Section 7: Exam Review
CSE 493G1, Spring 2025

Course Logistics

- EXAM next Tuesday [5/20]

- Show up to class!!
Covers content from Lectures 2-12, Assignments 1-3, Sections 1-6
Allowed one double sided note sheet on a standard 8.5’x11’ paper

- Project Milestone due next Friday [5/23]
- A4 due next Sunday [5/25]

Exam Review

Deep Learning Foundations
Optimization and Training Techniques
Neural Networks and Backpropogation
Convolutional Neural Networks (CNNs)
Sequence Models and Interpretability

Deep Learning Foundations: Image Classification

e 1) Collect a dataset of images and labels
e 2) Use machine learning algorithms to train a classifier
e 3) Evaluate the classifier on new images

Example training set

def train(images, labels): i .')ﬁ.= b . ".

1(images,) airplane > - B 'i
Machine learning! —

automobile {5 5% £ B X7 I B8 S5 80

bird SREK T SETH S

def predict(model, test_images): cat ..u@gnngﬂ
Use model to predict labels 1 ¥ -

return test_labels deer . hmau..-E

Deep Learning Foundations: kNN

import numpy as np

class NearestNeighbor:
def _ init_ (self):
pass

def train(self, X, y):
“"" X is N x D where each row is an example. Y is 1l-dimension of size N """
the nearest neighbor classifier simply remembers all the training data
self.Xtr = X
self.ytr=y

def predict(self, X):
""" X is N x D where each row is an example we wish to predict label for """
num_test = X.shape[0]
lets make sure that the output type matches the input type
Ypred = np.zeros(num_test, dtype = self.ytr.dtype)

loop over all test rows
for i in xrange(num_test):
find the nearest training image to the i'th test image
using the L1 distance (sum of absolute value differences)
distances = np.sum(np.abs(self.Xtr - X[1i,:]), axis = 1)
min_index = np.argmin(distances) # get the index with smallest distance
Ypred[i] = self.ytr[min_index] # predict the label of the nearest example

return Ypred

Deep Learning Foundations: Linear Classifier

Parametric Approach: Linear Classifier

3072x1 Algebraic viewpoint: Example with an image with 4 pixels, and 3
= .|.| I classes (cat/dog/ship)
f(X) W) IM b 1 OX1 Flatten tensors into a vector
10x1 10x3072 ¥
10 numbers givin
f(x,W) class scoresg ° =
T 02 | -05| 01 | 2.0 1.1 -96.8 | Cat score
Array of 32x32x3 numbers L
(3072 numbers tota|) 1.5 1.3 2.1 0.0 + 3.2 — 437.9 Dog score
parameters In;)u”.;na;e 0 0.25| 0.2 | -0.3 , -1.2 61.95 | Ship score
or weights 2.2) Y, b 3)
ITu_t image (3,4) @) 3)
N\ deer
A Y
02 | 0.5 15 | 13
w
01 | 2.0 21 0.0
\ \
b

Score |-96.8 | ’ 437.9 |

Deep Learning Foundations: SVM Loss

Suppose: 3 training examples, 3 classes.
With some W the scores f(z,W) =Wz are:

cat 3.2
car 5.1

frog -1.7
Losses: 2.9

-3.1

Multiclass SVM loss: Interpreting Multiclass SVM loss:

Given an example (a:i, yi)
where z; . is the image ana

Loss
where y; is the (integer) label,
and using the shorthand for the Sy,— S
scores vector: 8 = f(zi, W) —— difference in
1 scores between

correct and
incorrect class

the SVM loss has the form:

g = Zj#yi max((), Sj — Sy, T 1)

= max(0, [1.3]- 4.9 + 1)
+max(0,[2.0|- 4.9+ 1)

= max(0, -2.6) + max(0, -1.9)

=0+0

=0

Deep Learning Foundations: Softmax Loss

Softmax Classifier (Multinomial Logistic Regression)

cat
car

frog

s = flas W)

Probabilities
must be >=0

3.2
5.1
-1.7

24.5

exp

0.18

Unnormalized

unnormalized

log-probabilities / logits probabilities

Want to interpret raw classifier scores as probabilities

P(Y = b|X = ;) = <22;;| Softmax

S 5 .
>.; €7 | Function

Probabilities
must sum to 1

0.13 | - L =-log(0.13)

L; = —log P(Y = 4| X = i)

normalize =2.04

—(164.0|——| 0.87

Maximum Likelihood Estimation
O . OO Choose weights to maximize the
likelihood of the observed data

probabilities

Deep Learning Foundations: Regularization

Regu larization .= regularization strength
(hyperparameter)

L(W) = % ZLz‘(f(%:, W),yi) + AR(W)

N J W_/
Y
Data loss: Model predictions Regularization: Prevent the model
should match training data from doing too well on training data

Simple examples

L2 reqularization: R(W) = 32, >, W,

L1 regularization: R(W) = >, >, |Wk,|

Elastic net (L1 + L2): R(W) = >, >, BWZ, + [Wiy|

Deep Learning Foundations: Summary

Recap How do we find the best W?

