Section 7: Exam Review
CSE 493G1, Spring 2025




Course Logistics

- EXAM next Tuesday [5/20]

- Show up to class!!
Covers content from Lectures 2-12, Assignments 1-3, Sections 1-6
Allowed one double sided note sheet on a standard 8.5’x11’ paper

- Project Milestone due next Friday [5/23]
- A4 due next Sunday [5/25]



Exam Review

Deep Learning Foundations
Optimization and Training Techniques
Neural Networks and Backpropogation
Convolutional Neural Networks (CNNs)
Sequence Models and Interpretability



Deep Learning Foundations: Image Classification

e 1) Collect a dataset of images and labels
e 2) Use machine learning algorithms to train a classifier
e 3) Evaluate the classifier on new images

Example training set

def train(images, labels): i .' )ﬁ.= b . ".

1(images, ) airplane > - B 'i
# Machine learning! —

automobile {5 5% £ B X7 I B8 S5 80

bird  SREK T SETH S

def predict(model, test_images): cat ..u@gnngﬂ
# Use model to predict labels 1 ¥ -

return test_labels deer . hmau..-E




Deep Learning Foundations: kNN

import numpy as np

class NearestNeighbor:
def _ init_ (self):
pass

def train(self, X, y):
“"" X is N x D where each row is an example. Y is 1l-dimension of size N """
# the nearest neighbor classifier simply remembers all the training data
self.Xtr = X
self.ytr=y

def predict(self, X):
""" X is N x D where each row is an example we wish to predict label for """
num_test = X.shape[0]
# lets make sure that the output type matches the input type
Ypred = np.zeros(num_test, dtype = self.ytr.dtype)

# loop over all test rows
for i in xrange(num_test):
# find the nearest training image to the i'th test image
# using the L1 distance (sum of absolute value differences)
distances = np.sum(np.abs(self.Xtr - X[1i,:]), axis = 1)
min_index = np.argmin(distances) # get the index with smallest distance
Ypred[i] = self.ytr[min_index] # predict the label of the nearest example

return Ypred




Deep Learning Foundations: Linear Classifier

Parametric Approach: Linear Classifier

3072x1 Algebraic viewpoint: Example with an image with 4 pixels, and 3
= .|.| I classes (cat/dog/ship)
f(X ) W) IM b 1 OX1 Flatten tensors into a vector
10x1 10x3072 ¥
10 numbers givin
f(x,W) class scoresg ° =
T 02 | -05| 01 | 2.0 1.1 -96.8 | Cat score
Array of 32x32x3 numbers L
(3072 numbers tota|) 1.5 1.3 2.1 0.0 + 3.2 — 437.9 Dog score
parameters In;)u”.;na;e 0 0.25| 0.2 | -0.3 , -1.2 61.95 | Ship score
or weights 2.2) Y, b 3)
ITu_t image (3,4) @) 3)
N\ deer
A Y
02 | 0.5 15 | 13
w
01 | 2.0 21 0.0
\ \
b

Score |-96.8 | ’ 437.9 |




Deep Learning Foundations: SVM Loss

Suppose: 3 training examples, 3 classes.
With some W the scores f(z,W) =Wz are:

cat 3.2
car 5.1

frog -1.7
Losses: 2.9

-3.1

Multiclass SVM loss: Interpreting Multiclass SVM loss:

Given an example (a:i, yi)
where z; . is the image ana

Loss
where y; is the (integer) label,
and using the shorthand for the Sy,— S
scores vector: 8 = f(zi, W) —— difference in
1 scores between

correct and
incorrect class

the SVM loss has the form:

g = Zj#yi max((), Sj — Sy, T 1)

= max(0, [1.3]- 4.9 + 1)
+max(0,[2.0|- 4.9+ 1)

= max(0, -2.6) + max(0, -1.9)

=0+0

=0




Deep Learning Foundations: Softmax Loss

Softmax Classifier (Multinomial Logistic Regression)

cat
car

frog

s = flas W)

Probabilities
must be >=0

3.2
5.1
-1.7

24.5

exp

0.18

Unnormalized

unnormalized

log-probabilities / logits probabilities

Want to interpret raw classifier scores as probabilities

P(Y = b|X = ;) = <22;;| Softmax

S 5 .
>.; €7 | Function

Probabilities
must sum to 1

0.13 | - L =-log(0.13)

