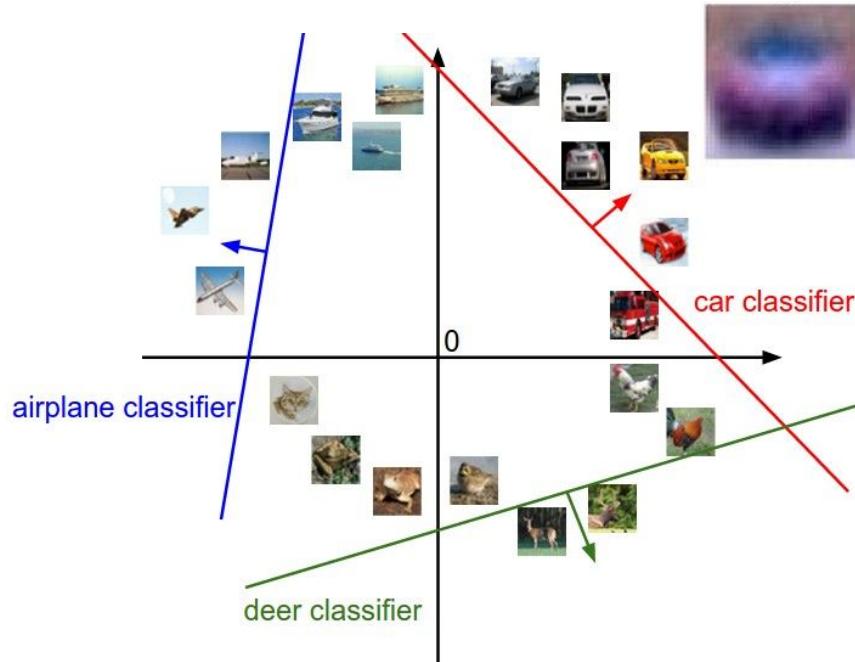
Visual Viewpoint: learning templates



Visual Viewpoint: learning templates



Geometric Viewpoint: linear decision boundaries



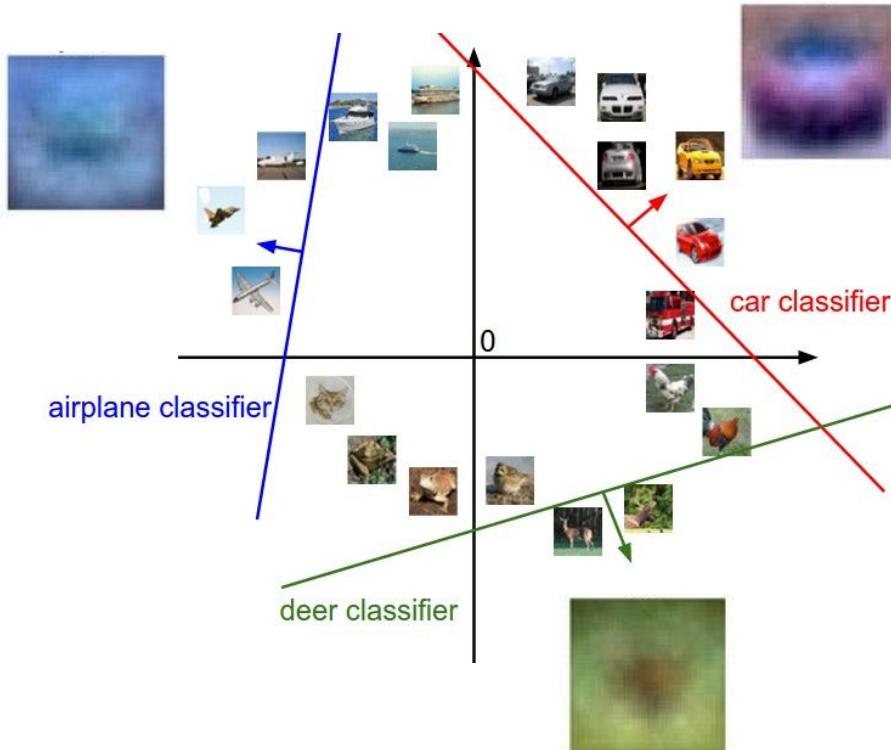
$$f(x, W) = Wx + b$$

Array of **32x32x3** numbers
(3072 numbers total)

Plot created using [Wolfram Cloud](#)

[Cat image](#) by [Nikita](#) is licensed under [CC-BY 2.0](#)

Geometric Viewpoint: linear decision boundaries



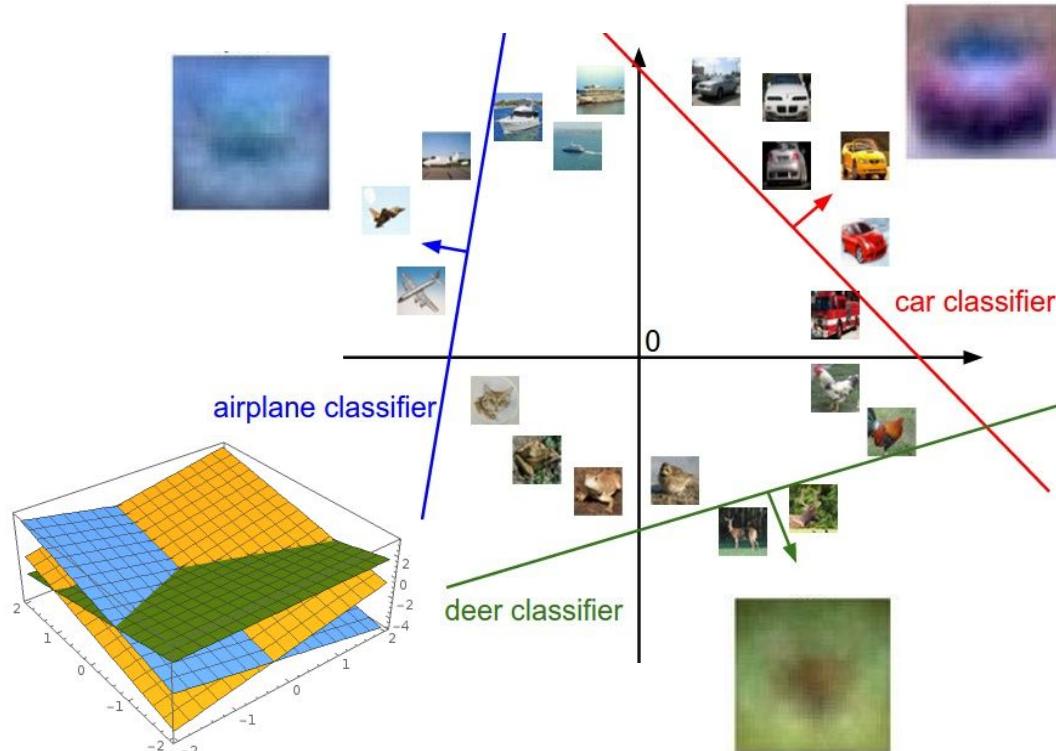
$$f(x, W) = Wx + b$$

Array of **32x32x3** numbers
(3072 numbers total)

Plot created using [Wolfram Cloud](#)

[Cat image](#) by [Nikita](#) is licensed under [CC-BY 2.0](#)

Geometric Viewpoint: linear decision boundaries



$$f(x, W) = Wx + b$$

Array of **32x32x3** numbers
(3072 numbers total)

Plot created using [Wolfram Cloud](#)

[Cat image](#) by [Nikita](#) is licensed under [CC-BY 2.0](#)

