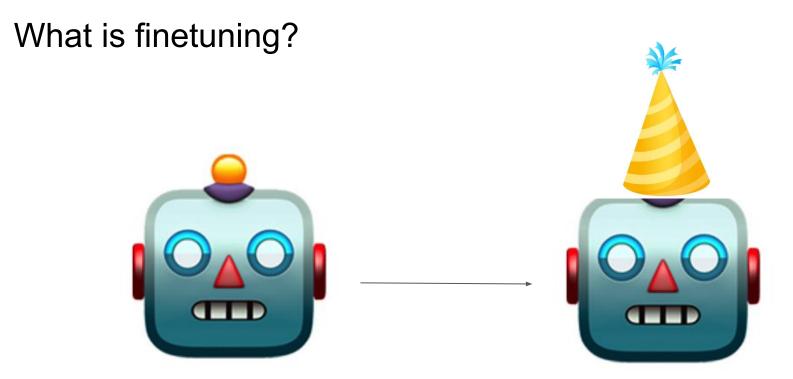
Parameter-Efficient Finetuning

CSE 493G/599G Recitation

Prepared by Scott Geng



Take useful model that already knows a lot and update it slightly

Can build applications cheaper, better.

Medical GPT

Can build applications cheaper, better.

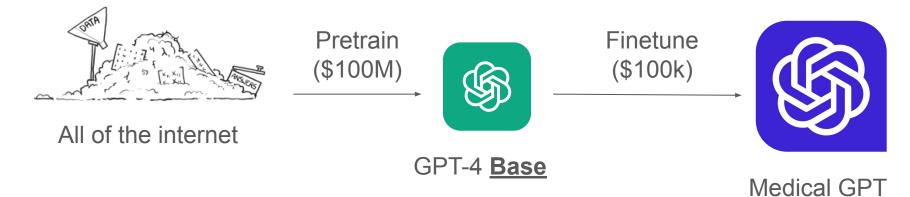
(smaller) domain dataset

All of the internet

Medical GPT

Can build applications cheaper, better.

(smaller) domain dataset



Can build personalized applications.

Step 1

Collect demonstration data and train a supervised policy.

A prompt is sampled from our prompt dataset.

A labeler demonstrates the desired output behavior.

learning.

0

Explain reinforcement

learning to a 6 year old.

This data is used to fine-tune GPT-3.5 with supervised SFT

l BBB Input images

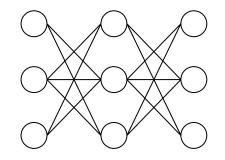
w/o prior-preservation loss

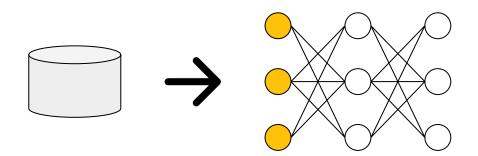
Ours (full)

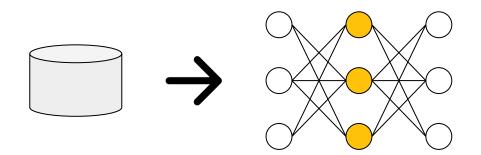
DreamBooth.

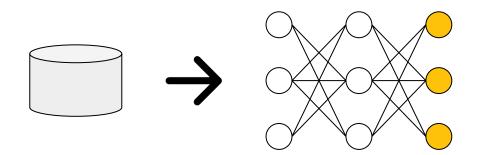
OpenAl.

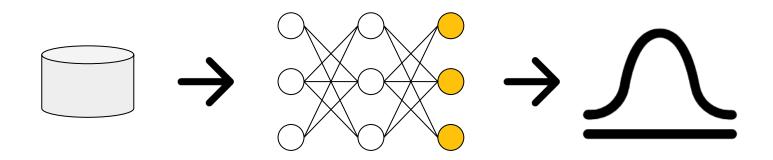
Vision: everyone should be able to easily adapt a very capable (very big) base model to whatever task they want