- We have some dataset of (x,y)

- We have a score function: s = f(z;

- We have a loss function:

Softmax

Lz' — —10 esyis.
8 2 €7) SVM
Iy = Zj#yz- max(O, 8 — By, T 1)

L=2L1>" L+ RW) Fullloss

e.g.

W)=Wz

Z;
Y;

score function

==

data loss | T

Exam Review

Deep Learning Foundations
Optimization and Training Techniques
Neural Networks and Backpropogation
Convolutional Neural Networks (CNNs)
Sequence Models and Interpretability

Optimization & Training Techniques: Gradient Desc

N
— % Zi:l Li + Zk Wk2
L =3,,, max(0,s; — sy, +1)
3= flo; W)= Wsg

want VL

while True:
weights grad = evaluate gradient(loss_fun, data, welghts)
weights += - step size * weights grad ' parameter

Optimization & Training Techniques: SGD
Stochastic Gradient Descent (SGD)

Full sum expensive
L(W) = ZL i, Yi, W) + AR(W) when N is large!

Approximate sum
1 : o
VwL(W) = } VwLi(zi,yi, W) + AVw R(W) :ig‘rg;e';"mbatch of

1=1 32 /64 /128 common

while
data batch = sample training data(data, 256) #
weights grad = evaluate gradient(loss fun, data batch, weights)
weights += - step size * weights grad par '

Optimizers & Training Techniques: Optimizers

SGD

Tir1 = Ty — aV f(xy)

while True:
dx = compute_gradient(x)
x —= learning_rate * dx

SGD+Momentum
Vi1 = pup + V f(xt)

Tt41 = Tt — QAUt41

VX = 0

while True:
dx = compute_gradient(x)
vx = rho * vx + dx
x —= learning_rate *x vx

Velocity

actual step

Gradient

Combine gradient at current point with
velocity to get step used to update weights

dfm——"

Optimizers & Training Techniques: Optimizers

Nesterov Momentum
That’s it!
Step 1: Calculate the velocity at t+71

Step 2: Update the parameters using the
velocities at t+7 and ¢

Vit1l = pU; — OéVf(fi’t)
Tir1 =Ty — pve + (1 + p)vgga
Ty + Vi1 + p(Ver1 — Vt)

Gradient
Velocity

actual step

“Look ahead” to the point where updating using
velocity would take us; compute gradient there and
mix it with velocity to get actual update direction

Optimizers & Training Techniques: Optimizers

AdaGrad: RMSProp:

grad_squared = 0

while True:
dx = compute_gradient(x)
grad_squared += dx * dxl

grad_squared = 0
while True:

dx = compute gradient(x)

Igrad_squared = decay_rate * grad_squared + (1 - decay_rate) * dx * dx
x -= learning_rate * dx / (np.sqrt(grad_squared) + 1e-7) x -= learning_rate * dx / (np.sqgrt(grad_squared) + 1le-7)

Adam (full form)

first_moment = 0

second_moment = 0

for t in range(l1, num_iterations):
dx = compute_gradient(x)

Momentum
first_moment = betal * first_moment + (1 - betal) * dx
second_moment = beta2 * second_moment + (1 - beta2) * dx * dx
first_unbias = first_moment / (1 - betal ** t) . .
second_unbias = second_moment / (1 - beta2 ** t) Bias correction

| X -= learning_rate * first_unbias / (np.sqrt(second_unbias) + 1e—7))|

AdaGrad / RMSProp

Optimizers & Training Techniques: LR Schedules

Phases of learning...

low learning rate

high learning rate

good learning rate

epoch

Step: Reduce learning rate at a few fixed
points. E.g. for ResNets, multiply LR by 0.1
after epochs 30, 60, and 90.

1
Cosine: o, = 520 (1 4 cos(tm/T))

Linear: oy = ao(l — t/T) Learning rate

10

Inverse sqrt: oy = Ozo/\/Z e

Constant: a; = 04

02

0.0

Epoch

100

Optimizers & Training techniques: Choosing

hyperparamaters
Train
Train

Loss

Loss

Learning rate step decay

N

time

What should you do?

