

Lecture 11: RNNs, LSTMs

Administrative: Assignment 3

Due Tuesday 11:59pm

- Normalization Layers,
- Dropout,
- CNNs

Administrative: Fridays

This Friday

Parameter-Efficient Fine-Tuning (PEFT)

Administrative: Project

Check out ed for info on:

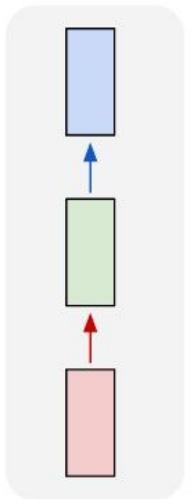
Google cloud credits

Poster printing

AI policy

“Vanilla” Neural Network

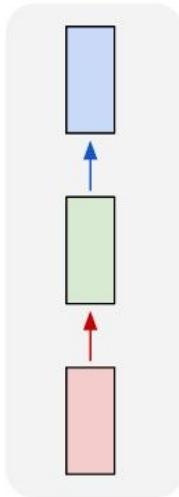
one to one



Vanilla Neural Networks

Recurrent Neural Networks: Process Sequences

one to one



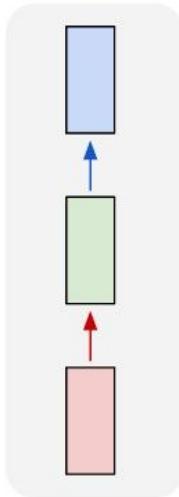
one to many



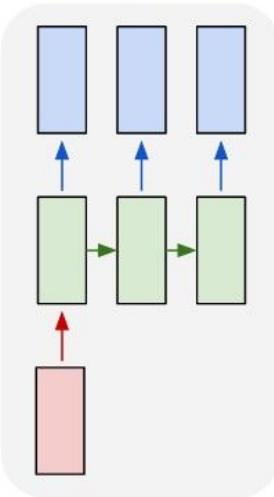
e.g. **Image Captioning**
image -> sequence of words

Recurrent Neural Networks: Process Sequences

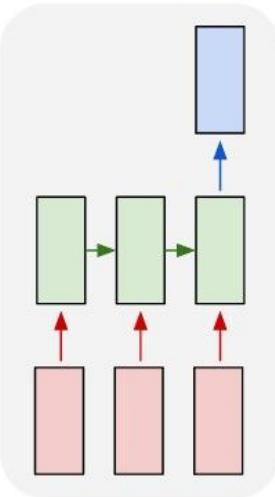
one to one



one to many



many to one

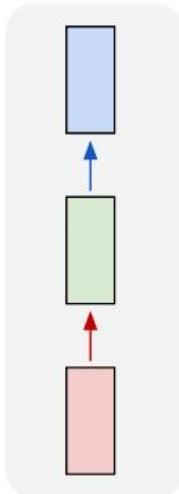


e.g. **action prediction, sentiment classification**

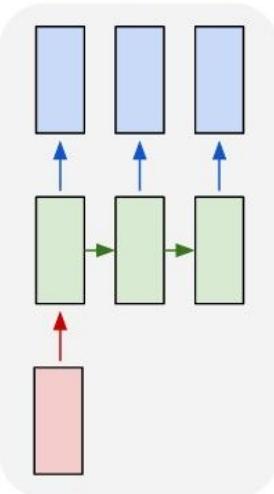
sequence of video frames -> action class

Recurrent Neural Networks: Process Sequences

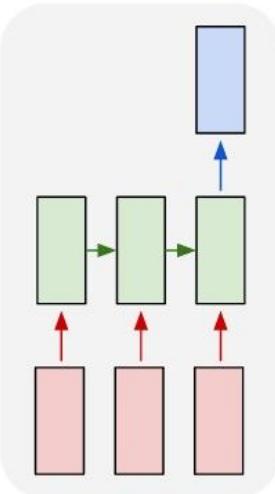
one to one



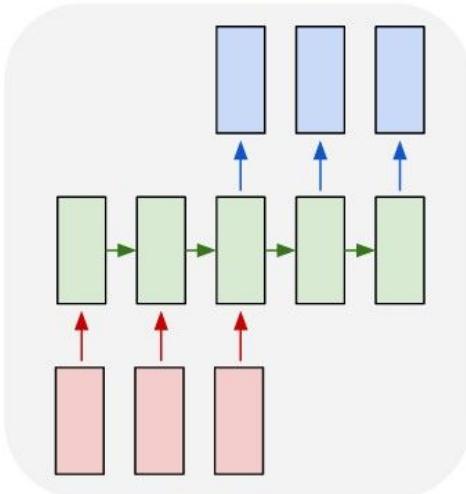
one to many



many to one



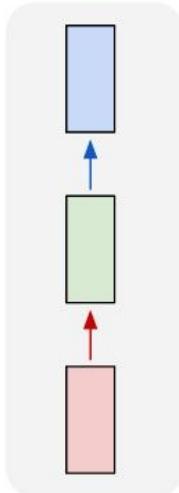
many to many



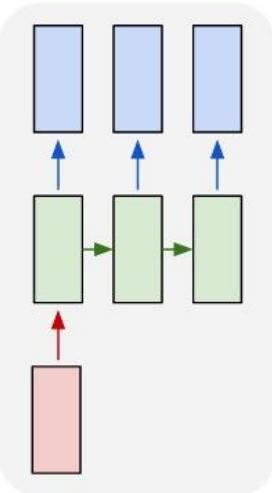
↑
E.g. **Video Captioning**
Sequence of video frames ->
caption

Recurrent Neural Networks: Process Sequences

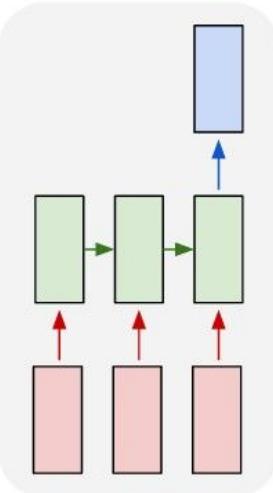
one to one



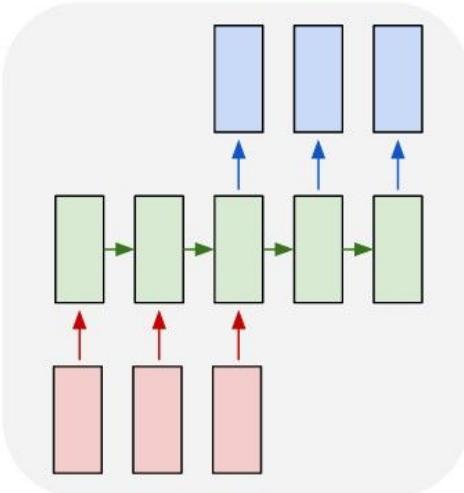
one to many



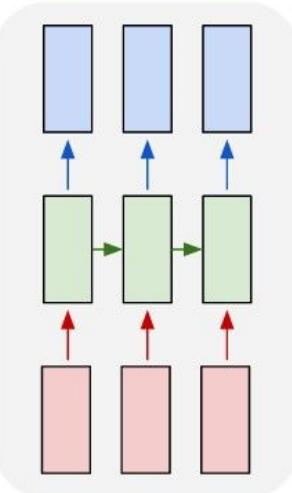
many to one



many to many



many to many



e.g. **Video classification on frame level**

So far: Representing words as discrete symbols

In traditional NLP, we regard words as discrete symbols:

hotel, conference, motel – each has its own symbol.

This is a **localist representation**

Such symbols for words can be represented by **one-hot vectors**:

$\text{motel} = [0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 1 \ 0 \ 0 \ 0 \ 0]$

$\text{hotel} = [0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 1 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0]$

Vector dimension = number of words in vocabulary (e.g., 500,000+)

So far: Representing words as dense vectors

We will build a **dense vector** for each word,

- chosen so that it is similar to vectors of words that appear in similar contexts: e.g. **jacket / coat / sweater**.
- measuring similarity as the vector dot (scalar) product.
- Word vectors are also called (word) **embeddings** or (neural) **word representations**

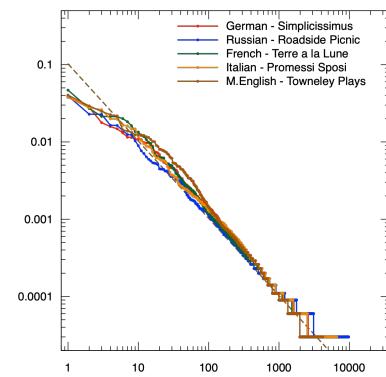
$$\begin{matrix} \text{Jacket} = \\ \left[\begin{matrix} 0.286 \\ 0.792 \\ -0.177 \\ -0.107 \\ 0.109 \\ -0.542 \\ 0.349 \\ 0.271 \end{matrix} \right] \end{matrix}$$

So far: vectors are associated with **words**

Our vocabulary was comprised of all of the **words in a language**

Problems:

- **500,000** words Webster's English Dictionary (3rd edition)
- Language is **changing** all of the time
 - 690 words were added to Merriam Webster's in September 2023 ("rizz", "goated", "mid")
- **Long tail** of infrequent words.
 - Zipf's law: word frequency is inversely proportional to word rank
- Some words **may not appear** in a training set of documents
- No modeled **relationship between words** - e.g., "run", "ran", "runs", "runner" are all separate entries despite being linked in meaning



Zipf's Law: Word Rank
vs. Word
Frequency for Several
Languages

Character level vectors instead?

What about assigning a vector to every character instead?

(Maybe add capital letters, punctuation, spaces, ...)

Pros:

- Small vocabulary size (for English)
- Complete coverage (unseen words are represented by letters)

Cons:

- Encoding a single sentence becomes very long!
 - # chars instead of # words
- Characters mean very different things in different words!
 - Even worse for representing multiple meanings

Subword tokenization!

How can we combine

1. the **high coverage** of character-level representations
2. with the efficiency of word-level representation?

Subword tokenization! (e.g., **Byte-Pair Encoding**)

- Start with character-level representations
- Build up representations from there

[Original BPE Paper](#) (Sennrich et al., 2016)

Example of how Byte-pair encoding works

Let's say our entire dataset contains only these 3 sentences:

$$\mathcal{D} = \{ \text{"i hug pugs"}, \text{"hugging pugs is fun"}, \text{"i make puns"} \}$$

Example of how Byte-pair encoding works

Let's say our entire dataset contains only these 3 sentences:

$$\mathcal{D} = \{ \text{"i hug pugs"}, \text{"hugging pugs is fun"}, \text{"i make puns"} \}$$

Initialize the vocabulary as all the individual characters. Current Vocab:

$$\mathcal{V} = \{ \text{' '}, \text{'a'}, \text{'e'}, \text{'f'}, \text{'g'}, \text{'h'}, \text{'i'}, \text{'k'}, \text{'m'}, \\ \text{'n'}, \text{'p'}, \text{'s'}, \text{'u'} \}, |\mathcal{V}| = 13$$

Example of how Byte-pair encoding works

Let's say our entire dataset contains only these 3 sentences:

$$\mathcal{D} = \{ \text{"i hug pugs"}, \text{"hugging pugs is fun"}, \text{"i make puns"} \}$$

Let's split it up into words by splitting **right before the whitespace**:

$$\mathcal{D} = \{ \text{"i"}, \text{" hug"}, \text{" pugs"}, \text{"hugging"}, \text{" pugs"}, \\ \text{" is"}, \text{" fun"}, \text{"i"}, \text{" make"}, \text{" puns"} \}$$

Example of how Byte-pair encoding works

The vocabulary for reference:

$$\mathcal{V} = \{‘ ’, ‘a’, ‘e’, ‘f’, ‘g’, ‘h’, ‘i’, ‘k’, ‘m’, ‘n’, ‘p’, ‘s’, ‘u’\}, |\mathcal{V}| = 13$$

Let's split it up into words by splitting right **before the whitespace**:

$$\mathcal{D} = \{“i”, “hug”, “pugs”, “hugging”, “pugs”, “is”, “fun”, “i”, “make”, “puns”\}$$

Example of how Byte-pair encoding works

The vocabulary for reference:

$$\mathcal{V} = \{ ' ', 'a', 'e', 'f', 'g', 'h', 'i', 'k', 'm', 'n', 'p', 's', 'u' \}, |\mathcal{V}| = 13$$

Let's represent the dataset

with only vocabulary
elements:

$$\mathcal{D} = \{ ['i'], [' ', 'h', 'u', 'g'], [' ', 'p', 'u', 'g', 's], ['h', 'u', 'g', 'g', 'i', 'n', 'g'], [' ', 'p', 'u', 'g', 's], [' ', 'i', 's'], [' ', 'f', 'u', 'n'], ['i'], [' ', 'm', 'a', 'k', 'e'], [' ', 'p', 'u', 'n', 's] \}$$

Example of how Byte-pair encoding works

The vocabulary for reference:

$$\mathcal{V} = \{ ' ', 'a', 'e', 'f', 'g', 'h', 'i', 'k', 'm', 'n', 'p', 's', 'u' \}, |\mathcal{V}| = 13$$

Now, let's find the most common bi-gram

$$\mathcal{D} = \{ ['i'], [' ', 'h'], ['u', 'g'], [' ', 'p'], ['u', 'g', 's'], ['h', 'u', 'g', 'g', 'i', 'n', 'g'], [' ', 'p'], ['u', 'g', 's'], [' ', 'i'], ['s'], [' ', 'f'], ['u', 'n'], ['i'], [' ', 'm'], ['a', 'k', 'e'], [' ', 'p'], ['u', 'n', 's'] \}$$

Example of how Byte-pair encoding works

The vocabulary for reference:

$$\mathcal{V} = \{ ' ', 'a', 'e', 'f', 'g', 'h', 'i', 'k', 'm', 'n', 'p', 's', 'u' \}, |\mathcal{V}| = 13$$

Now, let's find the most common bi-gram

$$\mathcal{D} = \{ ['i'], [' ', 'h'], ['u', 'g'], [' ', 'p'], ['u', 'g', 's'], ['h', 'u', 'g', 'g', 'i', 'n', 'g'], [' ', 'p'], ['u', 'g', 's'], [' ', 'i'], ['s'], [' ', 'f'], ['u', 'n'], ['i'], [' ', 'm'], ['a', 'k', 'e'], [' ', 'p'], ['u', 'n', 's'] \}$$

Create new vocab:

$$v_{14} := \text{concat}('u', 'g') = 'ug'$$

Example of how Byte-pair encoding works

Update vocabulary with new vocab v_{14} :

$$\mathcal{V} = \{ ' ', 'a', 'e', 'f', 'g', 'h', 'i', 'k', 'm', 'n', 'p', 's', 'u', \text{ug} \}, |\mathcal{V}| = 14$$

Update dataset by replace bigram with new vocab v_{14} :

$$\mathcal{D} = \{ ['i'], [' ', 'h', \text{ug}], [' ', 'p', \text{ug}, 's'], ['h', \text{ug}, 'g', 'i', 'n', 'g'], [' ', 'p', \text{ug}, 's'], [' ', 'i', 's'], [' ', 'f', 'u', 'n'], ['i'], [' ', 'm', 'a', 'k', 'e'], [' ', 'p', 'u', 'n', 's'] \}$$

Create new vocab:

$$v_{14} := \text{concat}('u', 'g') = \text{ug}$$

Example of how Byte-pair encoding works

Current vocabulary:

$$\mathcal{V} = \{ ' ', 'a', 'e', 'f', 'g', 'h', 'i', 'k', 'm', 'n', 'p', 's', 'u', \text{ug}' \}, |\mathcal{V}| = 14$$

Find the next common bigram:

$$\mathcal{D} = \{ ['i'], [' ', 'h', 'ug'], [' ', 'p', 'ug', 's'], ['h', 'ug', 'g', 'i', 'n', 'g'], [' ', 'p', 'ug', 's'], [' ', 'i', 's'], [' ', 'f', 'u', 'n'], ['i'], [' ', 'm', 'a', 'k', 'e'], [' ', 'p', 'u', 'n', 's'] \}$$

Example of how Byte-pair encoding works

Current vocabulary:

$$\mathcal{V} = \{ ' ', 'a', 'e', 'f', 'g', 'h', 'i', 'k', 'm', 'n', 'p', 's', 'u', 'ug' \}, |\mathcal{V}| = 14$$

Find the next common bigram:

$$\mathcal{D} = \{ ['i'], [' ', 'h', 'ug'], [' ', 'p', 'ug', 's'], ['h', 'ug', 'g', 'i', 'n', 'g'], [' ', 'p', 'ug', 's'], [' ', 'i', 's'], [' ', 'f', 'u', 'n'], ['i'], [' ', 'm', 'a', 'k', 'e'], [' ', 'p', 'u', 'n', 's'] \}$$

Create new vocab:

$$v_{15} := \text{concat}(' ', 'p') = ' p'$$

Example of how Byte-pair encoding works

Update vocabulary with new vocab v_{15} :

$$\mathcal{V} = \{ ' ', 'a', 'e', 'f', 'g', 'h', 'i', 'k', 'm', 'n', 'p', 's', 'u', \text{ug}, 'p \}, |\mathcal{V}| = 15$$

Update dataset by replace bigram with new vocab v_{15} :

$$\mathcal{D} = \{ [\text{\'i}], [' ', 'h', \text{ug}], ['p', \text{ug}, 's'], ['h', \text{ug}, 'g', 'i', 'n', 'g'], ['p', \text{ug}, 's'], [' ', 'i', 's'], [' ', 'f', 'u', 'n'], ['i'], [' ', 'm', 'a', 'k', 'e], ['p', 'u', 'n', 's] \}$$

Create new vocab:

$$v_{15} := \text{concat}(' ', 'p') = 'p'$$

Repeat until vocab size reaches the amount you want (20 for example)

Final vocabulary:

$$\mathcal{V} = \{ ' ', 'a', 'e', 'f', 'g', 'h', 'i', 'k', 'm', 'n', 'p', 's', 'u', 'ug', 'p', 'hug', 'pug', 'pugs', 'un', 'hug' \},$$

Final dataset:

$$\mathcal{D} = \{ ['i'], ['hug'], ['pugs'], ['hug', 'g', 'i', 'n', 'g'], ['pugs'], [' ', 'i', 's'], [' ', 'f', 'un'], ['i'], [' ', 'm', 'a', 'k', 'e'], ['p', 'un', 's'] \}$$

With this vocabulary, can you represent (or, tokenize/encode):

Q: Can you encode “apple”?

$$\mathcal{V} = \{1 : ' ', 2 : 'a', 3 : 'e', 4 : 'f', 5 : 'g', 6 : 'h', 7 : 'i',
8 : 'k', 9 : 'm', 10 : 'n', 11 : 'p', 12 : 's', 13 : 'u',
14 : 'ug', 15 : ' p', 16 : 'hug', 17 : ' pug', 18 : ' pugs',
19 : 'un', 20 : ' hug'\}$$

With this vocabulary, can you represent (or, tokenize/encode):

Q: Can you encode “apple”?

- No, there is no ‘l’ in the vocabulary

$$\mathcal{V} = \{1 : ' ', 2 : 'a', 3 : 'e', 4 : 'f', 5 : 'g', 6 : 'h', 7 : 'i', \\ 8 : 'k', 9 : 'm', 10 : 'n', 11 : 'p', 12 : 's', 13 : 'u', \\ 14 : 'ug', 15 : ' p', 16 : 'hug', 17 : ' pug', 18 : ' pugs', \\ 19 : 'un', 20 : ' hug'\}$$

With this vocabulary, can you represent (or, tokenize/encode):

Q: Can you encode “apple”?

- No, there is no ‘l’ in the vocabulary

Q: “map”?

$$\mathcal{V} = \{1 : ' ', 2 : 'a', 3 : 'e', 4 : 'f', 5 : 'g', 6 : 'h', 7 : 'i', \\ 8 : 'k', 9 : 'm', 10 : 'n', 11 : 'p', 12 : 's', 13 : 'u', \\ 14 : 'ug', 15 : ' p', 16 : 'hug', 17 : ' pug', 18 : ' pugs', \\ 19 : 'un', 20 : ' hug'\}$$

With this vocabulary, can you represent (or, tokenize/encode):

Q: Can you encode “apple”?

- No, there is no ‘l’ in the vocabulary

Q: “map”?

Yes - [9,2,11]

$$\mathcal{V} = \{1 : ' ', 2 : 'a', 3 : 'e', 4 : 'f', 5 : 'g', 6 : 'h', 7 : 'i', 8 : 'k', 9 : 'm', 10 : 'n', 11 : 'p', 12 : 's', 13 : 'u', 14 : 'ug', 15 : ' p', 16 : 'hug', 17 : ' pug', 18 : ' pugs', 19 : 'un', 20 : ' hug'\}$$

With this vocabulary, can you represent (or, tokenize/encode):

Q: Can you encode “apple”?

- No, there is no ‘l’ in the vocabulary

Q: “map”?

Yes - [9,2,11]

$$\mathcal{V} = \{1 : ' ', 2 : 'a', 3 : 'e', 4 : 'f', 5 : 'g', 6 : 'h', 7 : 'i', 8 : 'k', 9 : 'm', 10 : 'n', 11 : 'p', 12 : 's', 13 : 'u', 14 : 'ug', 15 : ' p', 16 : 'hug', 17 : ' pug', 18 : ' pugs', 19 : 'un', 20 : ' hug'\}$$

Q: “huge”?

With this vocabulary, can you represent (or, tokenize/encode):

Q: Can you encode “apple”?

- No, there is no ‘l’ in the vocabulary

Q: “map”?

Yes - [9,2,11]

$$\mathcal{V} = \{1 : ' ', 2 : 'a', 3 : 'e', 4 : 'f', 5 : 'g', 6 : 'h', 7 : 'i', 8 : 'k', 9 : 'm', 10 : 'n', 11 : 'p', 12 : 's', 13 : 'u', 14 : 'ug', 15 : ' p', 16 : 'hug', 17 : ' pug', 18 : ' pugs', 19 : 'un', 20 : ' hug'\}$$

Q: “huge”?

Yes - [16, 3] or [6,14,3] or [6,13,5,3]

With this vocabulary, can you represent (or, tokenize/encode):

Q: Can you encode “apple”?

- No, there is no ‘l’ in the vocabulary

Q: “map”?

Yes - [9,2,11]

$$\mathcal{V} = \{1 : ' ', 2 : 'a', 3 : 'e', 4 : 'f', 5 : 'g', 6 : 'h', 7 : 'i', 8 : 'k', 9 : 'm', 10 : 'n', 11 : 'p', 12 : 's', 13 : 'u', 14 : 'ug', 15 : ' p', 16 : 'hug', 17 : ' pug', 18 : ' pugs', 19 : 'un', 20 : ' hug'\}$$

Q: “huge”?

Yes - [16, 3] or [6,14,3] or [6,13,5,3]

Q: “ huge” with a space in the front?

With this vocabulary, can you represent (or, tokenize/encode):

Q: Can you encode “apple”?

- No, there is no ‘l’ in the vocabulary

Q: “map”?

Yes - [9,2,11]

$$\mathcal{V} = \{1 : ' ', 2 : 'a', 3 : 'e', 4 : 'f', 5 : 'g', 6 : 'h', 7 : 'i', 8 : 'k', 9 : 'm', 10 : 'n', 11 : 'p', 12 : 's', 13 : 'u', 14 : 'ug', 15 : ' p', 16 : 'hug', 17 : ' pug', 18 : ' pugs', 19 : 'un', 20 : ' hug'\}$$

Q: “huge”?

Yes - [16, 3] or [6,14,3] or [6,13,5,3]

Q: “ huge” with a space in the front?

Yes - [20, 3]

Benefits of Byte-pair encoding

1. Efficient to run (greedy vs. global optimization)
2. Lossless compression
3. Potentially some shared representations
 - a. e.g., the token “hug” could be used both in “hug” and “hugging”

Byte-pair encoding - ChatGPT Example

Call me Ishmael. Some years ago—never mind how long precisely—having
little or no money in my purse, and nothing particular to interest me on
shore, I thought I would sail about a little and see the watery part of
the world. It is a way I have of driving off the spleen and regulating
the circulation. Whenever I find myself growing grim about the mouth;
whenever it is a damp, drizzling November in my soul; whenever I find
myself involuntarily pausing before coffin warehouses, and bringing up
the rear of every funeral I meet; and especially whenever my hypos get
such an upper hand of me, that it requires a strong moral principle to
prevent me from deliberately stepping into the street, and methodically
knocking people's hats off—then, I account it high time to get to sea
as soon as I can. This is my substitute for pistol and ball. With a
philosophical flourish Cato throws himself upon his sword; I quietly
take to the ship. There is nothing surprising in this. If they but knew
it, almost all men in their degree, some time or other, cherish very
nearly the same feelings towards the ocean with me.

TEXT TOKEN IDS

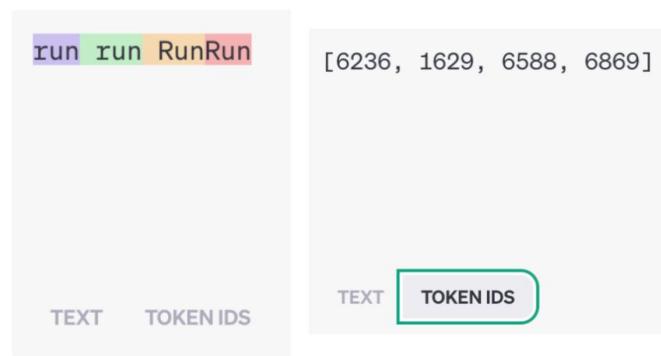
Tokens	Characters
239	1109

[7368, 757, 57704, 1764, 301, 13, 4427, 1667, 4227, 2345, 37593, 4059, 1268, 1317, 24559, 2345, 69666, 2697, 477, 912, 3300, 304, 856, 53101, 11, 323, 4400, 4040, 311, 2802, 757, 389, 31284, 11, 358, 3463, 358, 1053, 30503, 922, 264, 2697, 323, 1518, 279, 30125, 727, 961, 315, 279, 1917, 13, 1102, 374, 264, 1648, 358, 617, 315, 10043, 1022, 279, 87450, 268, 323, 58499, 279, 35855, 13, 43633, 358, 1505, 7182, 7982, 44517, 922, 279, 11013, 26, 15716, 433, 374, 264, 41369, 11, 1377, 73825, 6841, 304, 856, 13836, 26, 15716, 358, 1505, 7182, 4457, 3935, 6751, 7251, 985, 1603, 78766, 83273, 11, 323, 12967, 709, 279, 14981, 315, 1475, 32079, 358, 3449, 26, 323, 5423, 15716, 856, 6409, 981, 636, 1778, 459, 8582, 1450, 315, 757, 11, 430, 433, 7612, 264, 3831, 16033, 17966, 311, 5471, 757, 505, 36192, 36567, 1139, 279, 8761, 11, 323, 1749, 2740, 50244, 1274, 753, 45526, 1022, 2345, 3473, 11, 358, 2759, 433, 1579, 892, 311, 10616, 636, 311, 9581, 439, 5246, 439, 358, 649, 13, 1115, 374, 856, 28779, 369, 40536, 323, 5041, 13, 3161, 264, 41903, 67784, 356, 4428, 3872, 5678, 5304, 813, 20827, 26, 358, 30666, 1935, 311, 279, 8448, 13, 2684, 374, 4400, 15206, 304, 420, 13, 1442, 814, 719, 7020, 433, 11, 4661, 682, 3026, 304, 872, 8547, 11, 1063, 892, 477, 1023, 11, 87785, 1022, 7515, 279, 1890, 16024, 7119, 279, 18435, 449, 757, 13]

Weird properties of tokenizers

Token != word

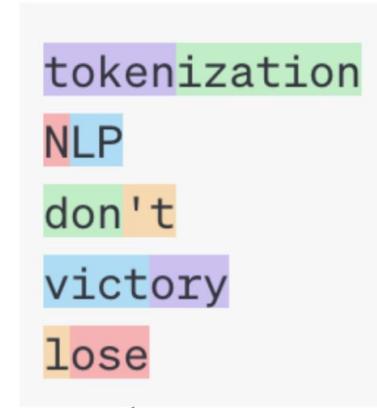
- Spaces are part of token
- “run” is a different token than “ run”
- Not invariant to case changes
- “Run” is a different token than “run”



Weird properties of tokenizers

Token != word

- Spaces are part of token
- “run” is a different token than “ run”
- Not invariant to case changes
- “Run” is a different token than “run”
- Tokenization fits statistics of your data
 - e.g., while these words are multiple tokens...



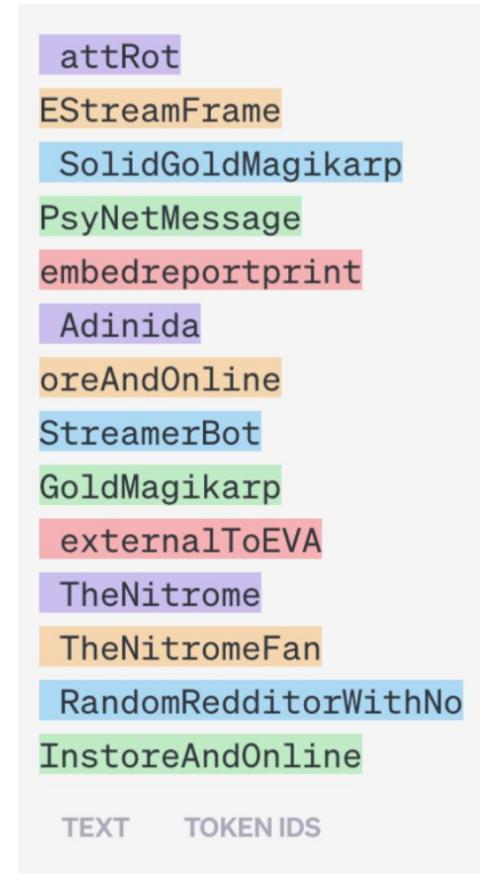
Weird properties of tokenizers

Token != word

- Spaces are part of token
- “run” is a different token than “ run”
- Not invariant to case changes
- “Run” is a different token than “run”
- Tokenization fits statistics of your data
 - e.g., while these words are multiple tokens...

These words are all 1 token in GPT-3’s tokenizer!

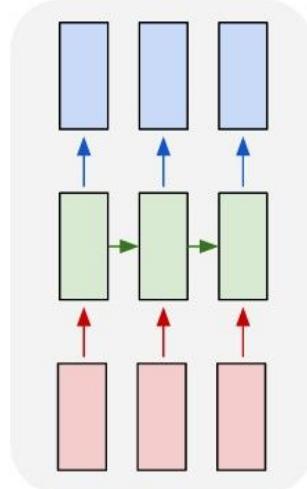
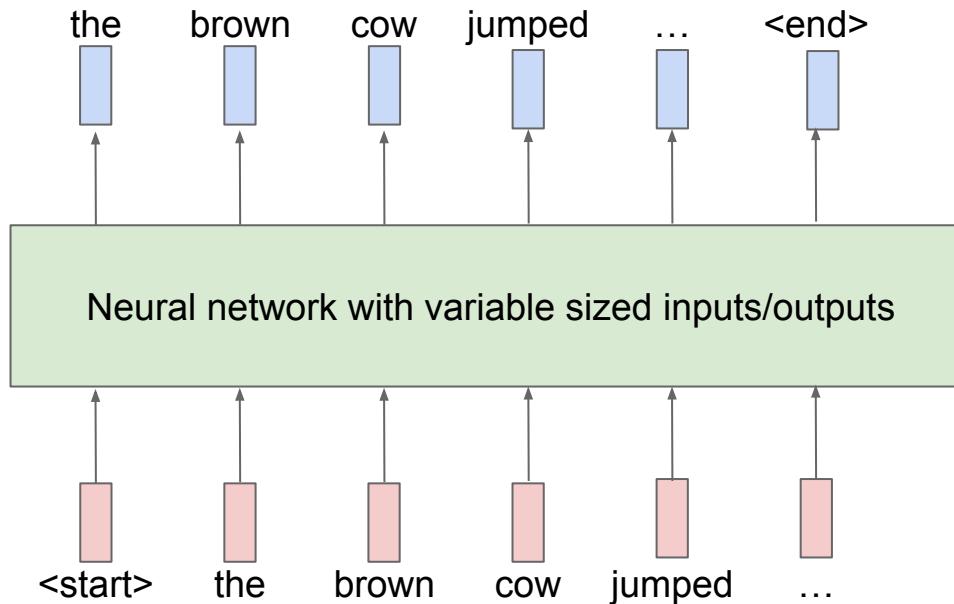
Does anyone know why?