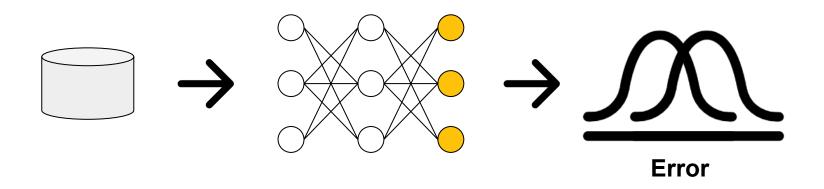


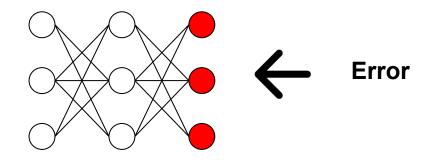


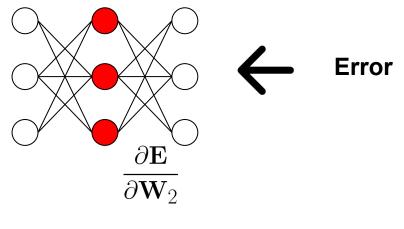






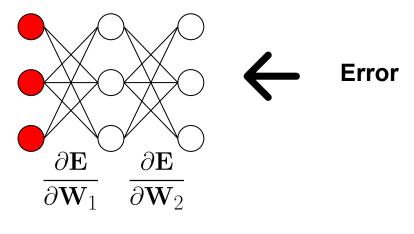






Weight gradients

Slide credit to Tim Dettmers

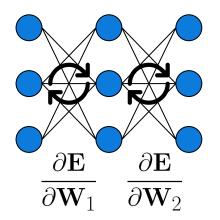


Weight gradients

Slide credit to Tim Dettmers

Background: How to finetune a model

Update the weights

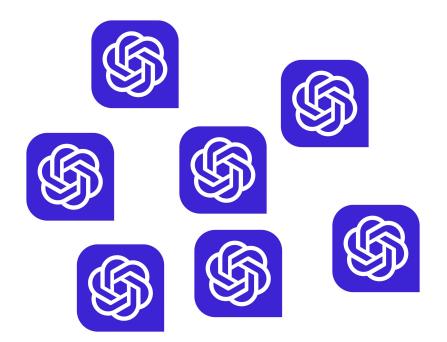


Challenge: this is expensive compute wise.

100B parameters base model (~64-128 GPUs to train)

Challenge: this is expensive storage wise.

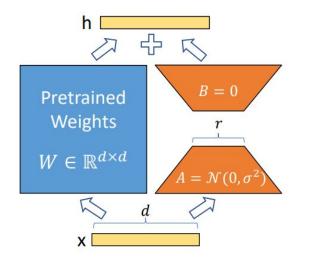
100B parameters base model (~200GB)



Each finetuned copy is same size!

Research problem: how can we reduce the cost of (1) finetuning a model and (2) storing the updated copy?

Low Rank Adaptation (LoRA)



$$W_{\text{finetuned}} = W_{base} + \Delta W$$
$$h = W_{\text{finetuned}}(x) = W_{base}(x) + \Delta W(x)$$

Figure 1: Our reparametrization. We only train A and B.

Low Rank Adaptation (LoRA)

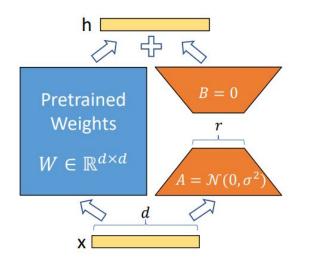
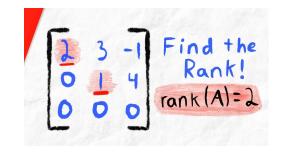


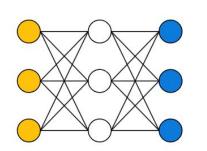
Figure 1: Our reparametrization. We only train A and B.

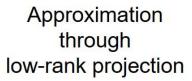
$$W_{\rm finetuned} = W_{base} + \Delta W$$

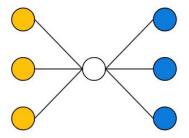
$$h = W_{\rm finetuned}(x) = W_{base}(x) + \Delta W(x)$$

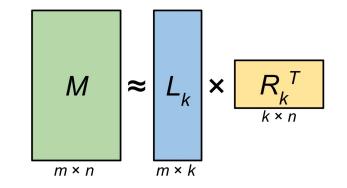
Key observation: deltaW has low rank, so that we can express it as a product of two simpler matrices