Exam Review

Deep Learning Foundations
Optimization and Training Techniques
Neural Networks and Backpropogation
Convolutional Neural Networks (CNNs)
Sequence Models and Interpretability

Neural Networks and Backpropogation

w0 2.00

0.20

T
4 T ©
“local gradient”
x> o
NS
Ci?Z'
“Downstream
gradients
0z
L & “
g %Z o Upstream
gradient”

1.00 @ -1.00 @ 0.37 _/_'_-]\ 1.37 /17)(\ 0.73

~
00

|
—t
e
8
(V]

Neural Networks & Backpropogation: Activ. Fns.

Are neurons saturated?

Are outputs
zero-centered?

Is it computationally
efficient?

Does it “kill” gradients?

Activation functions

Sigmoid

o(z) =

l14+e—=
tanh
tanh(z)

ReLU
max (0, x)

' | U
- o =]
5
2 - ° -
" - -
s s s

Leaky RelLU

max(0.1z,)

GelLU

0.52 (1 + tanh | /2/7(z + 0.0447152%)) J

ELU

{

ale® —1)

z>0
z <0

J

- = 10
10

m_/o
-2

Neural Networks & Backprop: Weight Initialization

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6
mean=-0.00 mean=0.00 mean=0.00 mean=-0.00 mean=-0.00 mean=0.00 *
std=0.49 std=0.29 std=0.18 std=0.11 std=0.07 std=0.05 W=0.01
m ‘ ‘ 1 1 np.random.randn(Din, Dout)
-1 0 1 -1 0 1 —'1 0 i -'1 0 i -'1 0 i —'1 0 i

Xavier Initialization

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6

ean=-0.00 mean=-0.00 mean=0.00 mean=0.00 mean=0.00 mean=-0.00
std=0.63 std=0.49 std=0.41 std=0.36 std=0.32 std=0.30 W — np.random.randn(Dln,
ol B A AAA
Let: y = X, W, X, W,*+...+X . W Var(y) = \[/)e?r(>\</1w2 +x2\)/v2+...+xmeDin)
= Din Var(x.w.
. = = = . I
Assume: Var(x,) = Var(x,)= ...=Var(x;) = Din Var(x) Var(w))
We want: Var(y) = Var(x,) [Assume all x,, w. are iid]

So, Var(y) = Var(x.) only when Var(w.) = 1/Din

Neural Networks & Backprop: Normalizations

Batch Normalization [loffe and Szegedy, 2015]

N
Input: . e i .. Per-channel mean
e B R 'LLJ_N;%’J shape is D ’
1=
AAA | N
2 2 Per-channel var,
. = — w > — . El
9 N Z(tJ 'UJJ) shape is D
N X N =1
By = Lijg — Hj Normalized x,
2 Shape is N x D
o g
YVY iT

Neural Networks & Backprop: Dropout

Forces the network to have a redundant
representation; Prevents co-adaptation
of features

Exam Review

Deep Learning Foundations
Optimization and Training Techniques
Neural Networks and Backpropogation
Convolutional Neural Networks (CNNs)
Sequence Models and Interpretability

FC

BN

tanh

FC

BN

tanh

CNNs

A= —

=

w|

.

32x32x3 image
5x5x3 filter

convolve (slide) over all
spatial locations

activation map

y

£

28

Convolution layer: summary

Let's assume inputis W, x H, x C
Conv layer needs 4 hyperparameters:
- Number of filters K
- The filter size F
- The stride S
- The zero padding P
This will produce an output of W, x H, x K
where:
- W,=(W,-F +2P)/S +1
- H,=(H,-F +2P)/S + 1
Number of parameters: F?KC and K biases

Poo li ng Single depth slice

(11124
. 5 5 - 3 madx ;;o_gl v;ith 2x2 filters 6 8
Pooling layer
. 3|2(1]0 3|4
- makes the representations smaller and more manageable
- operates over each activation map independently: 112134
224x224x64 y
112x112x64
podl Pooling layer: summary
Let's assume input is W, x H, x C
Conv layer needs 2 hyperparameters:
l T - The spatial extent F
- The stride S
224 v downsamplin 4 e : :
— Fing 112 This will produce an output of W, x H, x C where:
224 - W,=(W,-F)/S+1

- H,=(H,-F)yS+1

Number of parameters: 0

ing

CNNs/Pool

RELU RELU

CONV

=
g
w
14
=
iy
L
14

RELU RELU

VYA ENEA

CONV

- Eﬂl!, S O MY

loowl

— SV RS I

CONV

Exam Review

Deep Learning Foundations
Optimization and Training Techniques
Neural Networks and Backpropogation
Convolutional Neural Networks (CNNs)
Sequence Models and Interpretability

RNNSs

: % - o hy = fW(ht—lv CCt)

|

A 'y £h hy = tanh(Wyphy 1 + Wypay)

N\

X X X
1 i i e = Whyht

target chars: “e” T “ o

10 05 01 02
2.2 03 05 45
tput |
. oufputlayer (N 1.0 19 -0
41 12 A4 22
i.e. | Gl [l a2
LT Jww

Character-Level el [l [ot]umfes]

hidden layer |-0.1 —— 0.3 —>{-0.5 ——> 0.9
0.9 0.1 0.3 0.7
Language il B
| v
M d [] [o] [o] [o]
O e input layer g 8 (1) (1)
Lo | 0 Lo [o]
= o =

RNNSs (Cont.)