Word representations
can be V-dimensional
one-hot vectors
Or d-dimensional
dense vectors

Now let's talk about how we can model language

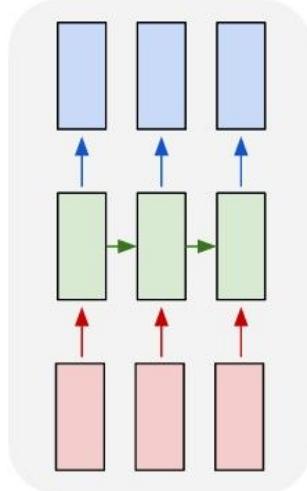
many to many



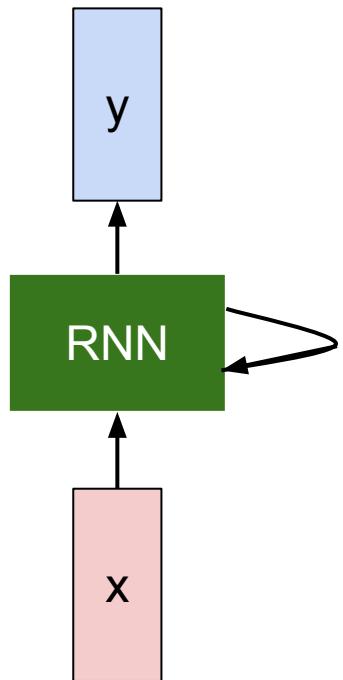
Outputs are
classification (softmax)
over V-dimensions

Now let's talk about how we can model language

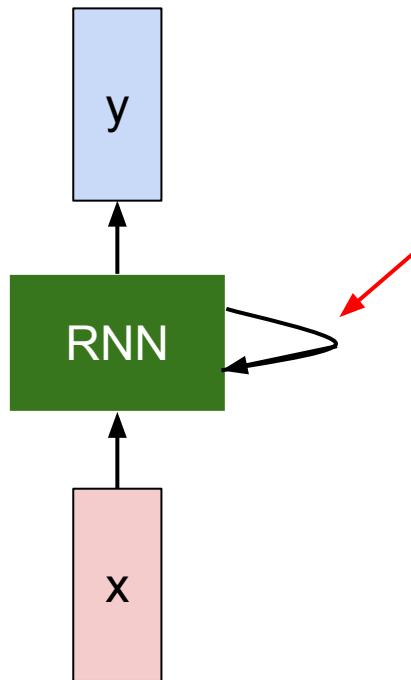
many to many



Recurrent Neural Network

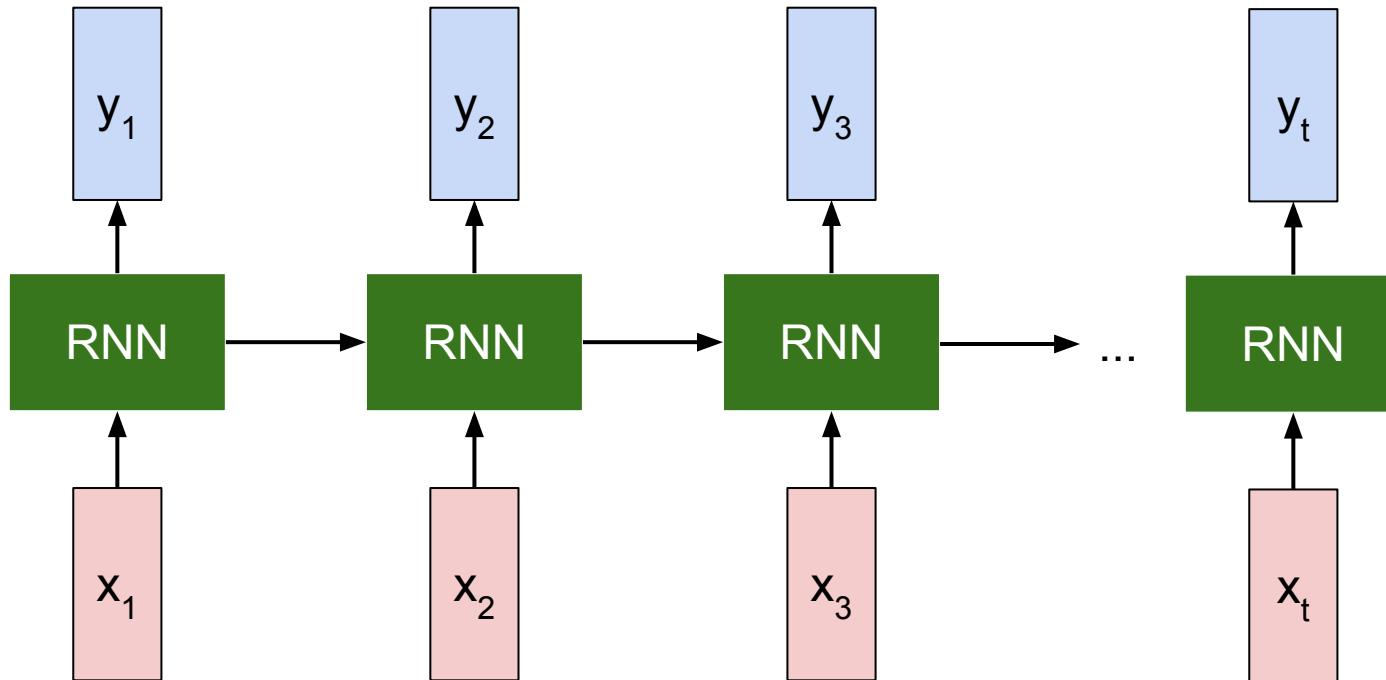


Recurrent Neural Network



Key idea: RNNs have an “internal state” that is updated as a sequence is processed

Unrolled RNN

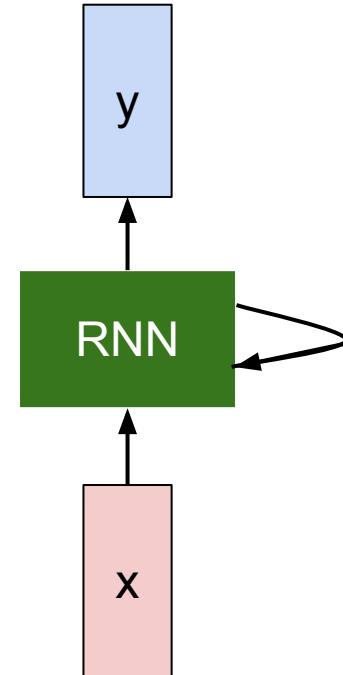


RNN hidden state update

We can process a sequence of vectors x by applying a **recurrence formula** at every time step:

$$h_t = f_W(h_{t-1}, x_t)$$

new state / old state input vector at
some function | some time step
with parameters W



RNN output generation

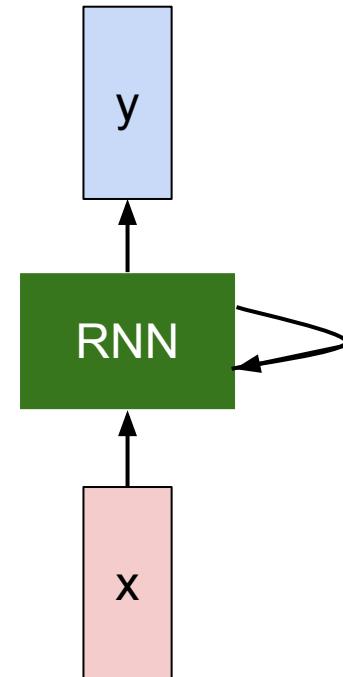
We can process a sequence of vectors \mathbf{x} by applying a **recurrence formula** at every time step:

$$y_t = f_{W_{hy}}(h_t)$$

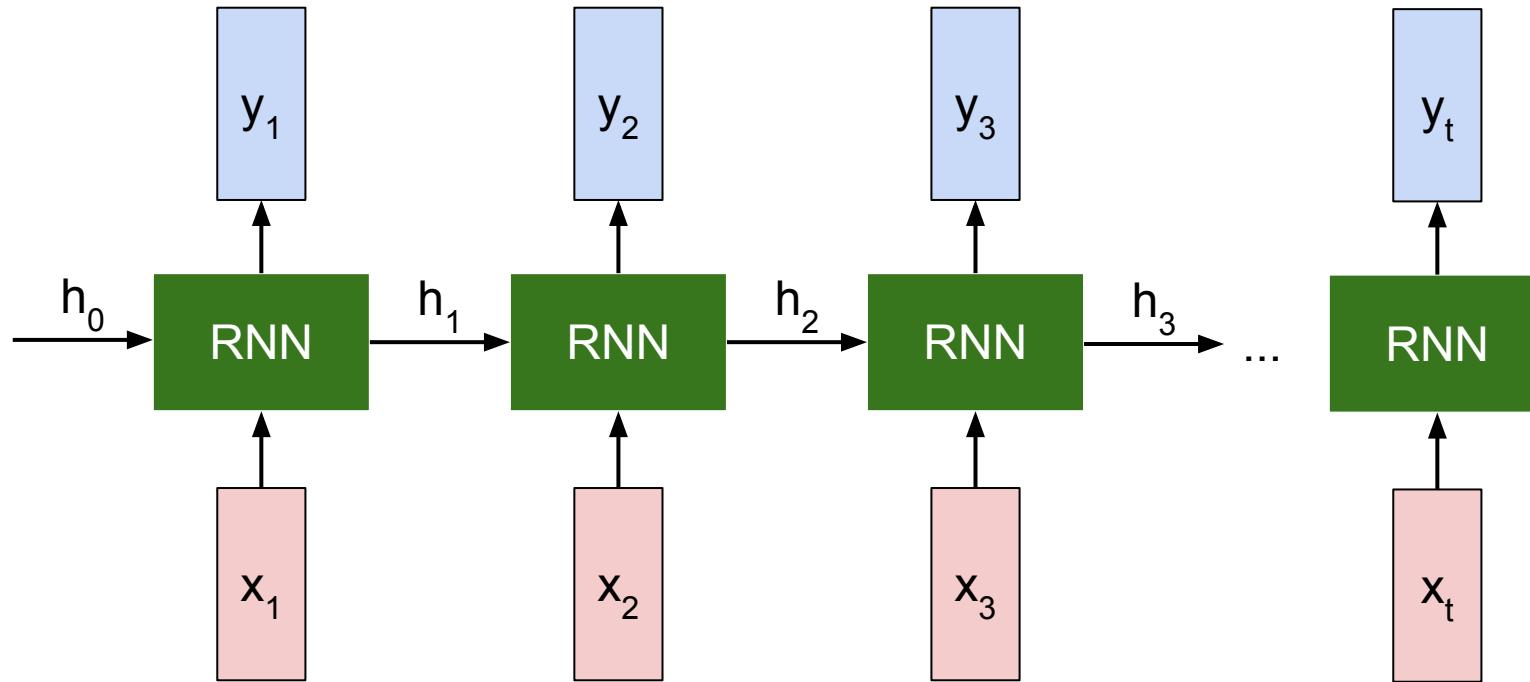
output

new state

another function
with parameters W_o



Recurrent Neural Network

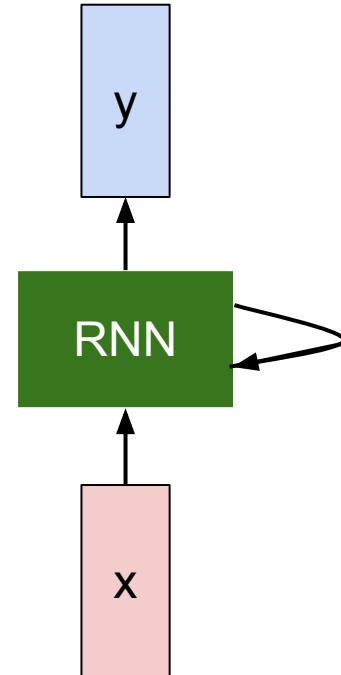


Recurrent Neural Network

We can process a sequence of vectors \mathbf{x} by applying a **recurrence formula** at every time step:

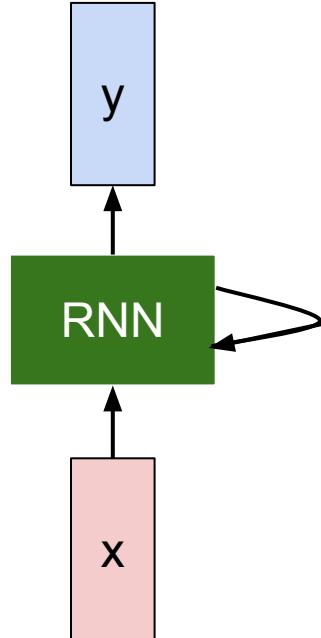
$$h_t = f_W(h_{t-1}, x_t)$$

Notice: the same function and the same set of parameters are used at every time step.



(Simple) Recurrent Neural Network

The state consists of a single “*hidden*” vector \mathbf{h} :



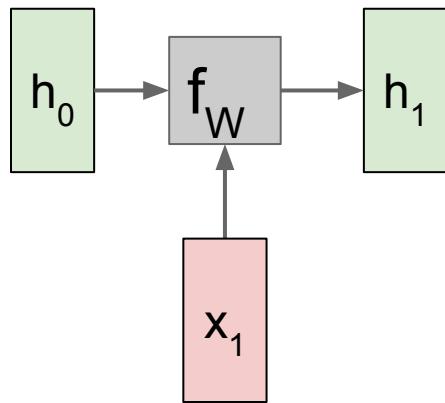
$$h_t = f_W(h_{t-1}, x_t)$$

$$h_t = \tanh(W_{hh}h_{t-1} + W_{xh}x_t)$$

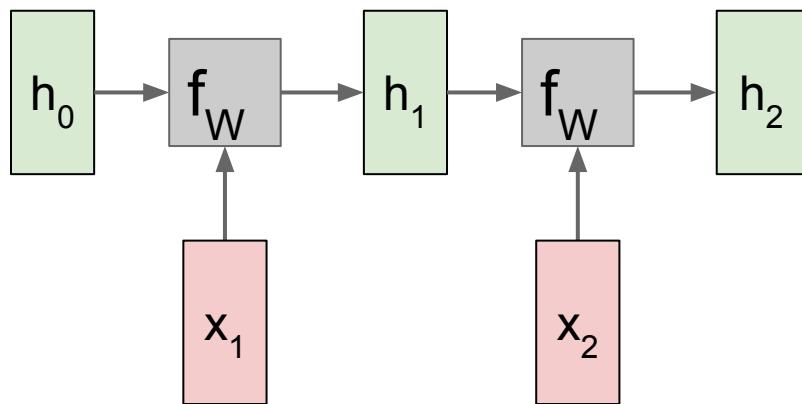
$$y_t = W_{hy}h_t$$

Sometimes called a “Vanilla RNN” or an “Elman RNN” after Prof. Jeffrey Elman

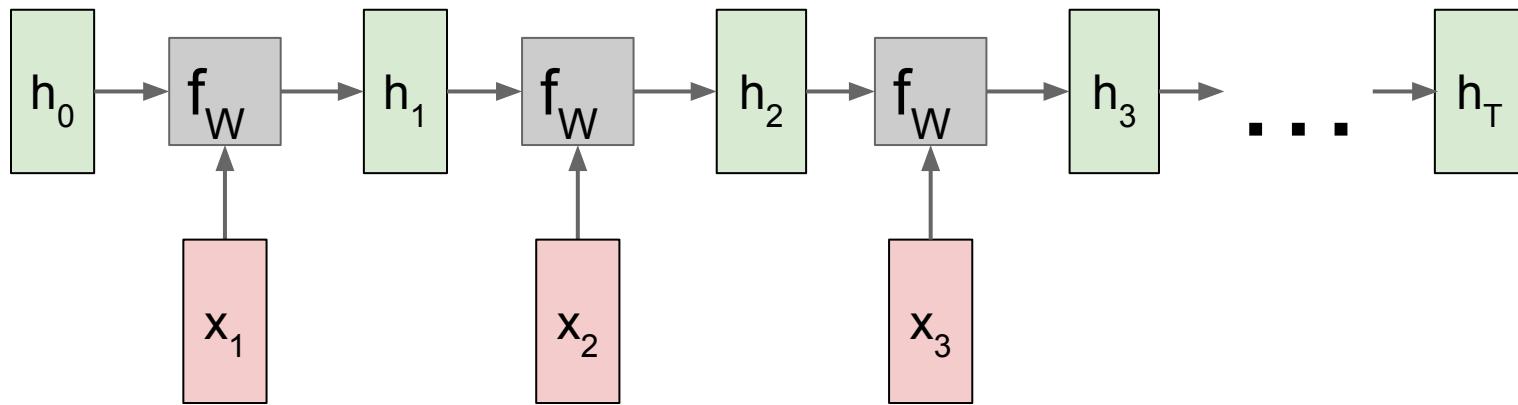
RNN: Computational Graph



RNN: Computational Graph

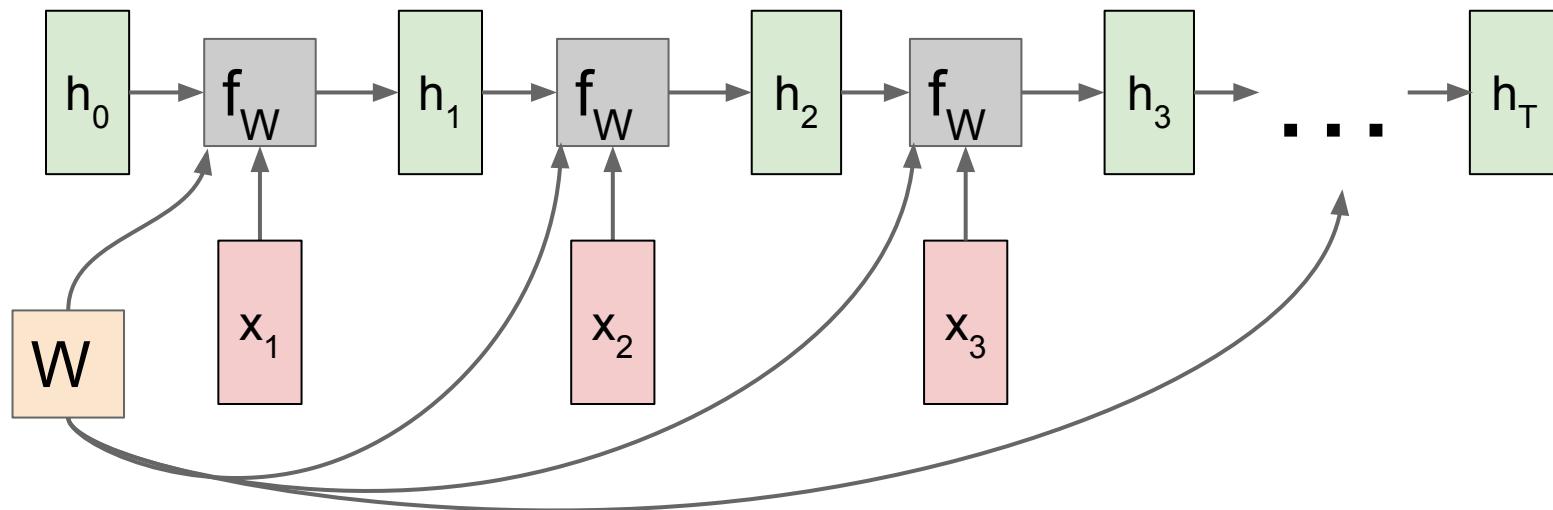


RNN: Computational Graph

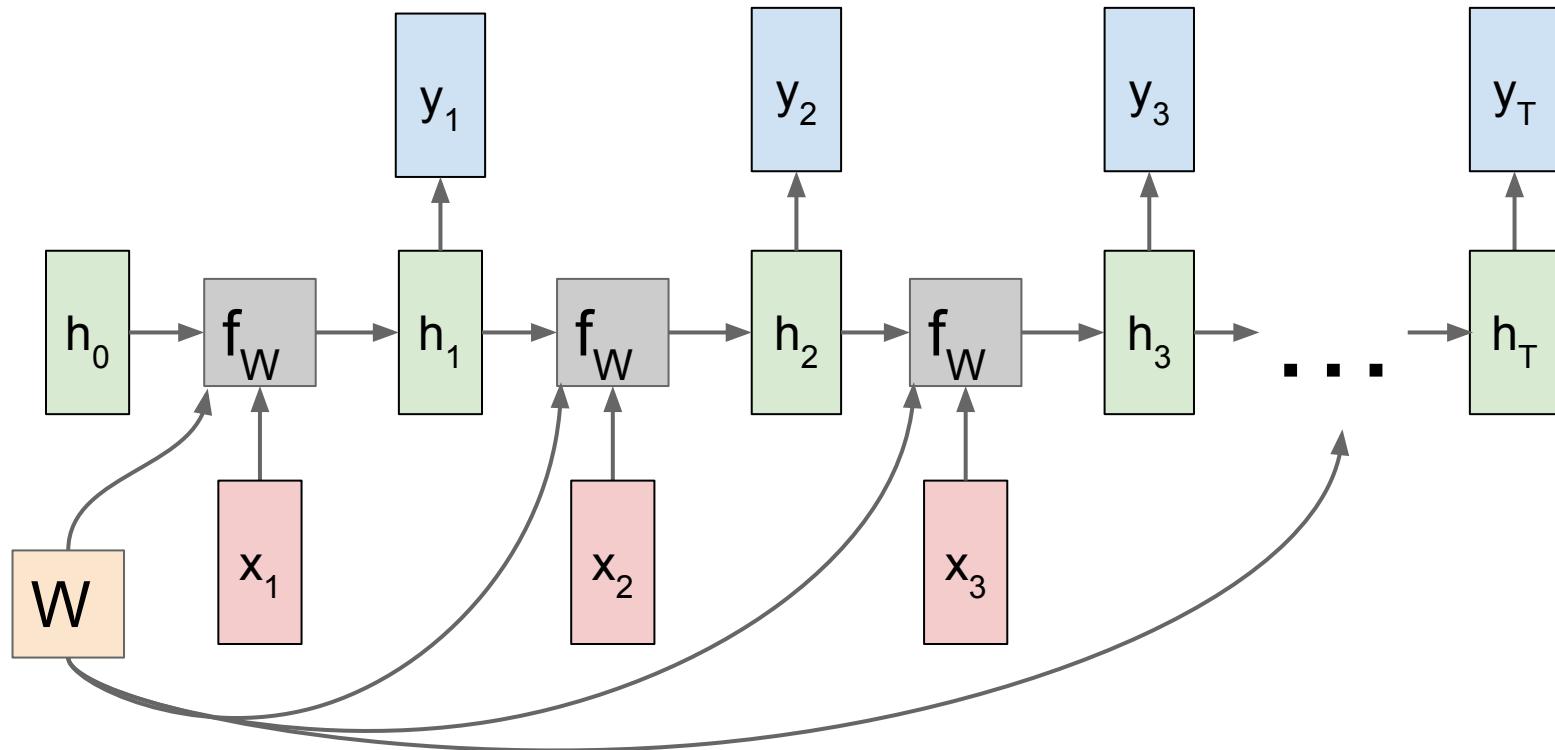


RNN: Computational Graph

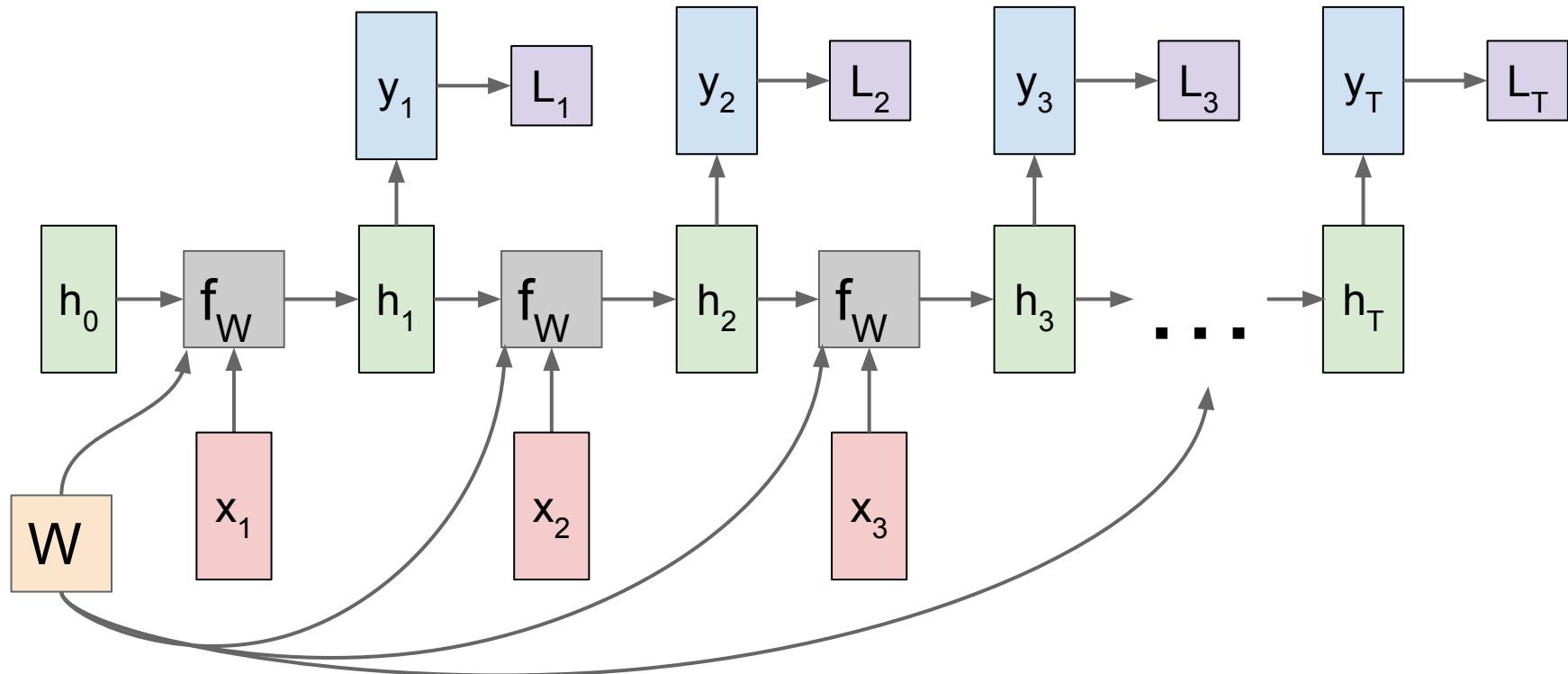
Re-use the same weight matrix at every time-step



