Lecture 5:
Convolutional Neural Networks

Ranjay Krishna Lecture 5 - 1 April 15, 2025

Administrative: EdStem

Please make sure to check and read all pinned EdStem posts.

Ranjay Krishna Lecture 5 - 2 April 15, 2025

Administrative: Assignment 1

Due 4/16 11:59pm

- K-Nearest Neighbor
- Linear classifiers: SVM, Softmax

Ranjay Krishna Lecture 5 - 3 April 15, 2025

Administrative: Assignment 2

Will be released tomorrow
Due 4/25 11:59pm
- Multi-layer Neural Networks,

- Image Features,
- Optimizers

Ranjay Krishna Lecture 5 - 4 April 15, 2025

Administrative: Fridays

This Friday

Convolutions & Vectorization

Ranjay Krishna Lecture 5- 5 April 15, 2025

Administrative: Course Project

Project proposal due 4/29 11:59pm
“Is X a valid project for 493G17?”

Anything related to deep learning or computer vision
Maximum of 3 students per team
Make a EdStem private post or come to TA Office Hours

More info on the website

Ranjay Krishna Lecture 5- 6 April 15, 2025

Last time: Neural Networks
Linear score function: f — Wa
2-layer Neural Network f = Womax(0, Wix)

X W1 |h| W2 |g

deer

plane car bird cat
. ' s

3072 100 10

dog frog horse ship truck

SENEVAGEE! Lecture 5 - 7 April 15, 2025

a2

SENEVAGEE! Lecture 5 - 8 April 15, 2025

“local gradient”

a2

SENEVAGEE! Lecture 5 - 9 April 15, 2025

“local gradient”

Z

oL
0z

a2

Ranjay Krishna Lecture 5 - 10 April 15, 2025

“Upstream
gradient”

“local gradient”
= .8

Z
“‘Downstream -
gradients oL,
% =
“Upstream
gradient”

Ranjay Krishna Lecture 5 - 11 April 15, 2025

“local gradient”
= .8

“Downstream
gradients”

Z

oL
0z

8=
oL “Upstream
gradient”

Ranjay Krishna Lecture 5 - 12 April 15, 2025

“local gradient”
= .8

“Downstream
gradients”

Z

oL
0z

8=
oL “Upstream
gradient”

Jay Krishna Lecture 5 - April 15, 2025

Backprop Implementation:
“Flat” code

Forward pass:
Compute output

w0 2.00

1.00 @ 0.73
0.20 1.00
Compute grads

0.20

SENEVAGEE! Lecture 5 - 14

Backward pass:

def f(wd, x0, wl, x1, w2):
s = wd *x x0

sl = wl % x1
s2 = sO@ + sl
s3 = s2 + w2

L = sigmoid(s3)

grad_L = 1.0

grad_s3 = grad_L *x (1 - L) * L
grad_w2 = grad_s3

grad_s2 = grad_s3

grad_s® = grad_s2

grad_s1l = grad_s2

grad_wl = grad_sl x x1

grad_x1 = grad_sl x wl

grad_w@ = grad_s@ *x x0

grad_x0 = grad_s@ x wo@

April 15, 2025

Backprop Implementation:
“Flat” code

w0 2.00

0:73
1.00

0.20

Ranjay Krishna

Forward pass:
Compute output

Base case

Lecture 5 - 15

def f(wo,

x0, wl, x1, w2):

SO = wl
sl =wl
s2 = s0O
s3 = s2

*

*

+

-4

L = sigmoid(s3)

X0
x1
sl
w2

grad_L = 1.0

grad_s3 = grad_L *x (1 - L) * L
grad_w2 = grad_s3

grad_s2 = grad_s3

grad_s® = grad_s2

grad_s1l = grad_s2

grad_wl = grad_sl x x1

grad_x1 = grad_sl x wl

grad_w@ = grad_s@ *x x0

grad_x0 = grad_s@ x wo@

April 15, 2025

Backprop Implementation:

“Flat” code

w0 2.00

1.00
0.20

0.73

1.00

0.20

Ranjay Krishna

Forward pass:
Compute output

Sigmoid

Lecture 5 - 16

def f(wo,

x0, wl, x1, w2):

SO = wl
sl =wl
s2 = s0O
s3 = s2

*

*

+

-4

X0
x1
sl
w2

||L = sigmoid(s3)

grad L = 1.0

grad_s3 = grad_L *x (1 - L) * L
grad_w2 = grad_s3

grad_s2 = grad_s3

grad_s® = grad_s2

grad_s1l = grad_s2

grad_wl = grad_sl x x1

grad_x1 = grad_sl x wl

grad_w@ = grad_s@ *x x0

grad_x0 = grad_s@ x wo@

April 15, 2025

def f(wd, x0, wl, x1, w2):