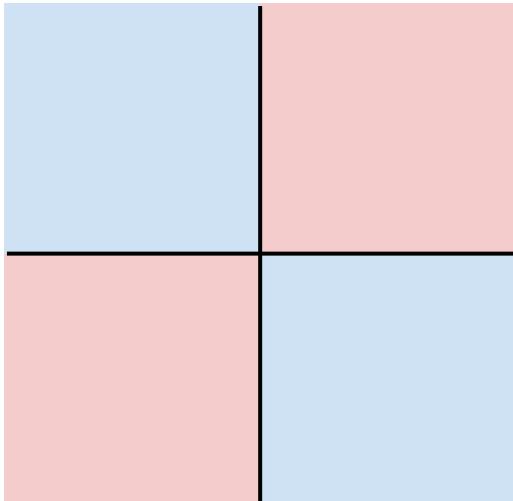
Hard cases for a linear classifier

Class 1:

First and third quadrants

Class 2:

Second and fourth quadrants

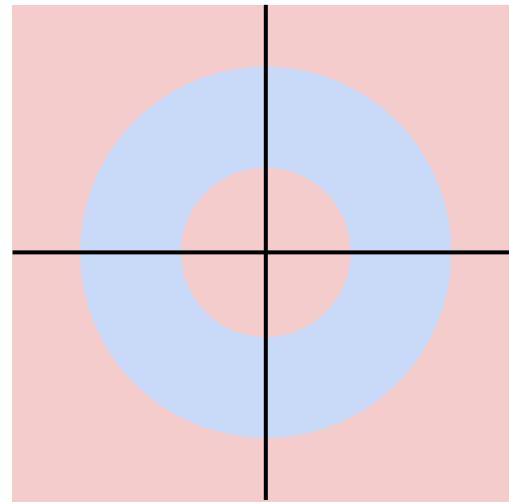


Class 1:

$1 \leq \text{L2 norm} \leq 2$

Class 2:

Everything else

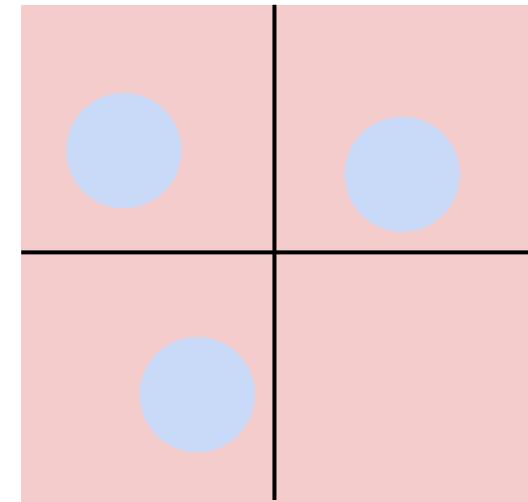


Class 1:

Three modes

Class 2:

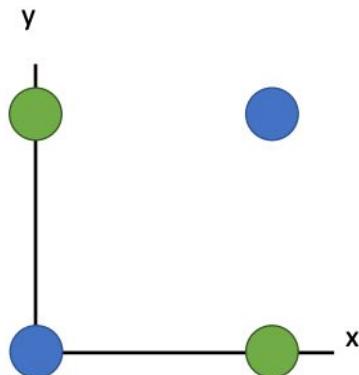
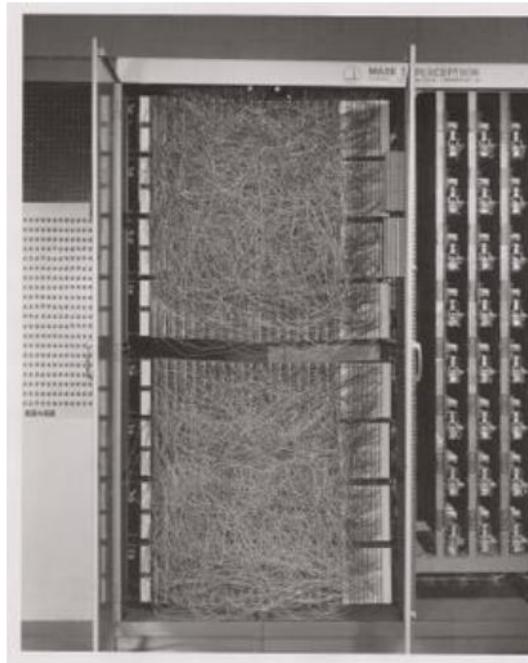
Everything else



Recall the Minsky report 1969 from last lecture

Unable to learn the XNOR function

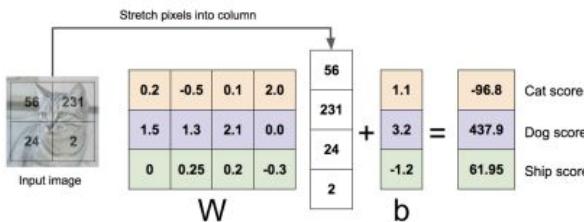
X	Y	F(x,y)
0	0	0
0	1	1
1	0	1
1	1	0



Three viewpoints for interpreting linear classifiers

Algebraic Viewpoint

$$f(x, W) = Wx$$

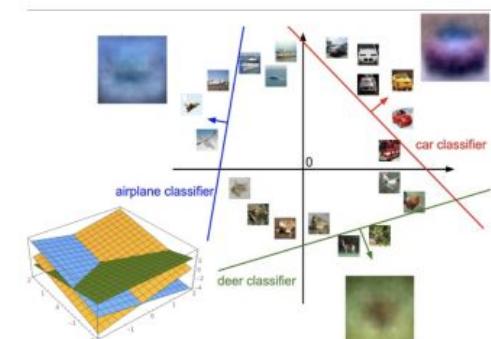


Visual Viewpoint

One template per class

Geometric Viewpoint

Hyperplanes cutting up space



Next: How to train the weights in a Linear Classifier

TODO:

1. Define a **loss function** that quantifies our unhappiness with the scores across the training data.
2. Come up with a way of efficiently finding the parameters that minimize the loss function. **(optimization)**

Example output for CIFAR-10:

airplane	-3.45	-0.51	3.42
automobile	-8.87	6.04	4.64
bird	0.09	5.31	2.65
cat	2.9	-4.22	5.1
deer	4.48	-4.19	2.64
dog	8.02	3.58	5.55
frog	3.78	4.49	-4.34
horse	1.06	-4.37	-1.5
ship	-0.36	-2.09	-4.79
truck	-0.72	-2.93	6.14

- A random W produces the following 10 scores for the 3 images to the left.
- 10 scores because there are 10 classes.
- **First column bad** because dog is highest.
- **Second column good**.
- **Third column bad** because frog is highest

[Cat image](#) by [Nikita](#) is licensed under [CC-BY 2.0](#); [Car image](#) is [CC0 1.0](#) public domain; [Frog image](#) is in the public domain

Suppose: 3 training examples, 3 classes.

With some W the scores $f(x, W) = Wx$ are:

cat	3.2	1.3	2.2
car	5.1	4.9	2.5
frog	-1.7	2.0	-3.1

Suppose: 3 training examples, 3 classes.
With some W the scores $f(x, W) = Wx$ are:

A **loss function** tells how good our current classifier is

cat	3.2	1.3	2.2
car	5.1	4.9	2.5
frog	-1.7	2.0	-3.1

Suppose: 3 training examples, 3 classes.
With some W the scores $f(x, W) = Wx$ are:

cat	3.2	1.3	2.2
car	5.1	4.9	2.5
frog	-1.7	2.0	-3.1

A **loss function** tells how good our current classifier is

Given a dataset of examples

$$\{(x_i, y_i)\}_{i=1}^N$$

Where x_i is image and
 y_i is (integer) label

Suppose: 3 training examples, 3 classes.
With some W the scores $f(x, W) = Wx$ are:

cat	3.2	1.3	2.2
car	5.1	4.9	2.5
frog	-1.7	2.0	-3.1

A **loss function** tells how good our current classifier is

Given a dataset of examples

$$\{(x_i, y_i)\}_{i=1}^N$$

Where x_i is image and
 y_i is (integer) label

Loss over the dataset is a average of loss over examples:

$$L = \frac{1}{N} \sum_i L_i(f(x_i, W), y_i)$$

Suppose: 3 training examples, 3 classes.
With some W the scores $f(x, W) = Wx$ are:

cat	3.2	1.3	2.2
car	5.1	4.9	2.5
frog	-1.7	2.0	-3.1

Multiclass SVM loss:

Given an example (x_i, y_i) where x_i is the image and where y_i is the (integer) label,

and using the shorthand for the scores vector: $s = f(x_i, W)$

the SVM loss has the form:

$$\begin{aligned} L_i &= \sum_{j \neq y_i} \begin{cases} 0 & \text{if } s_{y_i} \geq s_j + 1 \\ s_j - s_{y_i} + 1 & \text{otherwise} \end{cases} \\ &= \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1) \end{aligned}$$

Suppose: 3 training examples, 3 classes.
With some W the scores $f(x, W) = Wx$ are:

cat	3.2	1.3	2.2
car	5.1	4.9	2.5
frog	-1.7	2.0	-3.1

Multiclass SVM loss:

Given an example (x_i, y_i) where x_i is the image and where y_i is the (integer) label,

and using the shorthand for the scores vector: $s = f(x_i, W)$

the SVM loss has the form:

$$L_i = \sum_{j \neq y_i} \begin{cases} 0 & \text{if } s_{y_i} \geq s_j + 1 \\ s_j - s_{y_i} + 1 & \text{otherwise} \end{cases}$$

$$= \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)$$

Suppose: 3 training examples, 3 classes.
With some W the scores $f(x, W) = Wx$ are:

cat	3.2	1.3	2.2
car	5.1	4.9	2.5
frog	-1.7	2.0	-3.1

Multiclass SVM loss:

Given an example (x_i, y_i) where x_i is the image and where y_i is the (integer) label,

and using the shorthand for the scores vector: $s = f(x_i, W)$

the SVM loss has the form:

$$L_i = \sum_{j \neq y_i} \begin{cases} 0 & \text{if } s_{y_i} \geq s_j + 1 \\ s_j - s_{y_i} + 1 & \text{otherwise} \end{cases}$$
$$= \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)$$

Suppose: 3 training examples, 3 classes.
With some W the scores $f(x, W) = Wx$ are:

cat	3.2	1.3	2.2
car	5.1	4.9	2.5
frog	-1.7	2.0	-3.1

Multiclass SVM loss:

Given an example (x_i, y_i) where x_i is the image and where y_i is the (integer) label,

and using the shorthand for the scores vector: $s = f(x_i, W)$

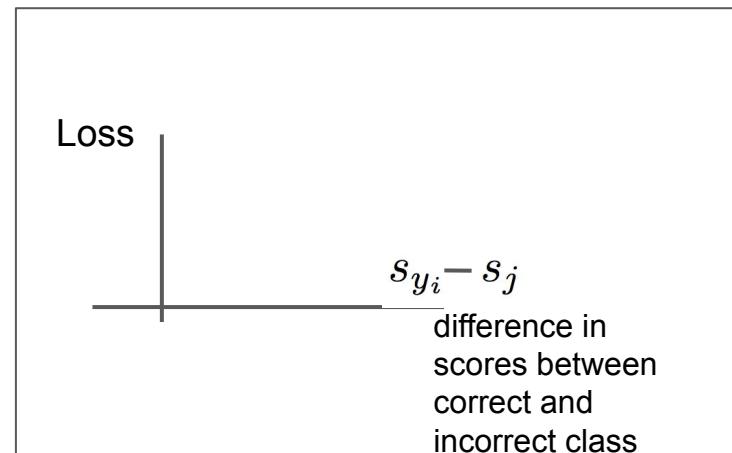
the SVM loss has the form:

$$L_i = \sum_{j \neq y_i} \begin{cases} 0 & \text{if } s_{y_i} \geq s_j + 1 \\ s_j - s_{y_i} + 1 & \text{otherwise} \end{cases}$$
$$= \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)$$

Suppose: 3 training examples, 3 classes.
With some W the scores $f(x, W) = Wx$ are:

cat	3.2	1.3	2.2
car	5.1	4.9	2.5
frog	-1.7	2.0	-3.1

Interpreting Multiclass SVM loss:



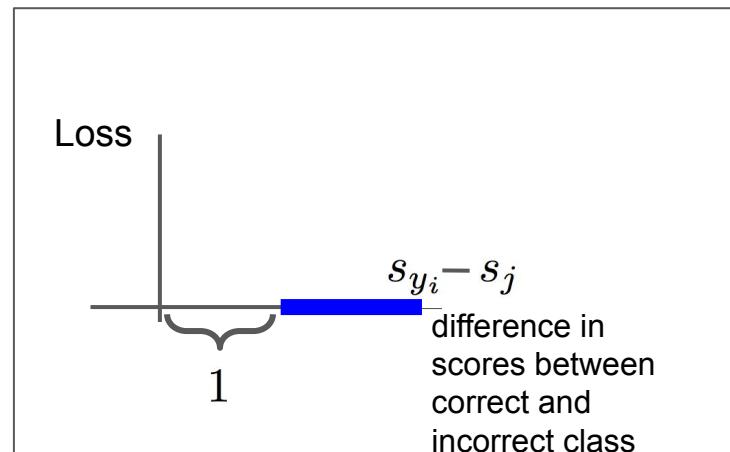
$$L_i = \sum_{j \neq y_i} \begin{cases} 0 & \text{if } s_{y_i} \geq s_j + 1 \\ s_j - s_{y_i} + 1 & \text{otherwise} \end{cases}$$

$$= \boxed{\sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)}$$

Suppose: 3 training examples, 3 classes.
With some W the scores $f(x, W) = Wx$ are:

cat	3.2	1.3	2.2
car	5.1	4.9	2.5
frog	-1.7	2.0	-3.1

Interpreting Multiclass SVM loss:

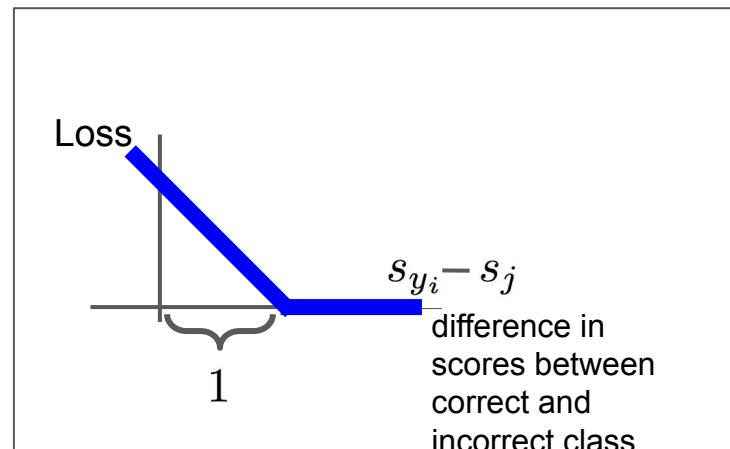


$$\begin{aligned}
 L_i &= \sum_{j \neq y_i} \begin{cases} 0 & \text{if } s_{y_i} \geq s_j + 1 \\ s_j - s_{y_i} + 1 & \text{otherwise} \end{cases} \\
 &= \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)
 \end{aligned}$$

Suppose: 3 training examples, 3 classes.
With some W the scores $f(x, W) = Wx$ are:

cat	3.2	1.3	2.2
car	5.1	4.9	2.5
frog	-1.7	2.0	-3.1

Interpreting Multiclass SVM loss:



$$\begin{aligned}
 L_i &= \sum_{j \neq y_i} \begin{cases} 0 & \text{if } s_{y_i} \geq s_j + 1 \\ s_j - s_{y_i} + 1 & \text{otherwise} \end{cases} \\
 &= \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)
 \end{aligned}$$