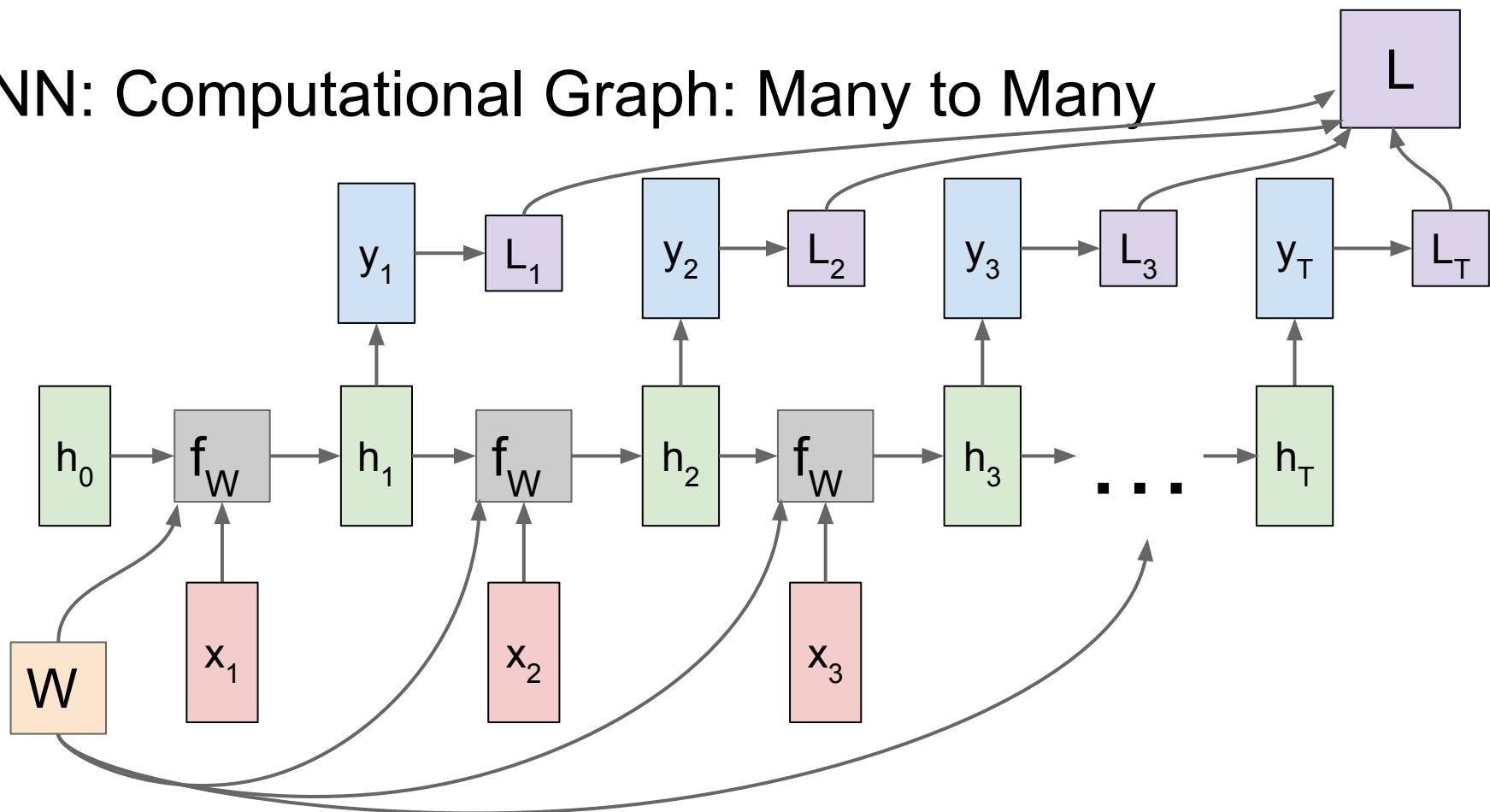
RNN: Computational Graph: Many to Many



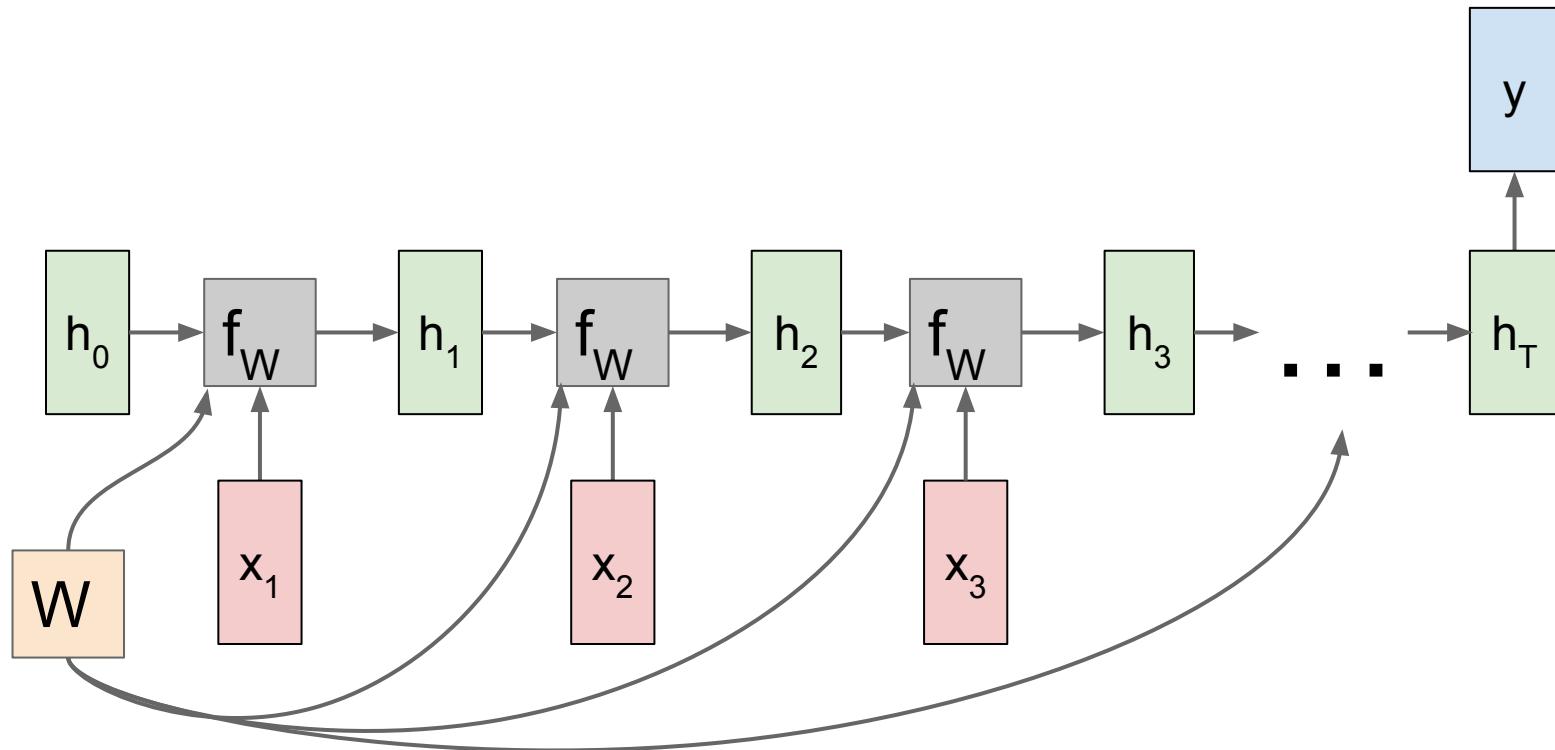
RNN: Computational Graph: Many to Many



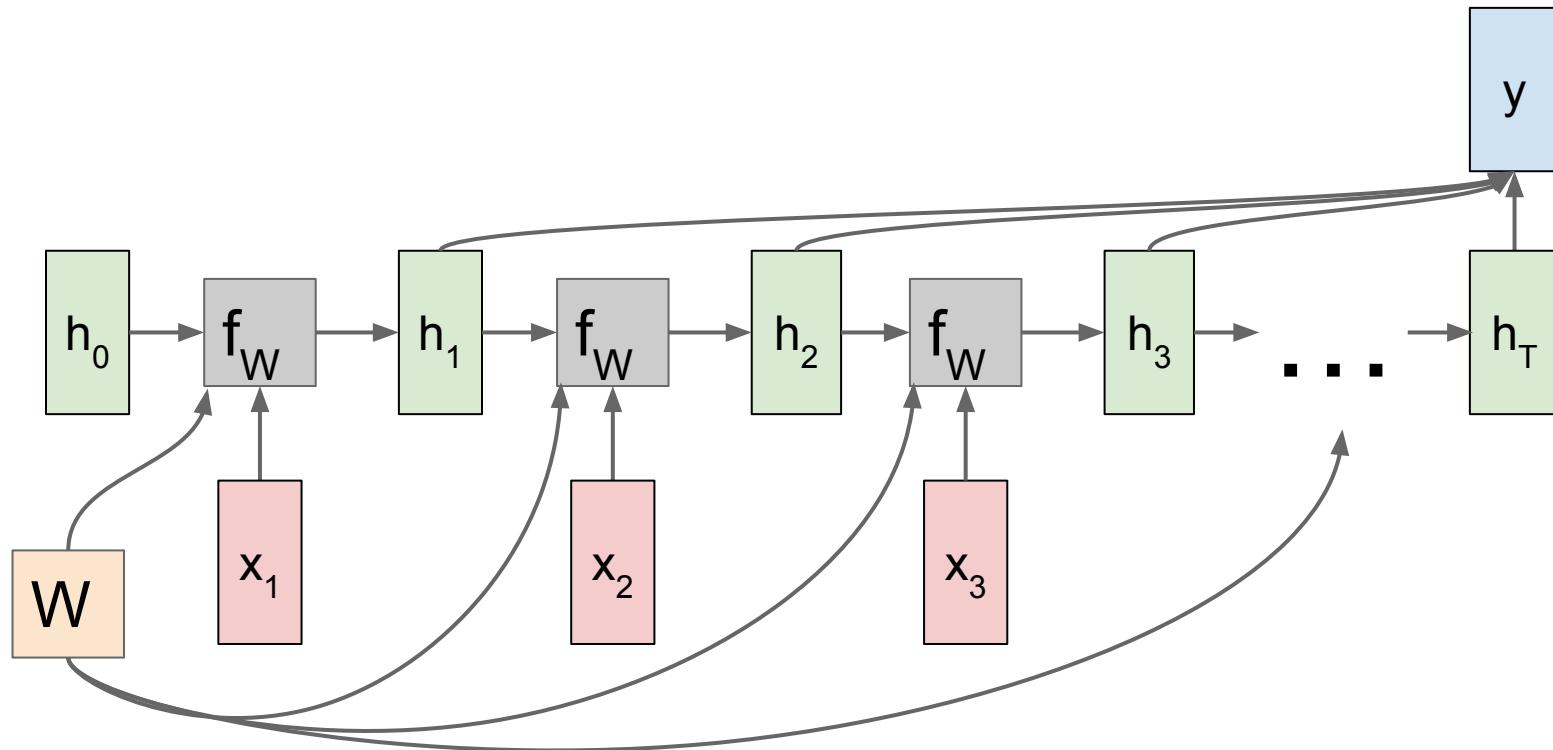
RNN: Computational Graph: Many to Many



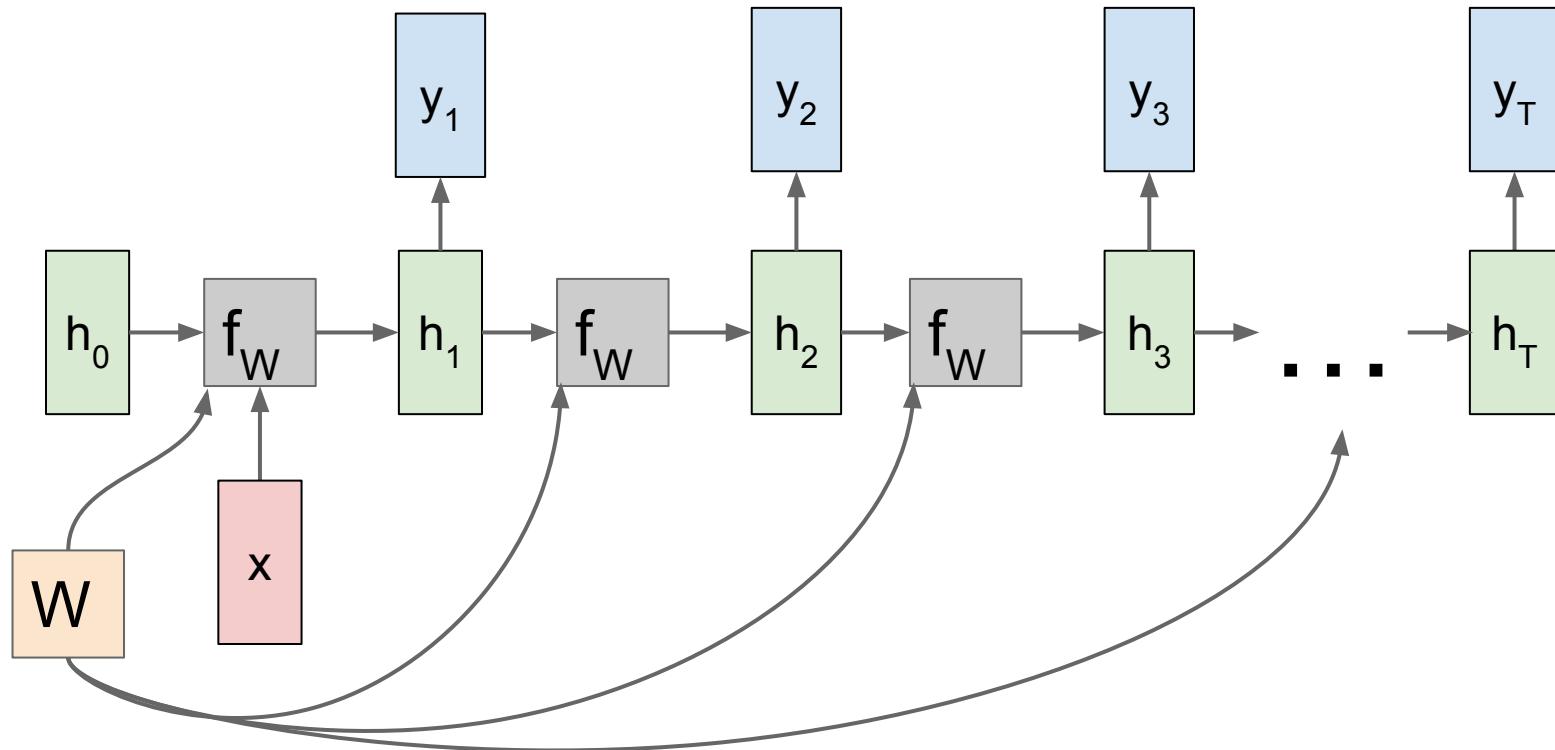
RNN: Computational Graph: Many to One



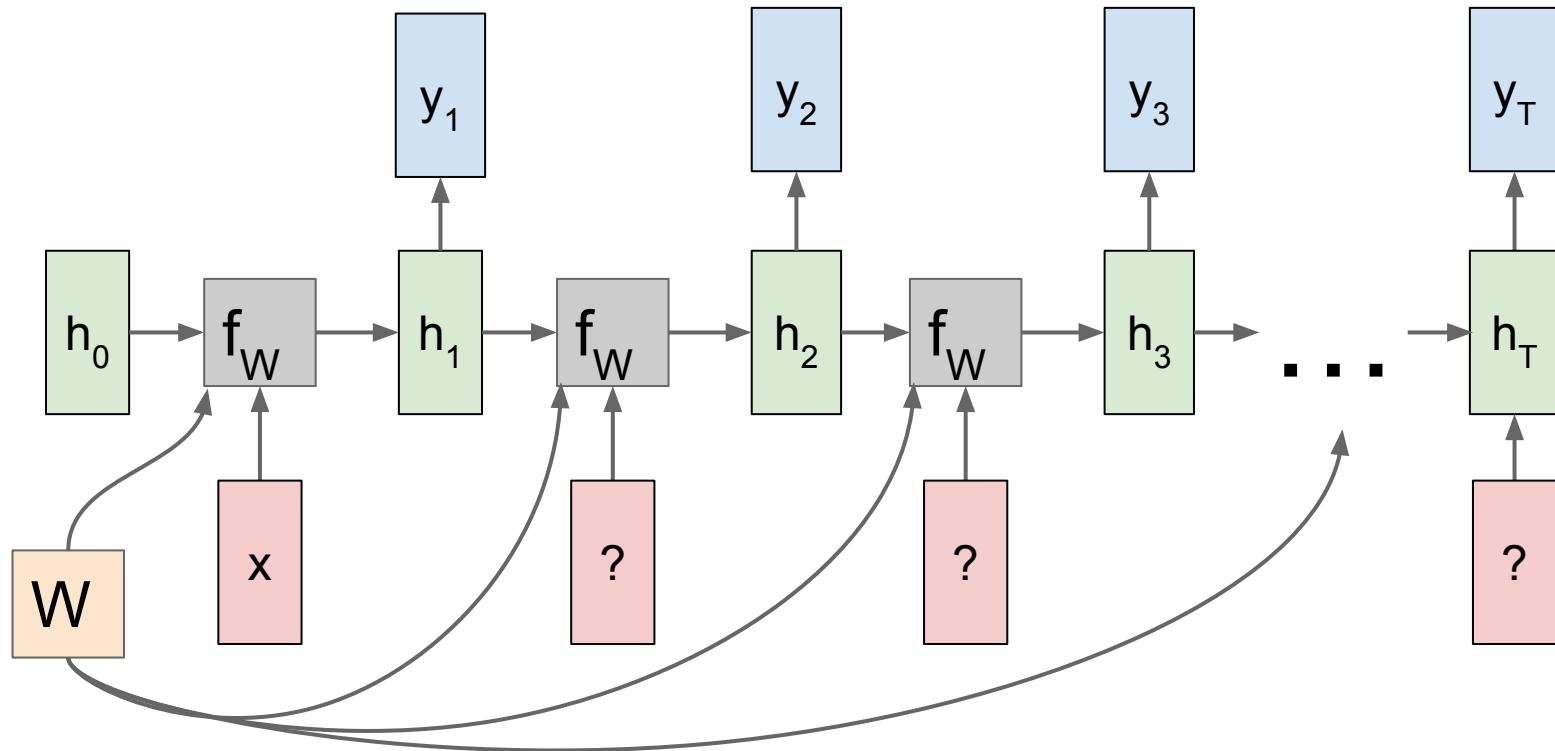
RNN: Computational Graph: Many to One



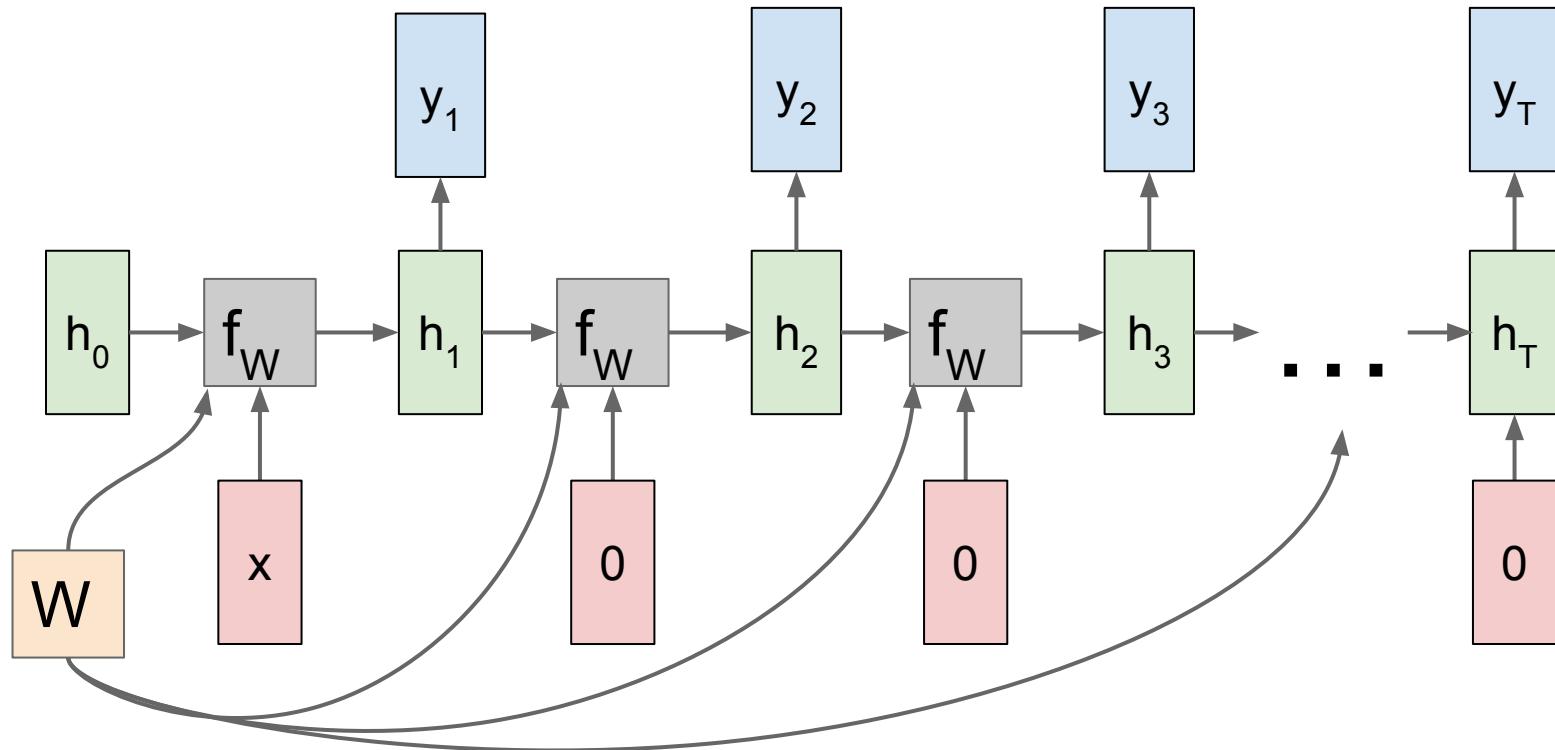
RNN: Computational Graph: One to Many



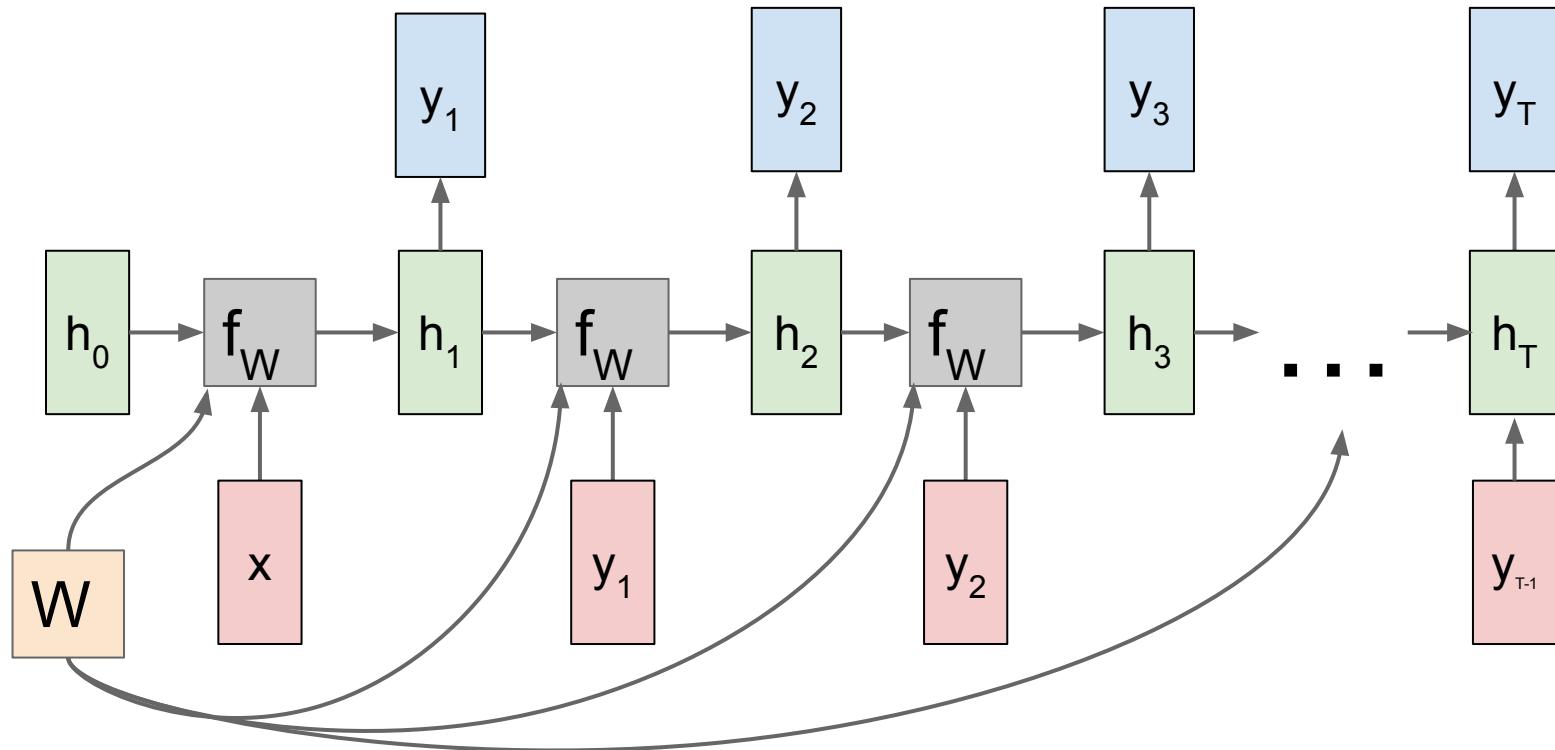
RNN: Computational Graph: One to Many



RNN: Computational Graph: One to Many

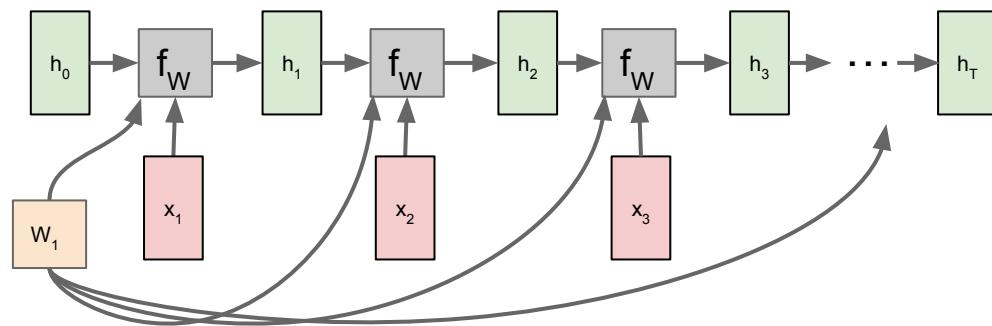


RNN: Computational Graph: One to Many



Sequence to Sequence: Many-to-one + one-to-many

Many to one: Encode input sequence in a single vector

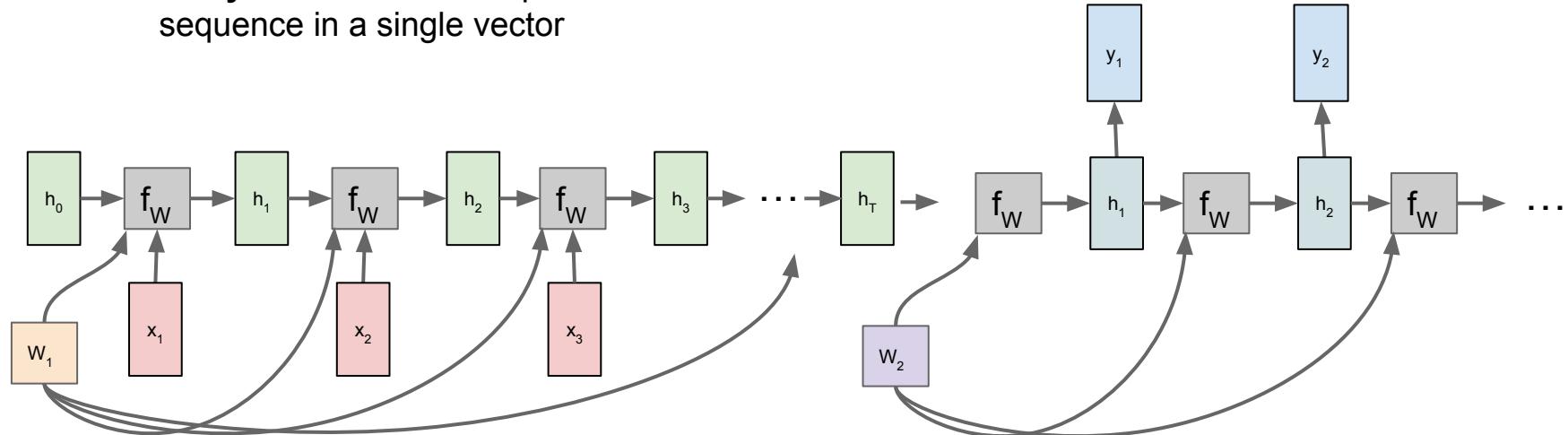


Sutskever et al, "Sequence to Sequence Learning with Neural Networks", NIPS 2014

Sequence to Sequence: Many-to-one + one-to-many

Many to one: Encode input sequence in a single vector

One to many: Produce output sequence from single input vector

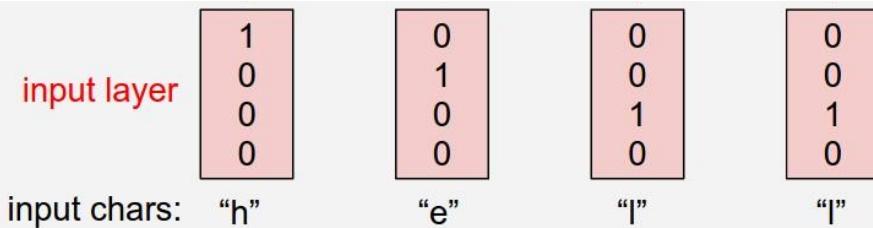


Sutskever et al, "Sequence to Sequence Learning with Neural Networks", NIPS 2014

Example: Character-level Language Model

Vocabulary:
[h,e,l,o]

Example training
sequence:
“hello”

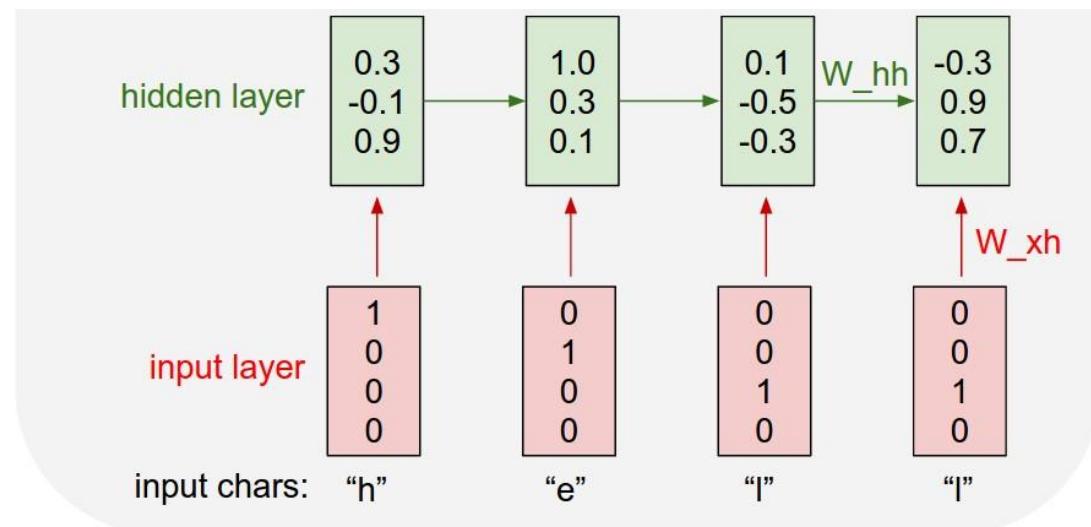


Example: Character-level Language Model

Vocabulary:
[h,e,l,o]

Example training
sequence:
“hello”

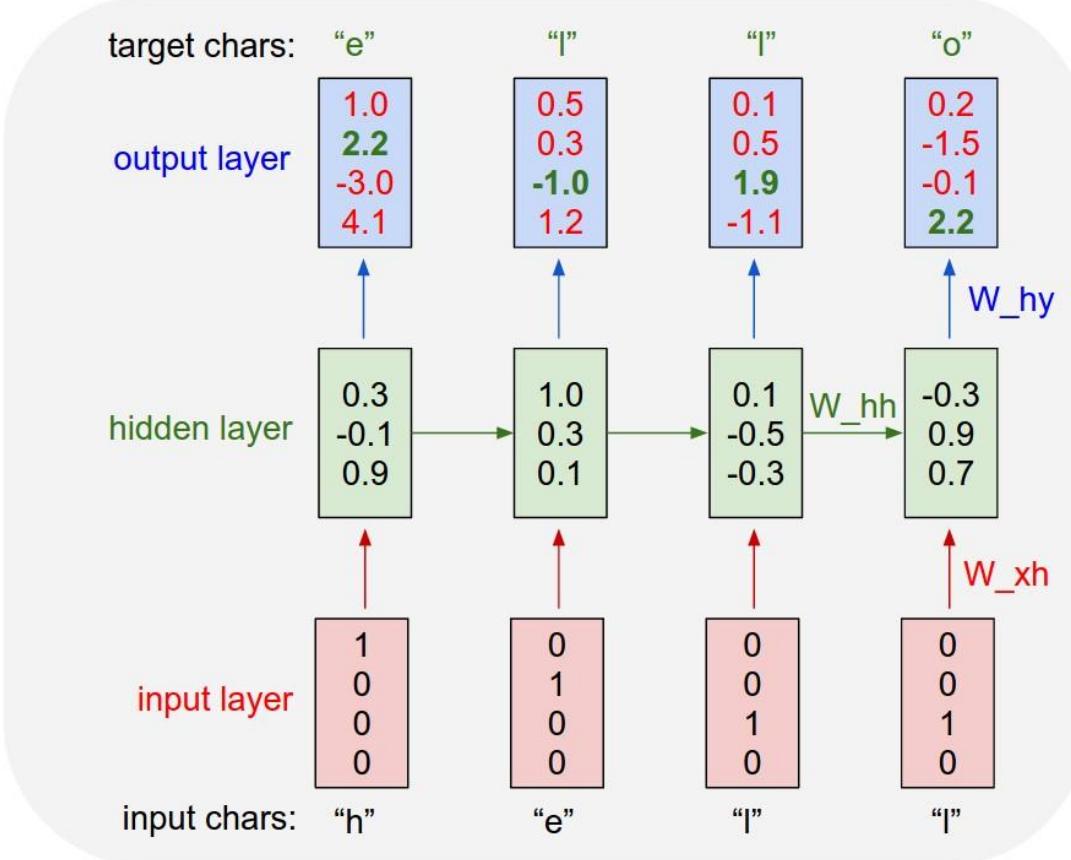
$$h_t = \tanh(W_{hh}h_{t-1} + W_{xh}x_t)$$



Example: Character-level Language Model

Vocabulary:
[h,e,l,o]

Example training
sequence:
“hello”

