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Lecture 8: 
Interpretability
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Due 4/27 (extended) 11:59pm
- Multi-layer Neural Networks, 
- Image Features, 
- Optimizers

Administrative: Assignment 2
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Due 5/11 11:59pm
- Normalization Layers, 
- Dropout, 
- CNNs

Will be released tomorrow

Administrative: Assignment 3
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Administrative: Fridays

This Friday 

Quantization
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Project proposal due 4/29 11:59pm 

Come to office hours to talk about your ideas

Administrative: Course Project
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Visualizing and Understanding
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This image is CC0 public domain

Class Scores: 
1000 numbers

Today: What’s going on inside ConvNets?

Input Image:
3 x 224 x 224

What are the intermediate features looking for?
Krizhevsky et al, “ImageNet Classification with Deep Convolutional Neural Networks”, NIPS 2012.
Figure reproduced with permission.
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https://pixabay.com/p-1246693/?no_redirect
https://creativecommons.org/publicdomain/zero/1.0/deed.en
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Today's agenda
Visualizing what models have learned:

- Visualizing filters
- Visualizing final layer features
- Visualizing activations

Understanding input pixels
- Identifying important pixels
- Saliency via backprop
- Guided backprop to generate images
- Gradient ascent to visualize features

Adversarial perturbations
Concept Vectors
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Visualizing what models have learned:
- Visualizing filters
- Visualizing final layer features
- Visualizing activations

Understanding input pixels
- Identifying important pixels
- Saliency via backprop
- Guided backprop to generate images
- Gradient ascent to visualize features

Adversarial perturbations
Concept Vectors

Today's agenda
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Interpreting a Linear Classifier: Visual Viewpoint
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First Layer: Visualize Filters

AlexNet:
64 x 3 x 11 x 11 

Krizhevsky, “One weird trick for parallelizing convolutional neural networks”, arXiv 2014
He et al, “Deep Residual Learning for Image Recognition”, CVPR 2016
Huang et al, “Densely Connected Convolutional Networks”, CVPR 2017
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First Layer: Visualize Filters

AlexNet:
64 x 3 x 11 x 11 

ResNet-18:
64 x 3 x 7 x 7

ResNet-101:
64 x 3 x 7 x 7

DenseNet-121:
64 x 3 x 7 x 7

Krizhevsky, “One weird trick for parallelizing convolutional neural networks”, arXiv 2014
He et al, “Deep Residual Learning for Image Recognition”, CVPR 2016
Huang et al, “Densely Connected Convolutional Networks”, CVPR 2017
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Visualize the 
filters/kernels 
(raw weights)

We can visualize 
filters at higher 
layers, but not 
that interesting

layer 1 weights

layer 2 weights

layer 3 weights

16 x 3 x 7 x 7

20 x 16 x 7 x 7

20 x 20 x 7 x 7
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FC7 layerLast Layer

4096-dimensional feature vector for an image
(layer immediately before the classifier)

Run the network on many images, collect the 
feature vectors
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Last Layer: Nearest Neighbors
Test image L2 Nearest neighbors in feature space

4096-dim vector

Recall: Nearest neighbors 
in pixel space

Krizhevsky et al, “ImageNet Classification with Deep Convolutional Neural Networks”, NIPS 2012.
Figures reproduced with permission.
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Last Layer: Learned Metric for “Semantic” Search

Deep 
Featurizer

 

 

N = ~1012

d = ~102

N x d

Extremely Large Database

Query
Lookup

Nearest Neighbour
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Last Layer: Modern Day Search

coactive.ai
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Last Layer: Dimensionality Reduction

Van der Maaten and Hinton, “Visualizing Data using t-SNE”, JMLR 2008
Figure copyright Laurens van der Maaten and Geoff Hinton, 2008. Reproduced with permission.

Visualize the “space” of FC7 
feature vectors by reducing 
dimensionality of vectors from 
4096 to 2 dimensions

Simple algorithm: Principal 
Component Analysis (PCA)

More complex: t-SNE
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Last Layer: Dimensionality Reduction

Van der Maaten and Hinton, “Visualizing Data using t-SNE”, JMLR 2008
Krizhevsky et al, “ImageNet Classification with Deep Convolutional Neural Networks”, NIPS 2012.
Figure reproduced with permission.

