Lecture 11:
RNNs, LSTMs
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Administrative: Assignment 3

Due Tuesday 11:59pm

- Normalization Layers,
- Dropout,

- CNNs
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Administrative: Fridays

This Friday

Parameter-Efficient Fine-Tuning (PEFT)
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Administrative: Project

Check out ed for info on:
Google cloud credits

Poster printing
Al policy

A. Farhadi, S. Pratt Lecture 11 - 4 Feb 12, 2026




“Vanilla” Neural Network

one to one

\ Vanilla Neural Networks
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Recurrent Neural Networks: Process Sequences

one to one one to many

\ e.g. Image Captioning
image -> sequence of words

A. Farhadi, S. Pratt Lecture 11 - 6 Feb 12, 2026




Recurrent Neural Networks: Process Sequences

one to one one to many many to one
f Pt f
f f Pt

\ e.g. action prediction, sentiment
classification
sequence of video frames -> action class
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Recurrent Neural Networks: Process Sequences

one to one one to many many to one many to many
! Pt 1 f Pt
! ! t ot bt 1

\ E.g. Video Captioning
Sequence of video frames ->
caption
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Recurrent Neural Networks: Process Sequences

one to one one to many many to one many to many many to many
! Pt 1 f Pt Pt 1
! ! t Pt 1 Pt

/

e.g. Video classification on frame level
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So far: Representing words as discrete symbols

In traditional NLP, we regard words as discrete symbols:
hotel, conference, motel — each has its own symbol.
This is a localist representation

Such symbols for words can be represented by one-hot vectors:
motel=[000000000010000]
hotel =[000000010000000]

Vector dimension = number of words in vocabulary (e.g., 500,000+)

A. Farhadi, S. Pratt Lecture 11 - 10 Feb 12, 2026



So far: Representing words as dense vectors

We will build a dense vector for each word,
- chosen so that it is similar to vectors of words that appear in similar
contexts: e.qg. jacket / coat / sweater.
- measuring similarity as the vector dot (scalar) product.

- Word vectors are also called (word) embeddings or (neural) word

representations 0.286

0.792
-0.177
-0.107

0.109
-0.542

0.349

0.271
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So far: vectors are associated with words

Our vocabulary was comprised of all of the words in a language

Problems:
- 500,000 words Webster’s English Dictionary (3rd edition)

Language is changing all of the time

- 690 words were added to Merriam Webster's in September 2023 (“rizz”,

“‘goated”, “mid”)
- Long tail of infrequent words.
- Zipf's law: word frequency is inversely proportional to word rank

- Some words may not appear in a training set of documents

- No modeled relationship between words - e.g., “run”, “ran”,
‘runs”, “runner” are all separate entries despite being linked

I

in meaning

10 100 1000 10000

Zipf’'s Law: Word Rank
vs. Word

Frequency for Several
Languages

Feb 12, 2026
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Character level vectors instead?

What about assigning a vector to every character instead?

(Maybe add capital letters, punctuation, spaces, ...)
Pros:

- Small vocabulary size ( for English)

- Complete coverage (unseen words are represented by letters)
Cons:

- Encoding a single sentence becomes very long!
# chars instead of # words

- Characters mean very different things in different words!
Even worse for representing multiple meanings
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Subword tokenization!

How can we combine
1. the high coverage of character-level representations
2. with the efficiency of word-level representation?

Subword tokenization! (e.g., Byte-Pair Encoding)
- Start with character-level representations
- Build up representations from there

Original BPE Paper (Sennrich et al., 2016)
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https://arxiv.org/abs/1508.07909

Example of how Byte-pair encoding works

Let’s say our entire dataset contains only these 3 sentences:

D — {cci hug pugs”, “hugging pugs iS fun”, cci make pU.HS”}
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Example of how Byte-pair encoding works

Let’s say our entire dataset contains only these 3 sentences:

D — {cci hug pugs”, “hugging pugs iS fun”, cci make pU.HS”}

Initialize the vocabulary as all the individual characters. Current Vocab:
_ 6 2 LY Ux? GE? €. €13 €32 61,7 € Y
V_{ 7a7e7f7g7h717k7m7
Goe ¥ Gl U9 s _
n’, ‘p’, ‘s’ ‘u’l, | V| =13
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Example of how Byte-pair encoding works

Let’s say our entire dataset contains only these 3 sentences:

D — {cci hug pugs”, “hugging pugs iS fllIl”, cci make pUHS”}

Let’s split it up into words by splitting right before the whitespace:

D — {“i”’ 44 hug”’ (44 pugS”, “hugging”’ 44 pugS”7

3 3

].S”, 44 fun”’ 1 : 44 make”’ 44 puns77}
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Example of how Byte-pair encoding works

The vocabulary for reference:
V={" a1, g, W, 9, K, wm
‘n’, ‘p’, s, ‘v, V]| =13
Let’s split it up into words by splitting right before the whitespace:

D — {“i”’ 44 hug”’ (44 pugS”, “hugging”’ 44 pugS”7

3 3

].S”, 44 fun”’ 1 : 44 make”’ 44 puns77}
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Example of how Byte-pair encoding works

The vocabulary for reference:
_Te » «

Gac 7

P

Y

Let's represent the dataset
with only vocabulary D ={
elements: ,

f£r (0 (L2
f ) g; Y }1 )

[¢2 7] [( Y Ch? L Y (g7] [

7(7(7(

Ch? C Y Cg g ,

ST,

674747
]'7

[¢ 9 6.0n2 €4) 61,2 €40
7, 'm’, ‘e, K e |

‘O

177 61(7’ 61117’

4877 ‘U.’}, |V| — 1

¢ Cf? ¢ ? ¢

(747(7(7(7
, ‘D, g’ ‘s’],
Y b? 4747(7(747
7g] [ 7p7 g? ]

], [,

7(7(7(7
n’, ‘s

Y

[

» Py

|}
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Example of how Byte-pair encoding works

The vocabulary for reference:
_Te » «

Gac 7

P

Y

Now, let’s find the most

common bi-gram D ={

f£r (0 (L2
f7g7h7

-C 7] [L Y Ch? L J Cg7] [

7(7(7(

Ch? ( Y Cg g ,

ST,

674747
17

[¢ 9 6.0n2 €4) 61,2 €40
7, 'm’, ‘e, K e |

622 ¢1,7 ¢ Y
17, ‘k’, ‘m’,

‘Sj, CU.’}, |V| — 1

¢ Cf? ¢ ? ¢

(747(7(747
, ‘D, g’, ‘s’],
Y b? (7(7(7(7(7
7g] [ 7p7 g? ]

], [,

9 ( 7 (S L 1

n’, ‘s

Y

[

» Py

|}
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Example of how Byte-pair encoding works

The vocabulary for reference:
. ¢ 2 ¢ ) Gz 9 ‘L) 6 o) ¢ ) ¢2 ¢ 9 ¢ 9
V_{ 7a’7e7f7g7h717k7m7
G B9 il _
p’, ‘s’ ‘u’b, |V =13
Now, let’s find the most
common bi-gram D — { -c 7] [4 3 ch7 ‘u cgv] [c 7, <p77 ¢l cga, ¢ 7]
Ch) 4 ) Cg7 (g77 2 7 ¢ 7’ Cg7] [( 7’ Cp7, ¢ ) (g7’ ¢ 7]

Create new vocab: AT T P e T O A Y
Vg = Concat(c 9 4g7) — gug7 :( 7, Cm7, 4 7, C:k?7 ¢ 7] ’ [C 7’ Cp7 C ’ (n7’ ‘S,:I}
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Example of how Byte-pair encoding works

Update vocabulary with new vocab v,
_ 6 2 60 a2 WKLY Gaad G 62D €9 & y)
V_{ Y a’) e? f? g? h7 17 k7 m)
ban? bu? Cawid B ) -
p’, ‘s’, ‘u’, fug’t, |V = 14

Update dataset by replace bigram with new vocab v ,:

D i { cla] [c ) cha ‘U.g,] [c 77 cp7’ ‘U.g’, ¢ 7]
Create new vocab: 'ch7 cug7 cga’ ¢ 77 ¢ 7 ¢ 7] [c 77 ‘p’, ‘U.g,, ‘ 7]’
¢ 417, ¢ 7] [c ) cf) ¢ 7’ cna] [ ]7
Vid o= Concat(‘ ’ ‘g’) = ‘ug’ :c 7, 1’11’, ¢ 77 ‘k’, ¢ 7] [c 7, cp7 ‘u’ ‘Il’, ‘S’]}
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Example of how Byte-pair encoding works

Current vocabulary:
- ¢ ) (L) (L LY () Y sy 61,0 ¢« )
V_{ Y a’? e? f? g? h? 17 k? m?
G ' Glan?  C? Kawi?d B Y
H,p,S,U.,U.g},|V‘:14

Find the next common bigram:
D={[7],["’, ‘W, fug], (WSl g, ‘s’],
:‘h77 ‘ug,7 ‘g77 ‘i,7 ‘n’7 ‘g7] Y [‘ ,7 ‘p77 ‘ug77 ‘87]7
:‘ ’7 ‘i’7 ‘S’] ) [‘ ’7 ‘f77 ‘u’7 ‘n’] ) [‘i’]7
(4 ()

[¢ 7, cm7, ca7, cka’ 467] ,[ , p’ 4u7’ cn7’ ‘S’]}
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Example of how Byte-pair encoding works

Current vocabulary:
- ¢ ) (L) (L LY () Y sy 61,0 ¢« )
V_{ Y a’? e? f? g? h? 17 k? m?
G ' Glan?  C? Kawi?d B Y
H,p,S,U.,U.g},|V‘:14

Find the next common bigram:
D — { ‘l’] : [c 77 ‘h’, cugv] : [( 7, cp7’ ‘U.g’, ‘S’],
Create new vocab: ‘W, fugl, ‘g, 1, ‘) g, [BSR, fugl, s,

e L, ][, ], [,
v15 := concat(‘ ', ‘p’) ="‘p et

[¢ 7, cm7, ca7, cka’ 467] ,[ , p’ 4u7’ cn7’ ‘S’]}
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Example of how Byte-pair encoding works

Update vocabulary with new vocab v,
V — {( 7’ (a77 7 f g’ h 6'7, (1{77 Cm7
Can?
p,S,u,ug, p}‘V|—15

Update dataset by replace bigram with new vocab v..:
= {[¥).[ W, ) I .