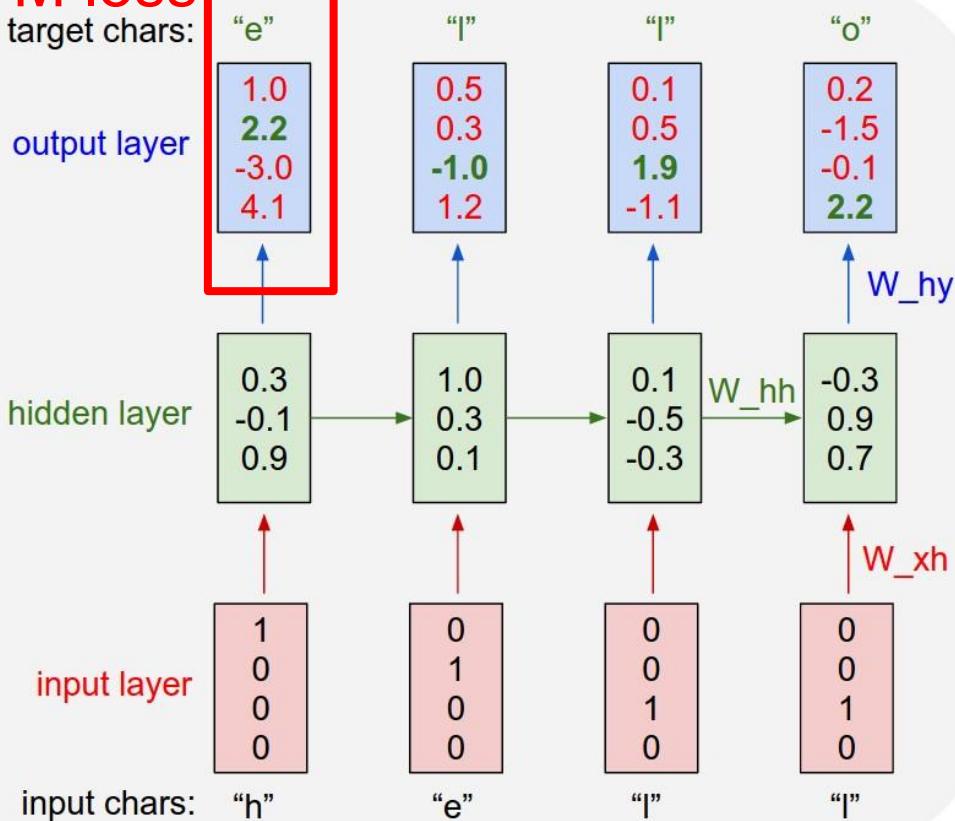


High SVM loss

Example: Character-level Language Model

Vocabulary:
[h,e,l,o]

Example training
sequence:
“hello”



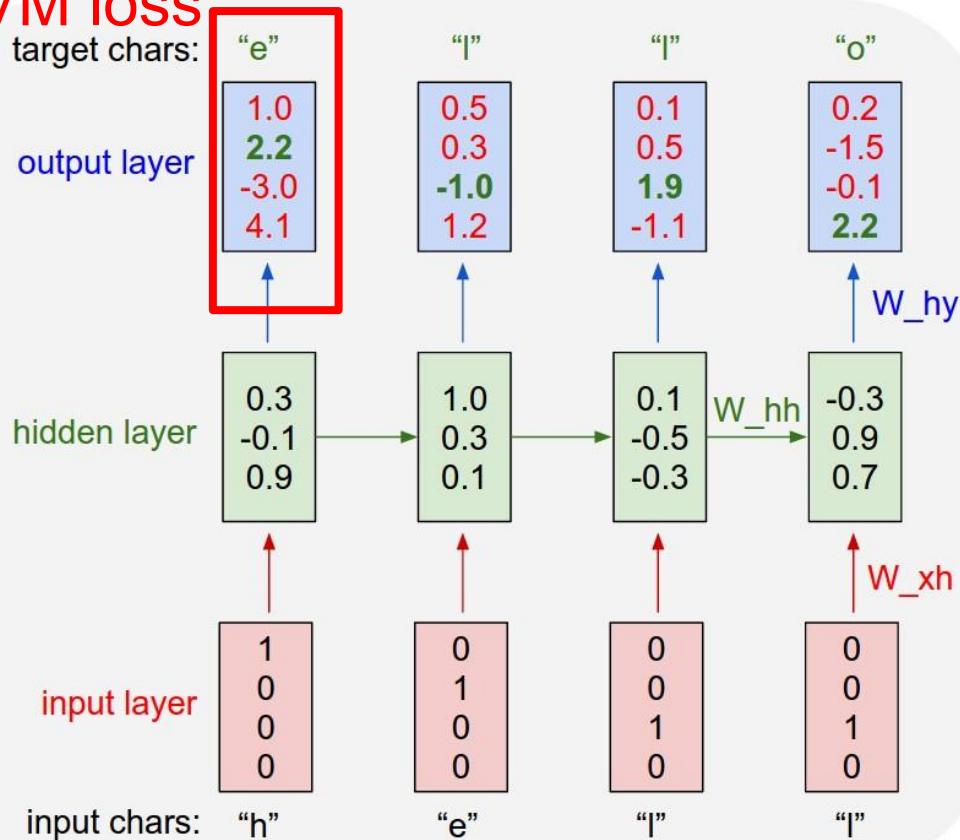
High SVM loss

Example: Character-level Language Model

So far: encode inputs as one-hot-vector

$$\begin{bmatrix} w_{11} & w_{12} & w_{13} & w_{14} \end{bmatrix} [1] \quad [w_{11}] \\
 \begin{bmatrix} w_{21} & w_{22} & w_{23} & w_{14} \end{bmatrix} [0] = [w_{21}] \\
 \begin{bmatrix} w_{31} & w_{32} & w_{33} & w_{14} \end{bmatrix} [0] \quad [w_{31}] \\
 [0]$$

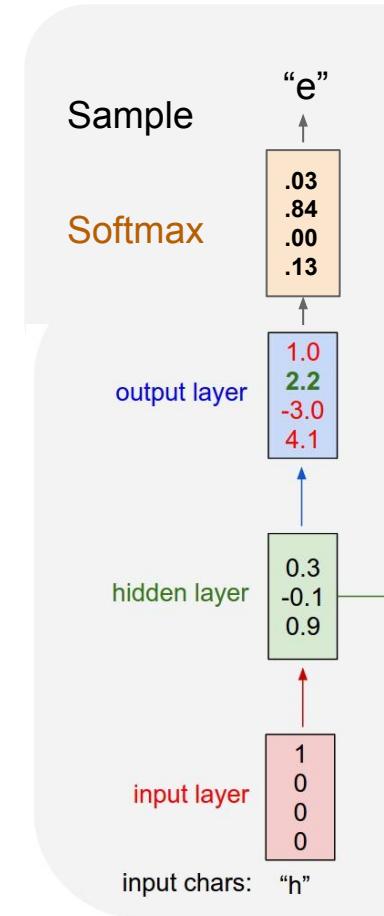
Matrix multiply with a one-hot vector just extracts a column from the weight matrix. Now a days, we extract this into a separate **embedding layer**



Example: Character-level Language Model Sampling

Vocabulary:
[h,e,l,o]

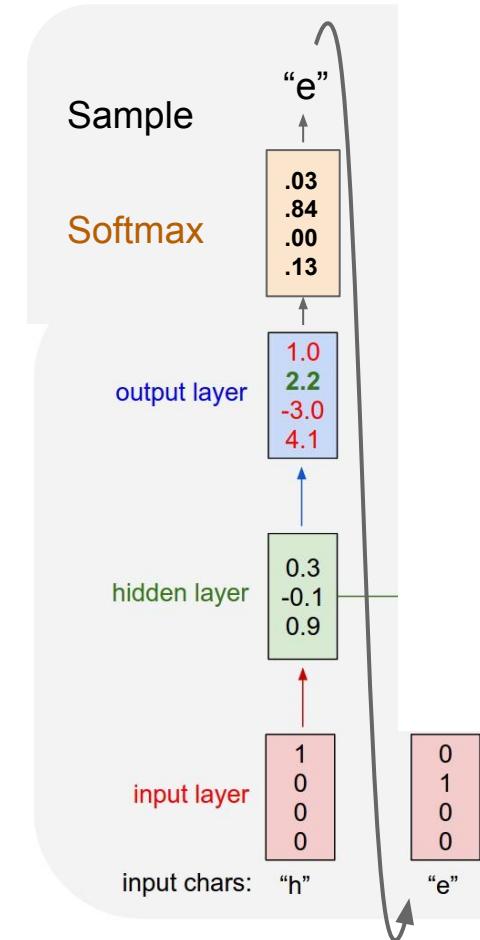
At test-time sample
characters one at a time,
feed back to model



Example: Character-level Language Model Sampling

Vocabulary:
[h,e,l,o]

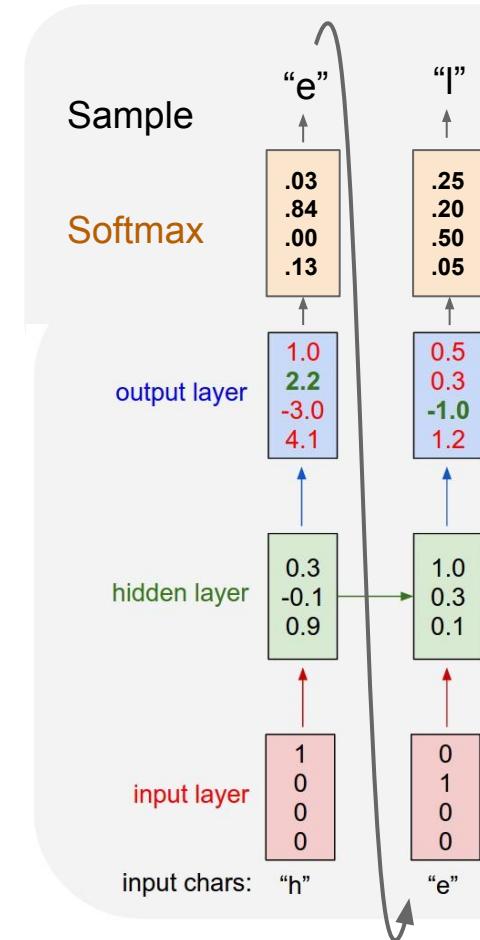
At test-time sample
characters one at a time,
feed back to model



Example: Character-level Language Model Sampling

Vocabulary:
[h,e,l,o]

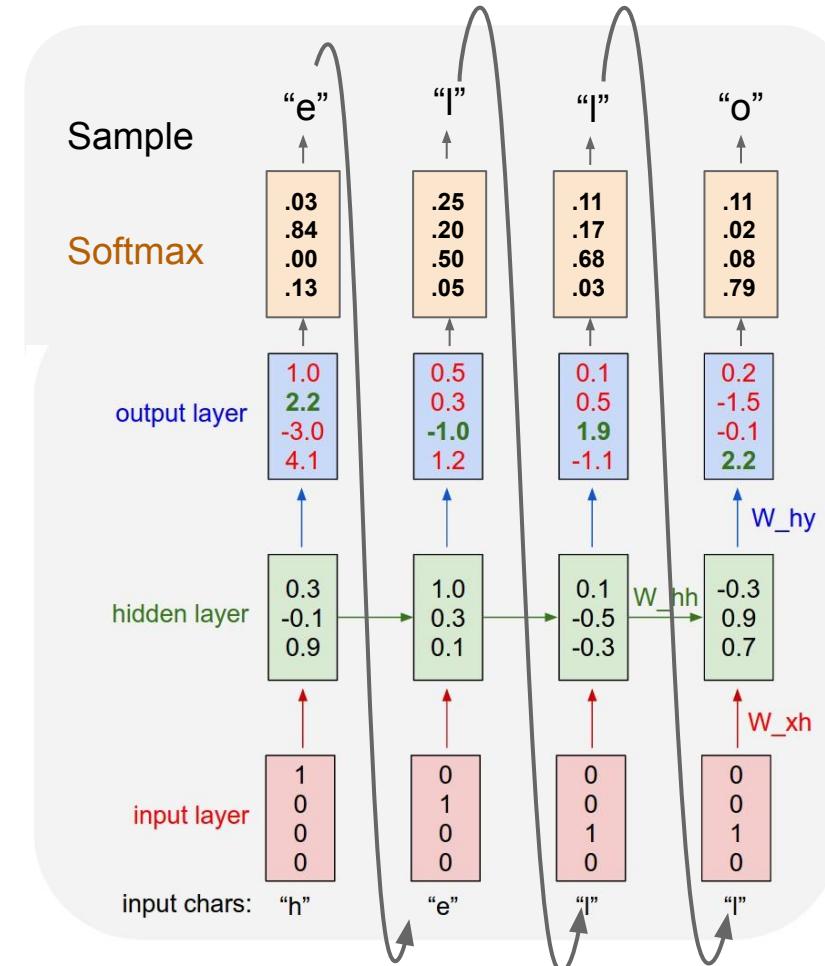
At test-time sample
characters one at a time,
feed back to model



Example: Character-level Language Model Sampling

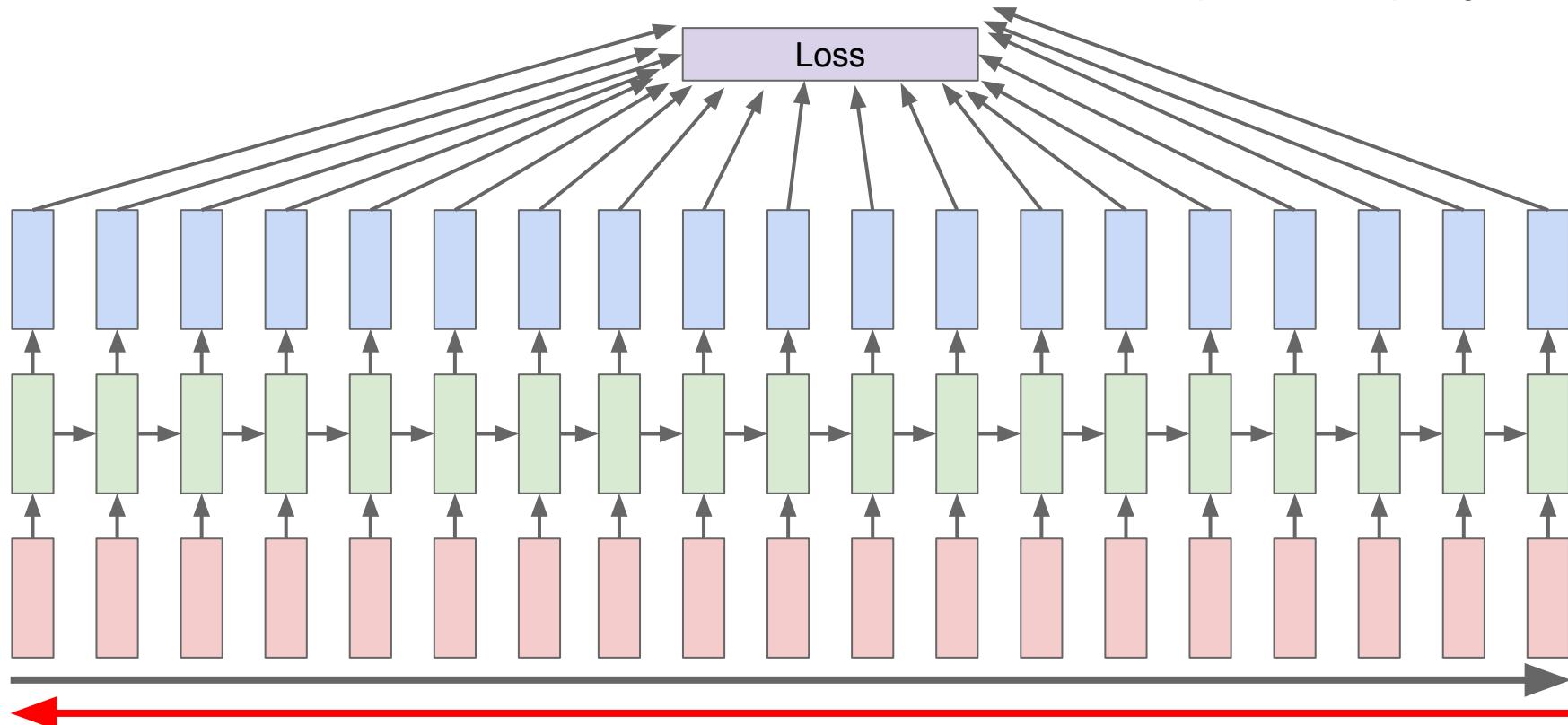
Vocabulary:
[h,e,l,o]

At test-time sample
characters one at a time,
feed back to model

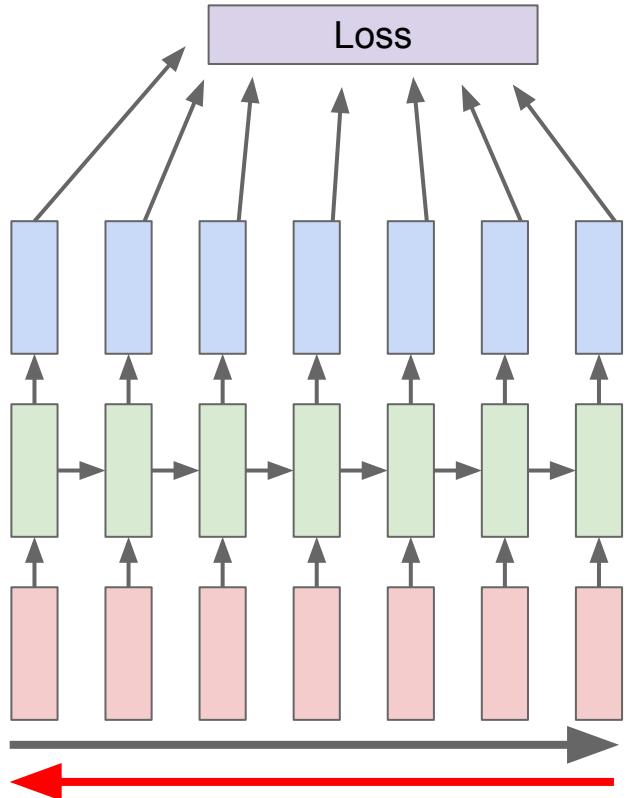


Backpropagation through time

Forward through entire sequence to compute loss, then backward through entire sequence to compute gradient

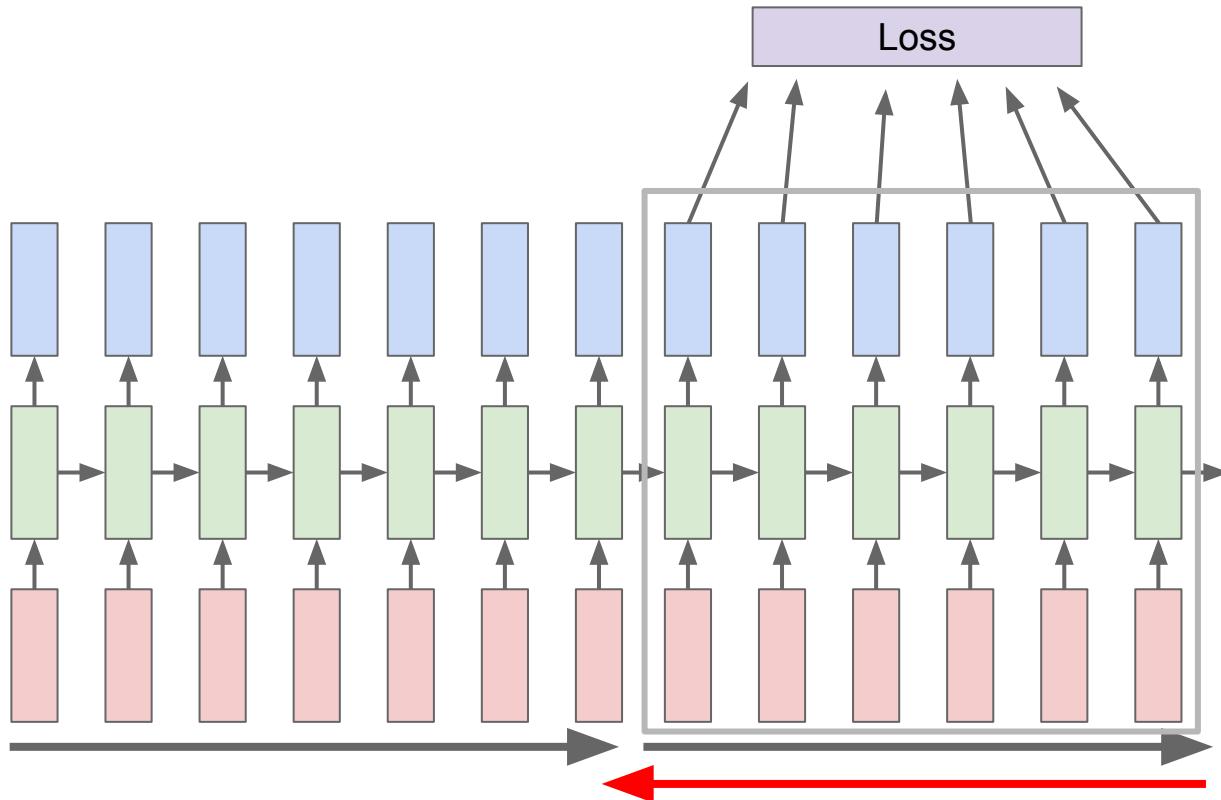


Truncated Backpropagation through time



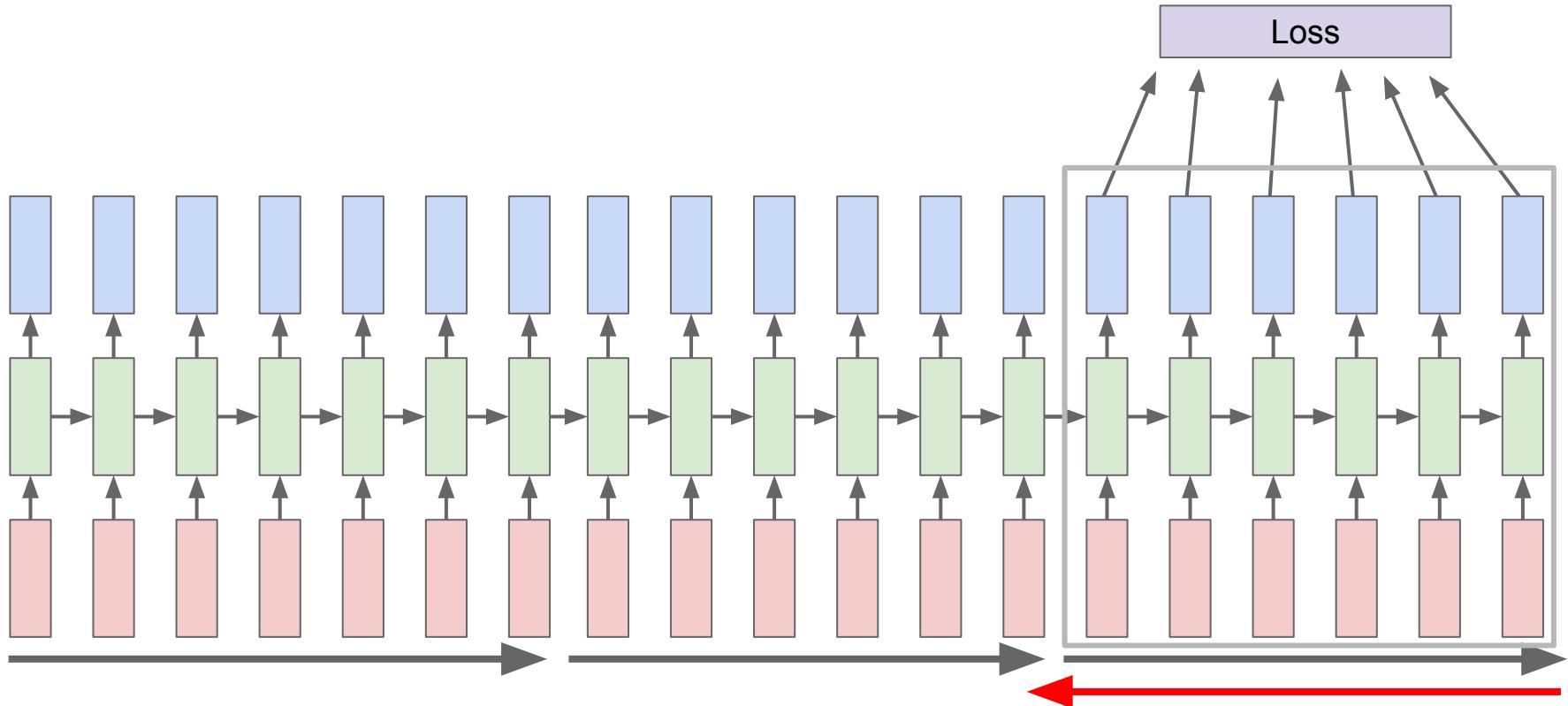
Run forward and backward
through chunks of the
sequence instead of whole
sequence

Truncated Backpropagation through time



Carry hidden states forward in time forever, but only backpropagate for some smaller number of steps

Truncated Backpropagation through time



min-char-rnn.py gist: 112 lines of Python

```
1  """
2  Minimal character-level Vanilla RNN model. Written by Andrej Karpathy (@karpathy)
3  BSD License
4  """
5  import numpy as np
6
7  # data I/O
8  data = open('input.txt', 'r').read() # should be simple plain text file
9  data_size, vocab_size = len(data), len(chars)
10 chars = list(set(chars))
11 print('data has %d characters, %d unique.' % (data_size, vocab_size))
12 char_to_ix = {ch:i for i,ch in enumerate(chars)}
13 ix_to_char = {i:ch for i,ch in enumerate(chars)}
14
15 # hyperparameters
16 hidden_size = 100 # size of hidden layer of neurons
17 seq_length = 25 # number of steps to unroll the RNN for
18 learning_rate = 1e-1
19
20 # model parameters
21 wkh = np.random.rand(hidden_size, vocab_size)*0.01 # input to hidden
22 whh = np.random.rand(hidden_size, hidden_size)*0.01 # hidden to hidden
23 why = np.random.rand(vocab_size, hidden_size)*0.01 # hidden to output
24 bh = np.zeros((hidden_size, 1)) # hidden bias
25 by = np.zeros((vocab_size, 1)) # output bias
26
27 def lossFun(inputs, targets, hprev):
28     """
29     inputs,targets are both list of integers.
30     hprev is Hx1 array of initial hidden state
31     returns the loss, gradients on model parameters, and last hidden state
32     """
33     xs, hs, ys, ps = {}, {}, {}, {}
34     hs[-1] = np.copy(hprev)
35     loss = 0
36     # forward pass
37     for t in xrange(len(inputs)):
38         xs[t] = np.zeros((vocab_size,1)) # encode in 1-of-k representation
39         xs[t][inputs[t]] = 1
40         hs[t] = np.tanh(np.dot(wkh, xs[t]) + np.dot(whh, hs[t-1]) + bh) # hidden state
41         ys[t] = np.dot(why, hs[t]) + by # unnormalized log probabilities for next chars
42         ps[t] = np.exp(ys[t]) / np.sum(np.exp(ys[t])) # probabilities for next chars
43         loss += -np.log(ps[t][targets[t],0]) # softmax (cross-entropy loss)
44
45         # backward pass: compute gradients going backwards
46         dwhx, dwhy = np.zeros_like(wkh), np.zeros_like(why)
47         dwhh, dbh = np.zeros_like(whh), np.zeros_like(bh)
48         dnext = np.zeros_like(hs[0])
49         for t2 in reversed(xrange(len(inputs))):
50             dy = np.copy(ps[t2])
51             dy[targets[t2]] -= 1 # backprop into y
52             dyb = np.dot(dy, hs[t2].T)
53             dh = np.dot(why.T, dy) + dnext # backprop into h
54             ddraw = (i - hs[t2].T) * dh # backprop through tanh nonlinearity
55             dhh = ddraw
56             dwhx += np.dot(ddraw, xs[t].T)
57             dwhh += np.dot(ddraw, hs[t-1].T)
58             dnext = np.dot(why.T, ddraw)
59             for dparam in [dwhx, dwhh, dwhy, dbh, dby]:
60                 np.clip(dparam, -5, 5, out=dparam) # clip to mitigate exploding gradients
61
62     return loss, dwhx, dwhh, dwhy, dbh, dby, hs[len(inputs)-1]
```

```
63 def sample(h, seed_ix, n):
64     """
65     sample a sequence of integers from the model
66     h is memory state, seed_ix is seed letter for first time step
67     """
68     x = np.zeros((vocab_size, 1))
69     x[seed_ix] = 1
70     ixes = []
71     for t in xrange(n):
72         h = np.tanh(np.dot(wkh, x) + np.dot(whh, h) + bh)
73         y = np.dot(why, h) + by
74         p = np.exp(y) / np.sum(np.exp(y))
75         ix = np.random.choice(range(vocab_size), p=p.ravel())
76         x = np.zeros((vocab_size, 1))
77         x[ix] = 1
78         ixes.append(ix)
79
80     return ixes
81
82 nwxh, mwkh, mwhy = np.zeros_like(wkh), np.zeros_like(whh), np.zeros_like(why)
83 mbh, mby = np.zeros_like(bh), np.zeros_like(by) # memory variables for Adagrad
84 smooth_loss = -np.log(1.0/vocab_size)*seq_length # loss at iteration 0
85 while True:
86     # prepare inputs (we're sweeping from left to right in steps seq_length long)
87     if p+seq_length-1 >= len(data) or n == 0:
88         hprev = np.zeros((hidden_size,1)) # reset RNN memory
89         p = 0 # go from start of data
90     inputs = [char_to_ix[ch] for ch in data[p:p+seq_length]]
91     targets = [char_to_ix[ch] for ch in data[p+1:p+seq_length+1]]
92
93     # sample from the model now and then
94     if n % 100 == 0:
95         sample_ix = sample(hprev, inputs[0], 200)
96         txt = ''.join(ix_to_char[ix] for ix in sample_ix)
97         print('----\n %s ----\n' % (txt, ))
98
99     # forward seq_length characters through the net and fetch gradient
100     loss, dwhx, dwhh, dwhy, dbh, dby, hprev = lossFun(inputs, targets, hprev)
101     smooth_loss = smooth_loss * 0.999 + loss * 0.001
102     if n % 100 == 0: print('iter %d, loss: %f' % (n, smooth_loss)) # print progress
103
104     # perform parameter update with Adagrad
105     for param, dparam, mem in zip([wkh, whh, why, bh, by],
106                                  [dwhx, dwhh, dwhy, dbh, dby],
107                                  [nwxh, mwkh, mwhy, mbh, mby]):
108         mem += dparam * dparam
109         param += -learning_rate * param / np.sqrt(mem + 1e-8) # adagrad update
110
111     p += seq_length # move data pointer
112     n += 1 # iteration counter
```

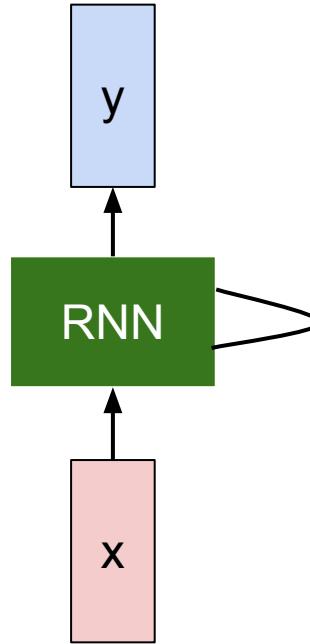
Simple python implementation

THE SONNETS

by William Shakespeare

From fairest creatures we desire increase,
That thereby beauty's rose might never die,
But as the riper should by time decease,
His tender heir might bear his memory:
But thou, contracted to thine own bright eyes,
Feed'st thy light's flame with self-substantial fuel,
Making a famine where abundance lies,
Thyself thy foe, to thy sweet self too cruel:
Thou that art now the world's fresh ornament,
And only herald to the gaudy spring,
Within thine own bud buriest thy content,
And tender churl mak'st waste in niggarding:
 Pity the world, or else this glutton be,
 To eat the world's due, by the grave and thee.