See high-resolution versions at  
http://cs.stanford.edu/people/karpathy/cnnembed/ 
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http://cs.stanford.edu/people/karpathy/cnnembed/
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Visualizing Activations

Yosinski et al, “Understanding Neural Networks Through Deep Visualization”, ICML DL Workshop 2014.
Figure copyright Jason Yosinski, 2014. Reproduced with permission.

conv5 feature map is 
128x13x13; visualize 
as 128 13x13 
grayscale images

https://www.youtube.com/watch?v=AgkfIQ4IGaM
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Visualizing what models have learned:
- Visualizing filters
- Visualizing final layer features
- Visualizing activations

Understanding input pixels
- Identifying important pixels
- Saliency via backprop
- Guided backprop to generate images
- Gradient ascent to visualize features

Adversarial perturbations
Concept Vectors

Today's agenda
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Maximally Activating Patches

Pick a layer and a channel; e.g. conv5 is 
128 x 13 x 13, pick channel 17/128

Run many images through the network, 
record values of chosen channel

Visualize image patches that correspond 
to maximal activations

Springenberg et al, “Striving for Simplicity: The All Convolutional Net”, ICLR Workshop 2015
Figure copyright Jost Tobias Springenberg, Alexey Dosovitskiy, Thomas Brox, Martin Riedmiller, 2015; 
reproduced with permission.

22



Ranjay Krishna Lecture 8 - April 24, 2025

Which pixels matter: 
Saliency via Occlusion
Mask part of the image before feeding to CNN, 
check how much predicted probabilities change

Zeiler and Fergus, “Visualizing and Understanding Convolutional 
Networks”, ECCV 2014

Boat image is CC0 public domain
Elephant image is CC0 public domain
Go-Karts image is CC0 public domain

P(elephant) = 0.95

P(elephant) = 0.75
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https://pixabay.com/en/sailboat-ship-sailing-greenland-459794/
https://creativecommons.org/publicdomain/zero/1.0/deed.en
https://pixabay.com/en/elephant-african-bush-elephant-114543/
https://creativecommons.org/publicdomain/zero/1.0/deed.en
https://pixabay.com/en/gokart-fun-car-go-kart-racing-1089893/
https://creativecommons.org/publicdomain/zero/1.0/deed.en
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Which pixels matter: 
Saliency via Occlusion

Zeiler and Fergus, “Visualizing and Understanding Convolutional 
Networks”, ECCV 2014

Boat image is CC0 public domain
Elephant image is CC0 public domain
Go-Karts image is CC0 public domain

Mask part of the image before feeding to CNN, 
check how much predicted probabilities change
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https://pixabay.com/en/sailboat-ship-sailing-greenland-459794/
https://creativecommons.org/publicdomain/zero/1.0/deed.en
https://pixabay.com/en/elephant-african-bush-elephant-114543/
https://creativecommons.org/publicdomain/zero/1.0/deed.en
https://pixabay.com/en/gokart-fun-car-go-kart-racing-1089893/
https://creativecommons.org/publicdomain/zero/1.0/deed.en
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Saliency via Occlusion: Shapley Values

Credit: Ian Covert; Lundberg & Lee 2017
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Which pixels matter: Saliency via Backprop

Dog

Forward pass: Compute probabilities

Simonyan, Vedaldi, and Zisserman, “Deep Inside Convolutional Networks: Visualising Image Classification Models 
and Saliency Maps”, ICLR Workshop 2014.
Figures copyright Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman, 2014; reproduced with permission.
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Which pixels matter: Saliency via Backprop

Dog

Forward pass: Compute probabilities

Compute gradient of (unnormalized) class 
score with respect to image pixels, take 
absolute value and max over RGB channels

Simonyan, Vedaldi, and Zisserman, “Deep Inside Convolutional Networks: Visualising Image Classification Models 
and Saliency Maps”, ICLR Workshop 2014.
Figures copyright Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman, 2014; reproduced with permission.
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Saliency Maps

Simonyan, Vedaldi, and Zisserman, “Deep Inside Convolutional Networks: Visualising Image Classification Models 
and Saliency Maps”, ICLR Workshop 2014.
Figures copyright Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman, 2014; reproduced with permission.
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Saliency Maps: Segmentation without supervision