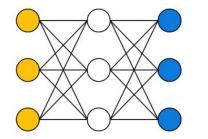


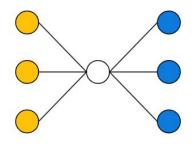






Approximation through low-rank projection





Low Rank Adaptation (LoRA)

h

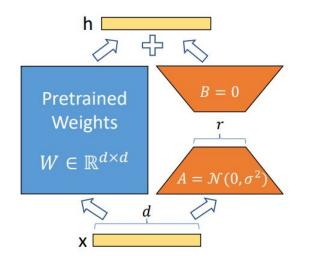


Figure 1: Our reparametrization. We only train A and B.

$$W_{\text{finetuned}} = W_{base} + \Delta W$$
$$h = W_{\text{finetuned}}(x) = W_{base}(x) + \Delta W(x)$$
$$\Delta W = BA$$
$$= W_{\text{finetuned}}(x) = W_{base}(x) + BAx$$

Low Rank Adaptation (LoRA)

h

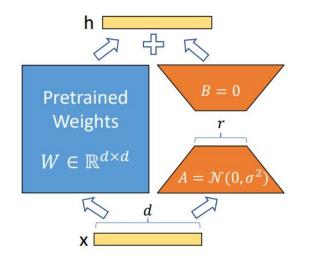
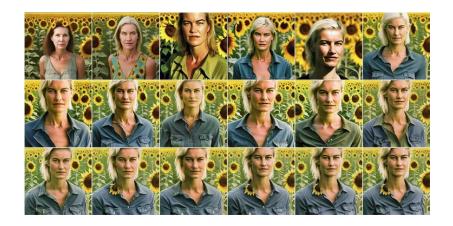


Figure 1: Our reparametrization. We only train A and B.

$$W_{\text{finetuned}} = W_{base} + \Delta W$$
$$h = W_{\text{finetuned}}(x) = W_{base}(x) + \Delta W(x)$$
$$\Delta W = BA$$
$$= W_{\text{finetuned}}(x) = W_{base}(x) + BAx$$

Now, only need to train and store B, A



Rank = 8

Rank = 128

https://medium.com/@dreamsarereal/understanding-lora-training-part-1-learning-rate-schedulers-network-dimen sion-and-alpha-c88a8658beb7

Finetuning a ~11B+ parameter model still requires multiple servers.

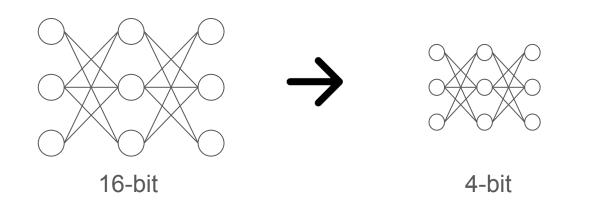
Slide credit to Tim Dettmers

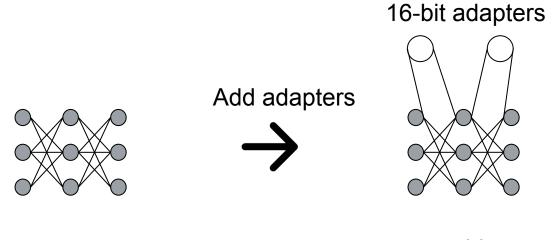
QLoRA: Finetuning large models on a single GPU.

↓ QLoRA

(4-bit finetuning)