L; = —log P(Y = 4| X = i)

normalize =2.04

—(164.0|——| 0.87

Maximum Likelihood Estimation
O . OO Choose weights to maximize the
likelihood of the observed data

probabilities




Deep Learning Foundations: Regularization

Regu larization .= regularization strength
(hyperparameter)

L(W) = % ZLz‘(f(%:, W),yi) + AR(W)

N J W_/
Y
Data loss: Model predictions  Regularization: Prevent the model
should match training data from doing too well on training data

Simple examples

L2 reqularization: R(W) = 32, >, W,

L1 regularization: R(W) = >, >, |Wk,|

Elastic net (L1 + L2): R(W) = >, >, BWZ, + [Wiy|



Deep Learning Foundations: Summary

Recap How do we find the best W?

- We have some dataset of (x,y)

- We have a score function: s = f(z;

- We have a loss function:

Softmax

Lz' — —10 esyis.
8 2 €7 ) SVM
Iy = Zj#yz- max(O, 8 — By, T 1)

L=2L1>" L+ RW) Fullloss

e.g.

W)=Wz

Z;
Y;

score function

==

data loss | T
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Deep Learning Foundations
Optimization and Training Techniques
Neural Networks and Backpropogation
Convolutional Neural Networks (CNNs)
Sequence Models and Interpretability



Optimization & Training Techniques: Gradient Desc

N
— % Zi:l Li + Zk Wk2
L =3,,, max(0,s; — sy, +1)
3= flo; W)= Wsg

want VL

while True:
weights grad = evaluate gradient(loss_fun, data, welghts)
weights += - step size * weights grad ' parameter



Optimization & Training Techniques: SGD
Stochastic Gradient Descent (SGD)

Full sum expensive
L(W) = ZL i, Yi, W) + AR(W) when N is large!

Approximate sum
1 : o
VwL(W) = } VwLi(zi,yi, W) + AVw R(W) :ig‘rg;e';"mbatch of

1=1 32 /64 /128 common

while
data batch = sample training data(data, 256) #
weights grad = evaluate gradient(loss fun, data batch, weights)
weights += - step size * weights grad par '



Optimizers & Training Techniques: Optimizers

SGD

Tir1 = Ty — aV f(xy)

while True:
dx = compute_gradient(x)
x —= learning_rate * dx

SGD+Momentum
Vi1 = pup + V f(xt)

Tt41 = Tt — QAUt41

VX = 0

while True:
dx = compute_gradient(x)
vx = rho * vx + dx
x —= learning_rate *x vx

Velocity

actual step

Gradient

Combine gradient at current point with
velocity to get step used to update weights

dfm——"




Optimizers & Training Techniques: Optimizers

Nesterov Momentum
That’s it!
Step 1: Calculate the velocity at t+71

Step 2: Update the parameters using the
velocities at t+7 and ¢

Vit1l = pU; — OéVf(fi’t)
Tir1 =Ty — pve + (1 + p)vgga
Ty + Vi1 + p(Ver1 — Vt)

Gradient
Velocity

actual step

“Look ahead” to the point where updating using
velocity would take us; compute gradient there and
mix it with velocity to get actual update direction



Optimizers & Training Techniques: Optimizers

AdaGrad: RMSProp:

grad_squared = 0

while True:
dx = compute_gradient(x)
grad_squared += dx * dxl

grad_squared = 0
while True:

dx = compute gradient(x)

Igrad_squared = decay_rate * grad_squared + (1 - decay_rate) * dx * dx
x -= learning_rate * dx / (np.sqrt(grad_squared) + 1e-7) x -= learning_rate * dx / (np.sqgrt(grad_squared) + 1le-7)

Adam (full form)

first_moment = 0

second_moment = 0

for t in range(l1, num_iterations):
dx = compute_gradient(x)

Momentum
first_moment = betal * first_moment + (1 - betal) * dx
second_moment = beta2 * second_moment + (1 - beta2) * dx * dx
first_unbias = first_moment / (1 - betal ** t) . .
second_unbias = second_moment / (1 - beta2 ** t) Bias correction

| X -= learning_rate * first_unbias / (np.sqrt(second_unbias) + 1e—7))|

AdaGrad / RMSProp



Optimizers & Training Techniques: LR Schedules

Phases of learning...

low learning rate

high learning rate

good learning rate

epoch

Step: Reduce learning rate at a few fixed
points. E.g. for ResNets, multiply LR by 0.1
after epochs 30, 60, and 90.