Suppose: 3 training examples, 3 classes.
With some W the scores $f(x, W) = Wx$ are:

cat	3.2	1.3	2.2
car	5.1	4.9	2.5
frog	-1.7	2.0	-3.1

Multiclass SVM loss:

Given an example (x_i, y_i) where x_i is the image and where y_i is the (integer) label,

and using the shorthand for the scores vector: $s = f(x_i, W)$

the SVM loss has the form:

$$L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)$$

Suppose: 3 training examples, 3 classes.
With some W the scores $f(x, W) = Wx$ are:

cat	3.2	1.3	2.2
car	5.1	4.9	2.5
frog	-1.7	2.0	-3.1
Losses:	2.9		

Multiclass SVM loss:

Given an example (x_i, y_i) where x_i is the image and where y_i is the (integer) label,

and using the shorthand for the scores vector: $s = f(x_i, W)$

the SVM loss has the form:

$$\begin{aligned}
 L_i &= \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1) \\
 &= \max(0, 5.1 - 3.2 + 1) \\
 &\quad + \max(0, -1.7 - 3.2 + 1)
 \end{aligned}$$

Suppose: 3 training examples, 3 classes.
With some W the scores $f(x, W) = Wx$ are:

cat	3.2	1.3	2.2
car	5.1	4.9	2.5
frog	-1.7	2.0	-3.1
Losses:	2.9		

Multiclass SVM loss:

Given an example (x_i, y_i) where x_i is the image and where y_i is the (integer) label,

and using the shorthand for the scores vector: $s = f(x_i, W)$

the SVM loss has the form:

$$\begin{aligned}
 L_i &= \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1) \\
 &= \max(0, 5.1 - 3.2 + 1) \\
 &\quad + \max(0, -1.7 - 3.2 + 1)
 \end{aligned}$$

Suppose: 3 training examples, 3 classes.
With some W the scores $f(x, W) = Wx$ are:

cat	3.2	1.3	2.2
car	5.1	4.9	2.5
frog	-1.7	2.0	-3.1
Losses:	2.9		

Multiclass SVM loss:

Given an example (x_i, y_i) where x_i is the image and where y_i is the (integer) label,

and using the shorthand for the scores vector: $s = f(x_i, W)$

the SVM loss has the form:

$$\begin{aligned}
 L_i &= \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1) \\
 &= \max(0, 5.1 - 3.2 + 1) \\
 &\quad + \max(0, -1.7 - 3.2 + 1) \\
 &= \max(0, 2.9) + \max(0, -3.9)
 \end{aligned}$$

Suppose: 3 training examples, 3 classes.
With some W the scores $f(x, W) = Wx$ are:

cat	3.2	1.3	2.2
car	5.1	4.9	2.5
frog	-1.7	2.0	-3.1
Losses:	2.9		

Multiclass SVM loss:

Given an example (x_i, y_i) where x_i is the image and where y_i is the (integer) label,

and using the shorthand for the scores vector: $s = f(x_i, W)$

the SVM loss has the form:

$$\begin{aligned}
 L_i &= \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1) \\
 &= \max(0, 5.1 - 3.2 + 1) \\
 &\quad + \max(0, -1.7 - 3.2 + 1) \\
 &= \max(0, 2.9) + \max(0, -3.9) \\
 &= 2.9 + 0 \\
 &= 2.9
 \end{aligned}$$

Suppose: 3 training examples, 3 classes.
With some W the scores $f(x, W) = Wx$ are:

cat	3.2	1.3	2.2	
car	5.1	4.9	2.5	
frog	-1.7	2.0	-3.1	
Losses:	2.9	0		

Multiclass SVM loss:

Given an example (x_i, y_i) where x_i is the image and where y_i is the (integer) label,

and using the shorthand for the scores vector: $s = f(x_i, W)$

the SVM loss has the form:

$$\begin{aligned}
 L_i &= \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1) \\
 &= \max(0, 1.3 - 4.9 + 1) \\
 &\quad + \max(0, 2.0 - 4.9 + 1) \\
 &= \max(0, -2.6) + \max(0, -1.9) \\
 &= 0 + 0 \\
 &= 0
 \end{aligned}$$

Suppose: 3 training examples, 3 classes.
With some W the scores $f(x, W) = Wx$ are:

cat	3.2	1.3	2.2
car	5.1	4.9	2.5
frog	-1.7	2.0	-3.1
Losses:	2.9	0	12.9

Multiclass SVM loss:

Given an example (x_i, y_i) where x_i is the image and where y_i is the (integer) label,

and using the shorthand for the scores vector: $s = f(x_i, W)$

the SVM loss has the form:

$$\begin{aligned}
 L_i &= \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1) \\
 &= \max(0, 2.2 - (-3.1) + 1) \\
 &\quad + \max(0, 2.5 - (-3.1) + 1) \\
 &= \max(0, 6.3) + \max(0, 6.6) \\
 &= 6.3 + 6.6 \\
 &= 12.9
 \end{aligned}$$

Suppose: 3 training examples, 3 classes.
With some W the scores $f(x, W) = Wx$ are:

cat	3.2	1.3	2.2
car	5.1	4.9	2.5
frog	-1.7	2.0	-3.1
Losses:	2.9	0	12.9

Multiclass SVM loss:

Given an example (x_i, y_i) where x_i is the image and where y_i is the (integer) label,

and using the shorthand for the scores vector: $s = f(x_i, W)$

the SVM loss has the form:

$$L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)$$

Loss over full dataset is average:

$$L = \frac{1}{N} \sum_{i=1}^N L_i$$

$$\begin{aligned} L &= (2.9 + 0 + 12.9)/3 \\ &= 5.27 \end{aligned}$$

Suppose: 3 training examples, 3 classes.

With some W the scores $f(x, W) = Wx$ are:

Multiclass SVM loss:

$$L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)$$

Q1: What happens to loss if car scores decrease by 0.5 for this training example?

cat	1.3
car	4.9
frog	2.0
Losses:	0

Suppose: 3 training examples, 3 classes.

With some W the scores $f(x, W) = Wx$ are:

Multiclass SVM loss:

$$L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)$$

cat	1.3
car	4.9
frog	2.0
Losses:	0

Q1: What happens to loss if car scores decrease by 0.5 for this training example?

Q2: what is the min/max possible SVM loss L_i ?

Suppose: 3 training examples, 3 classes.

With some W the scores $f(x, W) = Wx$ are:

Multiclass SVM loss:

$$L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)$$

cat	1.3
car	4.9
frog	2.0
Losses:	0

Q1: What happens to loss if car scores decrease by 0.5 for this training example?

Q2: what is the min/max possible SVM loss L_i ?

Q3: At initialization W is small so all $s \approx 0$. What is the loss L_i , assuming N examples and C classes?

Suppose: 3 training examples, 3 classes.
With some W the scores $f(x, W) = Wx$ are:

cat	3.2	1.3	2.2
car	5.1	4.9	2.5
frog	-1.7	2.0	-3.1
Losses:	2.9	0	12.9

Multiclass SVM loss:

Given an example (x_i, y_i) where x_i is the image and where y_i is the (integer) label,

and using the shorthand for the scores vector: $s = f(x_i, W)$

the SVM loss has the form:

$$L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)$$

Q4: What if the sum was over all classes?
(including $j = y_i$)

Suppose: 3 training examples, 3 classes.
With some W the scores $f(x, W) = Wx$ are:

cat	3.2	1.3	2.2
car	5.1	4.9	2.5
frog	-1.7	2.0	-3.1
Losses:	2.9	0	12.9

Multiclass SVM loss:

Given an example (x_i, y_i) where x_i is the image and where y_i is the (integer) label,

and using the shorthand for the scores vector: $s = f(x_i, W)$

the SVM loss has the form:

$$L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)$$

Q5: What if we used mean instead of sum?