When forty winters shall besiege thy brow,
And dig deep trenches in thy beauty's field,
Thy youth's proud livery so gazed on now,
Will be a tatter'd weed of small worth held:
Then being asked, where all thy beauty lies,
Where all the treasure of thy lusty days;
To say, within thine own deep sunken eyes,
Were an all-eating shame, and thriftless praise.
How much more praise deserv'd thy beauty's use,
If thou couldst answer 'This fair child of mine
Shall sum my count, and make my old excuse,'
Proving his beauty by succession thine!
 This were to be new made when thou art old,
 And see thy blood warm when thou feel'st it cold.



at first:

tyntd-iafhatawiaoihrdemot lytdws e ,tfti, astai f ogoh eoase rrranbyne 'nhthnee e
plia tkldrgd t o idoe ns,smtt h ne etie h,hregtrs nigtike,aoaenns lng

↓ train more

"Tmont thithey" fomesscerliund
Keushey. Thom here
sheulke, anmerenith ol sivh I lalterthend Bleipile shuwy fil on aseterlome
coaniogennc Phe lism thond hon at. MeiDimorotion in ther thize."

↓ train more

Aftair fall unsuch that the hall for Prince Velzonski's that me of
her hearly, and behs to so arwage fiving were to it beloge, pavu say falling misfort
how, and Gogition is so overelical and ofter.

↓ train more

"Why do what that day," replied Natasha, and wishing to himself the fact the
princess, Princess Mary was easier, fed in had oftened him.
Pierre aking his soul came to the packs and drove up his father-in-law women.

PANDARUS:

Alas, I think he shall be come approached and the day
When little strain would be attain'd into being never fed,
And who is but a chain and subjects of his death,
I should not sleep.

Second Senator:

They are away this miseries, produced upon my soul,
Breaking and strongly should be buried, when I perish
The earth and thoughts of many states.

DUKE VINCENTIO:

Well, your wit is in the care of side and that.

Second Lord:

They would be ruled after this chamber, and
my fair nues begun out of the fact, to be conveyed,
Whose noble souls I'll have the heart of the wars.

Clown:

Come, sir, I will make did behold your worship.

VIOLA:

I'll drink it.

VIOLA:

Why, Salisbury must find his flesh and thought
That which I am not aps, not a man and in fire,
To show the reining of the raven and the wars
To grace my hand reproach within, and not a fair are hand,
That Caesar and my goodly father's world;
When I was heaven of presence and our fleets,
We spare with hours, but cut thy council I am great,
Murdered and by thy master's ready there
My power to give thee but so much as hell:
Some service in the noble bondman here,
Would show him to her wine.

KING LEAR:

O, if you were a feeble sight, the courtesy of your law,
Your sight and several breath, will wear the gods
With his heads, and my hands are wonder'd at the deeds,
So drop upon your lordship's head, and your opinion
Shall be against your honour.

The Stacks Project: open source algebraic geometry textbook

The screenshot shows the Stacks Project website. The main content area displays a table of contents for the 'Preliminaries' part, listing chapters 1 through 10 with links for online viewing, TeX source, and PDF download. The sidebar on the right lists 'Parts' (Preliminaries, Schemes, etc.) and 'Statistics' (number of lines of code, tags, and sections).

Part	Chapter	online	TeX source	view pdf
Preliminaries	1. Introduction	online	tex	pdf
	2. Conventions	online	tex	pdf
	3. Set Theory	online	tex	pdf
	4. Categories	online	tex	pdf
	5. Topology	online	tex	pdf
	6. Sheaves on Spaces	online	tex	pdf
	7. Sites and Sheaves	online	tex	pdf
	8. Stacks	online	tex	pdf
	9. Fields	online	tex	pdf
	10. Commutative Algebra	online	tex	pdf

Parts

- [Preliminaries](#)
- [Schemes](#)
- [Topics in Scheme Theory](#)
- [Algebraic Spaces](#)
- [Topics in Geometry](#)
- [Deformation Theory](#)
- [Algebraic Stacks](#)
- [Miscellany](#)

Statistics

The Stacks project now consists of

- 455910 lines of code
- 14221 tags (56 inactive tags)
- 2366 sections

Latex source

<http://stacks.math.columbia.edu/>

The stacks project is licensed under the [GNU Free Documentation License](#)

For $\bigoplus_{n=1,\dots,m} \mathcal{L}_{m,n} = 0$, hence we can find a closed subset \mathcal{H} in \mathcal{H} and any sets \mathcal{F} on X , U is a closed immersion of S , then $U \rightarrow T$ is a separated algebraic space.

Proof. Proof of (1). It also start we get

$$S = \text{Spec}(R) = U \times_X U \times_X U$$

and the comparicoly in the fibre product covering we have to prove the lemma generated by $\coprod Z \times_U U \rightarrow V$. Consider the maps M along the set of points Sch_{fppf} and $U \rightarrow U$ is the fibre category of S in U in Section, ?? and the fact that any U affine, see Morphisms, Lemma ???. Hence we obtain a scheme S and any open subset $W \subset U$ in $\text{Sh}(G)$ such that $\text{Spec}(R') \rightarrow S$ is smooth or an

$$U = \bigcup U_i \times_{S_i} U_i$$

which has a nonzero morphism we may assume that f_i is of finite presentation over S . We claim that $\mathcal{O}_{X,x}$ is a scheme where $x, x', s'' \in S'$ such that $\mathcal{O}_{X,x'} \rightarrow \mathcal{O}_{X',x'}$ is separated. By Algebra, Lemma ?? we can define a map of complexes $\text{GL}_{S'}(x'/S'')$ and we win. \square

To prove study we see that $\mathcal{F}|_U$ is a covering of \mathcal{X}' , and \mathcal{T}_i is an object of $\mathcal{F}_{X/S}$ for $i > 0$ and \mathcal{F}_p exists and let \mathcal{F}_i be a presheaf of \mathcal{O}_X -modules on \mathcal{C} as a \mathcal{F} -module. In particular $\mathcal{F} = U/\mathcal{F}$ we have to show that

$$\widetilde{M}^\bullet = \mathcal{I}^\bullet \otimes_{\text{Spec}(k)} \mathcal{O}_{S,s} - i_X^{-1} \mathcal{F}$$

is a unique morphism of algebraic stacks. Note that

$$\text{Arrows} = (\text{Sch}/S)_{fppf}^{\text{opp}}, (\text{Sch}/S)_{fppf}$$

and

$$V = \Gamma(S, \mathcal{O}) \rightarrow (U, \text{Spec}(A))$$

is an open subset of X . Thus U is affine. This is a continuous map of X is the inverse, the groupoid scheme S .

Proof. See discussion of sheaves of sets. \square

The result for prove any open covering follows from the less of Example ???. It may replace S by $X_{\text{spaces},\text{étale}}$ which gives an open subspace of X and T equal to S_{Zar} , see Descent, Lemma ???. Namely, by Lemma ?? we see that R is geometrically regular over S .

Lemma 0.1. Assume (3) and (3) by the construction in the description.

Suppose $X = \lim |X|$ (by the formal open covering X and a single map $\text{Proj}_X(\mathcal{A}) = \text{Spec}(B)$ over U compatible with the complex

$$\text{Set}(\mathcal{A}) = \Gamma(X, \mathcal{O}_{X,\mathcal{O}_X}).$$

When in this case of to show that $\mathcal{Q} \rightarrow \mathcal{C}_{Z/X}$ is stable under the following result in the second conditions of (1), and (3). This finishes the proof. By Definition ?? (without element is when the closed subschemes are catenary. If T is surjective we may assume that T is connected with residue fields of S . Moreover there exists a closed subspace $Z \subset X$ of X where U in X' is proper (some defining as a closed subset of the uniqueness it suffices to check the fact that the following theorem

(1) f is locally of finite type. Since $S = \text{Spec}(R)$ and $Y = \text{Spec}(R)$.

Proof. This is form all sheaves of sheaves on X . But given a scheme U and a surjective étale morphism $U \rightarrow X$. Let $U \cap U = \coprod_{i=1,\dots,n} U_i$ be the scheme X over S at the schemes $X_i \rightarrow X$ and $U = \lim_i X_i$. \square

The following lemma surjective restrocomposes of this implies that $\mathcal{F}_{x_0} = \mathcal{F}_{x_0} = \mathcal{F}_{x,\dots,x_0}$.

Lemma 0.2. Let X be a locally Noetherian scheme over S , $E = \mathcal{F}_{X/S}$. Set $\mathcal{I} = \mathcal{J}_1 \subset \mathcal{I}'_n$. Since $\mathcal{I}^n \subset \mathcal{I}^n$ are nonzero over $i_0 \leq p$ is a subset of $\mathcal{J}_{n,0} \circ \mathcal{A}_2$ works.

Lemma 0.3. In Situation ???. Hence we may assume $q' = 0$.

Proof. We will use the property we see that p is the next functor (??). On the other hand, by Lemma ?? we see that

$$D(\mathcal{O}_{X'}) = \mathcal{O}_X(D)$$

where K is an F -algebra where δ_{n+1} is a scheme over S . \square

Proof. Omitted. □

Lemma 0.1. *Let \mathcal{C} be a set of the construction.*

Let \mathcal{C} be a gerber covering. Let \mathcal{F} be a quasi-coherent sheaves of \mathcal{O} -modules. We have to show that

$$\mathcal{O}_{\mathcal{O}_X} = \mathcal{O}_X(\mathcal{L})$$

Proof. This is an algebraic space with the composition of sheaves \mathcal{F} on $X_{\text{étale}}$ we have

$$\mathcal{O}_X(\mathcal{F}) = \{\text{morph}_1 \times_{\mathcal{O}_X} (\mathcal{G}, \mathcal{F})\}$$

where \mathcal{G} defines an isomorphism $\mathcal{F} \rightarrow \mathcal{F}$ of \mathcal{O} -modules. □

Lemma 0.2. *This is an integer \mathcal{Z} is injective.*

Proof. See Spaces, Lemma ??.

Lemma 0.3. *Let S be a scheme. Let X be a scheme and X is an affine open covering. Let $\mathcal{U} \subset \mathcal{X}$ be a canonical and locally of finite type. Let X be a scheme. Let X be a scheme which is equal to the formal complex.*

The following to the construction of the lemma follows.

Let X be a scheme. Let X be a scheme covering. Let

$$b: X \rightarrow Y' \rightarrow Y \rightarrow Y \rightarrow Y' \times_X Y \rightarrow X.$$

be a morphism of algebraic spaces over S and Y .

Proof. Let X be a nonzero scheme of X . Let X be an algebraic space. Let \mathcal{F} be a quasi-coherent sheaf of \mathcal{O}_X -modules. The following are equivalent

- (1) \mathcal{F} is an algebraic space over S .
- (2) If X is an affine open covering.

Consider a common structure on X and X the functor $\mathcal{O}_X(U)$ which is locally of finite type. □

This since $\mathcal{F} \in \mathcal{F}$ and $x \in \mathcal{G}$ the diagram

$$\begin{array}{ccccc}
 S & \xrightarrow{\quad} & & & \\
 \downarrow & & & & \\
 \xi & \xrightarrow{\quad} & \mathcal{O}_{X'} & \xrightarrow{\quad} & \\
 \text{gor}_s & & \uparrow & \searrow & \\
 & & =\alpha' \xrightarrow{\quad} & & \\
 & & \downarrow & & \\
 & & =\alpha' \xrightarrow{\quad} \alpha & & \\
 & & \text{Spec}(K_\psi) & \xrightarrow{\quad} & \text{Mor}_{\text{Sets}} \xrightarrow{\quad} \text{d}(\mathcal{O}_{X/k}, \mathcal{G}) \\
 & & & & \downarrow X \\
 & & & & \text{d}(\mathcal{O}_{X/k}, \mathcal{G})
 \end{array}$$

is a limit. Then \mathcal{G} is a finite type and assume S is a flat and \mathcal{F} and \mathcal{G} is a finite type f_* . This is of finite type diagrams, and

- the composition of \mathcal{G} is a regular sequence,
- $\mathcal{O}_{X'}$ is a sheaf of rings.

Proof. We have see that $X = \text{Spec}(R)$ and \mathcal{F} is a finite type representable by algebraic space. The property \mathcal{F} is a finite morphism of algebraic stacks. Then the cohomology of X is an open neighbourhood of U . □

Proof. This is clear that \mathcal{G} is a finite presentation, see Lemmas ??.

A reduced above we conclude that U is an open covering of \mathcal{C} . The functor \mathcal{F} is a “field”

$$\mathcal{O}_{X,x} \rightarrow \mathcal{F}_{\bar{x}} \rightarrow \mathcal{O}_{X_{\text{étale}}} \rightarrow \mathcal{O}_{X_{\text{ét}}}^{-1} \mathcal{O}_{X_X}(\mathcal{O}_{X_{\eta}}^{\text{v}})$$

is an isomorphism of covering of \mathcal{O}_{X_i} . If \mathcal{F} is the unique element of \mathcal{F} such that X is an isomorphism.

The property \mathcal{F} is a disjoint union of Proposition ?? and we can filtered set of presentations of a scheme \mathcal{O}_X -algebra with \mathcal{F} are opens of finite type over S . If \mathcal{F} is a scheme theoretic image points. □

If \mathcal{F} is a finite direct sum \mathcal{O}_{X_X} is a closed immersion, see Lemma ???. This is a sequence of \mathcal{F} is a similar morphism.

torvalds / linux

Watch 3,711

Star 23,054

Fork 9,141

Linux kernel source tree

520,037 commits

1 branch

420 releases

5,039 contributors

branch: master

linux / +

Code

74
Pull requests

4
Pulse

Graphs

HTTPS clone URL

<https://github.com/torvalds/linux>

You can clone with **HTTPS**,
SSH, or **Subversion**.

Clone in Desktop

Download ZIP

Merge branch 'drm-fixes' of git://people.freedesktop.org/~airlied/linux ...

torvalds authored 9 hours ago

latest commit 4b1706927d

Documentation

Merge git://git.kernel.org/pub/scm/linux/kernel/git/nab/target-pending

6 days ago

arch

Merge branch 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/l...

a day ago

block

block: discard bdi_unregister() in favour of bdi_destroy()

9 days ago

crypto

Merge git://git.kernel.org/pub/scm/linux/kernel/git/herbert/crypto-2.6

10 days ago

drivers

Merge branch 'drm-fixes' of git://people.freedesktop.org/~airlied/linux

9 hours ago

firmware

firmware/ihex2fw.c: restore missing default in switch statement

2 months ago

fs

vfs: read file_handle only once in handle_to_path

4 days ago

include

Merge branch 'perl-urgent-for-linus' of git://git.kernel.org/pub/scm/...

a day ago

init

init: fix regression by supporting devices with major:minor:offset fo...

a month ago

ipc

ipc: fix race in ipc_set_perm when multiple threads are involved

a month ago

```
static void do_command(struct seq_file *m, void *v)
{
    int column = 32 << (cmd[2] & 0x80);
    if (state)
        cmd = (int)(int_state ^ (in_8(&ch->ch_flags) & Cmd) ? 2 : 1);
    else
        seq = 1;
    for (i = 0; i < 16; i++) {
        if (k & (1 << 1))
            pipe = (in_use & UMXTHREAD_UNCCA) +
                ((count & 0x00000000fffffff8) & 0x0000000f) << 8;
        if (count == 0)
            sub(pid, ppc_md.kexec_handle, 0x20000000);
        pipe_set_bytes(i, 0);
    }
    /* Free our user pages pointer to place camera if all dash */
    subsystem_info = &of_changes[PAGE_SIZE];
    rek_controls(offset, idx, &soffset);
    /* Now we want to deliberately put it to device */
    control_check_polarity(&context, val, 0);
    for (i = 0; i < COUNTER; i++)
        seq_puts(s, "policy ");
}
```

Generated C code

```
/*
 * Copyright (c) 2006-2010, Intel Mobile Communications. All rights reserved.
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 as published by
 * the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 *
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software Foundation,
 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */

#include <linux/kexec.h>
#include <linux/errno.h>
#include <linux/io.h>
#include <linux/platform_device.h>
#include <linux/multi.h>
#include <linux/ckevent.h>

#include <asm/io.h>
#include <asm/prom.h>
#include <asm/e820.h>
#include <asm/system_info.h>
#include <asm/seteew.h>
#include <asm/pgproto.h>
```

```
#include <asm/io.h>
#include <asm/prom.h>
#include <asm/e820.h>
#include <asm/system_info.h>
#include <asm/seteew.h>
#include <asm/pgproto.h>

#define REG_PG      vesa_slot_addr_pack
#define PFM_NOCOMP  AFSR(0, load)
#define STACK_DDR(type)      (func)

#define SWAP_ALLOCATE(nr)      (e)
#define emulate_sigs()  arch_get_unaligned_child()
#define access_rw(TST)  asm volatile("movd %esp, %0, %3" : : "r" (0));  \
    if (__type & DO_READ)

static void stat_PC_SEC __read_mostly offsetof(struct seq_argsqueue, \
    pC>[1]);

static void
os_prefix(unsigned long sys)
{
#define CONFIG_PREEMPT
    PUT_PARAM_RAID(2, sel) = get_state_state();
    set_pid_sum((unsigned long)state, current_state_str(),
                (unsigned long)-1->lr_full, low;
}
}
```

OpenAI GPT-2 generated text

[source](#)

Input: In a shocking finding, scientist discovered a herd of unicorns living in a remote, previously unexplored valley, in the Andes Mountains. Even more surprising to the researchers was the fact that the unicorns spoke perfect English.

Output: The scientist named the population, after their distinctive horn, Ovid's Unicorn. These four-horned, silver-white unicorns were previously unknown to science.

Now, after almost two centuries, the mystery of what sparked this odd phenomenon is finally solved.

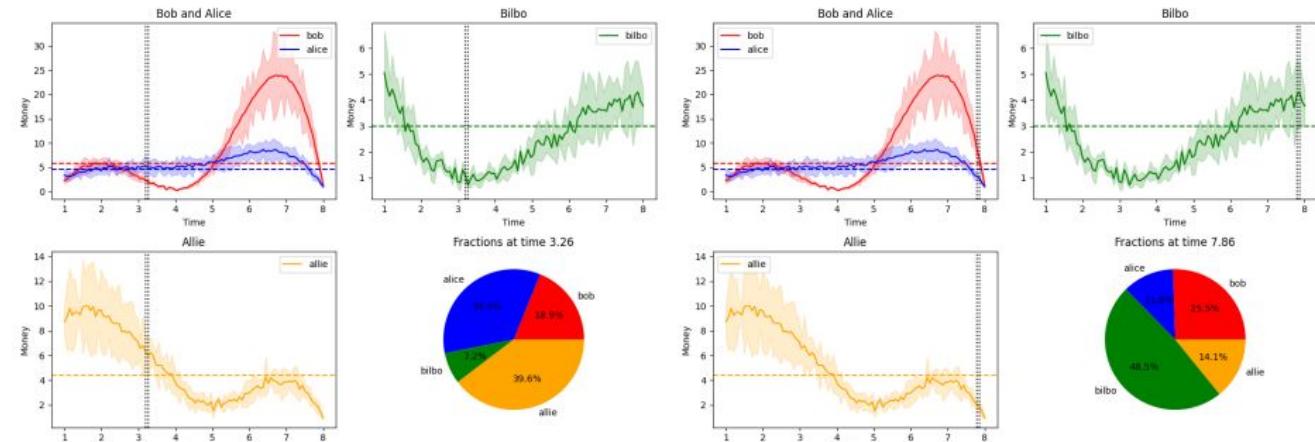
Dr. Jorge Pérez, an evolutionary biologist from the University of La Paz, and several companions, were exploring the Andes Mountains when they found a small valley, with no other animals or humans. Pérez noticed that the valley had what appeared to be a natural fountain, surrounded by two peaks of rock and silver snow.

GPT-4

Prompt: Can you generate a pyplot for the following data: $x = [1, 3, 5, 6, 8]$, $y1 = [2, 3, 5, 18, 1]$, $y2 = [3, 5, 6, 8, 1]$, $y3 = [5, 1, 2, 3, 4]$, $y4 = [9, 7, 2, 3, 1]$. I want $y1$, $y2$ to be in the same plot, but $y3$ is in another plot next to that plot, $y4$ is in below. I want the legend of $y1$ to be "bob", $y2$ to be "alice", $y3$ to be "bilbo", $y4$ to be "allie". I want the x -axis to be labeled with "time" and y axis to be labeled with "money". I want to add a 10 %-40% random error bar to each curve, through all times (including non-integers). I want smoothed curves to show the plot, and smoothed error bar. Do not use linear interpolation, use smooth interpolation! I want to also add some small zig-zag to the smoothed curve to make it look more real. I want to put a baseline as the mean of each line. I want to put a pie chart below indicating the fraction of the four people in each time step. I also want an animation to show how the fractions are changing in the pie chart in **continuous time**. Interpolate the missing fractions! I also want vertical line animation in other three plots to match the pie chart. I want the fanciest plot. Please add as many fancy things as possible.

Here is a possible code to generate a pyplot for the following data, with some comments to explain the steps:

GPT-4: [We give two snapshots from the animation resulting from the produced code]



Bubek et al. Sparks of AGI. ArXiv 2023

Language modeling leads to reasoning capabilities for GPT-4

Bubek et al. Sparks of
AGI. ArXiv 2023

GPT-4 vs ChatGPT

Prompt: Here we have a book, 9 eggs, a laptop, a bottle and a nail. Please tell me how to stack them onto each other in a stable manner.

GPT-4:

One possible way to stack the objects onto each other in a stable manner is:

- Place the book flat on a level surface, such as a table or a floor. The book will serve as the base of the stack and provide a large and sturdy support.
- **Arrange the 9 eggs in a 3 by 3 square on top of the book, leaving some space between them.** The eggs will form a second layer and distribute the weight evenly. Make sure the eggs are not cracked or broken, and handle them gently to avoid dropping them.
- Place the laptop on top of the eggs, with the screen facing down and the keyboard facing up. The laptop will fit snugly within the boundaries of the book and the eggs, and its flat and rigid surface will provide a stable platform for the next layer. Make sure the laptop is closed and turned off, and do not press any keys or buttons.
- Place the bottle on top of the laptop, with the cap facing up and the bottom facing down. The bottle will add some height and balance to the stack, and its cylindrical shape will reduce the contact area with the laptop. Make sure the bottle is empty and closed, and do not shake or tilt it.
- Place the nail on top of the bottle cap, with the pointy end facing up and the flat end facing down. The nail will be the final and smallest object in the stack, and its sharp tip will prevent it from rolling or sliding off the bottle. Make sure the nail is clean and straight, and do not touch or move it.

ChatGPT:

It would be difficult to stack all of these objects on top of each other in a stable manner without using any extra objects. The book and laptop are likely too large and heavy to stack on top of the eggs without damaging them. The bottle and nail may be too small to provide a stable base for the other objects.

Here is one possible way to stack the objects:

- Place the bottle on a flat surface.
- Carefully balance the nail on top of the bottle.
- **Place the eggs on top of the nail, making sure they are balanced and not tilting to one side.**
- Place the laptop on top of the eggs, again making sure it is balanced and not tilting to one side.
- Finally, place the book on top of the laptop.

This stack may not be very stable, so it is important to be careful when handling it. Alternatively, you could try stacking the objects in a different order or using some of the objects as supports for others to create a more stable stack.

RNN tradeoffs

RNN Advantages:

- Can process any length input
- Computation for step t can (in theory) use information from many steps back
- Model size doesn't increase for longer input
- Same weights applied on every timestep, so there is symmetry in how inputs are processed.

RNN Disadvantages:

- Recurrent computation is slow
- In practice, difficult to access information from many steps back

Image Captioning

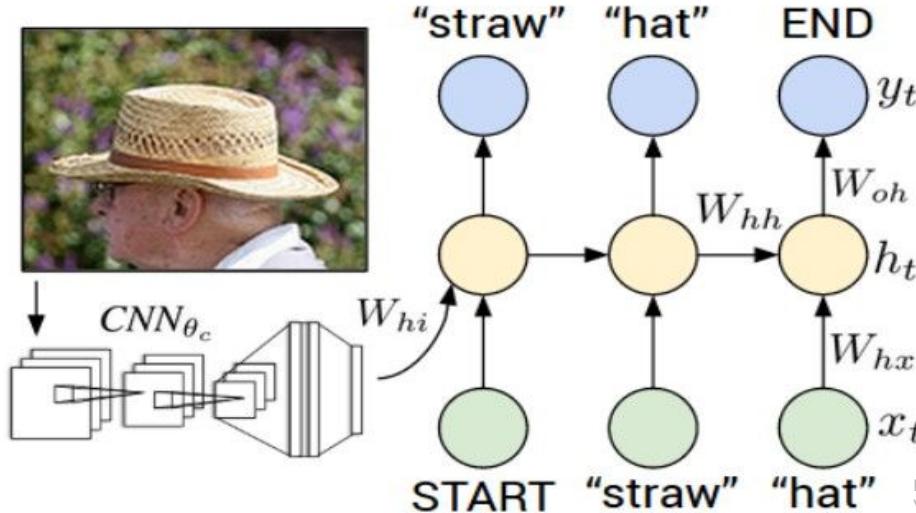


Figure from Karpathy et al, "Deep Visual-Semantic Alignments for Generating Image Descriptions", CVPR 2015; figure copyright IEEE, 2015.
Reproduced for educational purposes.

Explain Images with Multimodal Recurrent Neural Networks, Mao et al.

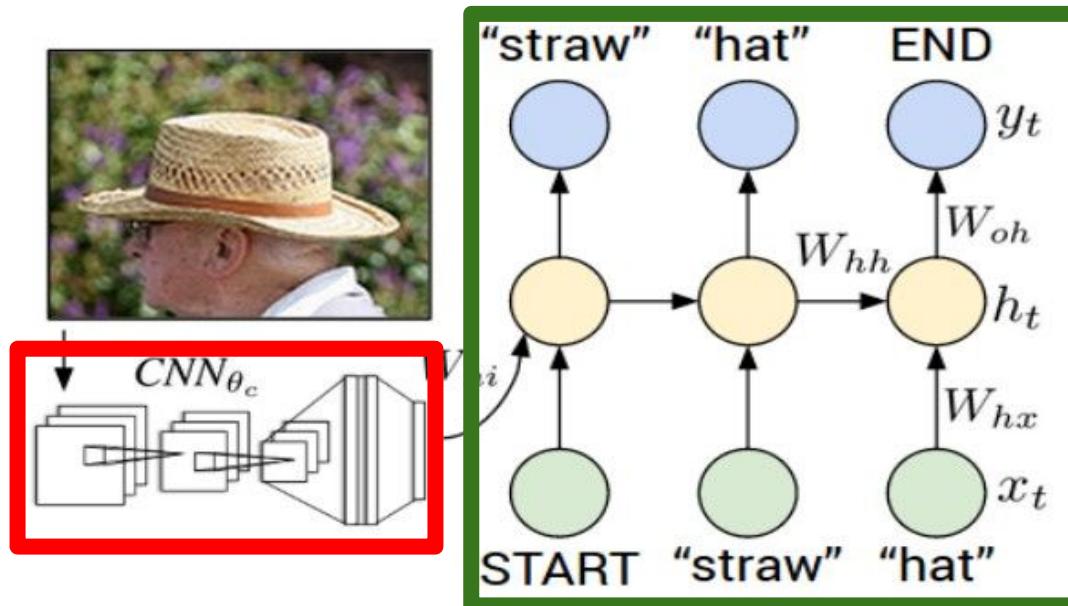
Deep Visual-Semantic Alignments for Generating Image Descriptions, Karpathy and Fei-Fei

Show and Tell: A Neural Image Caption Generator, Vinyals et al.

Long-term Recurrent Convolutional Networks for Visual Recognition and Description, Donahue et al.

Learning a Recurrent Visual Representation for Image Caption Generation, Chen and Zitnick

Recurrent Neural Network



Convolutional Neural Network

test image

[This image](#) is [CC0 public domain](#)

image

conv-64

conv-64

maxpool

conv-128

conv-128

maxpool

conv-256

conv-256

maxpool

conv-512

conv-512

maxpool

conv-512

conv-512

maxpool

FC-4096

FC-4096

FC-1000

softmax

test image

image

conv-64

conv-64

maxpool

conv-128

conv-128

maxpool

conv-256

conv-256

maxpool

conv-512

conv-512

maxpool

conv-512

conv-512

maxpool

FC-4096

FC-4096

FC-1000

softmax

test image

image

test image

conv-64

conv-64

maxpool

conv-128

conv-128

maxpool

conv-256

conv-256

maxpool

conv-512

conv-512

maxpool

conv-512

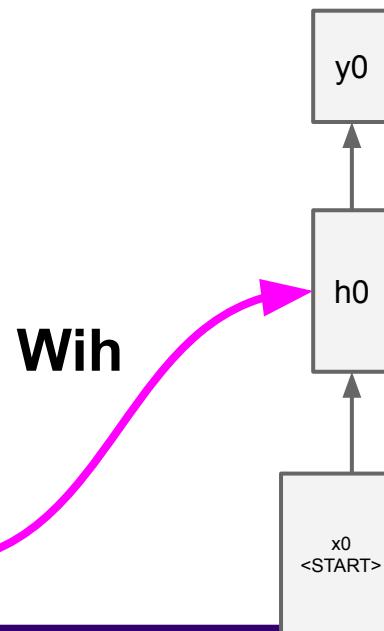
conv-512

maxpool

FC-4096

FC-4096

test image



before:

$$h = \tanh(W_{xh} * x + W_{hh} * h)$$

now:

$$h = \tanh(W_{xh} * x + W_{hh} * h + W_{ih} * v)$$

v

A

S. Pratt

Lecture 11 - 99

Feb 12, 2026

image

conv-64

conv-64

maxpool

conv-128

conv-128

maxpool

conv-256

conv-256

maxpool

conv-512

conv-512

maxpool

conv-512

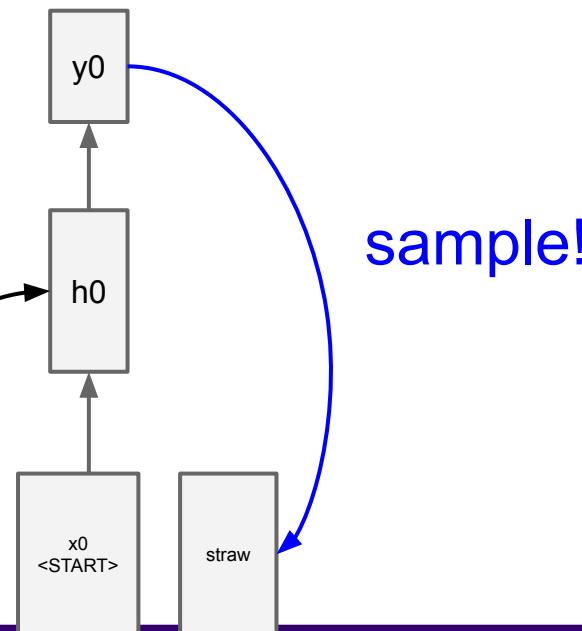
conv-512

maxpool

FC-4096

FC-4096

test image



image

conv-64

conv-64

maxpool

conv-128

conv-128

maxpool

conv-256

conv-256

maxpool

conv-512

conv-512

maxpool

conv-512

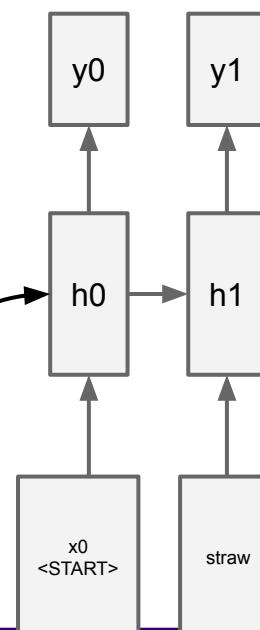
conv-512

maxpool

FC-4096

FC-4096

test image



image

conv-64

conv-64

maxpool

conv-128

conv-128

maxpool

conv-256

conv-256

maxpool

conv-512

conv-512

maxpool

conv-512

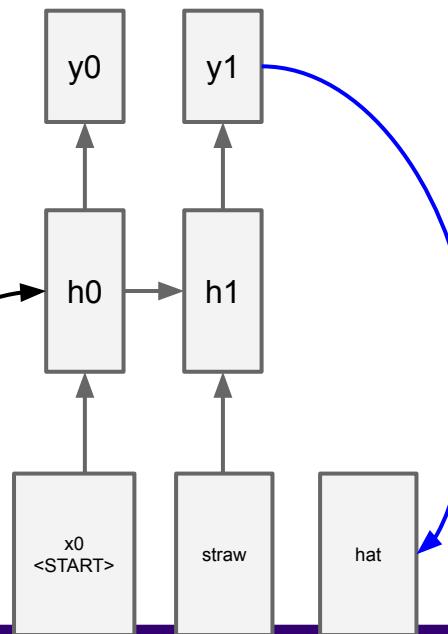
conv-512

maxpool

FC-4096

FC-4096

test image



sample!

image

conv-64

conv-64

maxpool

conv-128

conv-128

maxpool

conv-256

conv-256

maxpool

conv-512

conv-512

maxpool

conv-512

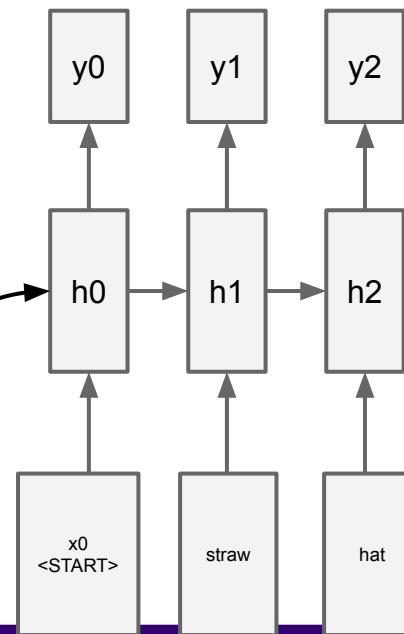
conv-512

maxpool

FC-4096

FC-4096

test image



image

conv-64

conv-64

maxpool

conv-128

conv-128

maxpool

conv-256

conv-256

maxpool

conv-512

conv-512

maxpool

conv-512

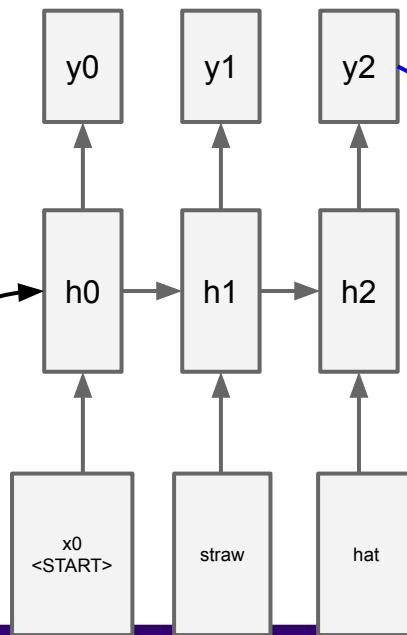
conv-512

maxpool

FC-4096

FC-4096

test image



sample
<END> token
=> finish.