[

Create new vocab: ‘b, fug’, g, ) g] [P’ ‘ug’, ST,
I:C b C 7 ¢ 7] I:C ) Cf? (u7’ Cn7] ; I:C17]’
[C ) ¢ 7, ¢ Ck’ ¢ 7] [ p7’ ¢ 7’ ‘n77 ‘S,]}

Y

[T A S Y

v15 := concat(‘ ', ‘p’) ="‘p
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Repeat until vocab size reaches the amount
you want (20 for example)

Final vocabulary:

_6767676767676'7676 767676767
V_{ f 7h717k7 p7 u?

¢ VA4

ug’, {p, ‘hug’, < pug’, ‘ pugs’, ‘un’, ‘‘hug’ },

Final dataset:
D ={[7],[Thug], [ pugs’],

chug7 c )6 7’ cn77 cg7] [c pugs’],
.c 7’ 417’ ‘S’] ’ [c 77 ‘f’7 cun7] ’ [‘i’],

:C 77 Cm7’ Ca7, Ck’) 667] : [C :[)77 Cun7’ CS?]}
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With this vocabulary, can you represent (or,
tokenize/encode):

Q: Can you encode “apple”?

V={{1:7,2:a",3:%€,4:4,5:¢,6:‘h,7:9,
8:k’,9:‘m’,10:‘n’, 11 : ‘p’,12: ‘s, 13 : ‘u’,
1Sas, I, I . 17 : © pug’, 18 : ¢ pugs’,
19 : ‘un’, 20 : ¢ hug’}
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With this vocabulary, can you represent (or,
tokenize/encode):

Q: Can you encode “apple”?
- No, there is no ‘I in the vocabulary

V={{1:7,2:a",3:%€,4:4,5:¢,6:‘h,7:9,
8:k’,9:‘m’,10:‘n’, 11 : ‘p’,12: ‘s, 13 : ‘u’,
1Sas, I, I . 17 : © pug’, 18 : ¢ pugs’,
19 : ‘un’, 20 : ¢ hug’}
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With this vocabulary, can you represent (or,
tokenize/encode):

Q: Can you encode “apple™?
- No, there is no ‘I in the vocabulary
V={{1:7,2:a",3:%€,4:4,5:¢,6:‘h,7:9,
8:k’,9:‘m’,10:‘n’, 11 : ‘p’,12: ‘s, 13 : ‘u’,
ETs, . B . 17 : © pug’, 18 : ¢ pugs’,
19 : ‘un’, 20 : ¢ hug’}

Q: “map”?
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With this vocabulary, can you represent (or,
tokenize/encode):

Q: Can you encode “apple™?
- No, there is no ‘I in the vocabulary

V={{1:7,2:a",3:%€,4:4,5:¢,6:‘h,7:9,
8:k’,9:‘m’,10:‘n’, 11 : ‘p’,12: ‘s, 13 : ‘u’,
ETs, . B . 17 : © pug’, 18 : ¢ pugs’,
19 : ‘un’, 20 : ¢ hug’}

Q: “map”?
Yes - [9,2,11]
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With this vocabulary, can you represent (or,
tokenize/encode):

Q: Can you encode “apple™?
- No, there is no ‘I in the vocabulary

V={{1:7,2:a",3:%€,4:4,5:¢,6:‘h,7:9,

Q: “map”?
8:k’,9:‘m’,10: ‘n’,11: ‘p’,12: ‘s’,13 : ‘u’,
Yes - [9,2,11] o LA L AR D > N
ETs, . B . 17 : © pug’, 18 : ¢ pugs’,
Q: “huge™? 19 : ‘un’, 20 : ¢ hug’}
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With this vocabulary, can you represent (or,
tokenize/encode):

Q: Can you encode “apple™?
- No, there is no ‘I in the vocabulary
V={{1:7,2:a",3:%€,4:4,5:¢,6:‘h,7:9,
8:k’,9:‘m’,10:‘n’, 11 : ‘p’,12: ‘s, 13 : ‘u’,
ETs, . B . 17 : © pug’, 18 : ¢ pugs’,
Q: “huge™? 19 : ‘un’, 20 : ¢ hug’}
Yes - [16, 3] or [6,14,3] or [6,13,5,3]

Q: “map”?
Yes - [9,2,11]
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With this vocabulary, can you represent (or,
tokenize/encode):

Q: Can you encode “apple™?
- No, there is no ‘I in the vocabulary
V={{1:7,2:a",3:%€,4:4,5:¢,6:‘h,7:9,
8:k’,9:‘m’,10:‘n’, 11 : ‘p’,12: ‘s, 13 : ‘u’,
ETs, . B . 17 : © pug’, 18 : ¢ pugs’,
Q: “huge”? 19 : ‘un’, 20 : ¢ hug’}
Yes - [16, 3] or [6,14,3] or [6,13,5,3]

Q: “map”?
Yes - [9,2,11]

Q: “ huge” with a space in the front?
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With this vocabulary, can you represent (or,
tokenize/encode):

Q: Can you encode “apple™?
- No, there is no ‘I in the vocabulary
V={{1:7,2:a",3:%€,4:4,5:¢,6:‘h,7:9,
8:k’,9:‘m’,10:‘n’, 11 : ‘p’,12: ‘s, 13 : ‘u’,
ETs, . B . 17 : © pug’, 18 : ¢ pugs’,
Q: “huge”? 19 : ‘un’, 20 : ¢ hug’}
Yes - [16, 3] or [6,14,3] or [6,13,5,3]

Q: “map”?
Yes - [9,2,11]

Q: “ huge” with a space in the front?
Yes - [20, 3]
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Benefits of Byte-pair encoding

1. Efficient to run (greedy vs. global optimization)
2. Lossless compression

3. Potentially some shared representations
a. e.g., the token “hug” could be used both in “hug” and “hugging”
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Byte-pair encoding - ChatGPT Example

Tokens Characters
Call me Ishmael. Some years ago—never mind how long precisely-having 239 1109

little or no money in my purse, and nothing particular to interest me on

[7368, 757, 57704, 1764, 301, 13, 4427, 1667, 4227, 2345, 37593, 4059,
1268, 1317, 24559, 2345, 69666, 2697, 477, 912, 3300, 304, 856, 53101,
the world. It is a way I have of driving off the spleen and regulating 11, 323, 4400, 4040, 311, 2802, 757, 389, 31284, 11, 358, 3463, 358,
the circulation. Whenever I find myself growing grim about the mouth; 1053, 30503, 922, 264, 2697, 323, 1518, 279, 30125, 727, 961, 315, 279,
1917, 13, 1102, 374, 264, 1648, 358, 617, 315, 10043, 1022, 279, 87450,
268, 323, 58499, 279, 35855, 13, 43633, 358, 1505, 7182, 7982, 44517,
922, 279, 11013, 26, 15716, 433, 374, 264, 41369, 11, 1377, 73825, 6841,
the rear of every funeral I meet; and especially whenever my hypos get 304, 856, 13836, 26, 15716, 358, 1505, 7182, 4457, 3935, 6751, 7251, 985,
such an upper hand of me, that it requires a strong moral principle to 1603, 78766,765273, "11,7328, 712901, 709, 279,714961,1:315, /1475, 32079
358, 3449, 26, 323, 5423, 15716, 856, 6409, 981, 636, 1778, 459, 8582,
1450, 315, 757, 11, 430, 433, 7612, 264, 3831, 16033, 17966, 311, 5471,
knocking people’s hats off—then, I account it high time tozz get to sea 757, 505, 36192, 36567, 1139, 279, 8761, 11, 323, 1749, 2740, 50244,
as soon as I can. This is my substitute for pistol and ball. With a 1274, 753, 45526, 1022, 2345, 3473, 11, 358, 2759, 433, 1579, 892, 311,
10616, 636, 311, 9581, 439, 5246, 439, 358, 649, 13, 1115, 374, 856,
28779, 369, 40536, 323, 5041, 13, 3161, 264, 41903, 67784, 356, 4428,
take to the ship. There is nothing surprising in this. If they but knew 3872, 5678, 5304, 813, 20827, 26, 358, 30666, 1935, 311, 279, 8448, 13,
it, almost all men in their degree, some time or other, cherish very 2684, 374, 4400, 15206, 304, 420, 13, 1442, 814, 719, 7020, 433, 11,
4661, 682, 3026, 304, 872, 8547, 11, 1063, 892, 477, 1023, 11, 87785,

“onn memt ~7A L 1890, 16024, 7119, 279, 18435, 449, 757, 13]
TOKEN IDS

shore, I thought I would sail about a little and see the watery part of

whenever it is a damp, drizzly November in my soul; whenever I find
myself involuntarily pausing before coffin warehouses, and bringing up

prevent me from deliberately stepping into the street, and methodically
philosophical flourish Cato throws himself upon his sword; I quietly

nearly the same feelings towards the ocean with me.