Suppose: 3 training examples, 3 classes.
With some W the scores $f(x, W) = Wx$ are:

cat	3.2	1.3	2.2
car	5.1	4.9	2.5
frog	-1.7	2.0	-3.1
Losses:	2.9	0	12.9

Multiclass SVM loss:

Given an example (x_i, y_i) where x_i is the image and where y_i is the (integer) label,

and using the shorthand for the scores vector: $s = f(x_i, W)$

the SVM loss has the form:

$$L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)$$

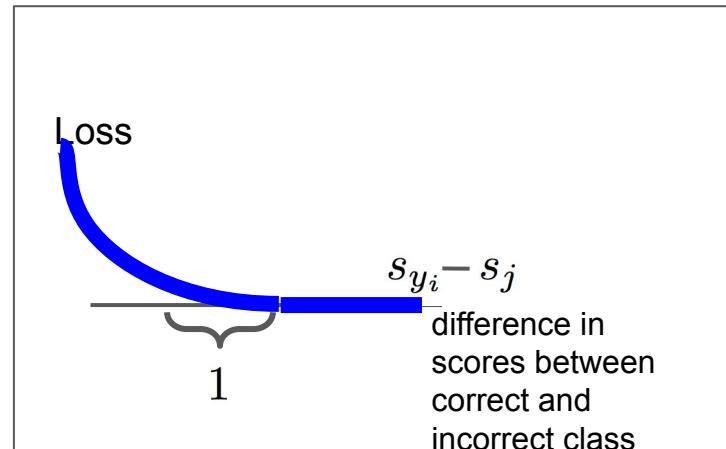
Q6: What if we used

$$L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)^2$$

Suppose: 3 training examples, 3 classes.
With some W the scores $f(x, W) = Wx$ are:

cat	3.2	1.3	2.2
car	5.1	4.9	2.5
frog	-1.7	2.0	-3.1
Losses:	2.9	0	12.9

Multiclass SVM loss:



Q6: What if we used

$$L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)^2$$

Multiclass SVM Loss: Example code

$$L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)$$

```
def L_i_vectorized(x, y, W):
    scores = W.dot(x)                                     # First calculate scores
    margins = np.maximum(0, scores - scores[y] + 1)      # Then calculate the margins  $s_j - s_{y_i} + 1$ 
    margins[y] = 0                                         # only sum j is not  $y_i$ , so when  $j = y_i$ , set to zero.
    loss_i = np.sum(margins)                                # sum across all j
    return loss_i
```

$$f(x, W) = Wx$$

$$L = \frac{1}{N} \sum_{i=1}^N \sum_{j \neq y_i} \max(0, f(x_i; W)_j - f(x_i; W)_{y_i} + 1)$$

Q7. Suppose that we found a W such that $L = 0$.
Is this W unique?

$$f(x, W) = Wx$$

$$L = \frac{1}{N} \sum_{i=1}^N \sum_{j \neq y_i} \max(0, f(x_i; W)_j - f(x_i; W)_{y_i} + 1)$$

E.g. Suppose that we found a W such that $L = 0$.
Is this W unique?

No! $2W$ is also has $L = 0$!

Suppose: 3 training examples, 3 classes.
With some W the scores $f(x, W) = Wx$ are:

cat	3.2	1.3	2.2	
car	5.1	4.9	2.5	
frog	-1.7	2.0	-3.1	
Losses:	2.9	0		

$$L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)$$

Before:

$$\begin{aligned}
 &= \max(0, 1.3 - 4.9 + 1) \\
 &\quad + \max(0, 2.0 - 4.9 + 1) \\
 &= \max(0, -2.6) + \max(0, -1.9) \\
 &= 0 + 0 \\
 &= 0
 \end{aligned}$$

With W twice as large:

$$\begin{aligned}
 &= \max(0, 2.6 - 9.8 + 1) \\
 &\quad + \max(0, 4.0 - 9.8 + 1) \\
 &= \max(0, -6.2) + \max(0, -4.8) \\
 &= 0 + 0 \\
 &= 0
 \end{aligned}$$

$$f(x, W) = Wx$$

$$L = \frac{1}{N} \sum_{i=1}^N \sum_{j \neq y_i} \max(0, f(x_i; W)_j - f(x_i; W)_{y_i} + 1)$$

E.g. Suppose that we found a W such that $L = 0$.
Is this W unique?

No! $2W$ is also has $L = 0$!

How do we choose between W and $2W$?

Regularization

$$L(W) = \underbrace{\frac{1}{N} \sum_{i=1}^N L_i(f(x_i, W), y_i)}_{\text{Data loss: Model predictions should match training data}}$$

Data loss: Model predictions should match training data

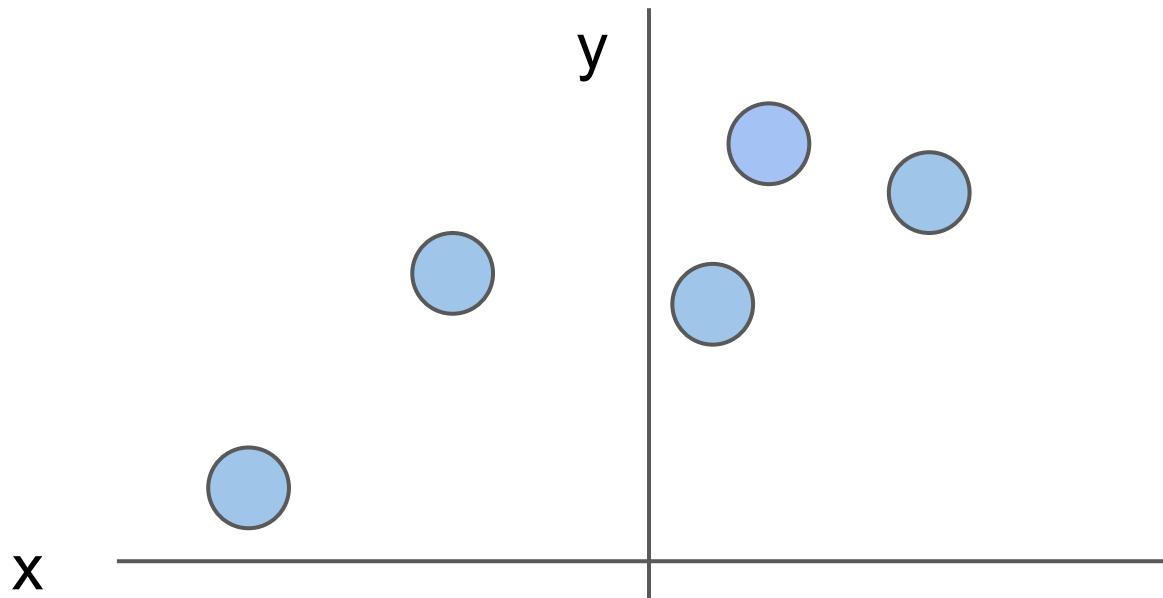
Regularization

$$L(W) = \underbrace{\frac{1}{N} \sum_{i=1}^N L_i(f(x_i, W), y_i)}_{\text{Data loss: Model predictions should match training data}} + \lambda \underbrace{R(W)}_{\text{Regularization: Prevent the model from doing } \textit{too} \text{ well on training data}}$$