Simonyan, Vedaldi, and Zisserman, “Deep Inside Convolutional Networks: Visualising Image Classification Models 
and Saliency Maps”, ICLR Workshop 2014.
Figures copyright Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman, 2014; reproduced with permission.
Rother et al, “Grabcut: Interactive foreground extraction using iterated graph cuts”, ACM TOG 2004

Use GrabCut on 
saliency map

29



Ranjay Krishna Lecture 8 - April 24, 2025

Saliency maps: Uncovers biases 

Such methods also find 
biases

wolf vs dog classifier looks 
is actually a snow vs 
no-snow classifier

Figures copyright Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin, 2016; reproduced with permission.
Ribeiro et al, ““Why Should I Trust You?” Explaining the Predictions of Any Classifier”, ACM KDD 2016
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Intermediate Features via (guided) backprop

Zeiler and Fergus, “Visualizing and Understanding Convolutional Networks”, ECCV 2014
Springenberg et al, “Striving for Simplicity: The All Convolutional Net”, ICLR Workshop 2015

Pick a single intermediate channel, e.g. one 
value in 128 x 13 x 13 conv5 feature map

Compute gradient of activation value with 
respect to image pixels
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Intermediate Features via (guided) backprop

Pick a single intermediate neuron, e.g. one 
value in 128 x 13 x 13 conv5 feature map

Compute gradient of neuron value with respect 
to image pixels

Images come out nicer if you only 
backprop positive gradients through 
each ReLU (guided backprop)

ReLU

Zeiler and Fergus, “Visualizing and Understanding Convolutional Networks”, ECCV 2014
Springenberg et al, “Striving for Simplicity: The All Convolutional Net”, ICLR Workshop 2015

Figure copyright Jost Tobias Springenberg, Alexey Dosovitskiy, Thomas 
Brox, Martin Riedmiller, 2015; reproduced with permission.
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Intermediate features via (guided) backprop

Zeiler and Fergus, “Visualizing and Understanding Convolutional Networks”, ECCV 2014
Springenberg et al, “Striving for Simplicity: The All Convolutional Net”, ICLR Workshop 2015
Figure copyright Jost Tobias Springenberg, Alexey Dosovitskiy, Thomas Brox, Martin Riedmiller, 2015; reproduced with permission.

Maximally activating patches
(Each row is a different neuron)

Guided Backprop
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Intermediate features via (guided) backprop

Zeiler and Fergus, “Visualizing and Understanding Convolutional Networks”, ECCV 2014
Springenberg et al, “Striving for Simplicity: The All Convolutional Net”, ICLR Workshop 2015
Figure copyright Jost Tobias Springenberg, Alexey Dosovitskiy, Thomas Brox, Martin Riedmiller, 2015; reproduced with permission.

Maximally activating patches
(Each row is a different neuron)

Guided Backprop
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Class Activation Mapping (CAM)

Pooled features:

F ∈ ℝK
Class Scores:

S ∈ ℝC

K

W

Last layer CNN features:

𝑓 ∈ ℝH×W×K

H
K

C

Global 
Average 
Pooling

Fully Connected 
Layer, weights

& ∈ ℝ$×%
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Class Activation Mapping (CAM)

Pooled features:
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Class Activation Mapping (CAM)

Pooled features:

F ∈ ℝK
Class Scores:

S ∈ ℝC
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W

Last layer CNN features:

𝑓 ∈ ℝH×W×K

H
K
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Average 
Pooling
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Class Activation Mapping (CAM)

Pooled features:

F ∈ ℝK
Class Scores:

S ∈ ℝC

K

W

Last layer CNN features:

𝑓 ∈ ℝH×W×K

H
K
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Global 
Average 
Pooling
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Layer, weights

& ∈ ℝ$×%
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Class Activation Mapping (CAM)

Pooled features:

F ∈ ℝK
Class Scores:

S ∈ ℝC
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Last layer CNN features:
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H
K
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Global 
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Class Activation Mapping (CAM)

Pooled features:

F ∈ ℝK
Class Scores:

S ∈ ℝC

K

W

Last layer CNN features:

𝑓 ∈ ℝH×W×K

H
K

C

Global 
Average 
Pooling

Fully Connected 
Layer, weights

& ∈ ℝ$×%
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Class Activation Mapping (CAM)

Zhou et al, “Learning Deep Features for Discriminative Localization”, CVPR 2016
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Class Activation Mapping (CAM) Problem: Can only 
apply to last conv 
layer

3442
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Gradient-Weighted Class Activation Mapping (Grad-CAM)

Selvaraju et al, “Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization”, CVPR 2017

35

1. Pick any layer, with activations A ∈ ℝH×W×K
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Gradient-Weighted Class Activation Mapping (Grad-CAM)

Selvaraju et al, “Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization”, CVPR 2017

35

1. Pick any layer, with activations A ∈ ℝH×W×K

2. Compute gradient of class score SC with respect to A:
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Gradient-Weighted Class Activation Mapping (Grad-CAM)

Selvaraju et al, “Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization”, CVPR 2017

35

1. Pick any layer, with activations A ∈ ℝH×W×K

2. Compute gradient of class score SC with respect to A:

3. Global Average Pool the gradients to get weights                 :
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Gradient-Weighted Class Activation Mapping (Grad-CAM)

Selvaraju et al, “Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization”, CVPR 2017

35

1. Pick any layer, with activations A ∈ ℝH×W×K

2. Compute gradient of class score SC with respect to A:

3. Global Average Pool the gradients to get weights                 :

4. Compute activation map                         :

46



Ranjay Krishna Lecture 8 - April 24, 2025

Gradient-Weighted Class Activation Mapping (Grad-CAM)

Selvaraju et al, “Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization”, CVPR 2017
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Gradient-Weighted Class Activation Mapping (Grad-CAM)

Can also be applied beyond classification models, e.g. image captioning

Selvaraju et al, “Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization”, CVPR 2017
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Visualizing CNN features: Gradient Ascent

(Guided) backprop:
Find the part of an 
image that a neuron 
responds to

Gradient ascent:
Generate a synthetic 
image that maximally 
activates a neuron

I* = arg maxI f(I) + R(I)

Neuron value Natural image regularizer

49
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Visualizing CNN features: Gradient Ascent

score for class c (before Softmax)

zero image

1. Initialize image to zeros

Repeat:
2. Forward image to compute current scores
3. Backprop to get gradient of neuron value with respect to image pixels
4. Make a small update to the image
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Visualizing CNN features: Gradient Ascent

Simonyan, Vedaldi, and Zisserman, “Deep Inside Convolutional Networks: Visualising Image Classification 
Models and Saliency Maps”, ICLR Workshop 2014.
Figures copyright Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman, 2014; reproduced with permission.

Simple regularizer: Penalize L2 
norm of generated image
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Visualizing CNN features: Gradient Ascent

Simonyan, Vedaldi, and Zisserman, “Deep Inside Convolutional Networks: Visualising Image Classification 
Models and Saliency Maps”, ICLR Workshop 2014.
Figures copyright Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman, 2014; reproduced with permission.

Simple regularizer: Penalize L2 
norm of generated image
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Visualizing CNN features: Gradient Ascent

Simple regularizer: Penalize L2 
norm of generated image

Yosinski et al, “Understanding Neural Networks Through Deep Visualization”, ICML DL Workshop 2014.
Figure copyright Jason Yosinski, Jeff Clune, Anh Nguyen, Thomas Fuchs, and Hod Lipson, 2014. Reproduced 
with permission.
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Visualizing CNN features: Gradient Ascent

Better regularizer: Penalize L2 norm of 
image; also during optimization 
periodically

(1) Gaussian blur image
(2) Clip pixels with small values to 0
(3) Clip pixels with small gradients to 0

Yosinski et al, “Understanding Neural Networks Through Deep Visualization”, ICML DL Workshop 2014.