' TEXT
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Weird properties of tokenizers

Token != word run run RunRUN (6936, 1629, 6588, 6869]
- Spaces are part of token
- “run” is a different token than “ run

- Not invariant to case changes
- “Run” is a different token than “run” E
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Weird properties of tokenizers

Token != word tokenization
- Spaces are part of token

- “run” is a different token than “ run” uLP

- Not invariant to case changes don't

- “Run” is a different token than “run” victory
- Tokenization fits statistics of your data lose

e.g., while these words are multiple tokens...
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Weird properties of tokenizers attRot

EStreamFrame
SolidGoldMagikaxrp
Token != word PsyNetMessage
- Spaces are part of token embedreportprint
- “run’ is a different token than “ run” Adinida
- Not invariant to case changes oreAndOnline
- “Run” is a different token than “run” StreamerBot
- Tokenization fits statistics of your data Aoldmagiakn
- e.g., while these words are multiple tokens... externalToEVA
TheNitrome
TheNitromeFan
These words are all 1 token in GPT-3's tokenizer! S
InstoreAndOnline

Does anyone know why?
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Now let’s talk about how we can model

Word representations
can be V-dimensional
one-hot vectors

Or d-dimensional
dense vectors

Outputs are
classification (softmax)
over V-dimensions

language
many to many tﬁa brODW” Cﬁw ju?ed F <e?j>
" Neural network with variable sized inputs/outputs

00 gpalnct

<start> the brown cow jumped
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Now let’s talk about how we can model
language

many to many
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Recurrent Neural Network
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Recurrent Neural Network

Key idea: RNNs have an
“internal state” that is

/ updated as a sequence is
processed
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Unrolled RNN
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RNN hidden state update

We can process a sequence of vectors x by
applying a recurrence formula at every time step: y

he|=|fw|(hi—1b T4)
new state / old state input vector at T
some time step
some function «

with parameters W
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RNN output generation

We can process a sequence of vectors x by

applying a recurrence formula at every time step: y
y t f Why ( t )
output / new state
another function «

with parameters W
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Recurrent Neural Network
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Recurrent Neural Network

We can process a sequence of vectors x by
applying a recurrence formula at every time step:

hy = fW(ht—la wt)

P —P%—P <

Notice: the same function and the same set
of parameters are used at every time step.
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(Simple) Recurrent Neural Network

The state consists of a single “hidden” vector h:

y hy = fW(h’t—la let)
|

h, = tanh(Wyphi—q + Wy )

X Yt = Whyht

Sometimes called a “Vanilla RNN” or an
“Elman RNN” after Prof. Jeffrey Elman
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RNN: Computational Graph
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RNN: Computational Graph

h0—>fW —>h1—>fW —>h2
X1 X2
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RNN: Computational Graph

h0—>fW —>h1—>fW —>h2—>fW —>h3—>...—>h_|_
X1 X2 X3
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RNN: Computational Graph

Re-use the same weight matrix at every time-step

h0—>fW —>h1—>fW —>h2—>fW —>h3—>...—>h_|_
W X1 X2 X3

A. Farhadi, S. Pratt Lecture 11 - 53 Feb 12, 2026




RNN: Computational Graph: Many to Many

Yi Y5 Y3 Yt

T ! T !
h0—>fW—>h1—>fW—>h2—>fW—>h3—> —>h_|_
W/ X1 X2 X3
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RNN: Computational Graph: Many to Many

Y, L, Y, 7 L Ys 7 ks Yr " Ly
h0—>fW—>h1—>fW—>h2—>fW—>h3—>...—>hT
W X1 X2 X3
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RNN: Computational Graph: Many to Many -

Y, " L, Y, 1L, Y3 L, Yt L,
h0—>fW—>h1—>fW—>h2—>fW—>h3—> —>h_|_
W X1 X2 X3
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RNN: Computational Graph: Many to One

y
h0—>fW—>h1—>fW—>h2—>fW—>h3—>...—>hT
W X1 X2 X3
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RNN: Computational Graph: Many to One

— —
h0—>fW—>h1—>fW—>h2—>fW—>h3—>...—>hT
W X1 X2 X3
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RNN: Computational Graph: One to Many

Yi Y5 Y3 Yt
T T ! !
h0—>fW—>h1—>fW—>h2—>fW—>h3—>...—>hT
/X
W
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RNN: Computational Graph: One to Many

Yi Y5 Y3 Yt
T ! T !
h0—>fW—>h1—>fW—>h2—>fW—>h3—> —>h_|_
/T ! T i
X ? ? ?

W
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RNN: Computational Graph: One to Many

>
>
|
e

—
—
—
o >
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RNN: Computational Graph: One to Many

Y, Y, Y3 Yt
T ! ! !
ho = M T e T e T e T
/T T T T
W X Y, Y, y
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Sequence to Sequence: Many-to-one +
one-to-many

Many to one: Encode input
sequence in a single vector

—+§_h
_>§_h
__>§_h

X4
W,

Sutskever et al, “Sequence to Sequence Learning with Neural Networks”, NIPS 2014
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Sequence to Sequence: Many-to-one +
one-to-many

One to many: Produce output
sequence from single input vector

Many to one: Encode input
sequence in a single vector

y1 y2

v

_>§_h

——»é_h
__>§_h

x
x
N
X
o3

Sutskever et al, “Sequence to Sequence Learning with Neural Networks”, NIPS 2014
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Example:
Character-level
Language Model

Vocabulary:

[h.e,l,0]

Example training ; . - x

sequence. input layer 8 (1) ? ?

“hello” 0 0 0 0
input chars:  “p” e | P
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Example:
Character-level
Language Model

Vocabulary:
[h,e,l,0]

Example training
sequence:
“hello”

A. Farhadi, S. Pratt

hi = tanh(Whphi—1 + Wapat)

hidden layer

input layer

input chars:

Lecture 11 - 66

0.3 1.0 0.1 |W hnl-03
-0.1 ~ 0.3 » 05—+ 0.9
0.9 0.1 -0.3 0.7
b fw
1 0 0 0
0 1 0 0
0 0 1 1
0 0 0 0
“h" “e" “IH “I"
Feb 12, 2026




target chars: ‘e’ “p o “o”

Example: 1.0 0.5 0.1 0.2

Character-level output layer | 22 o e i

Language Model 4.1 1.2 -1.1 2.2
I R R LT

Vocabulary: | 0.3 1.0 01 |w pn| 03

hidden layer | -0.1 > 0.3 > -0.5 > 05

[h,e,l,0] 0.9 0.1 03 0.7
- L fwa

Example training 1 ; . 5

sequence: input layer | ! : :

“hello” 2 L L g

input chars: “n” “e” I I
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High SVM loss——

target chars: | “e” I | 0’
Example: 1.0 0.5 0.1 0.2
2.2 0.3 0.5 1:5
Character-level output layer JiESs 1.0 1.9 0.1
Language Model 4.1 1.2 -1.1 22
- [ [ fwn
Vocabulary: | 0.3 1.0 0.1 | pn| 03
hidden layer | -0.1 »10:3 > -0.5 > 0.9
[h,e,l,0] 0.9 0.1 03 0.7
. R N N %
Example training 1 0 0 0
Sequence: input layer 8 (1) (1) (1)
1] he"ou 0 0 0 0
input chars:  “n” “e” 1 i
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High SVM loss——

target chars: | “e” i 1 e
Example' 1.0 0.5 0.1 0.2
2.2 0.3 0.5 -1.5
Character-level output layer || =2 % = i
4.1 1.2 -1.1 2.2
Language Model
— | 1 ww
So far: encode inputs as
0.3 1.0 0.1 |w nhl-0-3
one-hot-vector hidden layer | -0.1 > 0.3 > .05 ——= 0.9
0.9 0.1 -0.3 0.7
[W11 W12 W13 W14:I [1] [W11]
[W21 Wao Was W14] [0] = [W21] T T T TW_xh
[W31 W32 W33 W14:I [O] [W31]
[0] 1 0 0 0
- 0 1 0 0
input layer
Matrix multiply with a one-hot R, 0 0 1 1
vector just extracts a column 0 0 0 0
from the weight matrix. Now a input chars:  “h” fc? | “I”

days, we extract this into a
separate embedding layer
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“e”

Example: smpe
Character-level o
Soft j
Language Model R
Sampling L
output layer %%
41
Vocabulary: T
[h,e,l,O] hidden layer .(())?; b
0.9
At test-time sample I
characters one at a time, input ayer | 0
feed back to model .. .
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Example: Sample ¢,\

e
Character-level o
Soft '
Language Model R
Sampling s
output layer 23%
41
Vocabulary: T
[h ,e ) | ’O] hidden layer .(())?;
0.9
At test-time sample I :
characters one at a time, input ayer | 0 1
feed back to model oL

input chars:
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Example: Sample x\ N

e
Character-level o
Soft ' )
Language Model e 3
Sampling -
output layer 2.2 0.3
-3.0 -1.0
4.1 1-2
Vocabulary: T T
[h,e,l,O] hidden layer .(())?; S)g —
0.9 0.1
At test-time sample I l
characters one at a time, input ayer | 0 1
feed back to model routchars. g
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Example: Sample
Character-level
Language Model
Sampling

Softmax

output layer

Vocabulary:
[h ,e ) | ’O] hidden layer
At test-time sample
characters one at a time, fopck eer
feed back to model

input chars:

A. Farhadi, S. Pratt Lecture 11 - 73

/

.03 25 A1 A
84 20 A7 02

.00 50 68 .08

A3 .05 .03 79

t t t t

1.0 05 0.1 0.2

2.2 0.3 0.5 1.5
-3.0 -1.0 1.9 -0.1

4.1 12 .0 22

[ S O B
0.3 1.0 0.1 |w hnl 03
-0.1 0.3 0.5 1+ 0.9

0.9 0.1 -0.3 0.7

N R O A R
1 0 0 0

0 1 0 0

0 0 1 1

0 0 0 0

“h g i ¢
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Forward through entire sequence to

Backpropagation through time enite sequence 1 compute gradient

Loss

>

-
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Truncated Backpropagation through time

Loss

Run forward and backward
through chunks of the
sequence instead of whole
sequence
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Truncated Backpropagation through time

Loss

ST AN

Carry hidden states
forward in time forever,
but only backpropagate
for some smaller
number of steps

> >
-
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Truncated Backpropagation through time

Loss

ST AN

> > >

A. Farhadi, S. Pratt Lecture 11 - 77 Feb 12, 2026




A. Farhadi, S. Pratt

winimal character-level vanilla RNN model
8SD License

written by Andrej Karpathy (@karpathy)

import numpy a

data = open('input.txt', 'r').read()

chars = list(set(data))

data_size, vocab_size = len(data), len(chars)

P 'data has %d characters, %d unigue.' % (data_size, vocab_size)
char_to_ix = { ch:i for i,ch in enumerate(chars) }

ix_to_char = { i:ch for i,ch in er

merate(chars) }

hidden_size = 100

seq_length =
learning_rate

wxh = np.random.randn(hidden_size, vocab_size)*e.e1
whh = np.random.randn(hidden_size, hidden_size)*0.01
why