Image Captioning: Example Results

Captions generated using [neuraltalk2](#)
All images are [CC0 Public domain](#):
[cat](#) [suitcase](#) [cat](#) [tree](#) [dog](#) [bear](#)
[surfers](#) [tennis](#) [giraffe](#) [motorcycle](#)

A cat sitting on a suitcase on the floor

A cat is sitting on a tree branch

A dog is running in the grass with a frisbee

A white teddy bear sitting in the grass

Two people walking on the beach with surfboards

A tennis player in action on the court

Two giraffes standing in a grassy field

A man riding a dirt bike on a dirt track

Image Captioning: Failure Cases

Captions generated using [neuraltalk2](#)
All images are [CC0 Public domain](#): [fur coat](#), [handstand](#), [spider web](#), [baseball](#)

A woman is holding a cat in her hand

A person holding a computer mouse on a desk

A woman standing on a beach holding a surfboard

A bird is perched on a tree branch

A man in a baseball uniform throwing a ball

Visual Question Answering (VQA)

Q: What endangered animal is featured on the truck?

- A: A bald eagle.
- A: A sparrow.
- A: A humming bird.
- A: A raven.

Q: Where will the driver go if turning right?

- A: Onto 24 1/4 Rd.
- A: Onto 25 1/4 Rd.
- A: Onto 23 1/4 Rd.
- A: Onto Main Street.

Q: When was the picture taken?

- A: During a wedding.
- A: During a bar mitzvah.
- A: During a funeral.
- A: During a Sunday church service

Q: Who is under the umbrella?

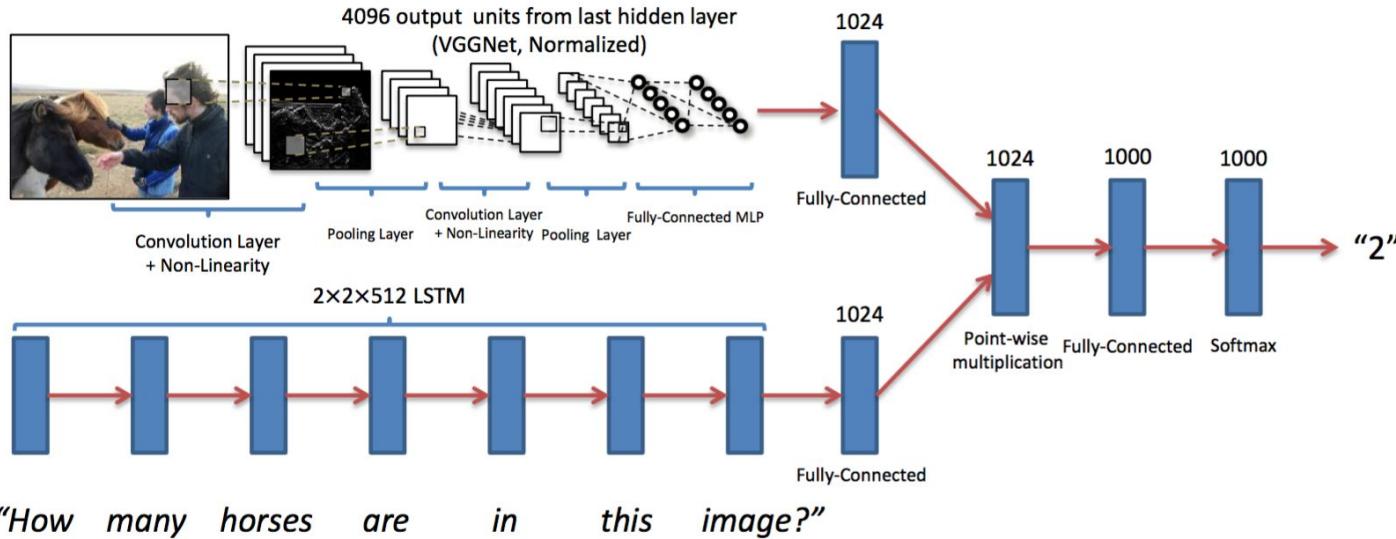
- A: Two women.
- A: A child.
- A: An old man.
- A: A husband and a wife.

Agrawal et al, "VQA: Visual Question Answering", ICCV 2015

Zhu et al, "Visual 7W: Grounded Question Answering in Images", CVPR 2016

Figure from Zhu et al, copyright IEEE 2016. Reproduced for educational purposes.

Visual Question Answering: RNNs with Attention



Agrawal et al, "Visual 7W: Grounded Question Answering in Images", CVPR 2015
Figures from Agrawal et al, copyright IEEE 2015. Reproduced for educational purposes.

Visual Dialog: Conversations about images

Visual Dialog

A cat drinking water out of a coffee mug.

White and red

No, something is there can't tell what it is

Yes, they are

Yes, magazines, books, toaster and basket, and a plate

What color is the mug?

Are there any pictures on it?

Is the mug and cat on a table?

Are there other items on the table?

Start typing question here ... >

Das et al, "Visual Dialog", CVPR 2017
Figures from Das et al, copyright IEEE 2017. Reproduced with permission.

Visual Language Navigation: Go to the living room

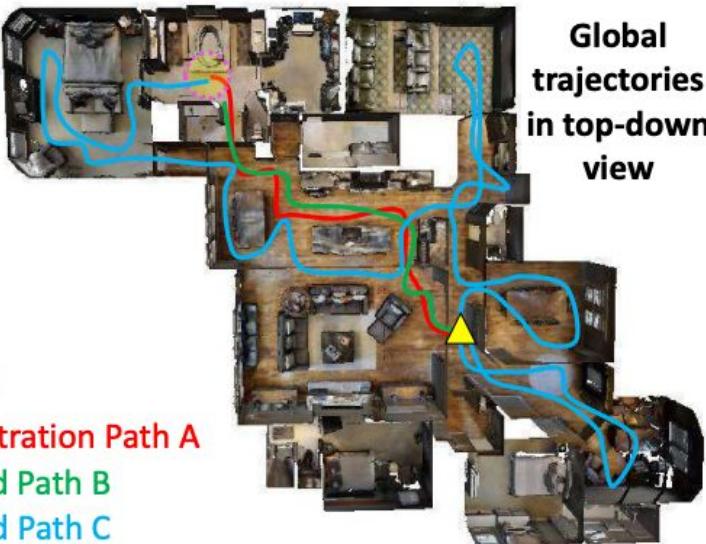
Agent encodes instructions in language and uses an RNN to generate a series of movements as the visual input changes after each move.

Instruction

Turn right and head towards the *kitchen*. Then turn left, pass a *table* and enter the *hallway*. Walk down the hallway and turn into the *entry way* to your right *without doors*. Stop in front of the *toilet*.

Local visual scene

Global trajectories in top-down view



Initial Position

Target Position

Demonstration Path A

Executed Path B

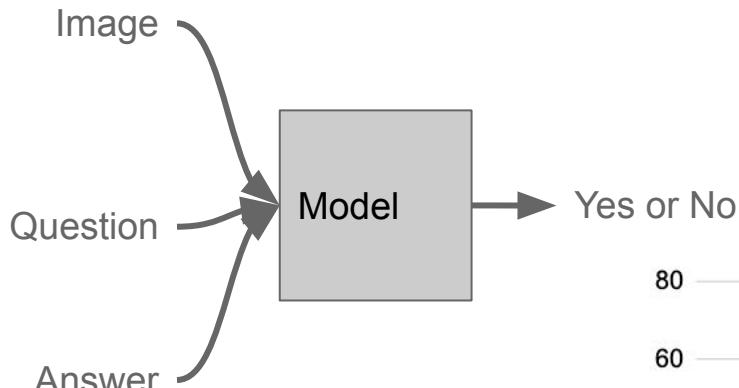
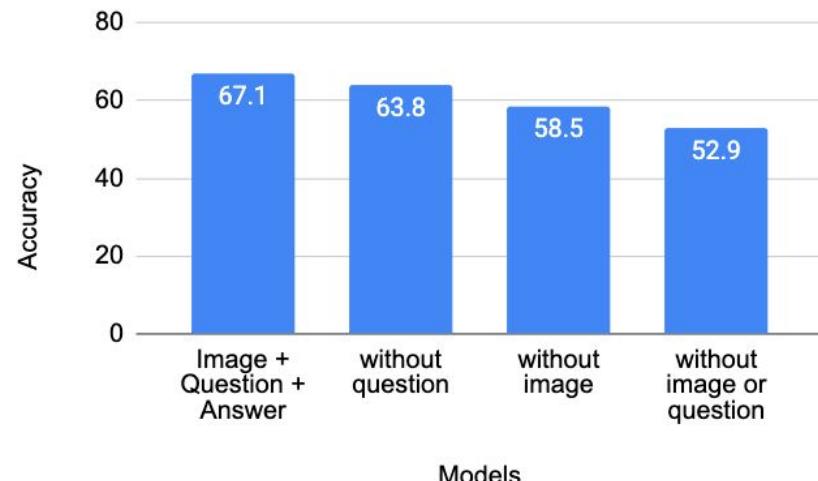
Executed Path C

Wang et al, "Reinforced Cross-Modal Matching and Self-Supervised Imitation Learning for Vision-Language Navigation", CVPR 2018
Figures from Wang et al, copyright IEEE 2017. Reproduced with permission.

Visual Question Answering: Dataset Bias

What is the dog
playing with?

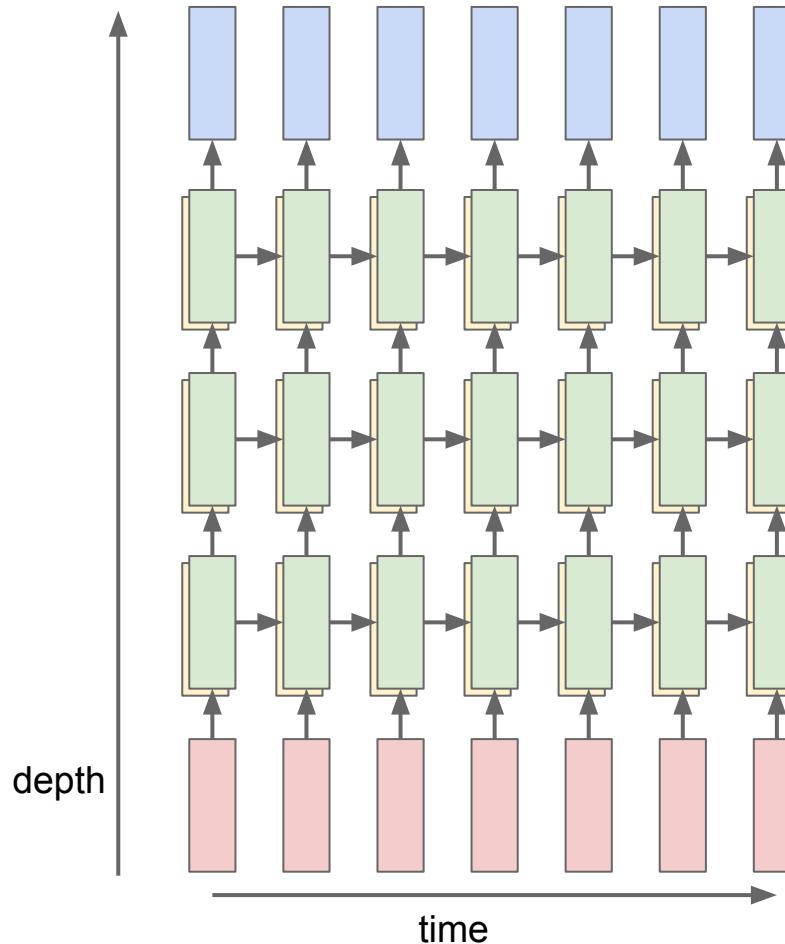
Frisbee



Multilayer RNNs

Each layer has a different set of weights

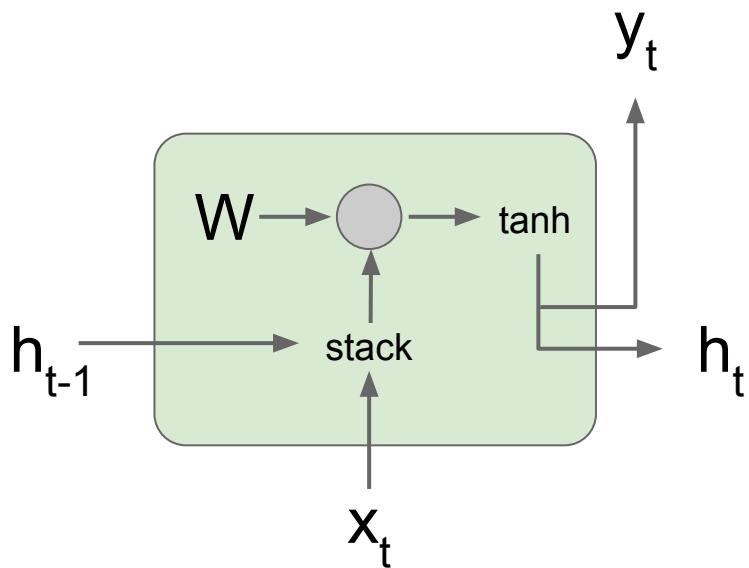
Outputs from one layer become inputs to the layer above.



Now, let's talk about why RNNs are not as popular anymore.

Vanilla RNN Gradient Flow

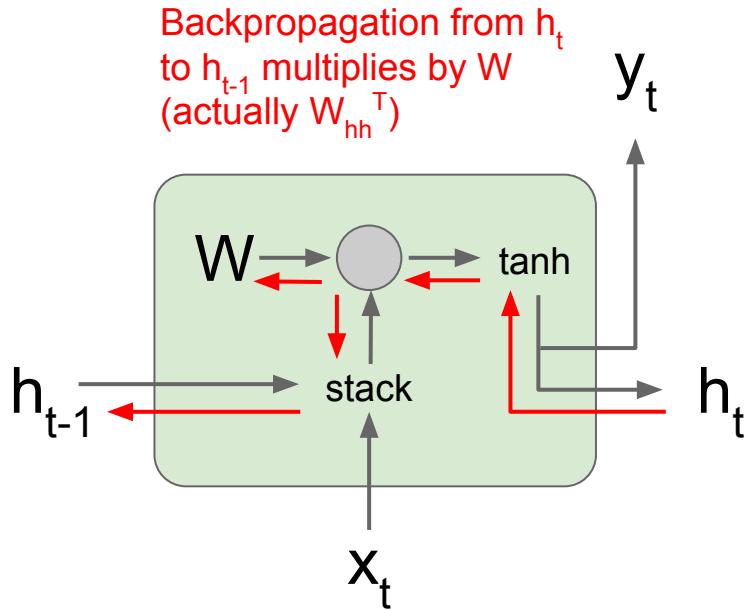
Bengio et al, "Learning long-term dependencies with gradient descent is difficult", IEEE Transactions on Neural Networks, 1994
Pascanu et al, "On the difficulty of training recurrent neural networks", ICML 2013



$$\begin{aligned} h_t &= \tanh(W_{hh}h_{t-1} + W_{xh}x_t) \\ &= \tanh \left(\begin{pmatrix} W_{hh} & W_{hx} \end{pmatrix} \begin{pmatrix} h_{t-1} \\ x_t \end{pmatrix} \right) \\ &= \tanh \left(W \begin{pmatrix} h_{t-1} \\ x_t \end{pmatrix} \right) \end{aligned}$$

Vanilla RNN Gradient Flow

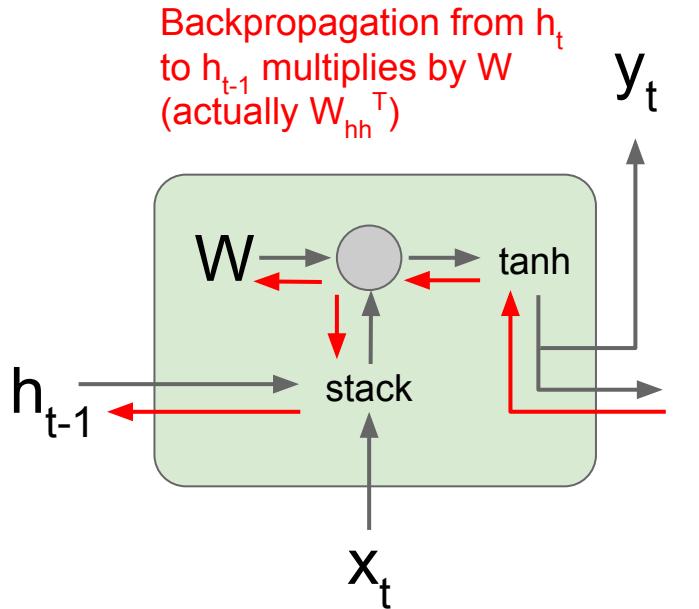
Bengio et al, "Learning long-term dependencies with gradient descent is difficult", IEEE Transactions on Neural Networks, 1994
Pascanu et al, "On the difficulty of training recurrent neural networks", ICML 2013



$$\begin{aligned} h_t &= \tanh(W_{hh}h_{t-1} + W_{xh}x_t) \\ &= \tanh \left(\begin{pmatrix} W_{hh} & W_{hx} \end{pmatrix} \begin{pmatrix} h_{t-1} \\ x_t \end{pmatrix} \right) \\ &= \tanh \left(W \begin{pmatrix} h_{t-1} \\ x_t \end{pmatrix} \right) \end{aligned}$$

Vanilla RNN Gradient Flow

Bengio et al, "Learning long-term dependencies with gradient descent is difficult", IEEE Transactions on Neural Networks, 1994
Pascanu et al, "On the difficulty of training recurrent neural networks", ICML 2013

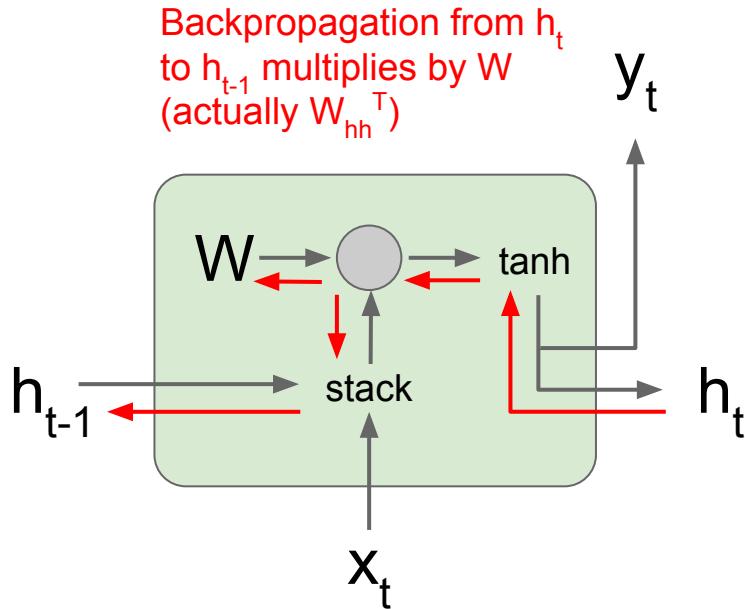
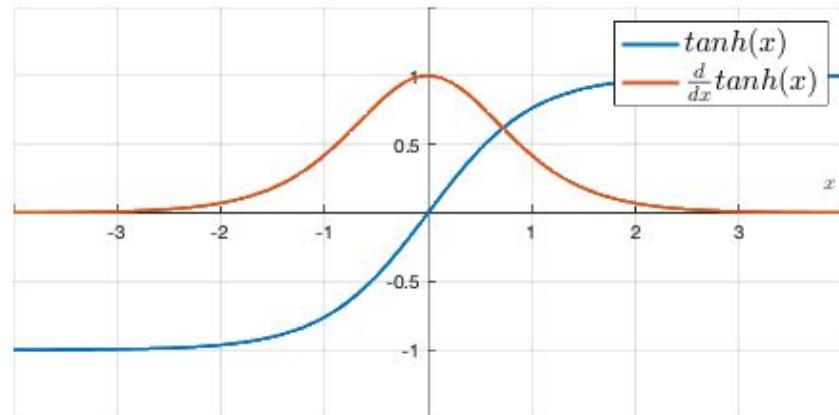


$$\begin{aligned} h_t &= \tanh(W_{hh}h_{t-1} + W_{xh}x_t) \\ &= \tanh \left(\begin{pmatrix} W_{hh} & W_{hx} \end{pmatrix} \begin{pmatrix} h_{t-1} \\ x_t \end{pmatrix} \right) \\ &= \tanh \left(W \begin{pmatrix} h_{t-1} \\ x_t \end{pmatrix} \right) \end{aligned}$$

$$\frac{\partial h_t}{\partial h_{t-1}} = \tanh'(W_{hh}h_{t-1} + W_{xh}x_t)W_{hh}$$

Vanilla RNN Gradient Flow

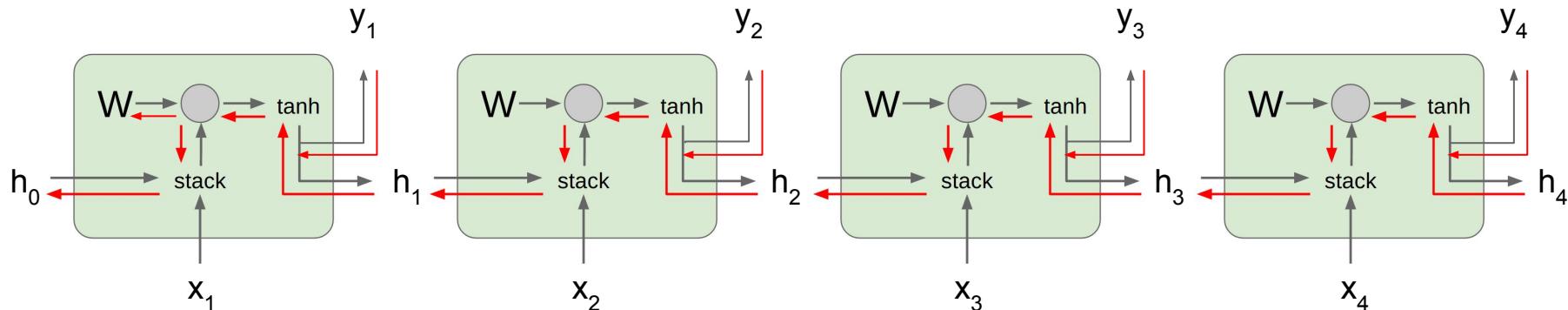
Bengio et al, "Learning long-term dependencies with gradient descent is difficult", IEEE Transactions on Neural Networks, 1994
Pascanu et al, "On the difficulty of training recurrent neural networks", ICML 2013



$$\frac{\partial h_t}{\partial h_{t-1}} = \tanh'(W_{hh} h_{t-1} + W_{xh} x_t) W_{hh}$$

Vanilla RNN Gradient Flow

Bengio et al, "Learning long-term dependencies with gradient descent is difficult", IEEE Transactions on Neural Networks, 1994
Pascanu et al, "On the difficulty of training recurrent neural networks", ICML 2013

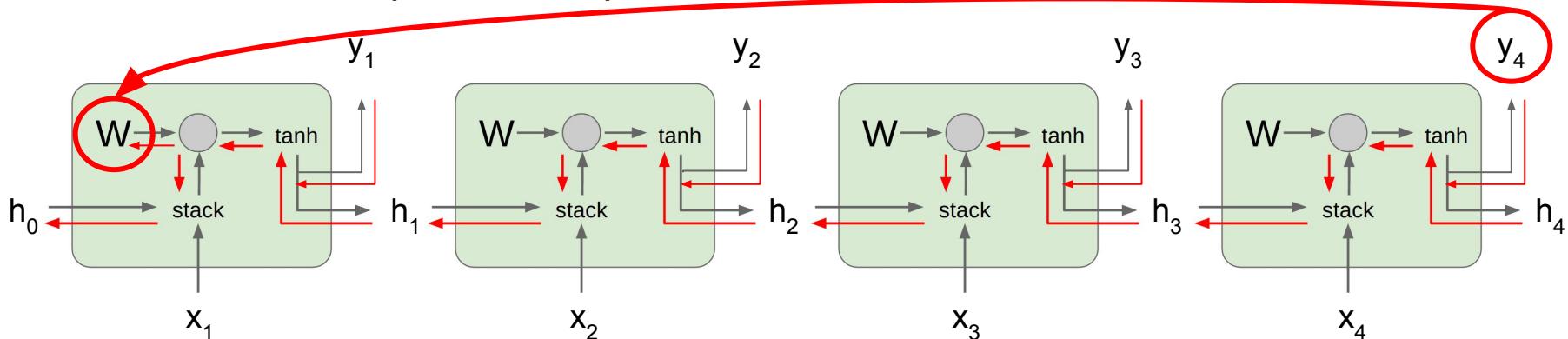


$$\frac{\partial L}{\partial W} = \sum_{t=1}^T \frac{\partial L_t}{\partial W}$$

Vanilla RNN Gradient Flow

Gradients over multiple time steps:

Bengio et al, "Learning long-term dependencies with gradient descent is difficult", IEEE Transactions on Neural Networks, 1994
Pascanu et al, "On the difficulty of training recurrent neural networks", ICML 2013



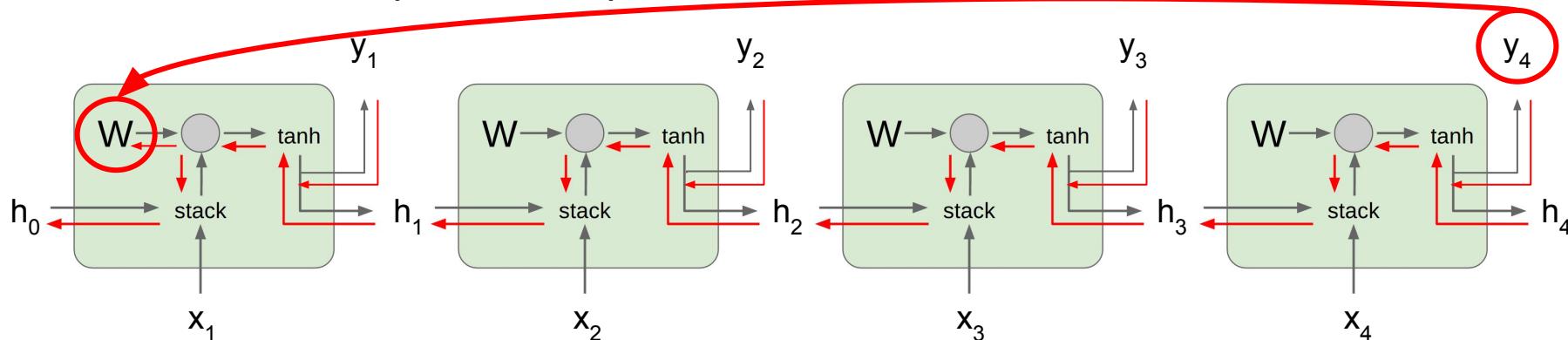
$$\frac{\partial L}{\partial W} = \sum_{t=1}^T \frac{\partial L_t}{\partial W}$$

$$\frac{\partial L_T}{\partial W} = \frac{\partial L_T}{\partial h_T} \frac{\partial h_t}{\partial h_{t-1}} \cdots \frac{\partial h_1}{\partial W}$$

Vanilla RNN Gradient Flow

Gradients over multiple time steps:

Bengio et al, "Learning long-term dependencies with gradient descent is difficult", IEEE Transactions on Neural Networks, 1994
Pascanu et al, "On the difficulty of training recurrent neural networks", ICML 2013



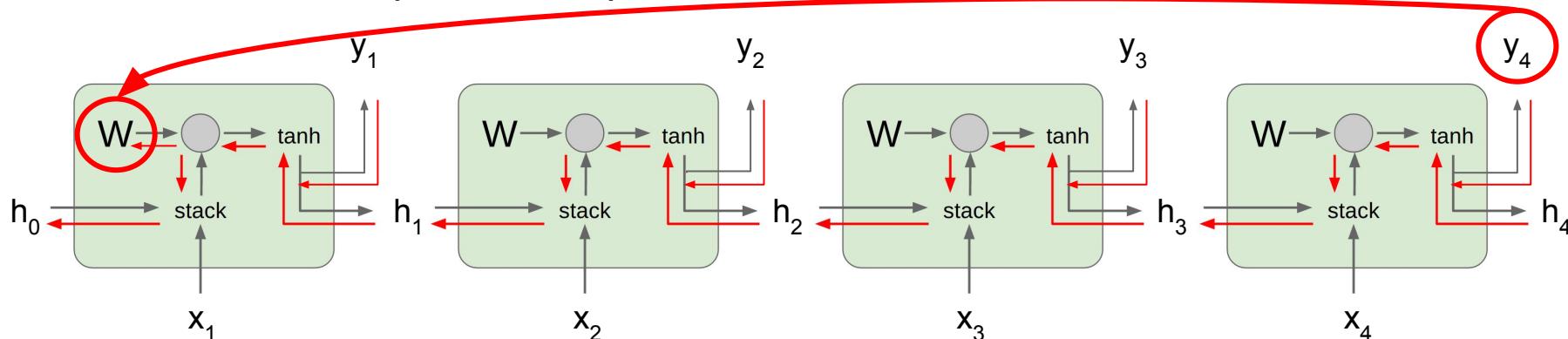
$$\frac{\partial L}{\partial W} = \sum_{t=1}^T \frac{\partial L_t}{\partial W}$$

$$\frac{\partial L_T}{\partial W} = \frac{\partial L_T}{\partial h_T} \frac{\partial h_t}{\partial h_{t-1}} \cdots \frac{\partial h_1}{\partial W} = \frac{\partial L_T}{\partial h_T} \left(\prod_{t=2}^T \frac{\partial h_t}{\partial h_{t-1}} \right) \frac{\partial h_1}{\partial W}$$