1
Cosine: o, = 520 (1 4 cos(tm/T))

Linear: oy = ao(l — t/T) Learning rate

10

Inverse sqrt: oy = Ozo/\/Z e

Constant: a; = 04

02

0.0

Epoch

100




Optimizers & Training techniques: Choosing

hyperparamaters
Train
Train

Loss

Loss

Learning rate step decay

N

time

What should you do?
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Neural Networks and Backpropogation
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Neural Networks & Backpropogation: Activ. Fns.

Are neurons saturated?

Are outputs
zero-centered?

Is it computationally
efficient?

Does it “kill” gradients?

Activation functions

Sigmoid

o(z) =

l14+e—=
tanh
tanh(z)

ReLU
max (0, x)

' | U
- o =]
5
2 - ° -
" - -
s s s

Leaky RelLU

max(0.1z, )

GelLU

0.52 (1 + tanh | /2/7(z + 0.0447152%) ) J

ELU

{

ale® —1)

z>0
z <0

J

- = 10
10

m_/o
-2



Neural Networks & Backprop: Weight Initialization

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6
mean=-0.00 mean=0.00 mean=0.00 mean=-0.00 mean=-0.00 mean=0.00 *
std=0.49 std=0.29 std=0.18 std=0.11 std=0.07 std=0.05 W=0.01
m ‘ ‘ 1 1 np.random.randn(Din, Dout)
-1 0 1 -1 0 1 —'1 0 i -'1 0 i -'1 0 i —'1 0 i

Xavier Initialization

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6

ean=-0.00 mean=-0.00 mean=0.00 mean=0.00 mean=0.00 mean=-0.00
std=0.63 std=0.49 std=0.41 std=0.36 std=0.32 std=0.30 W — np.random.randn(Dln,
ol B A AAA
Let: y = X, W, X, W,*+...+X . W Var(y) = \[/)e?r(>\</1w2 +x2\)/v2+...+xmeDin)
= Din Var(x.w.
. = = = . I
Assume: Var(x,) = Var(x,)= ...=Var(x; ) = Din Var(x) Var(w))
We want: Var(y) = Var(x,) [Assume all x,, w. are iid]

So, Var(y) = Var(x.) only when Var(w.) = 1/Din



Neural Networks & Backprop: Normalizations

Batch Normalization [loffe and Szegedy, 2015]

N
Input: . e i .. Per-channel mean
e B R 'LLJ_N;%’J shape is D ’
1=
AAA | N
2 2 Per-channel var,
. = — w > — . El
9 N Z( tJ 'UJJ) shape is D
N X N =1
By = Lijg — Hj Normalized x,
2 Shape is N x D
o g
YVY iT




Neural Networks & Backprop: Dropout

Forces the network to have a redundant
representation; Prevents co-adaptation
of features
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FC

BN

tanh

FC

BN

tanh




CNNs

A= —

=

w|

.

32x32x3 image
5x5x3 filter

convolve (slide) over all
spatial locations

activation map

y

£

28

Convolution layer: summary

Let's assume inputis W, x H, x C
Conv layer needs 4 hyperparameters:
- Number of filters K
- The filter size F
- The stride S
- The zero padding P
This will produce an output of W, x H, x K
where:
- W,=(W,-F +2P)/S +1
- H,=(H,-F +2P)/S + 1
Number of parameters: F?KC and K biases



Poo li ng Single depth slice

(11124
. 5 5 - 3 madx ;;o_gl v;ith 2x2 filters 6 8
Pooling layer
. 3|2(1]0 3|4
- makes the representations smaller and more manageable
- operates over each activation map independently: 112134
224x224x64 y
112x112x64
podl Pooling layer: summary
Let's assume input is W, x H, x C
Conv layer needs 2 hyperparameters:
l T - The spatial extent F
- The stride S
224 v downsamplin 4 e : :
— Fing 112 This will produce an output of W, x H, x C where:
224 - W,=(W,-F)/S+1

- H,=(H,-F)yS+1

Number of parameters: 0



ing

CNNs/Pool

RELU RELU

CONV

=
g
w
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=
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L
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RELU RELU
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RNNSs

: % - o hy = fW(ht—lv CCt)

|

A 'y £h hy = tanh(Wyphy 1 + Wypay)

N\

X X X
1 i i e = Whyht

target chars: “e” T “ o

10 05 01 02
2.2 03 05 45
tput |
. oufputlayer (N 1.0 19 -0
41 12 A4 22
i.e. | Gl [l a2
LT Jww

Character-Level el [l [ot]umfes]

hidden layer |-0.1 —— 0.3 —>{-0.5 ——> 0.9
0.9 0.1 0.3 0.7
Language il B
| v
M d [ ] [o] [o] [o]
O e input layer g 8 (1) (1)
Lo | 0 Lo [o]
= o =



RNNSs (Cont.)