= np.random.randn(vocab_size, hidden_size)’e.e1
bh = np.zeros((hidden_size, 1))
by = np.zeros((vocab_size, 1))

sFun(inputs, targets, hprev)

inputs, targets are both list of integers

hprev is Hx1 array of initial hidden state
returns the loss, gradients on model parameters, and last hidden state
xs, hs, ys, ps = {}, {3, {3, ¥

hs[-1] = np.copy(hprev)

loss

for t in xrange

len(inputs)):
xs[t] = np.zeros((vocab_size,1))
xs[t][inputs[t]] = 1

hs[t] = np.tanh(np.dot(wxh, xs[t]) + np.dot(whh, hs[t-1

1) + bh)
ys[t] = np.dot(why, hs[t]) + by

psit] = np.exp(ys[t]) / np.sun(np.exp(ys[t]))

loss

-np.log(ps[t][targets[t], 0]

dxh, dwhh,

dwhy = np.zeros_like(wxh),
dbh,

dby = np.zeros_like(bh),

dhnext = np.zeros_like(hs[0])

for t in reversed(xrange(len(inputs))):
dy = np.copy(ps[t])
dy[targets[t]] -= 1
dwhy += np.dot(dy, h:
dby += dy

np.zeros_like(whh),

np.zeros_Like(Why)
np.zeros_like(by)

1.1)

dh = np.dot(why.T, dy) + dhnext
dhraw = (1 - hs[t] * hs[t]) * dh
dbh += dhraw

dwxh += np.dot(dhraw, xs[t].T)
dwhh += np.dot(dhraw, hs[t-1].T)
dhnext = np.dot(whh.T, dhraw)
for dparam in [dwxh, dwhh, dwhy, dbh, dby]:

np.clip(dparam, -
i

out=dparam)
rn loss, dwxh, dwhh, dwhy,

dbh, dby, hs[len(inputs)

ample(h, seed_ix, n):

min-char-rnn.py gist: 112 lines of Python

sample a sequence of integers from the model

h is memory state, seed_ix is seed letter for first time step

x = np.zeros((vocab_size,

x[seed_ix] = 1
ixes = []
for t in

h = np.tanh(np.dot (wxh,
y = np.dot(why, h) + by

1))

x) + np.dot(whh, h) + bh)

p = np.exp(y) / np.sum(np.exp(y))

ix = np.random.choice(r
x = np.zeros((vocab_size
x[ix] = 1
ixes.append(ix)
return ixes

nop=
mexh, mwhh,

mbh, mby = np.zeros_like(bh),
smooth_loss = -np.log(1.0/voc
while True:

if p+seq_length+1 >

p=
inputs

[char_to_ix[ch]

targets = [char_to_ix[ch] for

if n % 100

sample_ix = sample(hprev,

mwhy = np.zeros_like(wxh),

len(data) or n
hprev = np.zeros((hidden_size, 1))

ge(vocab_size), p=p.ravel())
L 1)

np.zeros_like(whh),
np.zeros_like(by)
ab_size)*seq_length

np.zeros_like(why)

ch

data[p:p+seq_length]]
ch in data[p+1:p+seq_length+1]]

inputsfe],
txt = '*.join(ix_to_char[ix] for ix in sample_ix)
print ' S \n----' % (ext, )

loss, daxh, dwhh, dwhy, dbh, dby,

smooth_loss
if n % 100

smooth_loss * @

print 'iter

for param, dparam, mem in zip

mem += dparam * dparam
param += -learning_rate

p += seq_length
n4=1

* dparam / np.sqrt(mem + 1

hprev = lossFun(inputs, targets, hprev)

d, loss: %f'

smooth_loss)

o([wxh, whh, why, bh, byl,

[dwxh, dwhh, dwhy, dbh, dbyl,
[mwxh, mwhh, mwhy, mbh, mby])

Simple python implementation
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THE SONNETS

by William Shakespeare y

From fairest creatures we desire increase,
That thereby beauty's rose might never die,
But as the riper should by time decease,
His tender heir might bear his memory:
But thou, contracted to thine own bright eyes,
Feed'st thy light's flame with self-substantial fuel,
Making a famine where abundance lies,
Thyself thy foe, to thy sweet self too cruel:
Thou that art now the world's fresh ornament, _>
And only herald to the gaudy spring,
Within thine own bud buriest thy content,
And tender churl mak'st waste in niggarding:
Pity the world, or else this glutton be,
To eat the world's due, by the grave and thee.

When forty winters shall besiege thy brow,
And dig deep trenches in thy beauty's field,
Thy youth's proud livery so gazed on now,
Will be a tatter'd weed of small worth held: X
Then being asked, where all thy beauty lies,
Where all the treasure of thy lusty days;
To say, within thine own deep sunken eyes,
Were an all-eating shame, and thriftless praise.
How much more praise deserv'd thy beauty's use,
If thou couldst answer 'This fair child of mine
Shall sum my count, and make my old excuse,'
Proving his beauty by succession thine!
This were to be new made when thou art old,
And see thy blood warm when thou feel'st it cold.

A. Farhadi, S. Pratt Feb 12, 2026



t first: tyntd-iafhatawiaoihrdemot 1ytdws e ,tfti, astai f ogoh eoase rrranbyne ‘nhthnee e
atnrst. plia tklrgd t o idoe ns,smtt h ne etie h,hregtrs nigtike,aoaenns lng

train more

"Tmont thithey" fomesscerliund

Keushey. Thom here
sheulke, anmerenith ol sivh I lalterthend Bleipile shuwy fil on aseterlome

coaniogennc Phe lism thond hon at. MeiDimorotion in ther thize."

l train more

Aftair fall unsuch that the hall for Prince Velzonski's that me of
her hearly, and behs to so arwage fiving were to it beloge, pavu say falling misfort

how, and Gogition is so overelical and ofter.

l train more

"Why do what that day," replied Natasha, and wishing to himself the fact the
princess, Princess Mary was easier, fed in had oftened him.
Pierre aking his soul came to the packs and drove up his father-in-law women.
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PANDARUS:

Alas, I think he shall be come approached and the day
When little srain would be attain'd into being never fed,
And who is but a chain and subjects of his death,

I should not sleep.

Second Senator:

They are away this miseries, produced upon my soul,
Breaking and strongly should be buried, when I perish
The earth and thoughts of many states.

DUKE VINCENTIO:
Well, your wit is in the care of side and that.

Second Lord:

They would be ruled after this chamber, and

my fair nues begun out of the fact, to be conveyed,
Whose noble souls I'll have the heart of the wars.

Clown:
Come, sir, I will make did behold your worship.

VIOLA:
I'll drink it.

Lecture 11 - 81

VIOLA:

Why, Salisbury must find his flesh and thought

That which I am not aps, not a man and in fire,

To show the reining of the raven and the wars

To grace my hand reproach within, and not a fair are hand,
That Caesar and my goodly father's world;

When I was heaven of presence and our fleets,

We spare with hours, but cut thy council I am great,
Murdered and by thy master's ready there

My power to give thee but so much as hell:

Some service in the noble bondman here,

Would show him to her wine.

KING LEAR:

0, if you were a feeble sight, the courtesy of your law,
Your sight and several breath, will wear the gods

With his heads, and my hands are wonder'd at the deeds,
So drop upon your lordship's head, and your opinion
Shall be against your honour.
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The Stacks Project: open source algebraic geometry textbook

2 The Stacks Project

home about tagsexplained taglookup browse search bibliography recentcomments blog add slogans
Browse chapters Parts
1. Preliminaries
Part Chapter online TeXsource view pdf 2. Schemes
Preliminaries 3. Topics in Scheme Theory
1. Introduction online tex() pdf > 4. Algebraic Spaces
5 i . 5. Topics in Geometry
2. Conventions _onI!ne tex() Rdf > 6. Deformation Theory
3. SetTheory online tex()  pdf > 7. Algebraic Stacks
4. Categories online tex() pdf > 8. Miscellany
5. Topology onI!ne tex()  pdf > Statistics
6. Sheaves on Spaces online tex() pdf >
7. Sites and Sheaves online tex() pdf > The Stacks project now consists of
8. Stacks online tex() pdf > o 455910 lines of code
9. Fields online tex()  pdf > o 14221 tags (56 inactive tags)
10. Commutative Algebra online tex(® pdf > o 2366 sections

Latex source

A. Farhadi, S. Pratt
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http://stacks.math.columbia.edu/
The stacks project is licensed under the GNU Free Documentation License
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https://github.com/stacks/stacks-project/blob/master/COPYING

For @,,-, . Where £,,, = 0, hence we can find a closed subset % in H and
any sets F on X, U is a closed immersion of S, then U — T is a separated algebraic
space.

Proof. Proof of (1). It also start we get

S=Spec(R)=U xx U xx U
and the comparicoly in the fibre product covering we have to prove the lemma
generated by [[Z xy U — V. Consider the maps M along the set of points
Schgppy and U — U is the fibre category of S in U in Section, 7?7 and the fact that
any U affine, see Morphisms, Lemma ??. Hence we obtain a scheme S and any
open subset W C U in Sh(G) such that Spec(R’) — S is smooth or an

U=|JUixs, U

which has a nonzero morphism we may assume that f; is of finite presentation over
S. We claim that Ox . is a scheme where z,2’, s” € S’ such that Ox ,» — O, ., is
separated. By Algebra, Lemma ?? we can define a map of complexes GLg/(z'/S")
and we win. O
To prove study we see that F|y is a covering of X/, and 7; is an object of -7'-.\’/.5' for
i > 0 and F,, exists and let F; be a presheaf of Ox-modules on C as a F-module.
In particular F = U/F we have to show that

N = ’ —1

M* = I* @specth) 5,0 = i F)
is a unique morphism of algebraic stacks. Note that

e T HNOPD: | HianaE

Arrows = (Sch/S) 7 ¢, (Sch/S) fops

and

V =T(S,0) — (U, Spec(A))
is an open subset of X. Thus U is affine. This is a continuous map of X is the
inverse, the groupoid scheme S.
Proof. See discussion of sheaves of sets. O
The result for prove any open covering follows from the less of Example ??. It may
replace S by X paces.étale Which gives an open subspace of X and T equal to Sz,
see Descent, Lemma ??. Namely, by Lemma ?? we see that R is geometrically
regular over S.