54



Ranjay Krishna Lecture 8 - April 24, 202555

Visualizing CNN features: Gradient Ascent

Better regularizer: Penalize L2 norm of 
image; also during optimization 
periodically

(1) Gaussian blur image
(2) Clip pixels with small values to 0
(3) Clip pixels with small gradients to 0

Yosinski et al, “Understanding Neural Networks Through Deep Visualization”, ICML DL Workshop 2014.
Figure copyright Jason Yosinski, Jeff Clune, Anh Nguyen, Thomas Fuchs, and Hod Lipson, 2014. Reproduced with permission.
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Visualizing CNN features: Gradient Ascent

Better regularizer: Penalize L2 norm of 
image; also during optimization 
periodically

(1) Gaussian blur image
(2) Clip pixels with small values to 0
(3) Clip pixels with small gradients to 0

Yosinski et al, “Understanding Neural Networks Through Deep Visualization”, ICML DL Workshop 2014.
Figure copyright Jason Yosinski, Jeff Clune, Anh Nguyen, Thomas Fuchs, and Hod Lipson, 2014. Reproduced with permission.

56



Ranjay Krishna Lecture 8 - April 24, 202557

Visualizing CNN features: Gradient Ascent
Use the same approach to visualize intermediate features

Yosinski et al, “Understanding Neural Networks Through Deep Visualization”, ICML DL Workshop 2014.
Figure copyright Jason Yosinski, Jeff Clune, Anh Nguyen, Thomas Fuchs, and Hod Lipson, 2014. Reproduced with permission.
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Visualizing CNN features: Gradient Ascent
Adding “multi-faceted” visualization gives even nicer results:
(Plus more careful regularization, center-bias)

Nguyen et al, “Multifaceted Feature Visualization: Uncovering the Different Types of Features Learned By Each Neuron in Deep Neural Networks”, ICML Visualization for Deep Learning Workshop 2016. 
Figures copyright Anh Nguyen, Jason Yosinski, and Jeff Clune, 2016; reproduced with permission.
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Visualizing CNN features: Gradient Ascent

Nguyen et al, “Multifaceted Feature Visualization: Uncovering the Different Types of Features Learned By Each Neuron in Deep Neural Networks”, ICML Visualization for Deep Learning Workshop 2016. 
Figures copyright Anh Nguyen, Jason Yosinski, and Jeff Clune, 2016; reproduced with permission.
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Visualizing CNN features: Gradient Ascent

Nguyen et al, “Synthesizing the preferred inputs for neurons in neural networks via deep generator networks,” NIPS 2016
Figure copyright Nguyen et al, 2016; reproduced with permission.

Optimize in FC6 latent space instead of pixel space:
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Visualizing CNN features: Gradient Ascent

Nguyen et al, “Synthesizing the preferred inputs for neurons in neural networks via deep generator networks,” NIPS 2016
Figure copyright Nguyen et al, 2016; reproduced with permission.

Optimize in FC6 latent space instead of pixel space:
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Today's agenda

62

Visualizing what models have learned:
- Visualizing filters
- Visualizing final layer features
- Visualizing activations

Understanding input pixels
- Identifying important pixels
- Saliency via backprop
- Guided backprop to generate images
- Gradient ascent to visualize features

Adversarial perturbations
Concept Vectors
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Fooling Images / Adversarial Examples

(1) Start from an arbitrary image
(2) Pick an arbitrary incorrect class
(3) Modify the image to maximize the class
(4) Repeat until network is fooled
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Fooling Images / Adversarial Examples

Boat image is CC0 public domain
Elephant image is CC0 public domain

64

https://pixabay.com/en/sailboat-ship-sailing-greenland-459794/
https://creativecommons.org/publicdomain/zero/1.0/deed.en
https://pixabay.com/en/elephant-african-bush-elephant-114543/
https://creativecommons.org/publicdomain/zero/1.0/deed.en
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Fooling Images / Adversarial Examples

Boat image is CC0 public domain
Elephant image is CC0 public domain

Check out Ian Goodfellow’s lecture from 2017
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https://pixabay.com/en/sailboat-ship-sailing-greenland-459794/
https://creativecommons.org/publicdomain/zero/1.0/deed.en
https://pixabay.com/en/elephant-african-bush-elephant-114543/
https://creativecommons.org/publicdomain/zero/1.0/deed.en
https://www.youtube.com/watch?v=CIfsB_EYsVI
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Fooling Person Detectors and Self-driving Cars

66

Xu et al., 2019; Eykholt et al., 2018
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Fooling Images / Adversarial Examples