Vanilla RNN Gradient Flow

Gradients over multiple time steps:

Bengio et al, "Learning long-term dependencies with gradient descent is difficult", IEEE Transactions on Neural Networks, 1994
Pascanu et al, "On the difficulty of training recurrent neural networks", ICML 2013



$$\frac{\partial L}{\partial W} = \sum_{t=1}^T \frac{\partial L_t}{\partial W}$$

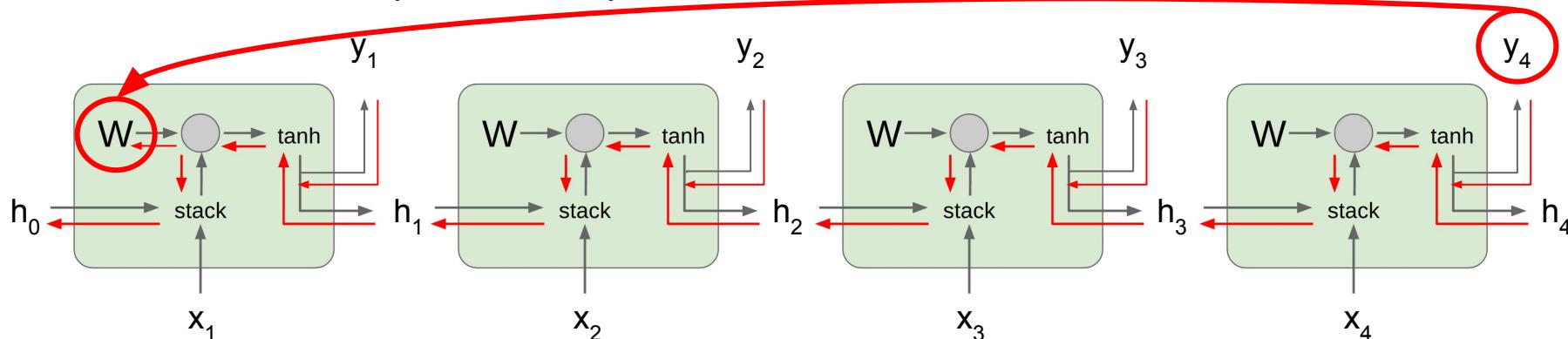
$$\frac{\partial h_t}{\partial h_{t-1}} = \tanh'(W_{hh}h_{t-1} + W_{xh}x_t)W_{hh}$$

$$\frac{\partial L_T}{\partial W} = \frac{\partial L_T}{\partial h_T} \frac{\partial h_t}{\partial h_{t-1}} \cdots \frac{\partial h_1}{\partial W} = \frac{\partial L_T}{\partial h_T} \left(\prod_{t=2}^T \frac{\partial h_t}{\partial h_{t-1}} \right) \frac{\partial h_1}{\partial W}$$

Vanilla RNN Gradient Flow

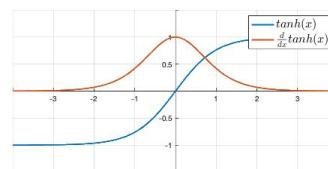
Gradients over multiple time steps:

Bengio et al, "Learning long-term dependencies with gradient descent is difficult", IEEE Transactions on Neural Networks, 1994
Pascanu et al, "On the difficulty of training recurrent neural networks", ICML 2013



$$\frac{\partial L}{\partial W} = \sum_{t=1}^T \frac{\partial L_t}{\partial W}$$

Almost always < 1
Vanishing gradients

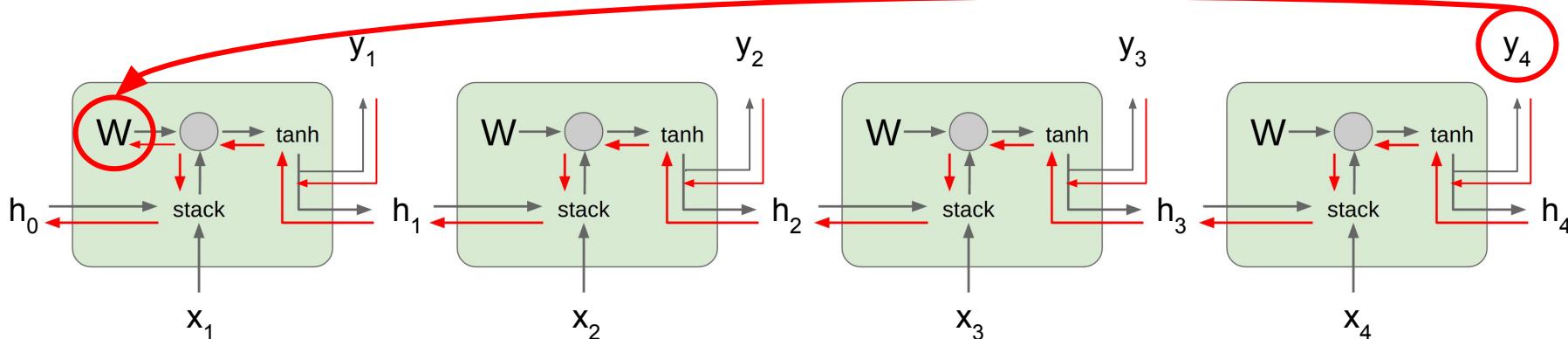


$$\frac{\partial L_T}{\partial W} = \frac{\partial L_T}{\partial h_T} \left(\prod_{t=2}^T \boxed{\tanh'(W_{hh} h_{t-1} + W_{xh} x_t)} \right) W_{hh}^{T-1} \frac{\partial h_1}{\partial W}$$

Vanilla RNN Gradient Flow

Gradients over multiple time steps:

Bengio et al, "Learning long-term dependencies with gradient descent is difficult", IEEE Transactions on Neural Networks, 1994
Pascanu et al, "On the difficulty of training recurrent neural networks", ICML 2013



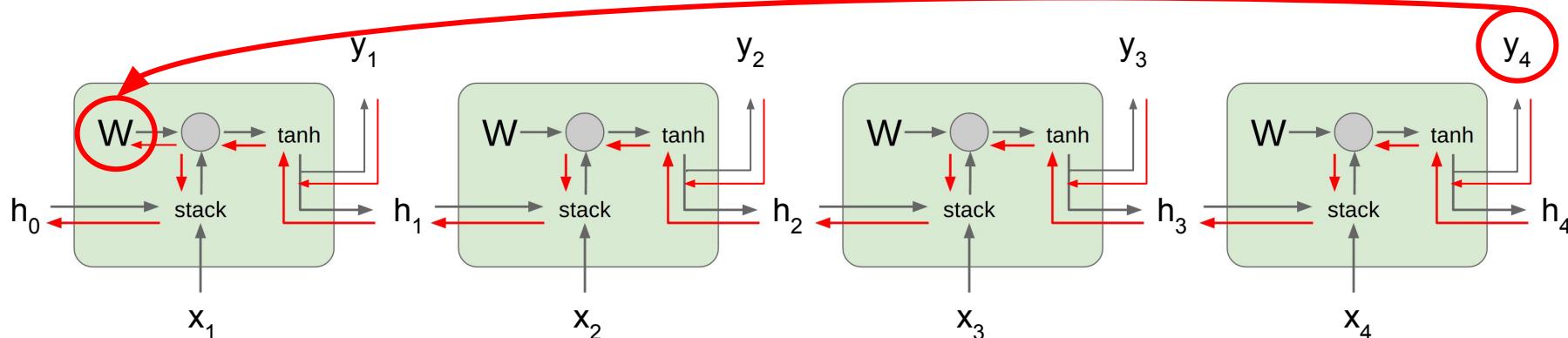
$$\frac{\partial L}{\partial W} = \sum_{t=1}^T \frac{\partial L_t}{\partial W}$$

What if we assumed no non-linearity?

Vanilla RNN Gradient Flow

Gradients over multiple time steps:

Bengio et al, "Learning long-term dependencies with gradient descent is difficult", IEEE Transactions on Neural Networks, 1994
Pascanu et al, "On the difficulty of training recurrent neural networks", ICML 2013



What if we assumed no non-linearity?

$$\frac{\partial L}{\partial W} = \sum_{t=1}^T \frac{\partial L_t}{\partial W}$$

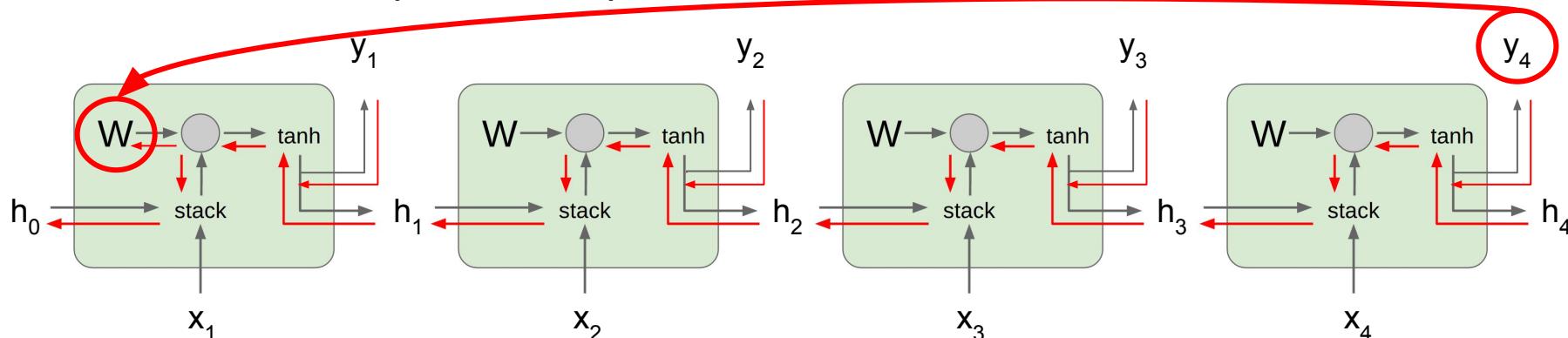
Largest singular value > 1 :
Exploding gradients

$$\frac{\partial L_T}{\partial W} = \frac{\partial L_T}{\partial h_T} \boxed{W_{hh}^{T-1}} \frac{\partial h_1}{\partial W}$$

Largest singular value < 1 :
Vanishing gradients

Vanilla RNN Gradient Flow

Gradients over multiple time steps:



What if we assumed no non-linearity?

$$\frac{\partial L}{\partial W} = \sum_{t=1}^T \frac{\partial L_t}{\partial W}$$

$$\frac{\partial L_T}{\partial W} = \frac{\partial L_T}{\partial h_T} \boxed{W_{hh}^{T-1}} \frac{\partial h_1}{\partial W}$$

Largest singular value > 1 :
Exploding gradients

Largest singular value < 1 :
Vanishing gradients

Bengio et al, "Learning long-term dependencies with gradient descent is difficult", IEEE Transactions on Neural Networks, 1994
Pascanu et al, "On the difficulty of training recurrent neural networks", ICML 2013

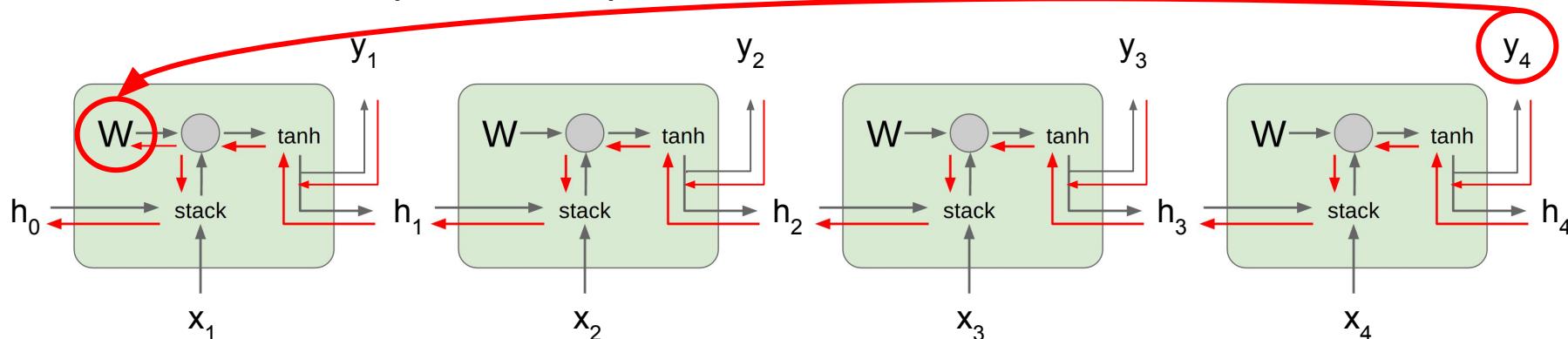
→ **Gradient clipping:**
Scale gradient if its norm is too big

```
grad_norm = np.sum(grad * grad)
if grad_norm > threshold:
    grad *= (threshold / grad_norm)
```

Vanilla RNN Gradient Flow

Gradients over multiple time steps:

Bengio et al, "Learning long-term dependencies with gradient descent is difficult", IEEE Transactions on Neural Networks, 1994
Pascanu et al, "On the difficulty of training recurrent neural networks", ICML 2013



What if we assumed no non-linearity?

$$\frac{\partial L}{\partial W} = \sum_{t=1}^T \frac{\partial L_t}{\partial W}$$

Largest singular value > 1 :
Exploding gradients

$$\frac{\partial L_T}{\partial W} = \frac{\partial L_T}{\partial h_T} \boxed{W_{hh}^{T-1}} \frac{\partial h_1}{\partial W}$$

Largest singular value < 1 :
Vanishing gradients

→ Change RNN architecture

Long Short Term Memory (LSTM)

Vanilla RNN

$$h_t = \tanh \left(W \begin{pmatrix} h_{t-1} \\ x_t \end{pmatrix} \right)$$

LSTM

$$\begin{pmatrix} i \\ f \\ o \\ g \end{pmatrix} = \begin{pmatrix} \sigma \\ \sigma \\ \sigma \\ \tanh \end{pmatrix} W \begin{pmatrix} h_{t-1} \\ x_t \end{pmatrix}$$

$$c_t = f \odot c_{t-1} + i \odot g$$

$$h_t = o \odot \tanh(c_t)$$

Hochreiter and Schmidhuber, "Long Short Term Memory", Neural Computation 1997

RNNs have a single hidden state (h_t)

LSTMs have two: **cell memory c_t** and hidden state h_t

Vanilla RNN

$$h_t = \tanh \left(W \begin{pmatrix} h_{t-1} \\ x_t \end{pmatrix} \right)$$

LSTM

$$\begin{pmatrix} i \\ f \\ o \\ g \end{pmatrix} = \begin{pmatrix} \sigma \\ \sigma \\ \sigma \\ \tanh \end{pmatrix} W \begin{pmatrix} h_{t-1} \\ x_t \end{pmatrix}$$

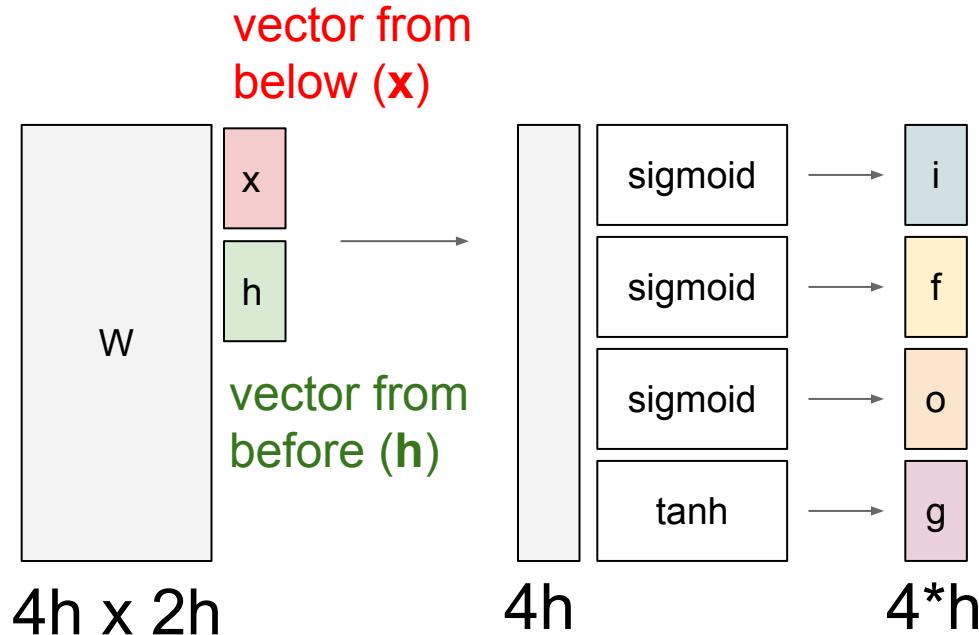
$$c_t = f \odot c_{t-1} + i \odot g$$

$$h_t = o \odot \tanh(c_t)$$

Hochreiter and Schmidhuber, "Long Short Term Memory", Neural Computation 1997

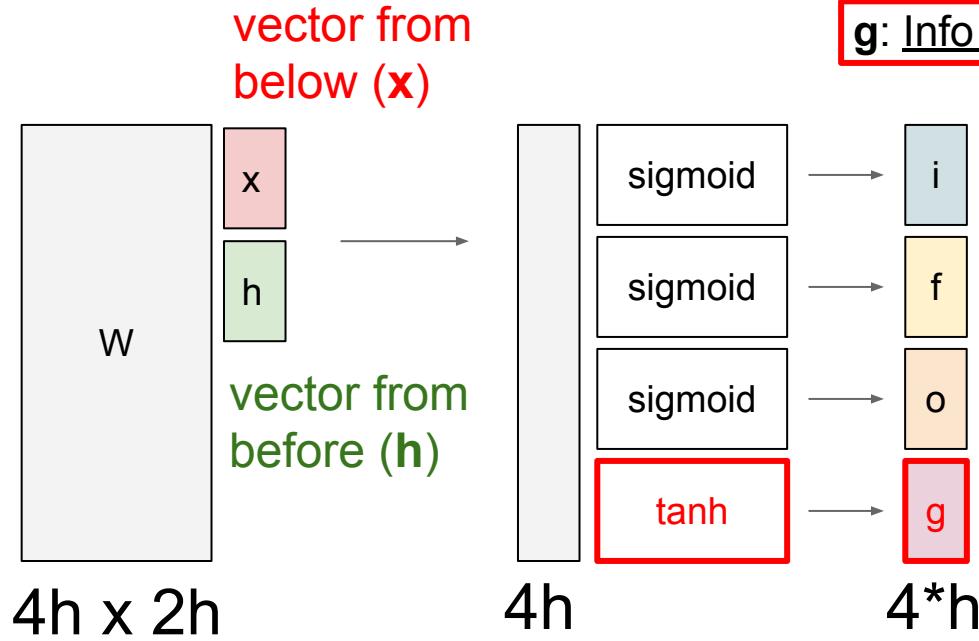
Long Short Term Memory (LSTM)

[Hochreiter et al., 1997]



Long Short Term Memory (LSTM)

[Hochreiter et al., 1997]



g: Info gate, How much to write to cell

$$\begin{pmatrix} i \\ f \\ o \\ g \end{pmatrix} = \begin{pmatrix} \sigma \\ \sigma \\ \sigma \\ \tanh \end{pmatrix} W \begin{pmatrix} h_{t-1} \\ x_t \end{pmatrix}$$

$$c_t = f \odot c_{t-1} + i \odot g$$

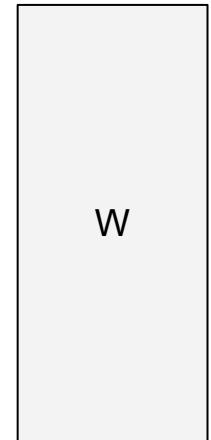
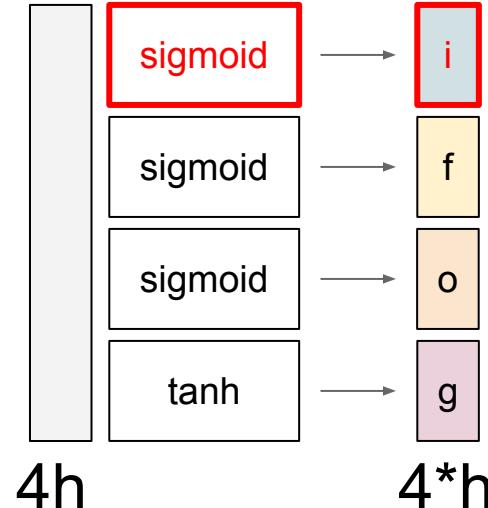
$$h_t = o \odot \tanh(c_t)$$

Long Short Term Memory (LSTM)

[Hochreiter et al., 1997]

i: Input gate, whether to write to cell

vector from
below (x)



g: Info gate, How much to write to cell

$$\begin{pmatrix} i \\ f \\ o \\ g \end{pmatrix} = \begin{pmatrix} \sigma \\ \sigma \\ \sigma \\ \tanh \end{pmatrix} W \begin{pmatrix} h_{t-1} \\ x_t \end{pmatrix}$$

$$c_t = f \odot c_{t-1} + i \odot g$$

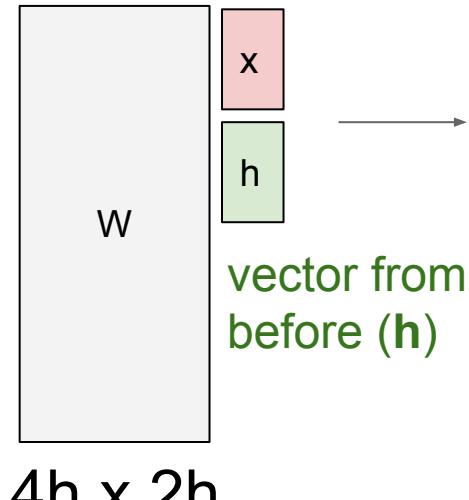
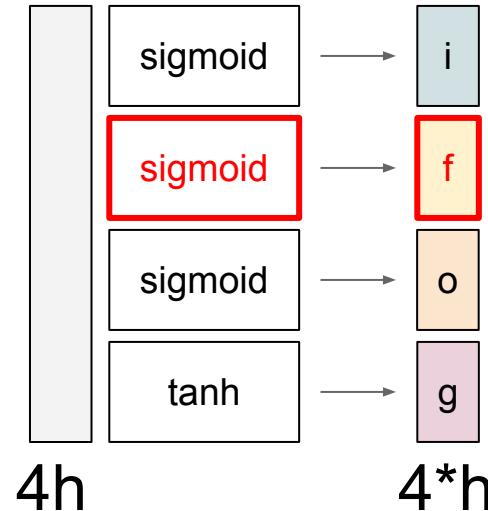
$$h_t = o \odot \tanh(c_t)$$

Long Short Term Memory (LSTM)

[Hochreiter et al., 1997]

i: Input gate, whether to write to cell
f: Forget gate, Whether to erase cell

vector from
below (x)



g: Info gate, How much to write to cell

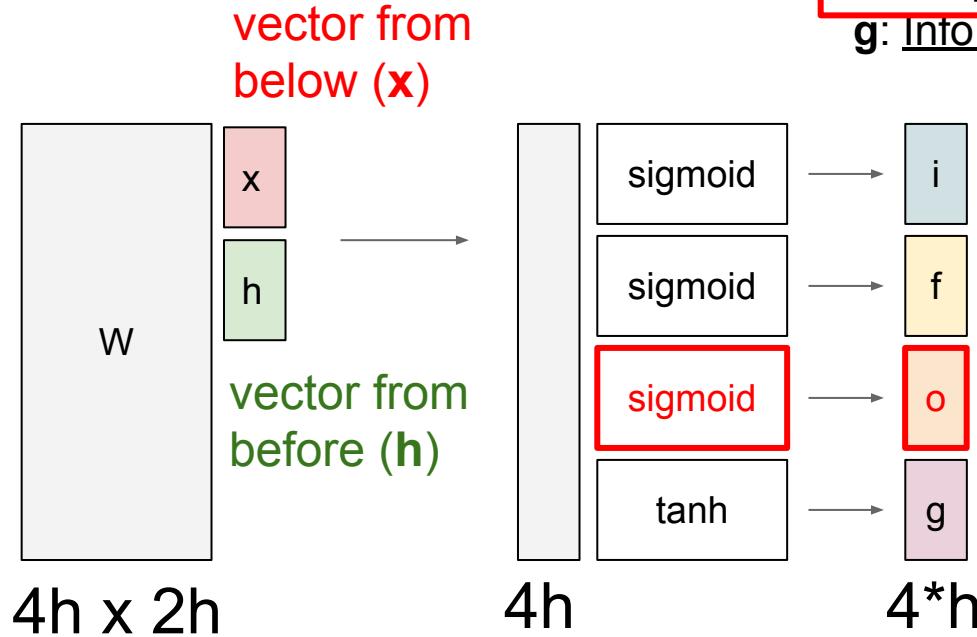
$$\begin{pmatrix} i \\ f \\ o \\ g \end{pmatrix} = \begin{pmatrix} \sigma \\ \sigma \\ \sigma \\ \tanh \end{pmatrix} W \begin{pmatrix} h_{t-1} \\ x_t \end{pmatrix}$$

$$c_t = f \odot c_{t-1} + i \odot g$$

$$h_t = o \odot \tanh(c_t)$$

Long Short Term Memory (LSTM)

[Hochreiter et al., 1997]



- i: Input gate, whether to write to cell
- f: Forget gate. Whether to erase cell
- o: Output gate, How much to reveal cell**
- g: Info gate, How much to write to cell

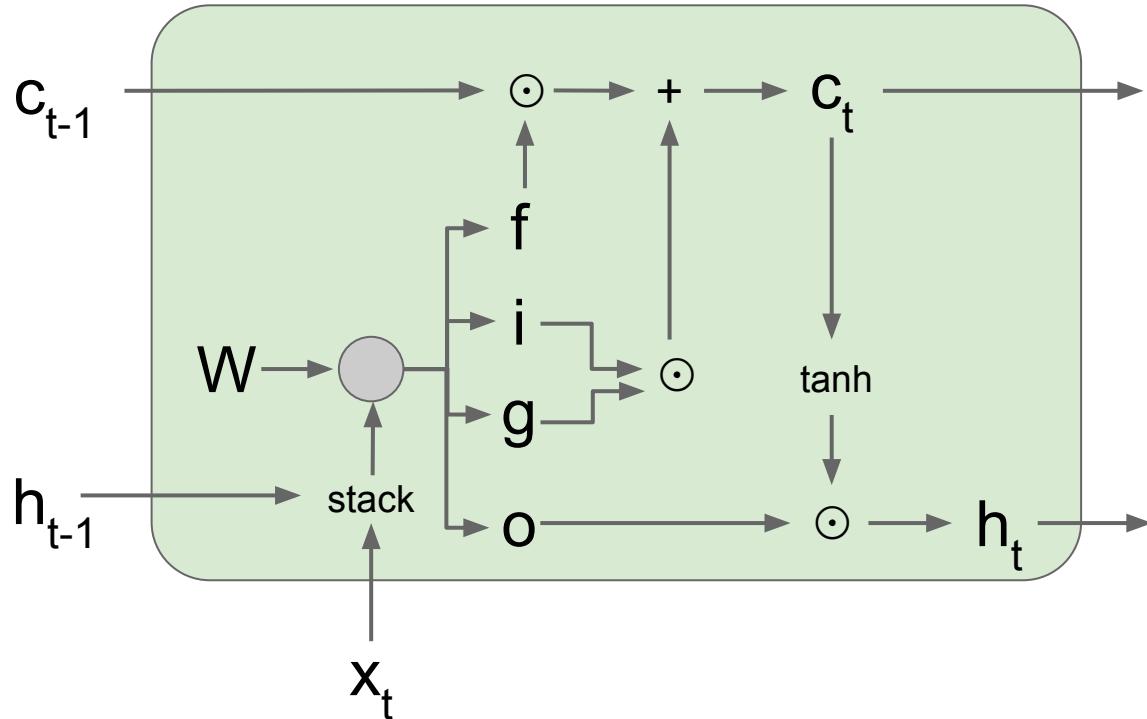
$$\begin{pmatrix} i \\ f \\ o \\ g \end{pmatrix} = \begin{pmatrix} \sigma \\ \sigma \\ \sigma \\ \tanh \end{pmatrix} W \begin{pmatrix} h_{t-1} \\ x_t \end{pmatrix}$$

$$c_t = f \odot c_{t-1} + i \odot g$$

$$h_t = o \odot \tanh(c_t)$$

Long Short Term Memory (LSTM)

[Hochreiter et al., 1997]



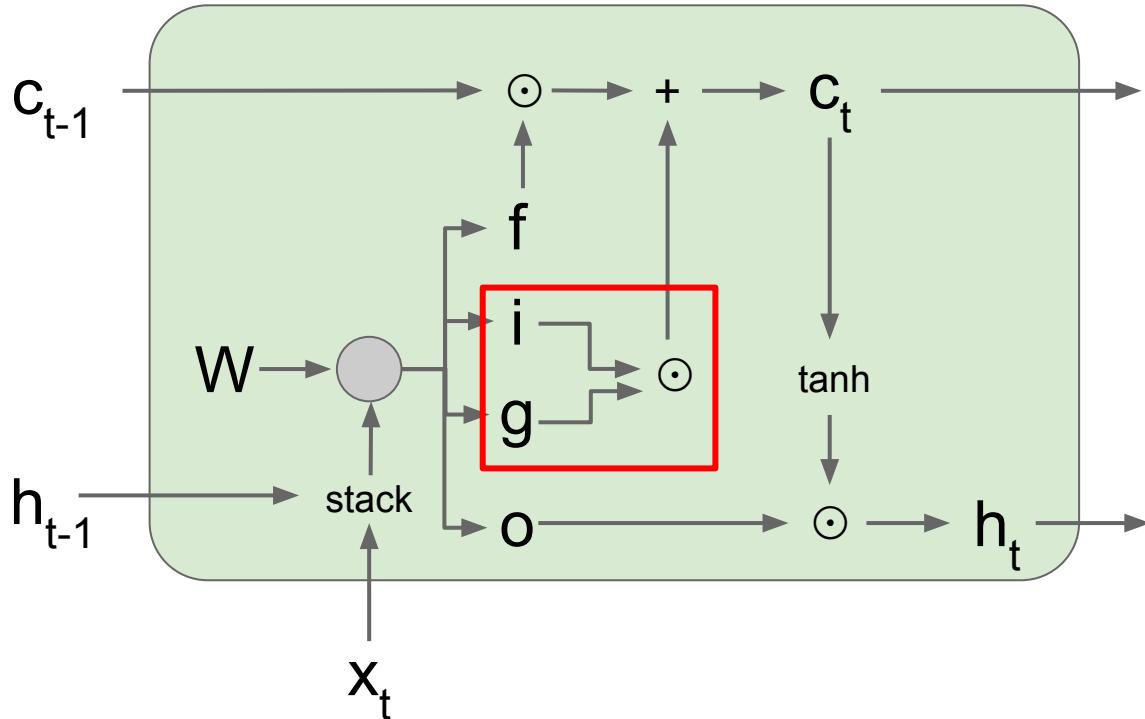
$$\begin{pmatrix} i \\ f \\ o \\ g \end{pmatrix} = \begin{pmatrix} \sigma \\ \sigma \\ \sigma \\ \tanh \end{pmatrix} W \begin{pmatrix} h_{t-1} \\ x_t \end{pmatrix}$$

$$c_t = f \odot c_{t-1} + i \odot g$$

$$h_t = o \odot \tanh(c_t)$$

Long Short Term Memory (LSTM)