Lemma 0.1. Assume (3) and (3) by the construction in the description.
Suppose X = lim | X| (by the formal open covering X and a single map ij\,(.A) =
Spec(B) over U compatible with the complex
Set(A) =T'(X,0x,0y)-

When in this case of to show that @ — Cz/x is stable under the following result
in the second conditions of (1), and (3). This finishes the proof. By Definition 77
(without element is when the closed subschemes are catenary. If T is surjective we
may assume that T is connected with residue fields of S. Moreover there exists a
closed subspace Z C X of X where U in X' is proper (some defining as a closed
subset of the uniqueness it suffices to check the fact that the following theorem

(1) f s locally of finite type. Since S = Spec(R) and Y = Spec(R).

Proof. This is form all sheaves of sheaves on X. But given a scheme U and a
surjective étale morphism U — X. Let UNU = [[,_, Ui be the scheme X over
S at the schemes X; — X and U = lim; X;. O

The following lemma surjective restrocomposes of this implies that F,, = F,, =
Fx,...0

Lemma 0.2. Let X be a locally Noetherian scheme over S, E = Fx;g. Set T
Ji CI.,. Since I™ C I™ are nonzero over ig < p is a subset of Jy 00 As works.

Lemma 0.3. In Situation ??. Hence we may assume q' = 0.

Proof. We will use the property we see that p is the mext functor (??). On the
other hand, by Lemma ?? we see that
D(Ox) = Ox(D)

where K is an F-algebra where d,,; is a scheme over S. O

A. Farhadi, S. Pratt
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Proof. Omitted. O

Lemma 0.1. Let C be a set of the construction.
Let C be a gerber covering. Let F be a quasi-coherent sheaves of O-modules. We
have to show that

Oo, = O0x(£L)

Proof. This is an algebraic space with the composition of sheaves F on Xz, we
have

Ox(F) = {morphy xo, (G.F)}
where G defines an isomorphism F — F of O-modules. O
Lemma 0.2. This is an integer Z is injective.
Proof. See Spaces, Lemma ?7?. O
Lemma 0.3. Let S be a scheme. Let X be a scheme and X is an affine open

covering. Let U C X be a canonical and locally of finite type. Let X be a scheme.
Let X be a scheme which is equal to the formal complex.

The following to the construction of the lemma follows.
Let X be a scheme. Let X be a scheme covering. Let
b: X=Y 2Y Y SY xxY o X.

be a morphism of algebraic spaces over S and Y.
Proof. Let X be a nonzero scheme of X. Let X be an algebraic space. Let F be a
quasi-coherent sheaf of Ox-modules. The following are equivalent

(1) F is an algebraic space over S.

(2) If X is an affine open covering.

Consider a common structure on X and X the functor Ox(U) which is locally of
finite type. O

This since F € F and x € G the diagram

S— >

|

f— C)v\'r

AN

’
=0 ———d>

gor,

=0 ——a X

l

Spec(Ky) Morsets  d(Oxy,,..G)

is a limit. Then @ is a finite type and assume S is a flat and F and G is a finite
type f.. This is of finite type diagrams, and

e the composition of G is a regular sequence,

e Oy is a sheaf of rings.

0

Proof. We have see that X = Spec(R) and F is a finite type representable by
algebraic space. The property F is a finite morphism of algebraic stacks. Then the
cohomology of X is an open neighbourhood of U. a

Proof. This is clear that G is a finite presentation, see Lemmas 77,
A reduced above we conclude that U is an open covering of C. The functor F is a
“field

Oxz— Fz UOx ) — OK:CO.YA(O_T{‘,,)
is an isomorphism of covering of Oy,. If F is the unique element of F such that X
is an isomorphism.
The property F is a disjoint union of Proposition ?? and we can filtered set of
presentations of a scheme O x-algebra with F are opens of finite type over S.
If F is a scheme theoretic image points. O

If F is a finite direct sum Oy, is a closed immersion, see Lemma ??. This is a
sequence of F is a similar morphism.

A. Farhadi, S. Pratt
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torvalds / linux

Linux kermel source tree

@ Watch . 3,711

5,039 contributors

* Star

520,037 commits 1 branch 420 reloases
4 P branch: master - linux / +
Merge branch 'drm-fixes’ of git.//people.freedeskiop.org/~airlied/linux
" torvalds authored 9 hours ago
Documentation Merge git t Karme X
arch N 8
block t H
crypto A
drivers lerg X

e
nciude |
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t 4b1786927d |

23,054 Y Fork 9,141

<
Code
74
f requesis
Pulse
HTTPS clone URL
gitl &=

You can clone with HTTPS

SSH, or Subversion. @
‘& Clone in Desktop

<p> Download ZIP
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static void do_command(struct seq file *m, void *v)

{
int column = 32 << (cmd[2] & 0x80); Generated

if (state)
cmd = (int)(int_state ® (in_8(&ch->ch flags) & Cmd) 2 2 : 1);
else C COde
seq = 1;
for (i = 0; i < 16; i++) {
if (k & (1 << 1))
pipe = (in use & UMXTHREAD UNCCA) +
((count & 0x00000000£ff£f£ffff8) & Ox000000f) << 8;
if (count == 0)
sub(pid, ppc_md.kexec handle, 0x20000000);
pipe set bytes(i, 0);
}

subsystem info = &of changes[PAGE_SIZE];
rek controls(offset, idx, &soffset);

control check polarity(&context, val, 0);
for (i = 0; i < COUNTER; i++)
seq _puts(s, "policy ");
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static void stat PC_SEC _ read mostly offsetof(struct seq argsqueue, \
pC>[1]);

static void
os_prefix(unsigned long sys)

{

PUT_PARAM RAID(2, sel) = get state state();
set_pid sum((unsigned long)state, current_state_str(),
(unsigned long)-1->1lr full; low;
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OpenAl GPT-2 generated text source

Input: In a shocking finding, scientist discovered a herd of unicorns living in a remote,
previously unexplored valley, in the Andes Mountains. Even more surprising to the
researchers was the fact that the unicorns spoke perfect English.

Output: The scientist named the population, after their distinctive horn, Ovid’s Unicorn.
These four-horned, silver-white unicorns were previously unknown to science.

Now, after almost two centuries, the mystery of what sparked this odd phenomenon is
finally solved.

Dr. Jorge Pérez, an evolutionary biologist from the University of La Paz, and several
companions, were exploring the Andes Mountains when they found a small valley, with no
other animals or humans. Pérez noticed that the valley had what appeared to be a natural
fountain, surrounded by two peaks of rock and silver snow.
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https://openai.com/blog/better-language-models/

GPT-4

Bubek et al. Sparks of
AGI. ArXiv 2023

A. Farhadi, S. Pratt

Prompt: Can you generate a pyplot for the following data: = = [1,3,5,6, 8],y1 = [2,3,5,18,1],y2 = [3,5,6, 8,1],y3 =
[5,1,2,3,4],y4 = [9,7,2,3,1]. I want y1,y2 to be in the same plot, but 3 is in another plot next to that plot, %4 is in
below. I want the legend of y1 to be "bob”, y2 to be "alice”, y3 to be "bilbo”, y4 to be allie”. I want the z-axis to be
labeled with ”time” and y axis to be labeled with "money”. I want to add a 10 %-40% random error bar to each curve,
through all times (including non-integers). I want smoothed curves to show the plot, and smoothed error bar. Do not
use linear interpolation, use smooth interpolation! I want to also add some small zig-zag to the smoothed curve to make
it look more real. I want to put a baseline as the mean of each line. I want to put a pie chart below indicating the
fraction of the four people in each time step. I also want an animation to show how the fractions are changing in the
pie chart in **continuous time**. Interpolate the missing fractions! I also want vertical line animation in other three
plots to match the pie chart. I want the fanciest plot. Please add as many fancy things as possible.

Here is a possible code to generate a pyplot for the following data, with some comments to explain the steps:

GPT-4: [We give two snapshots from the animation resulting from the produced code]

Bob and Alice Bilbo Bob and Alice Bilbo

— wb # — uibo — bob — uibo
s — gice - L]

Allse Fractions at time 7.86

alie aice

bob

Bilbo

slbe

bilbo

6 7 8 1 2 3 4 5 6 7 8
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Language modelin
leads to reasoning
capabilities for
GPT-

Bubek et al. Sparks of
AGI. ArXiv 2023

GPT-4 vs ChatG

Prompt: Here we have a book, 9 eggs, a laptop, a bottle and a nail. Please tell me how to
stack them onto each other in a stable manner.

GPT-4:

One possible way to stack the objects onto each other in a stable manner is:

- Place the book flat on a level surface, such as a table or a floor. The book will serve as the base of
the stack and provide a large and sturdy support.

- Arrange the 9 eggs in a 3 by 3 square on top of the book, leaving some space between them. The eggs
will

form a second layer and distribute the weight evenly. Make sure the eggs are not cracked or broken, and
handle them gently to avoid dropping them.

- Place the laptop on top of the eggs, with the screen facing down and the keyboard facing up. The
laptop will fit snugly within the boundaries of the book and the eggs, and its flat and rigid surface
will provide a stable platform for the next layer. Make sure the laptop is closed and turned off, and do
not press any keys or buttons.

- Place the bottle on top of the laptop, with the cap facing up and the bottom facing down. The bottle
will add some height and balance to the stack, and its cylindrical shape will reduce the contact area
with the laptop. Make sure the bottle is empty and closed, and do not shake or tilt it.

- Place the nail on top of the bottle cap, with the pointy end facing up and the flat end facing down.
The nail will be the final and smallest object in the stack, and its sharp tip will prevent it from
rolling or sliding off the bottle. Make sure the nail is clean and straight, and do not touch or move
it.

ChatGPT:

It would be difficult to stack all of these objects on top of each other in a stable manner without
using any extra objects. The book and laptop are likely too large and heavy to stack on top of the

eggs without damaging them. The bottle and nail may be too small to provide a stable base for the other
objects.

Here is one possible way to stack the objects:

- Place the bottle on a flat surface.

Carefully balance the nail on top of the bottle.

- Place the eggs on top of the nail, making sure they are balanced and not tilting to one side.

- Place the laptop on top of the eggs, again making sure it is balanced and not tilting to one side.
- Finally, place the book on top of the laptop.