Moosavi-Dezfooli, Seyed-Mohsen, et al. "Universal adversarial perturbations." Proceedings of the IEEE conference on computer vision and pattern 
recognition. 2017.
Figure reproduced with permission

Universal perturbations
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Feature Inversion

Mahendran and Vedaldi, “Understanding Deep Image Representations by Inverting Them”, CVPR 2015

Given a CNN feature vector for an image, find a new image that:
- Matches the given feature vector
- “looks natural” (image prior regularization)

    Given feature

     vector

     Features of new      

image

    Total Variation regularizer      

    (encourages spatial      

    smoothness)
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Feature Inversion

Reconstructing from different layers of VGG-16

Mahendran and Vedaldi, “Understanding Deep Image Representations by Inverting Them”, CVPR 

69



Ranjay Krishna Lecture 8 - April 24, 2025

DeepDream: Amplify Existing Features
Rather than synthesizing an image to maximize a specific neuron, instead try to 
amplify the neuron activations at some layer in the network

Choose an image and a layer in a CNN; repeat:
1. Forward: compute activations at chosen layer
2. Set gradient of chosen layer equal to its activation
3. Backward: Compute gradient on image

4. Update image Mordvintsev, Olah, and Tyka, “Inceptionism: Going Deeper into Neural 
Networks”, Google Research Blog. Images are licensed under CC-BY 4.0

70

https://research.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html
https://creativecommons.org/licenses/by/4.0/
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DeepDream: Amplify Existing Features
Rather than synthesizing an image to maximize a specific neuron, instead try to 
amplify the neuron activations at some layer in the network

Choose an image and a layer in a CNN; repeat:
1. Forward: compute activations at chosen layer
2. Set gradient of chosen layer equal to its activation

Equivalent to:

3. Backward: Compute gradient on image

4. Update image Mordvintsev, Olah, and Tyka, “Inceptionism: Going Deeper into Neural 
Networks”, Google Research Blog. Images are licensed under CC-BY 4.0
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https://research.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html
https://creativecommons.org/licenses/by/4.0/
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Sky image is licensed under CC-BY SA 3.0
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https://creativecommons.org/licenses/by-sa/3.0/deed.en
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Image is licensed under CC-BY 3.0
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https://github.com/google/deepdream/blob/master/dream.ipynb
https://creativecommons.org/licenses/by/3.0/us/
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Image is licensed under CC-BY 4.0
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Image is licensed under CC-BY 4.0
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Image is licensed under CC-BY 3.0

76

https://github.com/google/deepdream/blob/master/dream.ipynb
https://creativecommons.org/licenses/by/3.0/us/
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Image is licensed under CC-BY 4.0
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https://research.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html
https://creativecommons.org/licenses/by/4.0/
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Today's agenda

78

Visualizing what models have learned:
- Visualizing filters
- Visualizing final layer features
- Visualizing activations

Understanding input pixels
- Identifying important pixels
- Saliency via backprop
- Guided backprop to generate images
- Gradient ascent to visualize features

Adversarial perturbations
Concept Vectors
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Concept activation vectors

Let’s see if a neural network has learned a 
specific concept and uses it effectively.

Example use case:
Q1. Has it learnt what stripes are?
Q2. Can it identify the category “zebra” by using 
the concept “stripes”

79
Kim, Been, et al. "Interpretability beyond feature attribution: Quantitative testing with concept activation vectors (tcav)." ICML, 2018.
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Concept activation vectors
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Kim, Been, et al. "Interpretability beyond feature attribution: Quantitative testing with concept activation vectors (tcav)." ICML, 2018.

Learn a linear classifier to 
predict “stripes” from a layer’s 
activations.

Repeat across all layers to 
find the best linear classifier
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Calculate if the gradient for that layer when 
predicting “zebra” matches the classifier
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Kim, Been, et al. "Interpretability beyond feature attribution: Quantitative testing with concept activation vectors (tcav)." ICML, 2018.
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Summary

Many methods for understanding CNN representations

Activations: Nearest neighbors, Dimensionality reduction, 
maximal patches, occlusion
Gradients: Saliency maps, class visualization, fooling 
images, feature inversion

Adversarial Examples: To confuse the models
Concept Vectors: Human interpretable probing method

82
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Next time:

Introduction to Language

8383