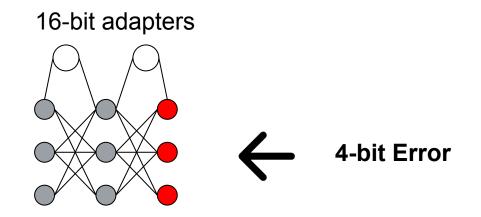
Slide credit to Tim Dettmers

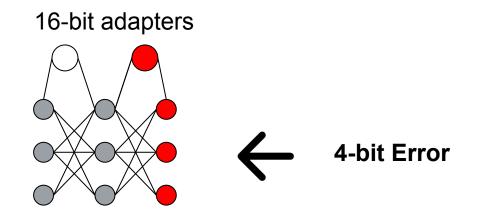


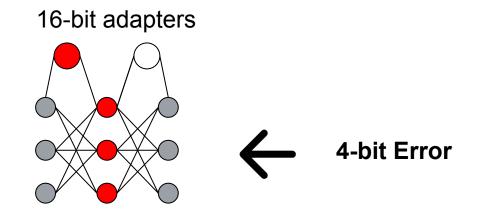


4-bit

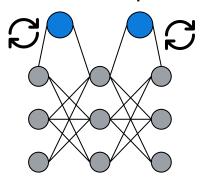
4-bit



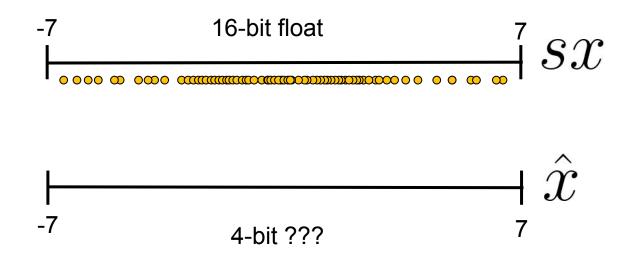




16-bit adapters

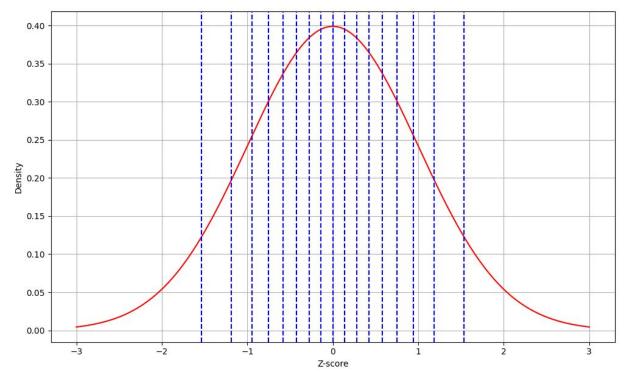


What 4-bit data type is information theoretically optimal?



Slide credit to Tim Dettmers

4-bit NormalFloat (NF4) an information-theoretically optimal data type for normal distributions



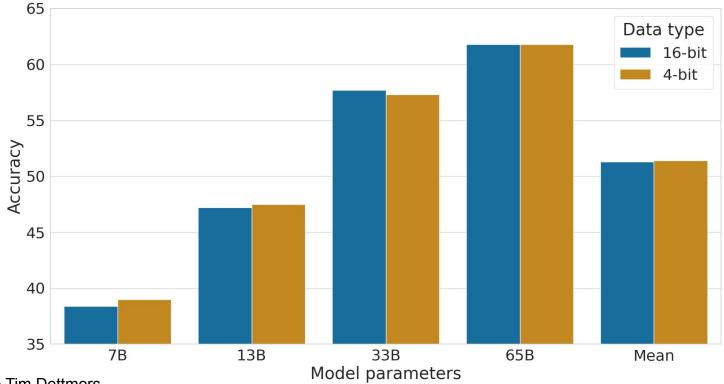
Slide credit to Tim Dettmers

QLoRA systems contributions

- Double quantization
- GPU memory paging for optimizer

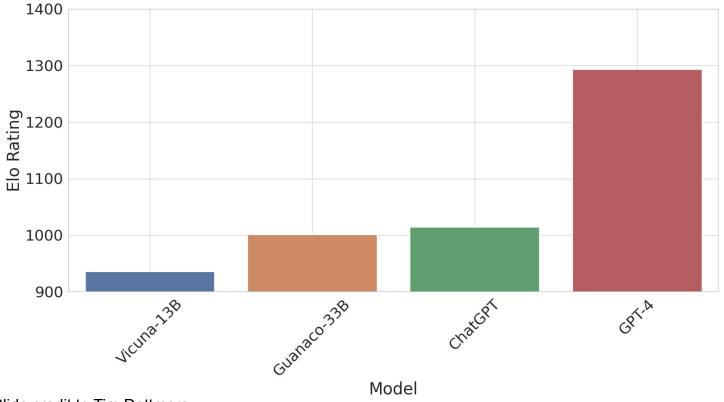
Results

QLoRA recovers lost performance through fine-tuning



Slide credit to Tim Dettmers

4-bit Guanaco: A ChatGPT-quality 4-bit chatbot finetuned in 24h on a single GPU



Slide credit to Tim Dettmers

Take-away

4-bit finetuning is possible by passing gradients through a 4-bit neural network to 16-bit adapters.