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What is finetuning?
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Take useful model that already knows a lot and update it slightly



Can build applications cheaper, better.
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Can build personalized applications.

Step1

Collect demonstration data
and train a supervised policy.
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Vision: everyone should be able to easily adapt a very
capable (very big) base model to whatever task they want



How to finetune a model

Slide credit to Tim Dettmers
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How to finetune a model
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How to finetune a model
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How to finetune a model
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How to finetune a model
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How to finetune a model
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Background: How to finetune a model

Update the weights
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Challenge: this is expensive compute wise.

100B parameters
base model
(~64-128 GPUs to train)



Challenge: this is expensive storage wise.

100B parameters
base model
(~200GB)

Each finetuned copy is same size!



Research problem: how can we reduce the cost of (1)
finetuning a model and (2) storing the updated copy?



Low Rank Adaptation (LoRA)
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Figure 1: Our reparametriza-
tion. We only train A and B.

Wﬁnetuned — Wbase + AW
h = Wﬁnetuned(x) — Wbase(x)_'_AW(x)
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Figure 1: Our reparametriza-
tion. We only train A and B.

Wﬁnetuned — Wbase + AW
h = Wﬁnetuned(x) — Wbase(x)+AW(x>

Key observation: deltaW has low
rank, so that we can express it
as a product of two simpler
matrices
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Low Rank Adaptation (LoRA)
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Low Rank Adaptation (LoRA)
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Figure 1: Our reparametriza-
tion. We only train A and B.

Now, only need to train and store B, A



Rank =8 Rank = 128

https://medium.com/@dreamsarereal/understanding-lora-training-part-1-learning-rate-schedulers-network-dimen
sion-and-alpha-c88a8658beb7



Finetuning a ~11B+ parameter model still requires multiple servers.

Slide credit to Tim Dettmers

Dettmers et al., 2023
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https://arxiv.org/abs/2311.16867
https://arxiv.org/abs/2305.14314

QLoRA: Finetuning large models on a single GPU.

Slide credit to Tim Dettmers

Dettmers et al., 2023
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https://arxiv.org/abs/2311.16867
https://arxiv.org/abs/2305.14314

Quantized Low-rank Adaptation (QLoRA)
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Quantized Low-rank Adaptation (QLoRA)

16-bit adapters

Add adapters

4-bit 4-bit
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Quantized Low-rank Adaptation (QLoRA)

16-bit adapters
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4-bit model
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Quantized Low-rank Adaptation (QLoRA)
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Quantized Low-rank Adaptation (QLoRA)
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Quantized Low-rank Adaptation (QLoRA)

Slide credit to Tim Dettmers

16-bit adapters

% %

4-bit model
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What 4-bit data type is information theoretically optimal?
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4-bit NormalFloat (NF4) an information-theoretically
optimal data type for normal distributions
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QLoRA systems contributions

- Double quantization
- GPU memory paging for optimizer
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Results
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QLoRA recovers lost performance through fine-tuning
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4-bit Guanaco: A ChatGPT-quality 4-bit chatbot finetuned in 24h on a single GPU
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Take-away
4-pbit finetuning is possible by passing

gradients through a 4-bit neural network to
16-bit adapters.

Slide credit to Tim Dettmers
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