
CSE 493G1/599G1: Deep Learning
Solutions for Section 2: Project Design & Backpropagation
Thanks for attending section, we hope you found it helpful.

0. Reference Material

Intuition for Backprop

Recall some basic facts:

1) The loss function L measures how “bad” our current model is.

2) L is a function of our parameters W .

3) We want to minimize L.

Thus, we update W to minimize L using ∂L
∂W .

For example, if ∂L
∂W1

was positive, increasing W1 would increase L. Accordingly, we’d choose to decrease W1.

More generally, weights += (-1 * step_size * gradient).
Unfortunately, taking the derivative ∂L

∂W can get extremely difficult, especially at the scale of state-of-the-art
models. For instance, LLaMA 2-70B has 80 transformer layers and 70 billion parameters. Imagine taking 70
billion derivatives, with each derivative having hundreds of applications of chain rule.

Instead, we employ a technique known as backprop.

First, we split our function into multiple equations until there is one operation per equation. This process is
known as staged computation. Next, we take the derivatives of each of these smaller equations, before finally
linking them together using chain rule.
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1. Compute and Conquer

For each function below, use the staged computation approach to split it into smaller equations.

(a) f(x, y, z) = (x+ y)z

Solution:
Decompose the function as follows:

• a = x+ y

• b = z

• f = ab

(b) h(x, y, z) = (x2 + 2y)z3

Solution:
Decompose the function as follows:

• a = x2

• b = 2y

• c = a+ b

• d = z3

• h = cd

(c) g(x, y, z) =
(

ln(x) + sin(y)
)2

+ 4x

Solution:
Decompose the function as follows:

• a = ln(x)
• b = sin(y)
• c = a+ b

• d = c2

• f = 4x

• g = d+ f
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2. Oh, node way!

For each function below:

(i) construct a computational graph

(ii) do a forward and backward pass through the graph using the provided input values

(iii) complete the Python function for a combined forward and backward pass

Hint: it may be useful to consider how you split these functions into smaller equations in the question above.

(a) f(x, y, z) = (x+ y)z with input values x = 1, y = 3, z = 2

Solution:
Forward pass values are displayed in green; backward pass values are displayed in blue. The orange letters
correspond to the mini-equations from Question 1.

1 import numpy as np
2
3 # inputs: NumPy arrays `x`, `y`, `z` of identical size
4 # outputs: forward pass in `out`, gradients for x, y, z in `fx`, `fy`, `fz` respectively
5 def q2a(x, y, z):
6 # forward pass
7 a = x + y
8 b = z
9 f = a * b

10 out = f
11
12 # backward pass
13 ff = 1
14 fb = ff * a
15 fa = ff * b
16 fz = fb * 1
17 fx = fa
18 fy = fa
19
20 return out, fx, fy, fz

3



(b) h(x, y, z) = (x2 + 2y)z3 with input values x = 3, y = 1, z = 2

Solution:

1 import numpy as np
2
3 # inputs: NumPy arrays `x`, `y`, `z` of identical size
4 # outputs: forward pass in `out`, gradients for x, y, z in `hx`, `hy`, `hz` respectively
5 def q2b(x, y, z):
6 # forward pass
7 a = x ** 2
8 b = 2 * y
9 c = a + b

10 d = z ** 3
11 h = c * d
12 out = h
13
14 # backward pass -- right-most gate
15 hh = 1
16 hc = hh * d
17 hd = hh * c
18
19 # backward pass -- top branches
20 ha = hc
21 hb = hc
22 hx = ha * (2 * x)
23 hy = hb * 2
24
25 # backward pass -- bottom branch
26 hz = hd * (3 * (z ** 2))
27
28 return out, hx, hy, hz
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(c) g(x, y, z) =
(

ln(x) + sin(y)
)2

+ 4x with input values x = e, y = π
2 , z = 2

Solution:
We omit z in the computational graph below since it does not appear in the formula for g. It is important
to realize that the gradient with respect to z is 0.

A few observations:

• We have a gradient (4) flowing back to y, but it dies on the last gate since d
dy (sin(y)) = cos(x)

and cos(π2 ) = 0. This is problematic since it means we don’t change y on this gradient descent step
despite having feedback suggesting that y should be decremented.

• Since ln(x) = 1
x , the local gradient associated with equation a can be undefined if x = 0. If you

were asked to implement this function and its backwards pass in Python, what are some potential
workarounds you might employ?

Python function printed on the following page.
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1 import numpy as np
2
3 # inputs: NumPy arrays `x`, `y`, `z` of identical size
4 # outputs: forward pass in `out`, gradients for x, y, z in `gx`, `gy`, `gz` respectively
5 def q2c(x, y, z):
6 # forward pass
7 a = np.log(x)
8 b = np.sin(y)
9 c = a + b

10 d = c ** 2
11 f = 4 * x
12 g = d + f
13 out = g
14
15 # backward pass -- right-most gate
16 gg = 1
17 gf = gg
18 gd = gd
19
20 # backward pass -- path via `d`
21 gc = gd * (2 *c)
22 ga = gc
23 gb = gc
24 gx_1 = ga * (x ** -1)
25 gy = gb * np.cos(y)
26
27 # backward pass -- path via `f`
28 gx_2 = gf * 4
29
30 # backward pass -- reconciliation at copy gate
31 gx = gx_1 + gx_2
32
33 # z never appears in the function, so it has no gradient
34 gz = 0
35
36 return out, gx, gy, gz
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3. Sigmoid Shenanigans

Consider the Sigmoid activation function:
σ(x) =

1

1 + e−x

(a) Draw a computational graph and work through the backpropagation. Then, fill in the Python function.
If you finish early, work through the analytical derivation for Sigmoid.