This stack may not be very stable, so it is important to be careful when handling it. Alternatively, you
could try stacking the objects in a different order or using some of the objects as supports for others
to create a more stable stack.
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RNN tradeoffs

RNN Advantages:
- Can process any length input

- Computation for step t can (in theory) use information from many steps
back

- Model size doesn’t increase for longer input
- Same weights applied on every timestep, so there is symmetry in how
inputs are processed.
RNN Disadvantages:
- Recurrent computation is slow
- In practice, difficult to access information from many steps back
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Image Captioning

“straw” “hat” END

START “straw” “hat”

Explain Images with Multimodal Recurrent Neural Networks, Mao et al.

Deep Visual-Semantic Alignments for Generating Image Descriptions, Karpathy and Fei-Fei

Show and Tell: A Neural Image Caption Generator, Vinyals et al.

Long-term Recurrent Convolutional Networks for Visual Recognition and Description, Donahue et al.
Learning a Recurrent Visual Representation for Image Caption Generation, Chen and Zitnick
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Recurrent Neural Network
“straw” “hat” END

START “straw” “hat”

Convolutional Neural Network
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test image

This image is CCO public domain
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https://pixabay.com/en/straw-hat-man-sea-sunlight-sunset-70696/
https://creativecommons.org/publicdomain/zero/1.0/deed.en

image | =

conv-64

test image

conv-64

maxpool

conv-128

conv-128

maxpool

conv-256
conv-256

maxpool

conv-512
conv-512

maxpool

conv-512
conv-512

maxpool

FC-4096
FC-4096
FC-1000
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image -

conv-64

test image

conv-64

maxpool

conv-128

conv-128

maxpool

conv-256
conv-256

maxpool

conv-512
conv-512

maxpool

conv-512
conv-512

maxpool

FC-4096
FC-4096
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image | =

conv-64

test image

conv-64
maxpool

conv-128

conv-128

maxpool

conv-256
conv-256

maxpool

conv-512
conv-512

maxpool

conv-512
conv-512

maxpool

FC-4096
0
FC-4096 <START>

Lecture 11 - 98 Feb 12, 2026



image | =

conv-64

test image

conv-64

maxpool

conv-128

conv-128

maxpool

conv-256 yO

conv-256

maxpool T befO re.
S h =tanh(W _*x+W_ *h)

conv-512
maxpool hO

conv-512 Wi h
conv-512 now.

maxpool —_— * * *
- h=tanh(W, *x+W._ *h+W_*v)
FC-4096 <ST);(\)RT>

\'
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image @ =

conv-64

test image

conv-64

maxpool

conv-128

conv-128

maxpool

conv-256 yO
conv-256

maxpool T

conv-512

conv-512 Sa m p I e '

maxpool

conv-512
conv-512
maxpool
FC-4096
0
FC-4096 <ST);\RT> straw
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image -

conv-64

test image

conv-64

maxpool

conv-128
conv-128

maxpool

conv-256

y0 y1
conv-256

maxpool T T

conv-512

conv-512
maxpool hO —>{ h1

conv-512
conv-512
maxpool

FC-4096
0
FC-4096 <START> straw
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image -

conv-64

test image

conv-64

maxpool

conv-128

conv-128

maxpool

conv-256 yO y1
conv-256

maxpool T T

conv-512

conv-512 sample!

maxpool hO

conv-512
conv-512
maxpool

FC-4096
x0

FC-4096 <START> SIS e
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image -

conv-64

test image

conv-64

maxpool

conv-128
conv-128

maxpool

conv-256

y0 y1 y2
conv-256

maxpool T T T

conv-512

conv-512

maxpool

conv-512
conv-512
maxpool

FC-4096
x0

FC-4096 <START> SIS e
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image -

conv-64

test image

conv-64

maxpool

conv-128

conv-128
maxpool

conv-256

y0 y1 y2
conv-256
maxpool T T T \ Samp'@
<END> token
:::piﬁ ho || h1 | h2 => finish.

conv-512
conv-512
maxpool

FC-4096
x0

FC-4096 <START> straw hat

conv-512
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neuraltalk2
CCQ Public domain
cat suitcase, cat tree, dog, bear
surfers. tennis, giraffe, motorcycle

A dog is running in the A white teddy bear sitting in

A cat sitting on a A cat is sitting on a tree
grass with a frisbee the grass

suitcase on the floor branch

[T Sl
Two giraffes standing in a A man riding a dirt bike on
grassy field a dirt track

Two people walking on A tennis player in action
the beach with surfboards on the court

Feb 12, 2026
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https://github.com/karpathy/neuraltalk2
https://creativecommons.org/publicdomain/zero/1.0/deed.en
https://pixabay.com/en/luggage-antique-cat-1643010/
https://pixabay.com/en/cat-kitten-tree-green-summer-1647775/
https://pixabay.com/en/adorable-animal-canine-cute-dog-1849992/
https://pixabay.com/en/teddy-plush-bears-cute-teddy-bear-1623436/
https://pixabay.com/en/beach-beach-sports-blur-blurry-1853903/
https://pixabay.com/en/tennis-head-ramos-vinolas-clay-934841/
https://pixabay.com/en/giraffe-animals-wildlife-africa-2064520/
https://pixabay.com/en/moto-cross-motorbike-sports-jump-214928/

Captions generated using peuraltalk2
All images are_CCO Public domain: fur

Image Captioning: Failure Cases e

A bird is perched on
a tree branch

A woman is h
in her hand

A manin a
baseball uniform
throwing a ball

¥

A woman standing on a
beach holding a surfboard

<

A person holding a
computer mouse on a desk
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https://github.com/karpathy/neuraltalk2
https://creativecommons.org/publicdomain/zero/1.0/deed.en
https://pixabay.com/en/woman-female-model-portrait-adult-983967/
https://pixabay.com/en/woman-female-model-portrait-adult-983967/
https://pixabay.com/en/handstand-lake-meditation-496008/
https://pixabay.com/en/spider-web-tree-branches-pattern-617769/
https://pixabay.com/en/baseball-player-shortstop-infield-1045263/

Visual Question Answering (VQA)

Q: What endangered animal Q: Where will the drivergo  Q: When was the picture Q: Who is under the
is featured on the truck? if turning right? taken? umbrella?

A: A bald eagle. A: Onto 24 % Rd. A: During a wedding. A: Two women.

A: A sparrow. A: Onto 25 % Rd. A: During a bar mitzvah. A: A child.

A: A humming bird. A: Onto 23 % Rd. A: During a funeral. A: An old man.

A: Araven. A: Onto Main Street. A: During a Sunday church A: A husband and a wife.

earvira

Agrawal et al, “VQA: Visual Question Answering”, ICCV 2015
Zhu et al, “Visual 7W: Grounded Question Answering in Images”, CVPR 2016
Figure from Zhu et al, copyright IEEE 2016. Reproduced for educational purposes.
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Visual Question Answering: RNNs with Attention

4096 output units from last hidden layer 1024
(VGGNet, Normalized)

1024 1000

v J . J s v
Convolution Layer Fully-Connected MLP
Pooling Layer  + Non-Linearity Pooling Layer

Fully-Connected

Convolution Layer

1000

> ”2”

+ Non-Linearity

2X2X512 LSTM

N
I ‘I \I \I \I \l y
- - - - - -
Fully-Connected

“How many horses are in this image?”

1024

multiplication

)\ 4

Agrawal et al, “Visual 7W: Grounded Question Answering in Images”, CVPR 2015

Figures from Agrawal et al, copyright IEEE 2015. Reproduced for educational purposes.

Point-wise p,.connected Softmax
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Visual Dialog: Conversations about images

Visual Dialog

o

White and red

°
°
A No, something is there can't tell what it is
°
Yes, they are

(®)(®)] Yes, magazines, books, toaster and basket, and a plate

Das et al, “Visual Dialog”, CVPR 2017 Start typing question here
Figures from Das et al, copyright IEEE 2017. Reproduced with permission.
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Visual Language Navigation: Go to the living room

. . . Instruction
Agent encodes instructions in Local

language and uses an RNN to

Turn right and head  visual ' Jgu*s
towards the kitchen. scene ks

generate a series of movements as Then turn left, pass a

the visual input changes after each table and enter the Global

move. hallway. Walk down trajectories
the hallway and turn in top-down

into the entry way to
your right without
doors. Stop in front
of the toilet.

view

Ry B e ¥

/\ Initial Position
"% Target Position
Demonstration Path A
Wang et al, “Reinforced Cross-Modal Matching and Self-Supervised - EXECUted Path B

Imitation Learning for Vision-Language Navigation”, CVPR 2018 —
Figures from Wang et al, copyright IEEE 2017. Reproduced with permission. Exec Ute d Pat h C

A. Farhadi, S. Pratt Lecture 11 - 110 Feb 12, 2026



CCQ Public domain

Visual Question Answering: Dataset Bias

{4

What is the dog ~ Question Model ~ —® YesorNo

playing with? 80
. 60
Frisbee Answer
3 40
(3]
5
Q
£ 20
0
Image + without without without
Question +  question image image or
Answer question
Models
Jabri et al. “Revisiting Visual Question Answering Baselines” ECCV 2016
Feb 12, 2026

A. Farhadi, S. Pratt Lecture 11 - 111



https://creativecommons.org/publicdomain/zero/1.0/deed.en
https://pixabay.com/en/adorable-animal-canine-cute-dog-1849992/

Multilayer RNNs

Each layer has a different set
. =l =l =l =l =l =l
of weights

Outputs from one layer
become inputs to the layer
above.

depth

time
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Now, let’s talk about why RNNs are not as popular
anymore.
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. - Bengio et al, “Learning long-term dependencies with gradient descent
a n | a ra | e n OW is difficult”, IEEE Transactions on Neural Networks, 1994

- sta
ht-1

W—>%>—> tanh

Pascanu et al, “On the difficulty of training recurrent neural networks”,
ICML 2013

Yy

hy = tanh(Wpphi—1 + Waenay)

)

A. Farhadi, S. Pratt

- = tanh ((Whh Wha ) (h;j))

)
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. - Bengio et al, “Learning long-term dependencies with gradient descent
a n | a ra | e n OW is difficult’, IEEE Transactions on Neural Networks, 1994
Pascanu et al, “On the difficulty of training recurrent neural networks”,