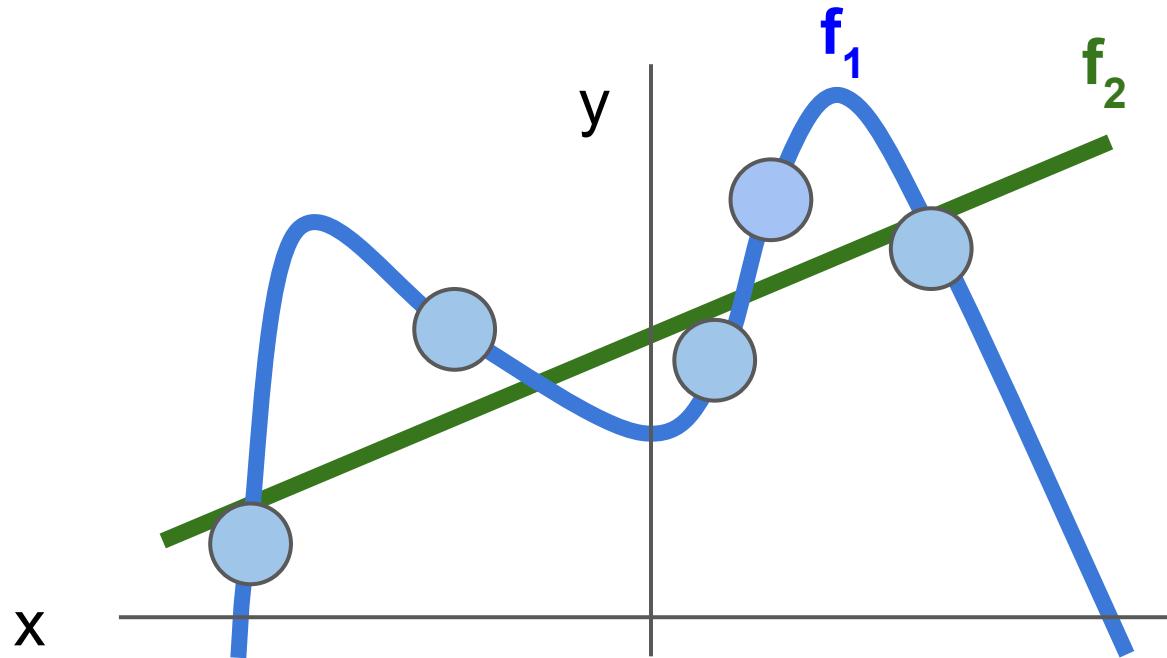
Data loss: Model predictions should match training data

Regularization: Prevent the model from doing *too* well on training data

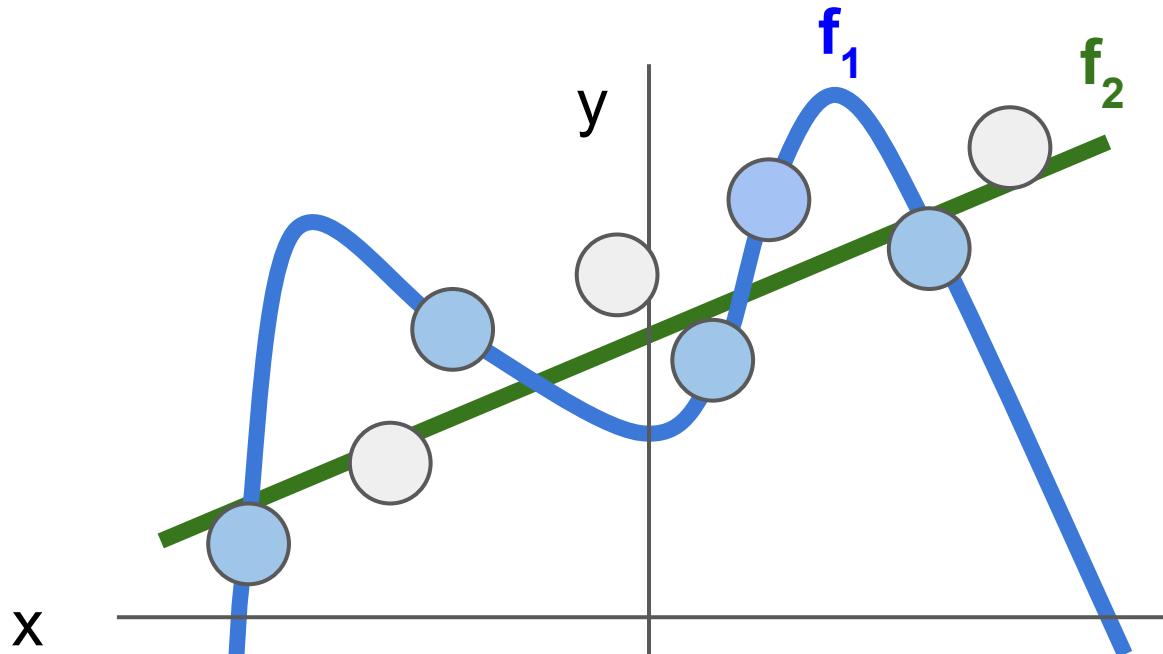
Regularization intuition: toy example training data



Regularization intuition: Prefer Simpler Models



Regularization: Prefer Simpler Models



Regularization pushes against fitting the data
too well so we don't fit noise in the data

Regularization

$$L(W) = \underbrace{\frac{1}{N} \sum_{i=1}^N L_i(f(x_i, W), y_i)}_{\text{Data loss: Model predictions should match training data}} + \lambda R(W)$$

Data loss: Model predictions should match training data

Regularization: Prevent the model from doing *too well* on training data

Occam's Razor: Among multiple competing hypotheses, the simplest is the best, William of Ockham 1285-1347

Regularization

λ = regularization strength
(hyperparameter)

$$L(W) = \underbrace{\frac{1}{N} \sum_{i=1}^N L_i(f(x_i, W), y_i)}_{\text{Data loss: Model predictions should match training data}} + \lambda \underbrace{R(W)}_{\text{Regularization: Prevent the model from doing } \textit{too} \text{ well on training data}}$$

Data loss: Model predictions should match training data

Regularization: Prevent the model from doing *too* well on training data

Regularization

λ = regularization strength
(hyperparameter)

$$L(W) = \underbrace{\frac{1}{N} \sum_{i=1}^N L_i(f(x_i, W), y_i)}_{\text{Data loss: Model predictions should match training data}} + \lambda R(W)$$

Data loss: Model predictions should match training data

Regularization: Prevent the model from doing *too well* on training data

Simple examples

L2 regularization: $R(W) = \sum_k \sum_l W_{k,l}^2$

L1 regularization: $R(W) = \sum_k \sum_l |W_{k,l}|$

Elastic net (L1 + L2): $R(W) = \sum_k \sum_l \beta W_{k,l}^2 + |W_{k,l}|$

Regularization

λ = regularization strength
(hyperparameter)

$$L(W) = \underbrace{\frac{1}{N} \sum_{i=1}^N L_i(f(x_i, W), y_i)}_{\text{Data loss: Model predictions should match training data}} + \lambda R(W)$$

Data loss: Model predictions should match training data

Regularization: Prevent the model from doing *too well* on training data

Simple examples

L2 regularization: $R(W) = \sum_k \sum_l W_{k,l}^2$

L1 regularization: $R(W) = \sum_k \sum_l |W_{k,l}|$

Elastic net (L1 + L2): $R(W) = \sum_k \sum_l \beta W_{k,l}^2 + |W_{k,l}|$

More complex:

Dropout

Batch normalization, layer norm

Stochastic depth, fractional pooling, etc

Regularization

λ = regularization strength
(hyperparameter)

$$L(W) = \underbrace{\frac{1}{N} \sum_{i=1}^N L_i(f(x_i, W), y_i)}_{\text{Data loss: Model predictions should match training data}} + \lambda R(W)$$

Data loss: Model predictions should match training data

Regularization: Prevent the model from doing *too well* on training data

Why regularize?

