Scaling Laws (for Language Models)
CSE 493G/599G Recitation

Prepared by Scott Geng



Course logistics

A3: Due Sunday May 11

Exam: On May 20
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Today'’s story, in three parts

1. Why did people start to care about scaling?
2. What does a research question about scaling look like?
3. How do we answer those questions?

) What does the thought process behind empirical deep learning
research look like, and how does this research affect real practice?



Part 1. Early Scaling (why do we care?)



Time travelling back to 2019
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Time travelling back to 2019

Numbers of Parameters (in Millions)
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To what degree is predictive of
downstream model performance?



Scale = training compute = dataset size * model size

\

To what degree is . scale ~ predictive of
downstream model performance?



Scaling Laws for Neural Language Models
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Figure 1 Language modeling performance improves smoothly as we increase the model size, datasetset
size, and amount of compute? used for training. For optimal performance all three factors must be scaled
up in tandem. Empirical performance has a power-law relationship with each individual factor when not
bottlenecked by the other two.
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Figure 1 Language modeling performance improves smoothly as we increase the model size, datasetset
size, and amount of compute? used for training. For optimal performance all three factors must be scaled
up in tandem. Empirical performance has a power-law relationship with each individual factor when not
bottlenecked by the other two.

Takeaway: Consistent positive correlation between scale and lower error
(improved performance)



2020: now models are really really big
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2020: now models are really really big

Openal

GPT-3, 175B




Part 2: Increasing Scaling Efficiency (what
questions do we ask?)



Models are now realllllly expensive

$10M+ for a single training job & 100+ lifetime CO2 for one model ¢



Models are now realllllly expensive

$10M+ for a single training job & 100+ lifetime CO2 for one model ¢

How can we scale up our training as efficiently as possible?



Deep dive: compute-optimal scaling laws

C ~6ND

C = Compute (Floating Point Operations)
N = Dataset Size (Training Tokens)
D = Model Size (Parameter Count)



Side note: where does 6ND come from?

- See slides 13-16 of
https://www.cs.princeton.edu/courses/archive/fall22/cos597 G/lectures/lec12.pdf



https://www.cs.princeton.edu/courses/archive/fall22/cos597G/lectures/lec12.pdf
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Deep dive: compute-optimal scaling laws

C ~6ND

Given a fixed compute budget C, how much
should we allocate towards N and D?

C = Compute (Floating Point Ops)
N = Dataset Size (Training Tokens)
D = Model Size (Parameter Count)



Part 3: Computing scaling laws (how do we
answer our research questions?)



Approach 1: Loss Envelope
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Figure 2 | Training curve envelope. On the left we show all of our different runs. We launched a
range of model sizes going from 70M to 10B, each for four different cosine cycle lengths. From these
curves, we extracted the envelope of minimal loss per FLOP, and we used these points to estimate the
optimal model size (center) for a given compute budget and the optimal number of training tokens
(right). In green, we show projections of optimal model size and training token count based on the
number of FLOPs used to train Gopher (5.76 x 1023).
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Figure 2 | Training curve envelope. On the left we show all of our different runs. We launched a
range of model sizes going from 70M to 10B, each for four different cosine cycle lengths. From these
curves, we extracted the envelope of minimal loss per FLOP, and we used these points to estimate the
optimal model size (center) for a given compute budget and the optimal number of training tokens
(right). In green, we show projections of optimal model size and training token count based on the
number of FLOPs used to train Gopher (5.76 x 1023).

Train varying sized models on varying amounts of data, track lowest loss achieved across
all configs at distinct amounts of compute (measured in FLOPs) used. This is called the
envelope. Fit a trend line from “compute used” to “optimal data” / “optimal model” sizes.
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Figure 2 | Training curve envelope. On the left we show all of our different runs. We launched a
range of model sizes going from 70M to 10B, each for four different cosine cycle lengths. From these
curves, we extracted the envelope of minimal loss per FLOP, and we used these points to estimate the
optimal model size (center) for a given compute budget and the optimal number of training tokens
(right). In green, we show projections of optimal model size and training token count based on the
number of FLOPs used to train Gopher (5.76 x 1023).

Takeaway: dataset size and model size scale equally with additional compute —
both trend lines (middle and left figure) have the same slope.
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Approach 2: IsoFLOP curves
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Figure 3 | IsoFLOP curves. For various model sizes, we choose the number of training tokens such
that the final FLOPs is a constant. The cosine cycle length is set to match the target FLOP count. We
find a clear valley in loss, meaning that for a given FLOP budget there is an optimal model to train
(left). Using the location of these valleys, we project optimal model size and number of tokens for
larger models (center and right). In green, we show the estimated number of parameters and tokens

for an optimal model trained with the compute budget of Gopher.

For a few different model sizes, try different training dataset sizes so that the total compute
used is fixed. Plot a trend line from “FLOPs used” to “optimal model” / “optimal data” size.



Approach 2: IsoFLOP curves
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Figure 3 | IsoFLOP curves. For various model sizes, we choose the number of training tokens such
that the final FLOPs is a constant. The cosine cycle length is set to match the target FLOP count. We
find a clear valley in loss, meaning that for a given FLOP budget there is an optimal model to train
(left). Using the location of these valleys, we project optimal model size and number of tokens for
larger models (center and right). In green, we show the estimated number of parameters and tokens
for an optimal model trained with the compute budget of Gopher.

Takeaway: dataset size and model size scale equally with additional compute —
both trend lines (middle and left figure) have the same slope.