ICML 2013

Backpropagation from h,
to h,_, multiplies by W
t-1
(actually W_T) Yi

W) —> tanh hy = tanh(Wpphi—1 + Waenay)
— +—
ht—1>>

' — tanh [ (Why, Wi
g S T
- - = tanh (W (ht_1>>

L

ht-1 a
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Bengio et al, “Learning long-term dependencies with gradient descent

| n
Va n | I I a R N N G ra d | e n t F I OW is difficult’, IEEE Transactions on Neural Networks, 1994
Pascanu et al, “On the difficulty of training recurrent neural networks”,

ICML 2013

Backpropagation from h,
to h,_, multiplies by W
t-1
(actually W_T) Yi

hy = tanh(Wpphi—1 + Waenay)
¢ I hi—1
— tanh | (W, Wha
> staAck — ht an <( i b ) ( Tt >)
\ / — (W (ht—l))
L

Oh
o = tanh!(Winhi 1 + Wanae)Whn,
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. - Bengio et al, “Learning long-term dependencies with gradient descent
a n I a ra I e n OW is difficult”, IEEE Transactions on Neural Networks, 1994
Pascanu et al, “On the difficulty of training recurrent neural networks”,

ICML 2013

Backpropagation from h,
to h,_, multiplies by W
t-1
(actually W_T) Yi

—tanh(x)

— “,—'J tanh(zx) I~

h, o siack ‘ . h e s

A t 05+

Oh
o = tanh!(Winhi 1 + Wanae)Whn
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Vanilla RNN Gradient Flow

Bengio et al, “Learning long-term dependencies with gradient descent
is difficult”, IEEE Transactions on Neural Networks, 1994

Pascanu et al, “On the difficulty of training recurrent neural networks”,
ICML 2013

Y, Y, Yj3 Y,
. 4
W—> — tanh H W—> - tanh H W—> —> tanh H W-’QZ tanh H
L ! T ! I
— > S > - B - -
h0 <= stack h1 > stack h2 > stack h3 > stack —> h4
— 1T T T T Tt T
X1 X2 X3 X4
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. - Bengio et al, “Learning long-term dependencies with gradient descent
a n | a ra | e n OW is difficult”, IEEE Transactions on Neural Networks, 1994

Pascanu et al, “On the difficulty of training recurrent neural networks”,
Gradients over multiple time steps:

ICML 2013

:Q
B
=

Y
'
E\

o
'
E\

o

—O
'

=6

>

OL T 0L,
oW = 2=l

dLr __ 0Ly o Ahy
OW — Ohr Ohyy " OW
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. - Bengio et al, “Learning long-term dependencies with gradient descent
a n | a ra | e n OW is difficult”, IEEE Transactions on Neural Networks, 1994

Pascanu et al, “On the difficulty of training recurrent neural networks”,
Gradients over multiple time steps:

ICML 2013

:Q
B
=

Y
'
E\

o
'
E\

o

—O
'

=6

>

OL T 0L,
oW = 2=l

Ly _ 0Ly O O _ OLy pyl Oy Oh
ow Ohr Ohy—1 "~~~ OW — Qhy t=2 Qh, 1/ OW
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. - Bengio et al, “Learning long-term dependencies with gradient descent
a n | a ra | e n OW is difficult”, IEEE Transactions on Neural Networks, 1994

Pascanu et al, “On the difficulty of training recurrent neural networks”,
Gradients over multiple time steps:

ICML 2013

:Q
B
=

.
'
E\

i
'
E\

.

—O
'

=

>

OL T 0L oh
o = S G [ = tanh (Winhe s+ Wonzo) Wi

Ly _ Oy O O _ OLy T [ O Ohy
ow Ohr Ohy—1 "~~~ OW — Qhy t=2| Qh, 1 OW
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. - Bengio et al, “Learning long-term dependencies with gradient descent
a n I a ra I e n OW is difficult”, IEEE Transactions on Neural Networks, 1994

Pascanu et al, “On the difficulty of training recurrent neural networks”,
Gradients over multiple time steps:

ICML 2013

:Q
B
=

Y
'
E\

o
'
E\

i

—O
'

=

>

L Z Almost always < 1
w t=1 aw Vanishing gradients

oL BL oh
7 L — == (Ht 9 tanh' (Whphi—1 + thwt))W}z;L 1 (,mi,
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. - Bengio et al, “Learning long-term dependencies with gradient descent
a n | a ra | e n OW is difficult”, IEEE Transactions on Neural Networks, 1994

Pascanu et al, “On the difficulty of training recurrent neural networks”,
Gradients over multiple time steps:

ICML 2013

- tanh H W—> - tanh H W—> < tanh H W—><T><—_> tanh H
! T ! T ! !
h0 <= stack > h1 > > stack 2 h2 - stack B h3 > > stack —> h4
— 1T T T T Tt T
X1 X2 X3 X4

Zt 1 aLt What if we assumed no non-linearity?
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. - Bengio et al, “Learning long-term dependencies with gradient descent
a n I a ra I e n OW is difficult”, IEEE Transactions on Neural Networks, 1994

Pascanu et al, “On the difficulty of training recurrent neural networks”,
Gradients over multiple time steps:

ICML 2013

=0
I
=
!
!
E\
0
!
E\
o
—O
!
=6

ho = stack T h1 - > stack h2 - " stack h3 > > stack h4
T J L T 4 \ T ) _ T 4
I I I I
X X X X

2 3 4
What if we assumed no non-linearity?

OL T 0L,
oW thl oW Largest singular value > 1:
Exploding gradients

OLt OLt WT—l Ohq _ |
OW — Ohr hh | W Larg_est_smgular_value <1:
Vanishing gradients
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Vanilla RNN Gradient Flow

Bengio et al, “Learning long-term dependencies with gradient descent
is difficult”, IEEE Transactions on Neural Networks, 1994
Pascanu et al, “On the difficulty of training recurrent neural networks”,

Gradients over multiple time steps: o
Y Y Y3
4 4
?4—_' tanh H W— - tanh ‘ W— = tanh W—><>—> tanh H
‘ T . . I L
h0 <= stack > h1 + > stack 2 h2 - stack h3 + = stack —> h4
T v - T ) & T 4 A I J
X X5 X3 X,
What if we assumed no non-linearity?
oL T OLy _
oW thl oW Largest singular value > 1: |- Gradient clipping:
Exploding gradients Scale gradient if its
OLr  OLyp WT_1 Ohy _ norm is too big
OW ~— Ohg| ' hh W L-argestsingularvalue < rers © oo tore

Vanishing gradients

grad *= (threshold / grad_norm)

Feb 12, 2026
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Vanilla RNN Gradient Flow

Gradients over multiple time steps:

Bengio et al, “Learning long-term dependencies with gradient descent
is difficult”, IEEE Transactions on Neural Networks, 1994

Pascanu et al, “On the difficulty of training recurrent neural networks”,
ICML 2013

7 Y, Ys
4 -
?4—_' tanh H W—> — > tanh ‘ W—> —> tanh ‘ W—><>—> tanh H
h ; T h lk h lk h Hk L h
—T > stack > :——> stac > =——> stac > :—> stac —>
J S S B Gt S B W R G S
X1 X2 X3 X4
What if we assumed no non-linearity?
0L _ ~~T OL
ow thl oW Largest singular value > 1:
Exploding gradients
oW — Ohr| ' hh | oW Larg_est_smgular_value<1. —>Chapge RNN
Vanishing gradients architecture

A. Farhadi, S. Pratt

Lecture 11 - 126

Feb 12, 2026



Long Short Term Memory (LSTM)

Vanilla RNN

LSTM

h; = tanh (W (

hi—1

Lt

ct=fOc_1+10g
ht = 0 ® tanh(c;)

1

/ _ 9 11,74 (ht—1>

0 o i
) :

Hochreiter and Schmidhuber, “Long Short Term Memory”, Neural Computation 1997
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RNNs have a single hidden state (h,)
LSTMs have two: cell memory c, and hidden state h,

Vanilla RNN

LSTM

h ::tanh,(VV'(

hi—1

Lt

(b))

tanh

ht = 0 ® tanh(c;)

ct=fOc_1+10g

he—1
T

Hochreiter and Schmidhuber, “Long Short Term Memory”, Neural Computation 1997
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Long Short Term Memory (LSTM)
[Hochreiter et al., 1997]

vector from

below (x)
X sigmoid | — | i
h sigmoid | — | f

W

vector from sigmoid | — | o

before (h)
tanh — | g
4h x 2h 4h 4*h
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Long Short Term Memory (LSTM)
[Hochreiter et al., 1997]

vector from g: Info gate, How much to write to cell
below (x)
X sigmoid | — | i
h sigmoid | — | f 1 o
W f . o W ht—l
vector from sigmoid | — | 0 ol — o Ty
tanh — 19 ‘ ;
ce = fOci—1 +Z®E|
*
4h x 2h 4h 4*h hy = 0 ® tanh(c;)
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Long Short Term Memory (LSTM)

[Hochreiter et al., 1997] i: Input gate, whether to write to cell
vector from g: Info gate, How much to write to cell
below (x)
X sigmoid | — | i
h sigmoid | — | f 1 o
w fl | o W hi—1
vector from sigmoid | — | o ol — o 2y
tanh — |9 -
ct = f ©ci—1 +9

4h x 2h 4h 4*h hy = 0 ® tanh(c;)
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Long Short Term Memory (LSTM)

[Hochreiter et al., 1997] _i: Input gate, whether to write to cell
f: Forget gate, Whether to erase cell

vector from g: Info gate, How much to write to cell
below (x)
X sigmoid | — | i
h sigmoid | — | f () o
W f . o W ht—l
vector from sigmoid | — | 0 ol — o Ty
tanh — 19 ;
¢ =|fPci—1+10g
*
4h x 2h 4h 4*h hy = 0 ® tanh(c;)
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Long Short Term Memory (LSTM)