- Express preferences over weights
- Make the model *simple* so it works on test data
- Improve optimization by adding curvature

Regularization: Expressing Preferences

$$x = [1, 1, 1, 1]$$

$$w_1 = [1, 0, 0, 0]$$

$$w_2 = [0.25, 0.25, 0.25, 0.25]$$

L2 Regularization

$$R(W) = \sum_k \sum_l W_{k,l}^2$$

Which of w_1 or w_2 will
the L2 regularizer prefer?

$$w_1^T x = w_2^T x = 1$$

Regularization: Expressing Preferences

$$x = [1, 1, 1, 1]$$

$$w_1 = [1, 0, 0, 0]$$

$$w_2 = [0.25, 0.25, 0.25, 0.25]$$

L2 Regularization

$$R(W) = \sum_k \sum_l W_{k,l}^2$$

Which of w_1 or w_2 will the L2 regularizer prefer?

L2 regularization likes to “spread out” the weights

$$w_1^T x = w_2^T x = 1$$

Regularization: Expressing Preferences

$$x = [1, 1, 1, 1]$$

$$w_1 = [1, 0, 0, 0]$$

$$w_2 = [0.25, 0.25, 0.25, 0.25]$$

L2 Regularization

$$R(W) = \sum_k \sum_l W_{k,l}^2$$

Which of w_1 or w_2 will the L2 regularizer prefer?

L2 regularization likes to “spread out” the weights

$$w_1^T x = w_2^T x = 1$$

Which one would L1 regularization prefer?

Softmax classifier

Softmax Classifier (Multinomial Logistic Regression)

Want to interpret raw classifier scores as **probabilities**

cat	3.2
car	5.1
frog	-1.7

Softmax Classifier (Multinomial Logistic Regression)

Want to interpret raw classifier scores as **probabilities**

$$s = f(x_i; W)$$

$$P(Y = k | X = x_i) = \frac{e^{s_k}}{\sum_j e^{s_j}}$$

Softmax
Function

cat	3.2
car	5.1
frog	-1.7

Softmax Classifier (Multinomial Logistic Regression)

Want to interpret raw classifier scores as **probabilities**

$$s = f(x_i; W)$$

$$P(Y = k|X = x_i) = \frac{e^{s_k}}{\sum_j e^{s_j}}$$

Softmax
Function

Probabilities
must be ≥ 0

cat	3.2
car	5.1
frog	-1.7

$$\begin{array}{c} \text{exp} \\ \longrightarrow \end{array} \begin{array}{c} 24.5 \\ 164.0 \\ 0.18 \end{array}$$

unnormalized
probabilities

Softmax Classifier (Multinomial Logistic Regression)

Want to interpret raw classifier scores as **probabilities**

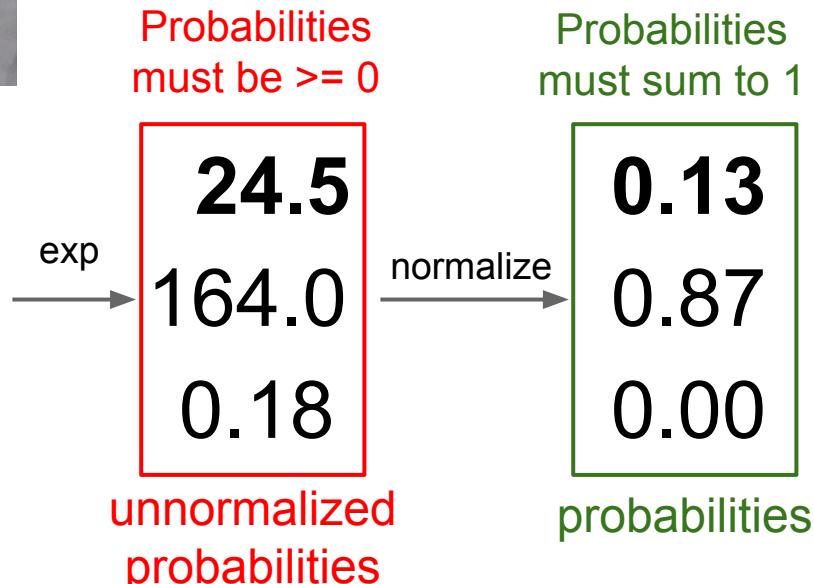
$$s = f(x_i; W)$$

Probabilities
must be ≥ 0

$$P(Y = k|X = x_i) = \frac{e^{s_k}}{\sum_j e^{s_j}}$$

Softmax
Function

cat	3.2
car	5.1
frog	-1.7



Softmax Classifier (Multinomial Logistic Regression)

Want to interpret raw classifier scores as **probabilities**

$$s = f(x_i; W)$$

$$P(Y = k|X = x_i) = \frac{e^{s_k}}{\sum_j e^{s_j}}$$

Softmax Function

Probabilities
must be ≥ 0

Probabilities
must sum to 1

cat
car
frog

3.2
5.1
-1.7

Unnormalized
log-probabilities / logits

exp

24.5
164.0
0.18

unnormalized
probabilities

normalize

0.13
0.87
0.00

probabilities

Softmax Classifier (Multinomial Logistic Regression)

Want to interpret raw classifier scores as **probabilities**

$$s = f(x_i; W)$$

Probabilities
must be ≥ 0

$$P(Y = k|X = x_i) = \frac{e^{s_k}}{\sum_j e^{s_j}}$$

Softmax
Function

cat
car
frog

3.2
5.1
-1.7

Unnormalized
log-probabilities / logits

exp

24.5
164.0
0.18

unnormalized
probabilities

normalize

0.13
0.87
0.00

probabilities

$$L_i = -\log P(Y = y_i|X = x_i)$$

$$\rightarrow L_i = -\log(0.13) = 2.04$$

Softmax Classifier (Multinomial Logistic Regression)

Want to interpret raw classifier scores as **probabilities**

$$s = f(x_i; W)$$

$$P(Y = k|X = x_i) = \frac{e^{s_k}}{\sum_j e^{s_j}}$$

Softmax Function

Probabilities
must be ≥ 0

Probabilities
must sum to 1

cat
car
frog

3.2
5.1
-1.7

exp

24.5
164.0
0.18

normalize

0.13
0.87
0.00

probabilities

Unnormalized
log-probabilities / logits

unnormalized
probabilities

$$L_i = -\log P(Y = y_i|X = x_i)$$

$$\rightarrow L_i = -\log(0.13) = 2.04$$

Maximum Likelihood Estimation
Choose weights to maximize the likelihood of the observed data

Softmax Classifier (Multinomial Logistic Regression)

Want to interpret raw classifier scores as **probabilities**

$$s = f(x_i; W)$$

Probabilities
must be ≥ 0

$$P(Y = k|X = x_i) = \frac{e^{s_k}}{\sum_j e^{s_j}}$$

Softmax
Function

cat
car
frog

3.2
5.1
-1.7

Unnormalized
log-probabilities / logits

exp

24.5
164.0
0.18

unnormalized
probabilities

normalize

0.13
0.87
0.00

probabilities

compare

1.00
0.00
0.00

Correct
probs

Softmax Classifier (Multinomial Logistic Regression)

Want to interpret raw classifier scores as **probabilities**

$$s = f(x_i; W)$$

$$P(Y = k|X = x_i) = \frac{e^{s_k}}{\sum_j e^{s_j}}$$

Softmax Function

cat
car
frog

3.2
5.1
-1.7

Unnormalized
log-probabilities / logits

exp

24.5
164.0
0.18

unnormalized
probabilities

normalize

0.13
0.87
0.00

probabilities

$$L_i = -\log P(Y = y_i|X = x_i)$$

1.00
0.00
0.00

Kullback–Leibler divergence

$$D_{KL}(P\|Q) = \sum_y P(y) \log \frac{P(y)}{Q(y)}$$

Correct
probs

Softmax Classifier (Multinomial Logistic Regression)