Vanilla RNN Gradient Flow

Gradients over multiple time steps:

B ngio et al, “Lea gI gtrmdp nden:
s diffic It IEEET ns on Neu IN tw rk 1994
P ascanu et al, “On th dff culty of training re:

ral networks”,
ICML 201 3

W—> = tanh H

OL7

oW

- — stack —— h
T )

‘ 4
\\_ z /
|

I
X

T OL oh

=1 o (g = tanh (Whnhi—1 + Wane) Win
OLe Oh | Oh _ 6LT Ok | Ol
hr Dhs o ([i=s| 57,

Ohi_1 { OW

ncies with gradient descent



i: Input gate, whether to write to cell

LSTM f: Forget gate, Whether to erase cell
S o: Qutput gate, How much to reveal cell

g: Into gate, How much to write 1o cell

Ct-1 & ?—» + — Ct £
- f
o | 1 o
W_’?’ g_L' O] tanh f — & 11,% (ht—1>
- 0 —] 0 o Ty
| h
h ———* stack _ 9 tan
. > »O—> N T ,
t1 \ t < ht/ a=fOc_1+i0Gg

| ht = o ® tanh(ct)

Solves the vanishing gradient
problem for the cell memory blocks!



Attention and Transformers

Image Captioning with RNNs & Attention

Alignment scores:  Attention: .
Compute alignments Hx W Hx W Normgllze to get.
scores (scalars): le attention weights:
100(€101 (€102 [8100/8101 | 2102 =
€ij - fau (h,_l,Zi,j) q..,. softmax(e,‘:,:)
; 10(%1,11 |14, —»lf a ., la
fan(') is an MLP |e11o 111 [ 71,12 1.4,0f 1,10 | €142 Ott< a%i’, < 1i e s
|e1’2’° ©,1 (02, ENUNEEMIENN  attention values sum to
» Z50| %01 | %02 I
g
‘) Zi0| 211 | %12
Lo| 21| 222
Extract spatial Features: .
features from a HxWxD 1
pretrained CNN Y *
)

Xu et al. “Show. Attend and Tell: Neural Imaae Caotion Generation with Visual Attention”. ICML 2015

Compute context vector:

¢ = _Za:,i,jzx,i,j
ij




Attention and Transformers

Image Captioning with RNNs & Attention

Alignment scores:  Attention: Decoder: Yi= gv(ymv ht_p Ct)
HxW HxW New context vector at every time step
lez’(m €201 (%202 [B300|8201 |02
e e e
€ij = Jan (B152; ) 210211 2’1-2—’|f‘2,1.o 3211|8212 person
a,.. = softmax(e,. ) |e2,2,0 €221 (%222 [By20|@21 | 2222
: 4
¢ _Zalljzltj ‘}
Z50| %01 | %02 o
Z10| %11 | %12
20| %221 | %22 ! T T
Extract spatial Features: . I .
features from a HxWxD 1 || Yo 2
pretrained CNN Y *
&,

Xu et al, “Show, Attend and Tell: Neural Image Caption Generation with Visual Attention”, ICML 2015 [START]



Attention and Transformers

Self attention layer

Input vectors

Yol Yi Il Y5
S
| 20 || a1 || 22
| 0 || A1 || 32
™| 30 || B || 222
t t

e0.0

eﬁ,‘

eO.Z

Attention

Alignment

Outputs:
context vectors: y (shape: )

Operations:
Key vectors: k = xW_
Value vectors: v = x

Query vectors: g = xW_
Alignment: e, = -k / \D
Attention: a = softmax(e)

Output:y, =3, a;

Inputs:
Input vectors: x (shape: N x D)

Positional encoding
mmm

self-attention

t
Xo || X || %2
Po || P1 || P
i

| position encoding |

X X X

0 1 2

Concatenate special positional encoding
P, to each input vector X;

We use a function pos: N —R*

to process the position j of the vector into
a d-dimensional vector

So, p, = pos(j)



Good Luck!

Practice Exam will be posted later today