Approach 3: Parametric model

IS(ND)AE+A+B
7/ 7 Na DB’

The first term captures the loss for an ideal generative process on the data distribution, and should
correspond to the entropy of natural text. The second term captures the fact that a perfectly trained
transformer with N parameters underperforms the ideal generative process. The final term captures
the fact that the transformer is not trained to convergence, as we only make a finite number of
optimisation steps, on a sample of the dataset distribution.



Approach 3: Parametric model

Test loss: how uncertain is my model at
modeling text? Empirically measured.

T~ A B

L(N,D) =E+ﬁ+ﬁ.

The first term captures the loss for an ideal generative process on the data distribution, and should
correspond to the entropy of natural text. The second term captures the fact that a perfectly trained
transformer with N parameters underperforms the ideal generative process. The final term captures
the fact that the transformer is not trained to convergence, as we only make a finite number of
optimisation steps, on a sample of the dataset distribution.



Approach 3: Parametric model

E, A, B, a, B are parameters we will fit to
observational data.

L“(ND)AE+A+B
7/ 7 N« DB’

The first term captures the loss for an ideal generative process on the data distribution, and should
correspond to the entropy of natural text. The second term captures the fact that a perfectly trained
transformer with N parameters underperforms the ideal generative process. The final term captures
the fact that the transformer is not trained to convergence, as we only make a finite number of
optimisation steps, on a sample of the dataset distribution.



Approach 3: Parametric model

Intrinsic (irreducible) uncertainty of natural text

L“(ND)AE/+A+B
70 Ne o pB°

The first term captures the loss for an ideal generative process on the data distribution, and should
correspond to the entropy of natural text. The second term captures the fact that a perfectly trained
transformer with N parameters underperforms the ideal generative process. The final term captures
the fact that the transformer is not trained to convergence, as we only make a finite number of
optimisation steps, on a sample of the dataset distribution.



Approach 3: Parametric model

How much error do we incur from using a model with
only finite parameters (N)?

E(ND)AE+A 5
77 7 7IN@| DB’

The first term captures the loss for an ideal generative process on the data distribution, and should
correspond to the entropy of natural text. The second term captures the fact that a perfectly trained
transformer with N parameters underperforms the ideal generative process. The final term captures
the fact that the transformer is not trained to convergence, as we only make a finite number of
optimisation steps, on a sample of the dataset distribution.



Approach 3: Parametric model

How much error do we incur from training for
only a finite number of steps (D)?

/
B

DB

. , A
L(N,D) £ E+ — +
N(X

The first term captures the loss for an ideal generative process on the data distribution, and should
correspond to the entropy of natural text. The second term captures the fact that a perfectly trained
transformer with N parameters underperforms the ideal generative process. The final term captures
the fact that the transformer is not trained to convergence, as we only make a finite number of
optimisation steps, on a sample of the dataset distribution.



Approach 3: Parametric model
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Figure 4 | Parametric fit. We fit a parametric modelling of the loss L(N, D) and display contour (left)
and isoFLOP slices (right). For each isoFLOP slice, we include a corresponding dashed line in the left
plot. In the left plot, we show the efficient frontier in blue, which is a line in log-log space. Specifically,
the curve goes through each iso-loss contour at the point with the fewest FLOPs. We project the
optimal model size given the Gopher FLOP budget to be 40B parameters.
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Figure 4 | Parametric fit. We fit a parametric modelling of the loss L(N, D) and display contour (left)
and isoFLOP slices (right). For each isoFLOP slice, we include a corresponding dashed line in the left
plot. In the left plot, we show the efficient frontier in blue, which is a line in log-log space. Specifically,
the curve goes through each iso-loss contour at the point with the fewest FLOPs. We project the
optimal model size given the Gopher FLOP budget to be 40B parameters.

Takeaway: dataset size and model size scale equally with additional compute



Parameters

Compute optimal scaling.
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Gopher (280B)
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Model Size (# Parameters) Training Tokens
LaMDA (Thoppilan et al., 2022) 137 Billion 168 Billion
GPT-3 (Brown et al., 2020) 175 Billion 300 Billion

Jurassic (Lieber et al., 2021)
Gopher (Rae et al., 2021)
MT-NLG 530B (Smith et al., 2022)

178 Billion
280 Billion
530 Billion

300 Billion
300 Billion
270 Billion

Chinchilla

70 Billion

1.4 Trillion




Compute optimal scaling.
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Train smaller models for longer — “Chinchilla optimal”



Compute optimal scaling.

Parameters FLOPs FLOPs (in Gopher unit) Tokens
400 Million 1.92e+19 1/29,968 8.0 Billion
1 Billion 1.21e+20 1/4,761 20.2 Billion

10 Billion 1.23e+22 1/46  205.1 Billion

Optimal scaling predicts that a 10B model should be trained on 205B
tokens of natural language text



Modern practice differs...

performance, a smaller one trained longer will
ultimately be cheaper at inference. For instance,
although Hoffmann et al. (2022) recommends
training a 10B model on 200B tokens, we find
that the performance of a 7B model continues to
improve even after 1T tokens.

Llama trains with much more data than the “Chinchilla-optimal” amount



Modern practice differs...

performance, a smaller one trained longer will
ultimately be cheaper at inference. For instance,
although Hoffmann et al. (2022) recommends
training a 10B model on 200B tokens, we find
that the performance of a 7B model continues to
improve even after 1T tokens.

Llama trains with much more data than the “Chinchilla-optimal” amount

Lifetime Compute ~ «w + Inference Costs



Filling in gaps: language model scale reliably
with overtraining and on downstream tasks.
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