Want to interpret raw classifier scores as **probabilities**

$$s = f(x_i; W)$$

Probabilities
must be ≥ 0

$$P(Y = k|X = x_i) = \frac{e^{s_k}}{\sum_j e^{s_j}}$$

Softmax
Function

cat
car
frog

3.2
5.1
-1.7

Unnormalized
log-probabilities / logits

exp

24.5
164.0
0.18

unnormalized
probabilities

normalize

0.13
0.87
0.00

probabilities

compare

1.00

0.00

0.00

Cross Entropy

$$H(P, Q) = H(p) + D_{KL}(P\|Q)$$

Correct
probs

Softmax Classifier (Multinomial Logistic Regression)

Want to interpret raw classifier scores as **probabilities**

$$s = f(x_i; W)$$

$$P(Y = k|X = x_i) = \frac{e^{s_k}}{\sum_j e^{s_j}}$$

Softmax
Function

Maximize probability of correct class

3.2

Putting it all together:

$$L_i = -\log P(Y = y_i|X = x_i)$$

$$L_i = -\log\left(\frac{e^{s_{y_i}}}{\sum_j e^{s_j}}\right)$$

cat

5.1

car

-1.7

frog

Softmax Classifier (Multinomial Logistic Regression)

Want to interpret raw classifier scores as **probabilities**

$$s = f(x_i; W)$$

$$P(Y = k|X = x_i) = \frac{e^{s_k}}{\sum_j e^{s_j}}$$

Softmax
Function

Maximize probability of correct class

Putting it all together:

$$L_i = -\log P(Y = y_i|X = x_i)$$

$$L_i = -\log\left(\frac{e^{s_{y_i}}}{\sum_j e^{s_j}}\right)$$

cat	3.2
car	5.1
frog	-1.7

Q1: What is the min/max possible softmax loss L_i ?

Softmax Classifier (Multinomial Logistic Regression)

Want to interpret raw classifier scores as **probabilities**

$$s = f(x_i; W)$$

$$P(Y = k|X = x_i) = \frac{e^{s_k}}{\sum_j e^{s_j}}$$

Softmax
Function

cat	3.2
car	5.1
frog	-1.7

Maximize probability of correct class

$$L_i = -\log P(Y = y_i|X = x_i)$$

Putting it all together:

$$L_i = -\log\left(\frac{e^{s_{y_i}}}{\sum_j e^{s_j}}\right)$$

Q1: What is the min/max possible softmax loss L_i ?

Q2: At initialization all s_j will be approximately equal; what is the softmax loss L_i , assuming C classes?

Softmax Classifier (Multinomial Logistic Regression)

Want to interpret raw classifier scores as **probabilities**

$$s = f(x_i; W)$$

$$P(Y = k|X = x_i) = \frac{e^{s_k}}{\sum_j e^{s_j}}$$

Softmax
Function

Maximize probability of correct class

Putting it all together:

$$L_i = -\log P(Y = y_i|X = x_i)$$

$$L_i = -\log\left(\frac{e^{s_{y_i}}}{\sum_j e^{s_j}}\right)$$

cat	3.2
car	5.1
frog	-1.7

Q2: At initialization all s will be approximately equal; what is the loss?
A: $-\log(1/C) = \log(C)$,
If $C = 10$, then $L_i = \log(10) \approx 2.3$

Softmax vs. SVM

matrix multiply + bias offset

0.01	-0.05	0.1	0.05
0.7	0.2	0.05	0.16
0.0	-0.45	-0.2	0.03

W

-15
22
-44
56

x_i

y_i 2

+

0.0
0.2
-0.3

b

-2.85
0.86
0.28

hinge loss (SVM)

$$\begin{aligned} & \max(0, -2.85 - 0.28 + 1) + \\ & \max(0, 0.86 - 0.28 + 1) \\ & = \\ & \mathbf{1.58} \end{aligned}$$

cross-entropy loss (Softmax)

-2.85
0.86
0.28

\exp

0.058
2.36
1.32

normalize
(to sum
to one)

0.016
0.631
0.353

$$\begin{aligned} & -\log(0.353) \\ & = \\ & \mathbf{0.452} \end{aligned}$$

Softmax vs. SVM

$$L_i = -\log\left(\frac{e^{s_{y_i}}}{\sum_j e^{s_j}}\right)$$

$$L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)$$

Softmax vs. SVM

$$L_i = -\log\left(\frac{e^{s_{y_i}}}{\sum_j e^{s_j}}\right)$$

$$L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)$$

assume scores:

[10, -2, 3]

[10, 9, 9]

[10, -100, -100]

and $y_i = 0$

Q: What is the **SVM loss**?

Softmax vs. SVM

$$L_i = -\log\left(\frac{e^{s_{y_i}}}{\sum_j e^{s_j}}\right)$$

$$L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)$$

assume scores:

[10, -2, 3]

[10, 9, 9]

[10, -100, -100]

and

$y_i = 0$

Q: What is the **SVM loss**?

Q: Is the **Softmax** loss zero for any of them?

Softmax vs. SVM

$$L_i = -\log\left(\frac{e^{s_{y_i}}}{\sum_j e^{s_j}}\right)$$

$$L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)$$

assume scores:

[20, -2, 3]

[20, 9, 9]

[20, -100, -100]

and

$y_i = 0$

Q: What is the **SVM loss**?

Q: Is the **Softmax** loss zero for any of them?

I doubled the correct class score from 10 \rightarrow 20?

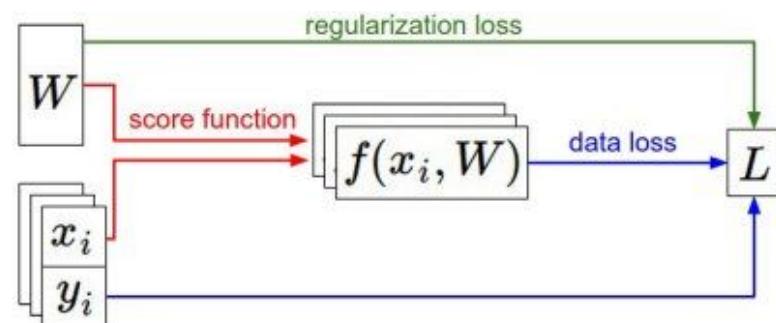
Recap

- We have some dataset of (x, y)
- We have a **score function**: $s = f(x; W) = Wx$ e.g.
- We have a **loss function**:

$$L_i = -\log\left(\frac{e^{sy_i}}{\sum_j e^{s_j}}\right) \quad \text{Softmax}$$

$$L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1) \quad \text{SVM}$$

$$L = \frac{1}{N} \sum_{i=1}^N L_i + R(W) \quad \text{Full loss}$$



Recap

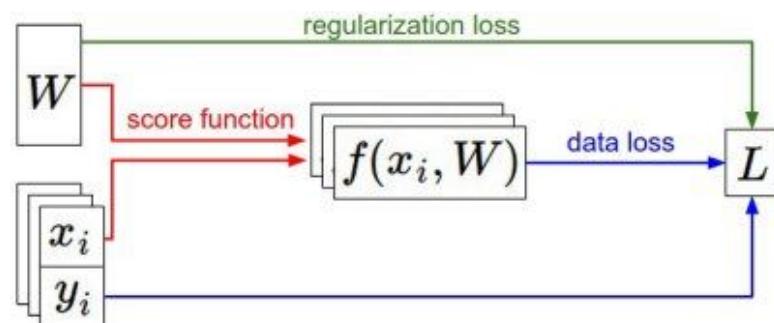
How do we find the best W ?

- We have some dataset of (x, y)
- We have a **score function**: $s = f(x; W) = Wx$ e.g.
- We have a **loss function**:

$$L_i = -\log\left(\frac{e^{sy_i}}{\sum_j e^{s_j}}\right) \quad \text{Softmax}$$

$$L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1) \quad \text{SVM}$$

$$L = \frac{1}{N} \sum_{i=1}^N L_i + R(W) \quad \text{Full loss}$$



Next time:
Optimization & backpropagation