As a hint, you could split Sigmoid into the following functions:

a(x) = −x b(x) = ex c(x) = 1 + x d(x) =
1

x

Observe that chaining these operations gives us Sigmoid: d(c(b(a(x)))) = σ(x).

Solution:

(b) Suppose x = 2. What would the gradient with respect to x be? Feel free to use a calculator on this part.

Solution:
Recall that downstream = upstream × local.

At Gate Four, the upstream gradient is 1 and the local gradient is ∂
∂c

(
1
c

)
= − 1

c2
= − 1

(1.13)2
= −0.78.

Thus, the downstream gradient is 1×−0.78 = −0.78.

At Gate Three, the upstream is −0.78 and the local is ∂
∂b

(
b + 1

)
= 1. Thus, the downstream is

−0.78× 1 = −0.78.
At Gate Two, the upstream is −0.78 and the local is ∂

∂a

(
ea
)
= ea = e−2 = 0.135. Thus, the downstream

is −0.78× 0.135 = −0.10.
At Gate One, the upstream is −0.10 and the local is ∂

∂x

(
− x

)
= −1. Thus, the downstream is

−0.10×−1 = 0.10.
Therefore, df

dx ≈ 0.10. We use ≈ here because we rounded decimals throughout our calculations.

(c) You should have gotten around 0.1. If the step size is 0.2, what would the value of x be after taking one
gradient descent step? As a hint, remember that parameters -= step_size * gradient.

Solution:
Our parameter, x, started off at 2. Our step size was 0.2 and our gradient is 0.1. Plugging into the
equation for gradient descent, the new value for x is 2− 0.2(0.1) = 2− 0.02 = 1.98.
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(d) Implement the function below for a full forward and backward pass through Sigmoid.

Solution:
1 import numpy as np
2
3 # inputs:
4 # - a numpy array `x`
5 # outputs:
6 # - `out`: the result of the forward pass
7 # - `fx` : the result of the backward pass
8 def sigmoid(x):
9 # provided: forward pass with cache

10 a = -x
11 b = np.exp(a)
12 c = 1 + b
13 f = 1/c
14 out = f
15
16 # TODO: backward pass, "fx" represents df / dx
17 ff = 1
18 fc = ff * -1/(c**2)
19 fb = fc * 1
20 fa = fb * np.exp(a)
21 fx = fa * -1
22
23 return out, fx
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4. A Backprop a Day Keeps the Derivative Away

Consider the following function:

f =
lnx · σ

(√
y
)

σ
(
(x+ y)2

)
Break the function up into smaller parts, then draw a computational graph and finish the Python function.

For reference, the derivative of Sigmoid is σ(x) ·
(
1− σ(x)

)
.

The TA solution breaks the function into 8 additional equations and rewrites f in terms of 2 of those additional
equations. Yours doesn’t have to match this exactly.

Solution:
We begin by breaking the function down:

Numerator: a = lnx b =
√
y c = σ (b) d = a · c

Denominator: g = x+ y h = g2 i = σ (h) j =
1

i
Final: f = dj

Although f = d
i is a valid, one-operation gate, we generally try to avoid quotient rule. Therefore, we introduce

an extra operation, i = 1
j , leaving us with f = di.

Python function printed on the following page.
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1 import numpy as np
2
3 # helper function
4 def sigmoid(x):
5 return 1/(1 +np.exp(-x))
6
7 # inputs: numpy arrays `x`, `y`
8 # outputs: forward pass in `out`, gradient for x in `fx`, gradient for y in `fy`
9 def complex_layer(x, y):

10 # forward pass
11 a = np.log(x)
12 b = np.sqrt(y)
13 c = sigmoid(b)
14 d = a * c
15 g = x + y
16 h = g ** 2
17 i = sigmoid(h)
18 j = 1 / i
19 out = d * j
20
21 # backward pass -- output gate
22 ff = 1
23 fd = ff * j
24 fj = ff * d
25
26 # backward pass -- top branch
27 fi = fj * -1 / (i ** 2)
28 fh = fi * sigmoid(h) * (1 - sigmoid(h))
29 fg = fh * 2 * g
30 fx_1 = fg
31 fy_1 = fg
32
33 # backward pass -- middle branch
34 fa = fd * c
35 fx_2 = fa / x
36
37 # backward pass -- bottom branch
38 fc = fd * a
39 fb = fc * sigmoid(b) * (1 - sigmoid(b))
40 fy_2 = fb / (2 * np.sqrt(y))
41
42 # backward pass -- reconciliation
43 fx = fx_1 + fx_2
44 fy = fy_1 + fy_2
45
46 return out, fx, fy
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