[Hochreiter et al., 1997]



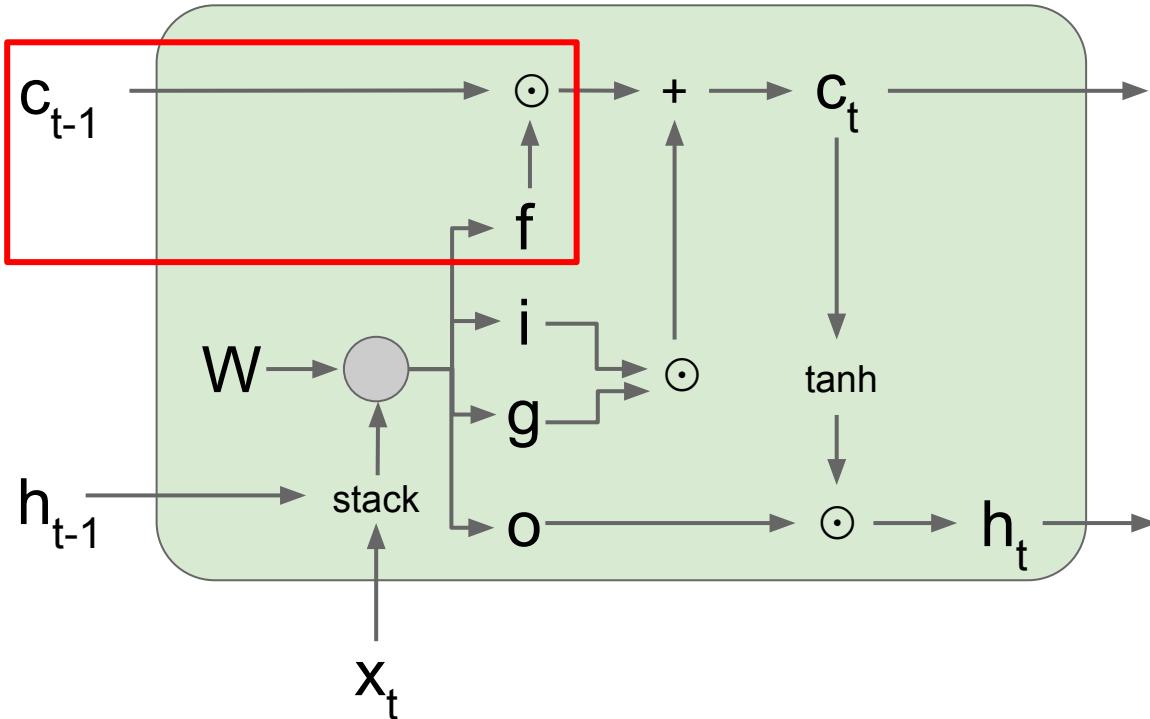
$$\begin{pmatrix} i \\ f \\ o \\ g \end{pmatrix} = \begin{pmatrix} \sigma \\ \sigma \\ \sigma \\ \tanh \end{pmatrix} W \begin{pmatrix} h_{t-1} \\ x_t \end{pmatrix}$$

$$c_t = f \odot c_{t-1} + i \odot g$$

$$h_t = o \odot \tanh(c_t)$$

Long Short Term Memory (LSTM)

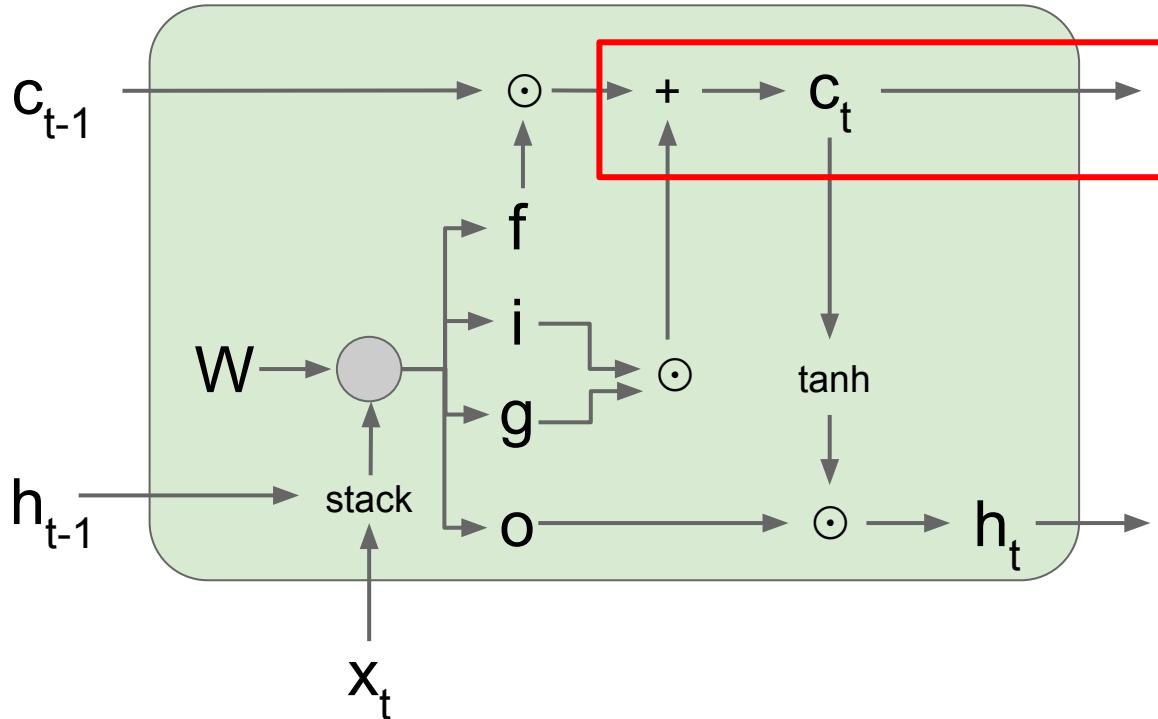
[Hochreiter et al., 1997]



$$\begin{pmatrix} i \\ f \\ o \\ g \end{pmatrix} = \begin{pmatrix} \sigma \\ \sigma \\ \sigma \\ \tanh \end{pmatrix} W \begin{pmatrix} h_{t-1} \\ x_t \end{pmatrix}$$
$$c_t = f \odot c_{t-1} + i \odot g$$
$$h_t = o \odot \tanh(c_t)$$

Long Short Term Memory (LSTM)

[Hochreiter et al., 1997]



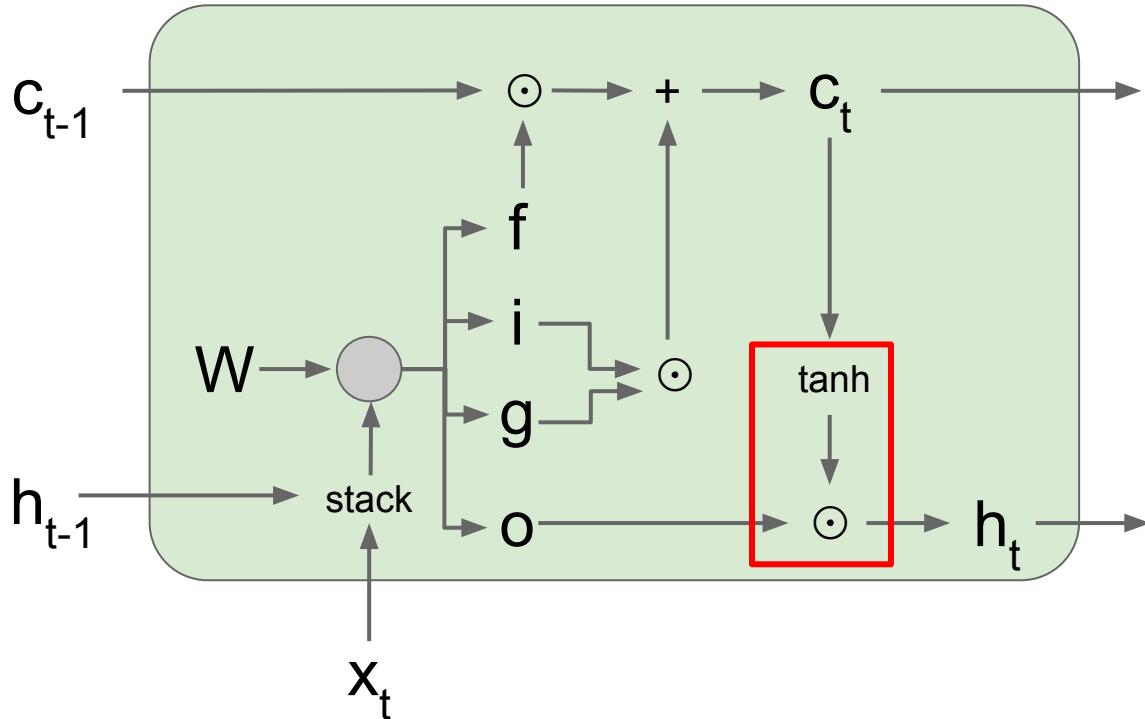
$$\begin{pmatrix} i \\ f \\ o \\ g \end{pmatrix} = \begin{pmatrix} \sigma \\ \sigma \\ \sigma \\ \tanh \end{pmatrix} W \begin{pmatrix} h_{t-1} \\ x_t \end{pmatrix}$$

$$c_t = f \odot c_{t-1} + i \odot g$$

$$h_t = o \odot \tanh(c_t)$$

Long Short Term Memory (LSTM)

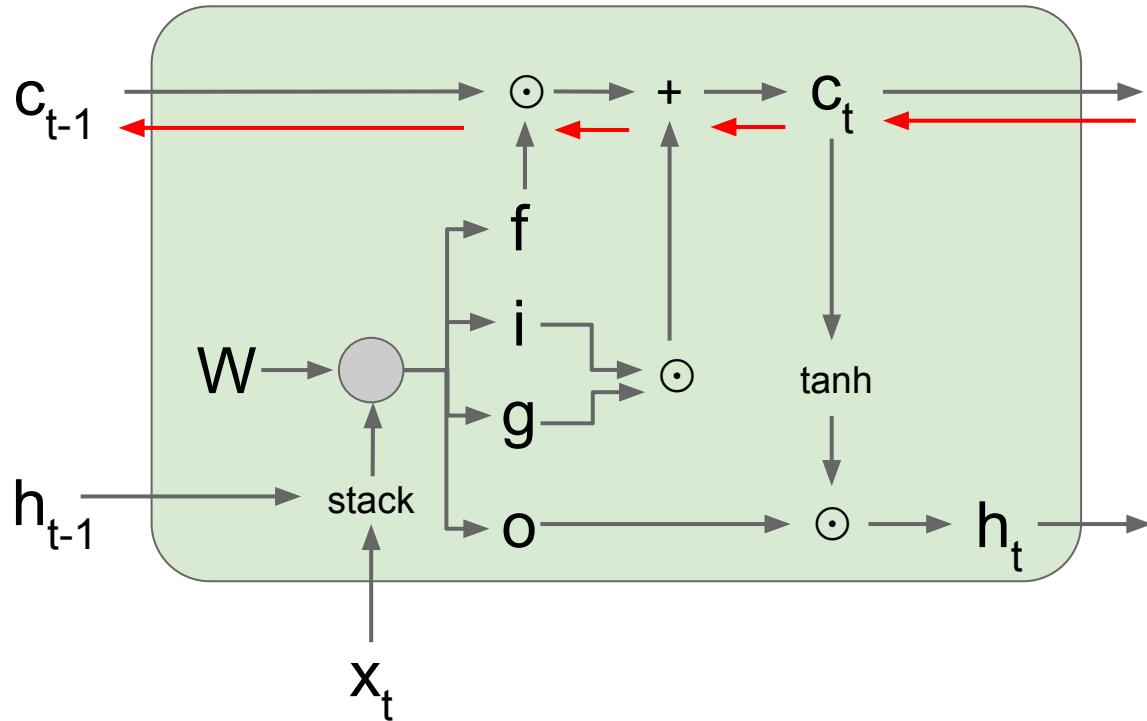
[Hochreiter et al., 1997]



$$\begin{pmatrix} i \\ f \\ o \\ g \end{pmatrix} = \begin{pmatrix} \sigma \\ \sigma \\ \sigma \\ \tanh \end{pmatrix} W \begin{pmatrix} h_{t-1} \\ x_t \end{pmatrix}$$
$$c_t = f \odot c_{t-1} + i \odot g$$
$$h_t = o \odot \tanh(c_t)$$

Long Short Term Memory (LSTM): Gradient Flow

[Hochreiter et al., 1997]



Backpropagation from c_t to c_{t-1} only elementwise multiplication by f , no matrix multiply by W

$$\begin{pmatrix} i \\ f \\ o \\ g \end{pmatrix} = \begin{pmatrix} \sigma \\ \sigma \\ \sigma \\ \tanh \end{pmatrix} W \begin{pmatrix} h_{t-1} \\ x_t \end{pmatrix}$$

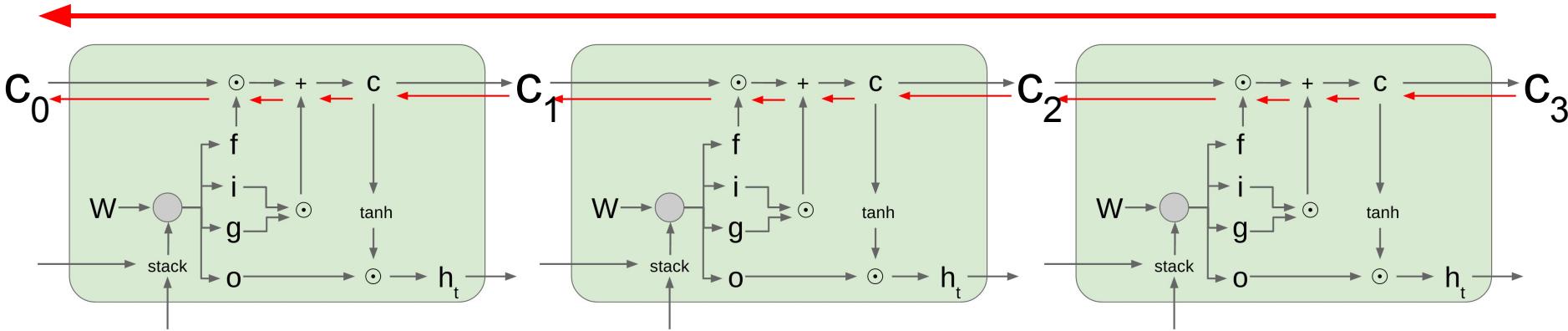
$$c_t = f \odot c_{t-1} + i \odot g$$

$$h_t = o \odot \tanh(c_t)$$

Long Short Term Memory (LSTM): Gradient Flow

[Hochreiter et al., 1997]

Uninterrupted gradient flow!



Notice that the gradient contains the **f** gate's vector of activations

- allows better control of gradients values, using suitable parameter updates of the forget gate.

Also notice that are added through the **f**, **i**, **g**, and **o** gates

- better balancing of gradient values

Do LSTMs solve the vanishing gradient problem?

The LSTM architecture makes it easier for the RNN to preserve information over many timesteps

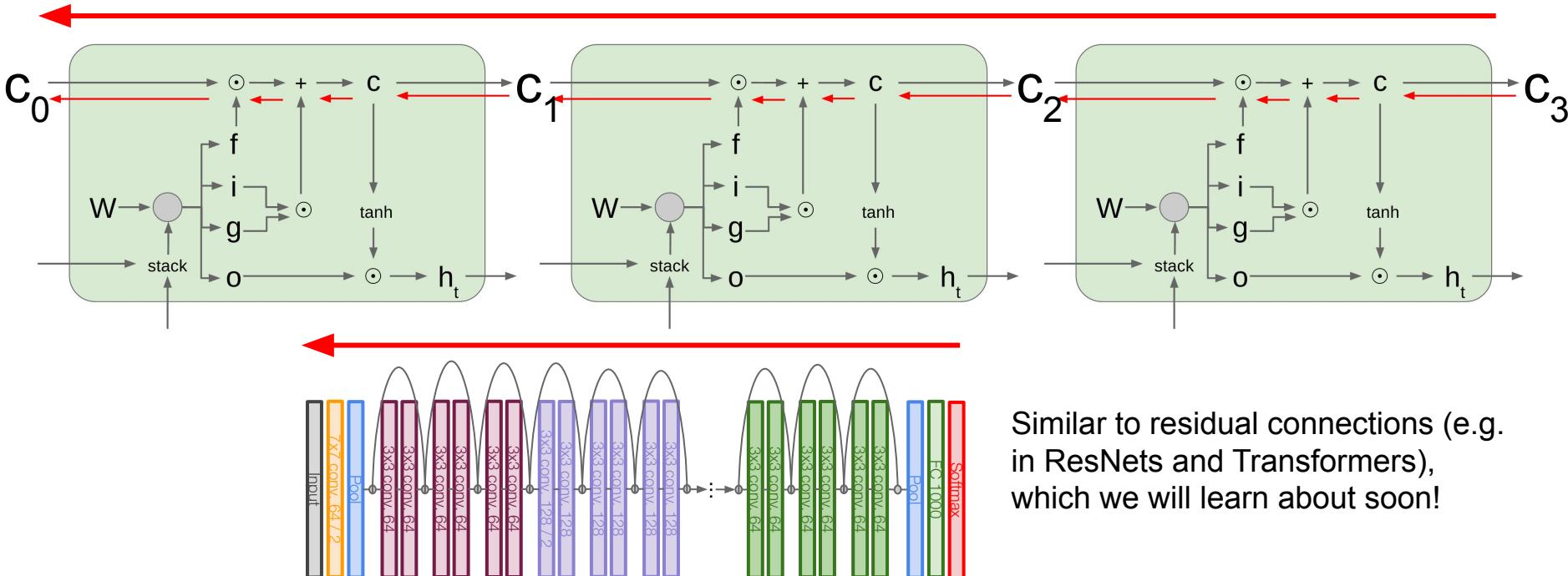
- e.g. **if the $f = 1$ and the $i = 0$** , then the information of that cell is preserved indefinitely.
- By contrast, it's harder for vanilla RNN to learn a recurrent weight matrix W_h that preserves info in hidden state

LSTM **doesn't guarantee** that there is no vanishing/exploding gradient, but it does provide an easier way for the model to learn long-distance dependencies

Long Short Term Memory (LSTM): Gradient Flow

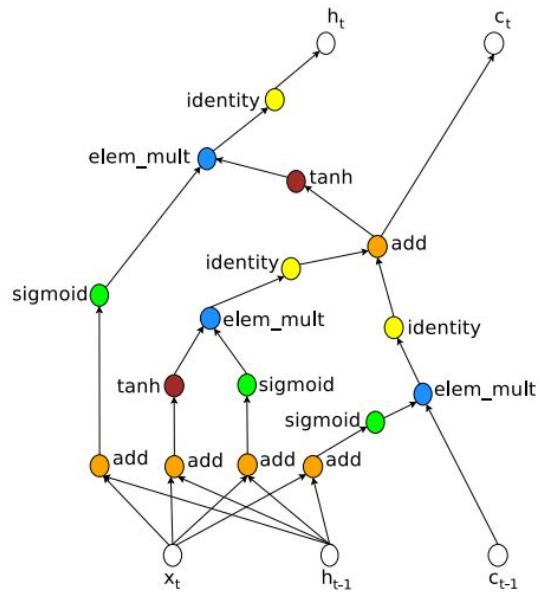
[Hochreiter et al., 1997]

Uninterrupted gradient flow!

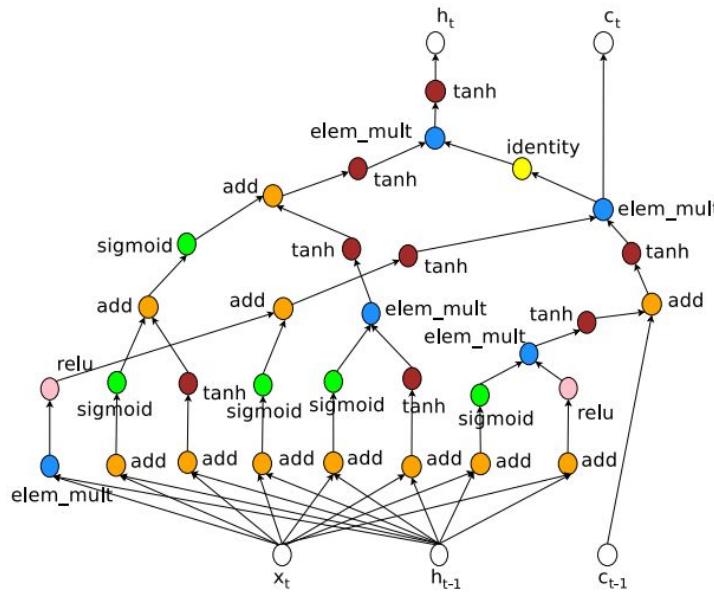


Similar to residual connections (e.g. in ResNets and Transformers), which we will learn about soon!

Neural Architecture Search for RNN architectures



LSTM cell



Cell they found

Zoph et Le, "Neural Architecture Search with Reinforcement Learning", ICLR 2017
Figures copyright Zoph et al, 2017. Reproduced with permission.

Other RNN Variants

GRU [*Learning phrase representations using rnn encoder-decoder for statistical machine translation*, Cho et al. 2014]

$$r_t = \sigma(W_{xr}x_t + W_{hr}h_{t-1} + b_r)$$

$$z_t = \sigma(W_{xz}x_t + W_{hz}h_{t-1} + b_z)$$

$$\tilde{h}_t = \tanh(W_{xh}x_t + W_{hh}(r_t \odot h_{t-1}) + b_h)$$

$$h_t = z_t \odot h_{t-1} + (1 - z_t) \odot \tilde{h}_t$$

[*LSTM: A Search Space Odyssey*, Greff et al., 2015]

[*An Empirical Exploration of Recurrent Network Architectures*, Jozefowicz et al., 2015]

MUT1:

$$z = \text{sigm}(W_{xz}x_t + b_z)$$

$$r = \text{sigm}(W_{xr}x_t + W_{hr}h_t + b_r)$$

$$h_{t+1} = \tanh(W_{hh}(r \odot h_t) + \tanh(x_t) + b_h) \odot z + h_t \odot (1 - z)$$

MUT2:

$$z = \text{sigm}(W_{xz}x_t + W_{hz}h_t + b_z)$$

$$r = \text{sigm}(x_t + W_{hr}h_t + b_r)$$

$$h_{t+1} = \tanh(W_{hh}(r \odot h_t) + W_{xh}x_t + b_h) \odot z + h_t \odot (1 - z)$$

MUT3:

$$z = \text{sigm}(W_{xz}x_t + W_{hz} \tanh(h_t) + b_z)$$

$$r = \text{sigm}(W_{xr}x_t + W_{hr}h_t + b_r)$$

$$h_{t+1} = \tanh(W_{hh}(r \odot h_t) + W_{xh}x_t + b_h) \odot z + h_t \odot (1 - z)$$

Recurrence for Vision

- LSTM were a good default choice until this year
- Use variants like GRU if you want faster compute and less parameters
- Use transformers (next lecture) as they are dominating NLP and also vision models
 - almost everyday there is a new transformer model

Su et al. "Vi-bert: Pre-training of generic visual-linguistic representations." ICLR 2020

Lu et al. "Vilbert: Pretraining task-agnostic visiolinguistic representations for vision-and-language tasks." NeurIPS 2019

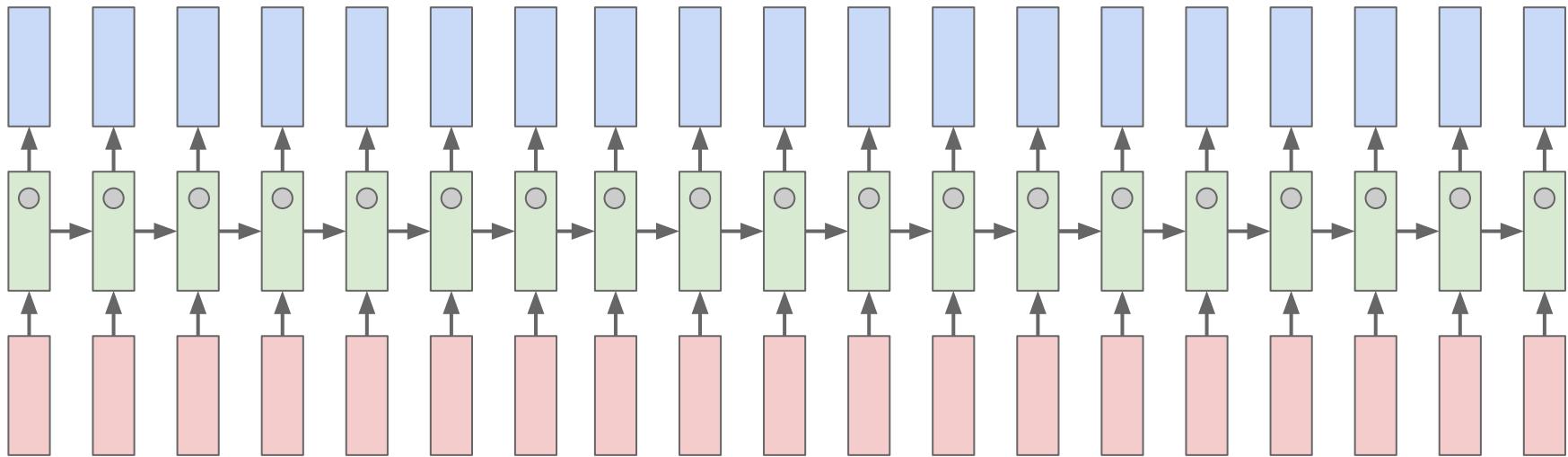
Li et al. "Visualbert: A simple and performant baseline for vision and language." *arXiv* 2019

Summary

- RNNs allow a lot of flexibility in architecture design
- Vanilla RNNs are simple but don't work very well
- Common to use LSTM or GRU: their additive interactions improve gradient flow
- Backward flow of gradients in RNN can explode or vanish. Exploding is controlled with gradient clipping. Vanishing is controlled with additive interactions (LSTM)
- Better/simpler architectures are a hot topic of current research, as well as new paradigms for reasoning over sequences
- Better understanding (both theoretical and empirical) is needed.

Next time: Attention and transformers!

Searching for interpretable cells



Searching for interpretable cells

```
/* Unpack a filter field's string representation from user-space
 * buffer. */
char *audit_unpack_string(void **bufp, size_t *remain, size_t len)
{
    char *str;
    if (!*bufp || (len == 0) || (len > *remain))
        return ERR_PTR(-EINVAL);
    /* of the currently implemented string fields, PATH_MAX
     * defines the longest valid length.
    */
}
```

Karpathy, Johnson, and Fei-Fei: Visualizing and Understanding Recurrent Networks, ICLR Workshop 2016
Figures copyright Karpathy, Johnson, and Fei-Fei, 2015; reproduced with permission

Searching for interpretable cells

"You mean to imply that I have nothing to eat out of.... On the contrary, I can supply you with everything even if you want to give dinner parties," warmly replied Chichagov, who tried by every word he spoke to prove his own rectitude and therefore imagined Kutuzov to be animated by the same desire.

Kutuzov, shrugging his shoulders, replied with his subtle penetrating smile: "I meant merely to say what I said."

quote detection cell

Karpathy, Johnson, and Fei-Fei: Visualizing and Understanding Recurrent Networks, ICLR Workshop 2016
Figures copyright Karpathy, Johnson, and Fei-Fei, 2015; reproduced with permission

Searching for interpretable cells

Cell sensitive to position in line:

The sole importance of the crossing of the Berezina lies in the fact that it plainly and indubitably proved the fallacy of all the plans for cutting off the enemy's retreat and the soundness of the only possible line of action--the one Kutuzov and the general mass of the army demanded--namely, simply to follow the enemy up. The French crowd fled at a continually increasing speed and all its energy was directed to reaching its goal. It fled like a wounded animal and it was impossible to block its path. This was shown not so much by the arrangements it made for crossing as by what took place at the bridges. When the bridges broke down, unarmed soldiers, people from Moscow and women with children who were with the French transport, all--carried on by vis inertiae--pressed forward into boats and into the ice-covered water and did not, surrender.

line length tracking cell

Karpathy, Johnson, and Fei-Fei: Visualizing and Understanding Recurrent Networks, ICLR Workshop 2016
Figures copyright Karpathy, Johnson, and Fei-Fei, 2015; reproduced with permission

Searching for interpretable cells

```
static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
    siginfo_t *info)
{
    int sig = next_signal(pending, mask);
    if (sig) {
        if (current->notifier) {
            if (sigismember(current->notifier_mask, sig)) {
                if (! (current->notifier)(current->notifier_data)) {
                    clear_thread_flag(TIF_SIGPENDING);
                    return 0;
                }
            }
            collect_signal(sig, pending, info);
        }
    }
    return sig;
}
```

if statement cell

Karpathy, Johnson, and Fei-Fei: Visualizing and Understanding Recurrent Networks, ICLR Workshop 2016
Figures copyright Karpathy, Johnson, and Fei-Fei, 2015; reproduced with permission

Searching for interpretable cells

Cell that turns on inside comments and quotes:

```
/* Duplicate LSM field information. The lsm_rule is opaque, so
 * re-initialized. */
static inline int audit_dupe_lsm_field(struct audit_field *df,
                                       struct audit_field *sf)
{
    int ret = 0;
    char *lsm_str;
    /* our own copy of lsm_str */
    lsm_str = kstrdup(sf->lsm_str, GFP_KERNEL);
    if (unlikely(!lsm_str))
        return -ENOMEM;
    df->lsm_str = lsm_str;
    /* our own (refreshed) copy of lsm_rule */
    ret = security_audit_rule_init(df->type, df->op, df->lsm_str,
                                   (void **) &df->lsm_rule);
    /* Keep currently invalid fields around in case they
     * become valid after a policy reload. */
    if (ret == -EINVAL) {
        pr_warn("audit rule for LSM \\'%s\\' is invalid\n",
               df->lsm_str);
        ret = 0;
    }
    return ret;
}
```

quote/comment cell

Karpathy, Johnson, and Fei-Fei: Visualizing and Understanding Recurrent Networks, ICLR Workshop 2016

Figures copyright Karpathy, Johnson, and Fei-Fei, 2015; reproduced with permission

Searching for interpretable cells

```
#ifdef CONFIG_AUDITSYSCALL
static inline int audit_match_class_bits(int class, u32 *mask)
{
    int i;
    if (classes[class]) {
        for (i = 0; i < AUDIT_BITMASK_SIZE; i++)
            if (mask[i] & classes[class][i])
                return 0;
    }
    return 1;
}
```

code depth cell

Karpathy, Johnson, and Fei-Fei: Visualizing and Understanding Recurrent Networks, ICLR Workshop 2016
Figures copyright Karpathy, Johnson, and Fei-Fei, 2015; reproduced with permission