Vanilla RNN Gradient Flow

Gradients over multiple time steps:

B ngio et al, “Lea gI gtrmdp nden:
s diffic It IEEET ns on Neu IN tw rk 1994
P ascanu et al, “On th dff culty of training re:

ral networks”,
ICML 201 3

W—> = tanh H

OL7

oW

- — stack —— h
T)

‘ 4
_ z /
|

I
X

T OL oh

=1 o (g = tanh (Whnhi—1 + Wane) Win
OLe Oh | Oh _ 6LT Ok | Ol
hr Dhs o ([i=s| 57,

Ohi_1 { OW

ncies with gradient descent

i: Input gate, whether to write to cell

LSTM f: Forget gate, Whether to erase cell
S o: Qutput gate, How much to reveal cell

g: Into gate, How much to write 1o cell

Ct-1 & ?—» + — Ct £
- f
o | 1 o
W_’?’ g_L' O] tanh f — & 11,% (ht—1>
- 0 —] 0 o Ty
| h
h ———* stack _ 9 tan
. > »O—> N T ,
t1 \ t < ht/ a=fOc_1+i0Gg

| ht = o ® tanh(ct)

Solves the vanishing gradient
problem for the cell memory blocks!

Attention and Transformers

Image Captioning with RNNs & Attention

Alignment scores: Attention: .
Compute alignments Hx W Hx W Normgllze to get.
scores (scalars): le attention weights:
100(€101 (€102 [8100/8101 | 2102 =
€ij - fau (h,_l,Zi,j) q..,. softmax(e,‘:,:)
; 10(%1,11 |14, —»lf a ., la
fan(') is an MLP |e11o 111 [71,12 1.4,0f 1,10 | €142 Ott< a%i’, < 1i e s
|e1’2’° ©,1 (02, ENUNEEMIENN attention values sum to
» Z50| %01 | %02 I
g
‘) Zi0| 211 | %12
Lo| 21| 222
Extract spatial Features: .
features from a HxWxD 1
pretrained CNN Y *
)

Xu et al. “Show. Attend and Tell: Neural Imaae Caotion Generation with Visual Attention”. ICML 2015

Compute context vector:

¢ = _Za:,i,jzx,i,j
ij

Attention and Transformers

Image Captioning with RNNs & Attention

Alignment scores: Attention: Decoder: Yi= gv(ymv ht_p Ct)
HxW HxW New context vector at every time step
lez’(m €201 (%202 [B300|8201 |02
e e e
€ij = Jan (B152;) 210211 2’1-2—’|f‘2,1.o 3211|8212 person
a,.. = softmax(e,.) |e2,2,0 €221 (%222 [By20|@21 | 2222
: 4
¢ _Zalljzltj ‘}
Z50| %01 | %02 o
Z10| %11 | %12
20| %221 | %22 ! T T
Extract spatial Features: . I .
features from a HxWxD 1 || Yo 2
pretrained CNN Y *
&,

Xu et al, “Show, Attend and Tell: Neural Image Caption Generation with Visual Attention”, ICML 2015 [START]

Attention and Transformers

Self attention layer

Input vectors

Yol Yi Il Y5
S
| 20 || a1 || 22
| 0 || A1 || 32
™| 30 || B || 222
t t

e0.0

eﬁ,‘

eO.Z

Attention

Alignment

Outputs:
context vectors: y (shape:)

Operations:
Key vectors: k = xW_
Value vectors: v = x

Query vectors: g = xW_
Alignment: e, = -k / \D
Attention: a = softmax(e)

Output:y, =3, a;

Inputs:
Input vectors: x (shape: N x D)

Positional encoding
mmm

self-attention

t
Xo || X || %2
Po || P1 || P
i

| position encoding |

X X X

0 1 2

Concatenate special positional encoding
P, to each input vector X;

We use a function pos: N —R*

to process the position j of the vector into
a d-dimensional vector

So, p, = pos(j)

Good Luck!

Practice Exam will be posted later today