[Hochreiter et al., 1997] i Input gate, whether to write to cell

f. Forget gate. Whether to erase cell
o: Output gate, How much to reveal cell

vector from g: Info gate, How much to write to cell
below (x)
X sigmoid | — | i
h sigmoid | — | f ) o
w fl | o W hi—1
vector from sigmoid | — | o ol — o 2y
tanh — | g .
cc=fOc_1+10g
*
4h x 2h 4h 4*h hy :|§|® tanh(c)
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Long Short Term Memory (LSTM)
[Hochreiter et al., 1997]

a N
C > O—» + —» C >
-1 : N t
- f
[, i 1 o
W_’Q_ _L’G) tanh f — = W hi—1
-»g_l—> l 0 o Ty
tanh
h > stack O h g
t-1 \ A -0 ht/ ct=f®ct_1+i@g
hy = 0 ® tanh(c;)
X
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Long Short Term Memory (LSTM)
[Hochreiter et al., 1997]

a N
C > O—» + —» C >
t-1 ; 1 t
> f
i ? o
W—’Q— T fF1_] o hi—1
g_l—' aln 0 o W X
tanh
h > stack O h g
t-1 \ A -0 ht/ ct=f®ct_1+i@g
hy = 0 ® tanh(c;)
X
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Long Short Term Memory (LSTM)
[Hochreiter et al., 1997]

c D

Ct-1 = (?——» 1— — Ct >
> f
[, i 1 o

W_’Q_ _L’G) tanh f — = W hi—1
-»g_l—> l 0 o Ty
tanh
h > stack O h g
t-1 \ A -0 ht/ ct:fG)ct_1+i®g
hy = 0 ® tanh(c;)
X
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Long Short Term Memory (LSTM)
[Hochreiter et al., 1997]

e N

Ct-1 > (?—» 1— — (|)t >
- f
[, i 1 o

W_’Q_ _L’G) tanh f — = W hi—1
-»g_l—> l 0 o Ty
tanh
h > stack O h g
t-1 \ A -0 ht/ ct=f®ct_1+i®g
hy = 0 ® tanh(c;)
X
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Long Short Term Memory (LSTM)
[Hochreiter et al., 1997]

a N
C > O—» + —» C >
-1 : K t
- f
.. ? o
W_’Q_ _L’G) tanh f — = W hi—1
-»g_l—> l 0 o Ty
tanh
h > stack O . g
t-1 \ A -0 ht/ ct=f®ct_1+i®g
hy = 0 ® tanh(c;)
X
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Long Short Term Memory (LSTM): Gradient Flow
[Hochreiter et al., 1997]

a N
Ct—‘|< >?<_—>-:<_—>Ct<
- f
= |
W_’Q_ g:LI_:G) tanh
h > stack . l o h
t-1 k A -0 © ht/

A. Farhadi, S. Pratt

Lecture 11 - 139

Backpropagation from c, to
c,, only elementwise
multiplication by f, no matrix
multiply by W

o

1
/ _ g 11,74 <ht—1>
0 o iy
g tanh

ctc=fOc_1+10g
hy = 0 ® tanh(c;)
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Long Short Term Memory (LSTM): Gradient Flow
[Hochreiter et al., 1997]

Uninterrupted gradient flow!

<
C . N . N [ . D
= — + —> C _: — > — : C _: — > : 44 : C :
CO* Py C T P — CZ ; —— C3
i [ i
W— 1 ®© tanh W— _L' ®© tanh W— _L' ®© tanh
I g g

S E— steIck g l —T—> stack g l —T > stack g l

Notice that the gradient contains the f gate’s vector of activations
- allows better control of gradients values, using suitable parameter updates of the
forget gate.
Also notice that are added through the f, i, g, and o gates
- better balancing of gradient values
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Do LSTMs solve the vanishing gradient
problem?

The LSTM architecture makes it easier for the RNN to preserve information
over many timesteps
- e.qg. ifthe f=1 and the i = 0, then the information of that cell is preserved
indefinitely.
- By contrast, it's harder for vanilla RNN to learn a recurrent weight matrix
Wh that preserves info in hidden state

LSTM doesn’t guarantee that there is no vanishing/exploding gradient, but it
does provide an easier way for the model to learn long-distance dependencies

A. Farhadi, S. Pratt Lecture 11 - 141 Feb 12, 2026



Long Short Term Memory (LSTM): Gradient Flow
[Hochreiter et al., 1997]

Uninterrupted gradient flow!

<
4 N 4 N 4 N
> O—> + —> C — - :@4—_>+<—_>C — — =®<—_>+<—_>C —
CO+ p— CT T — CZ T — C3
—od! oL oL
W W g_]_,® talnh W g_]_>® talnh
—\—' st?ck T st?ck 0 ®— h - - st?ck 0 ®©— h —+—

Similar to residual connections (e.g.
.1 in ResNets and Transformers),
which we will learn about soon!

QOO0 O
88)

| ¢/ 8¢l AUOD
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Neural Architecture Search for RNN architectures

identity ()

elem_mult
elem_mult

sigmoid()

LSTM cell Cell they found

Zoph et Le, “Neural Architecture Search with Reinforcement Learning”, ICLR 2017
Figures copyright Zoph et al, 2017. Reproduced with permission.
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- [An Empirical Exploration of
Oth e r R N N Va rl a n tS Recurrent Network Architectures,
Jozefowicz et al., 2015]
GRU [Learning phrase representations using rnn

encoder-decoder for statistical machine translation, s
ChO et al 2014] 2 = Sigl“(n-xz-l‘r 5 bz)
r = sigm(Wex, + Wi hy + b)
Ty = O'(erfl';t + Wh’r'ht—l + br) hiy1 = tanh(Wi(r @ h) + tanh(z,) + by,) © 2
+ ho(l-2)
_t = U(szxt + thht—l + bz)
~ MUT2:
hz = tanh(thxt =t Whh(Tt ®© ht—l) e o bh)
~ : = sigm(Wzi + Wighe + by)
hi =2 Qhi_1+(1—2) ® hy ro= sigm(zi + Wiche +b,)
hie+1 = tanh(Whn(r @ he) + Wenze + bn) © 2
-+ Ilf . (1 - 2)
MUTS3:
. = sigm(Wex, + Wi, tanh(hy) + b,)
[LSTM: A Search Space Odyssey, ro= sigm(Wieze + Wichy + be)
Greff et al., 2015] hepr = tanh(Win(r © hy) + Wonzy + by) © 2
+ hf . (l — :)
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Recurrence for Vision

- LSTM wer a good default choice until this year

- Use variants like GRU if you want faster compute and less
parameters

- Use transformers (next lecture) as they are dominating NLP and

also vision models
- almost everyday there is a new transformer model

Su et al. "VI-bert: Pre-training of generic visual-linguistic representations." ICLR 2020
Lu et al. "Vilbert: Pretraining task-agnostic visiolinguistic representations for vision-and-language tasks." NeurlPS 2019
Li et al. "Visualbert: A simple and performant baseline for vision and language." arXiv 2019
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Summary

- RNNs allow a lot of flexibility in architecture design

- Vanilla RNNs are simple but don’t work very well

- Common to use LSTM or GRU: their additive interactions
improve gradient flow

- Backward flow of gradients in RNN can explode or vanish.
Exploding is controlled with gradient clipping. Vanishing is
controlled with additive interactions (LSTM)

- Better/simpler architectures are a hot topic of current research,
as well as new paradigms for reasoning over sequences

- Better understanding (both theoretical and empirical) is needed.
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Next time: Attention and transformers!
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Searching for interpretable cells
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Searching for interpretable cells

| A..-.ﬂngzrz'-eid:rgno"m;reiftmtm firom WSer-space
1‘::'
pAckIstring(WOlid *Mbufp, sEzelt | NrEmEE,, s¥izel: Tem)

thiy

F:rftno fields, PRTHONAX
leng

Karpathy, Johnson, and Fei-Fei: Visualizing and Understanding Recurrent Networks, ICLR Workshop 2016
Figures copyright Karpathy, Johnson, and Fei-Fei, 2015; reproduced with permission

A. Farhadi, S. Pratt Lecture 11 - 149 Feb 12, 2026



Searching for interpretable cells

guote detection cell

Karpathy, Johnson, and Fei-Fei: Visualizing and Understanding Recurrent Networks, ICLR Workshop 2016
Figures copyright Karpathy, Johnson, and Fei-Fei, 2015; reproduced with permission
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Searching for interpretable cells

Cell sensitive to position in line:

The sole importance of the crossing of the Berezina lies in the fact
that it plainly and indubitably proved the fallacy of all the plans for
cutting off the enemy's retreat and the soundness of the only possible
line of action--the one Kutuzov and the general mass of the army
demanded--namely, simply to follow the enemy up. The French crowd fled
at a continually increasing speed and all its energy was directed to
reaching its goal. It fled like a wounded animal and it was impossible
to block its path. This was shown not so much by the arrangements it
made for crossing as by what took place at the bridges when the bridges
broke down, unarmed soldiers, people from Moscow and women with children
Who were with the French transport, all--carried on by vis inertiae--
pressed forward into boats and into the ice-covered water and did not,

surrender .

line length tracking cell

Karpathy, Johnson, and Fei-Fei: Visualizing and Understanding Recurrent Networks, ICLR Workshop 2016
Figures copyright Karpathy, Johnson, and Fei-Fei, 2015; reproduced with permission
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Searching for interpretable cells

‘pending, mask);

IF_SIGP

if statement cell

Karpathy, Johnson, and Fei-Fei: Visualizing and Understanding Recurrent Networks, ICLR Workshop 2016
Figures copyright Karpathy, Johnson, and Fei-Fei, 2015; reproduced with permission
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Searching for interpretable cells

Cell that turns on inside comments and quotes:

quote/comment cell

Karpathy, Johnson, and Fei-Fei: Visualizing and Understanding Recurrent Networks, ICLR Workshop 2016

Figures copyright Karpathy, Johnson, and Fei-Fei, 2015; reproduced with permission
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Searching for interpretable cells

#ifdef CONFIG_AUDIY'SYSCALL'
static inline int audit_match_class_bits(int class, u32 *mask)
{
It
if (ciatsct[class]) B
for (i = ©; 1 < AUDIT_BITMASK_SIZE; i++)
if (mask[i1] & classes[class][i])
}
return 1;

}
code depth cell

Karpathy, Johnson, and Fei-Fei: Visualizing and Understanding Recurrent Networks, ICLR Workshop 2016
Figures copyright Karpathy, Johnson, and Fei-Fei, 2015; reproduced with permission
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