Backprop Implementation: P———
“Flat” code Forward pass: i e
s2 = s@ + sl

Compute output

s3 = s2 + w2

w0 2.00

L = sigmoid(s3)

grad_L = 1.0
rad s3 rad L x (1 - L) x L
grad_w2 = grad_s3

4.00
0.20

Add gate

N Lm)/:;\\073 grad_s2 = grad_s3
0200 _/ 1.00 grad_s@ = grad_s2

grad_s1l = grad_s2

-0.60

wzag? grad_wl = grad_sl x x1
grad_x1 = grad_sl x wl
grad_w@ = grad_s@ * x0
grad_x0 = grad_s@ x wo@

Ranjay Krishna Lecture 5 - 17 April 15, 2025

def f(wd, x0, wl, x1, w2):

Backprop Implementation: prP—
Flat” code Forward pass: LW e X
Compute output |22= 52 * =1

s3 = s2 + w2

Wojggi><::>_ L = sigmoid(s3)
-2.00
x0 -1.00
o grad_L = 1.0
grad_s3 = grad_L *x (1 - L) * L
wl -3.00
T grad_w2 = grad_s3
o 50 . 321/?;\\?33 grad_s2 = grad_s3
ot 2 : rad_s@® = grad_s2
0.0 Add gate | 27%°-°7 T 9ret-
grad_s1l = grad_s2
Wz;g? grad_wl = grad_s1 * X1
grad_x1 = grad_sl x wl
grad_w@ = grad_s@ * x0
grad_x0 = grad_s@ x wo@

Ranjay Krishna Lecture 5- 18 April 15, 2025

Backprop Implementation:

Flat COde Forward pass:
Compute output

w0 2.00

wl -3.00
040 6.00
5 1.00 @0.73
x1 -2.00 0.20 1.00
0.60
W2M
0.20 Multiply gate
Ranjay Krishna Lecture 5- 19

def f(wo,

x0, wl, x1, w2):

SO = wd * x0
s1 = wl % x1
s2 = sO + sl
s3 = 52 + w2
L = sigmoid(s3)

grad_L = 1.0

grad_s3 = grad_L *x (1 - L) * L
grad_w2 = grad_s3

grad_s2 = grad_s3

grad_s® = grad_s2

grad s1 = grad s2

grad_wl = grad_sl x x1

grad_x1 = grad_sl x wl

grad_w@ = grad_s@ * x0

grad_x0 = grad_s@ x wo@

April 15, 2025

i def (w0, X0, wl, x1, w2):
Backprop Implementation: of 1(u6, 10, M1, 21, v
“Flat” code Forward pass: | £ 7 A
s2 = sO + sl

Compute output oy o 8 o

Woiﬁi L = sigmoid(s3)
-2.00
0 -1.00 o
e grad_L = 1.0
grad_s3 = grad_L *x (1 - L) * L

wl -

grad_w2 = grad_s3

Lm)/:;\\073 grad_s2 = grad_s3
o s grad_s@ = grad_s2

x1 -2.
-0.60
grad_s1l = grad_s2

wzag? grad_wl = grad_sl x x1
grad_x1 = grad_sl x wl

. grad_w@ = grad_s@ * x0

Multiply gate grad_x0 = grad_s@ x wo@

Ranjay Krishna Lecture 5 - 20 April 15, 2025

“Flat” Backprop: Do this for assignment 2!

Stage your forward/backward computation!

E.g. for the SVM:

receive W (weights), X (da

forward pass (we hav 1in€s)
scores = #...
margins = #...
data loss = #...
reg loss = #...
loss = data loss + reg loss

backward pass (we have 5 lines)
dmargins = # ...
dscores = #...

dw = #. ..

Ranjay Krishna

= Z#yi max(0,s; — sy, + 1)

[\f\— Wzl |Li

S o
/@g
45

) L

|

A4

(optionally, we go direct to dscores)

Lecture 5 - 21

April 15, 2025

“Flat” Backprop: Do this for assignment 1!

E.g. for two-layer neural net:

receive W1,W2,bl,b2 (weights/biases), X (data)

forward pass:

hl = #... function of X,W1,6bl

scores = #... function of hl,W2,b2

loss = #... (several lines of code to evaluate Softmax loss)
backward pass:

dscores = #...

dhl,dw2,db2 = #...

dwl,dbl = #...

Ranjay Krishna Lecture 5 - 22 April 15, 2025

Backprop Implementation: Modularized API

Graph (or Net) object (rough pseudo code)

class ComputationalGraph(object):

o

w0 2.00

def forward(inputs):
1. [pass inputs to input gates...]
2. forward the computational graph:
for gate in self.graph.nodes topologically sorted():
gate.forward()
return loss # the final gate in the graph outputs the loss

def backward():

for gate in reversed(self.graph.nodes topologically sorted()):
gate.backward() # little piece of backprop (chain rule applied)

return inputs gradients

Ranjay Krishna Lecture 5 - 23 April 15, 2025

Modularized implementation: forward / backward API
Gate / Node / Function object: Actual PyTorch code

class Multiply(torch.autograd.Function):

X @staticmethod
i def forward(ctx, x, y): Need to stash
ctx.save_for_backward(x, y) €«————| some values for
Z= X%y use in backward
3/ return z
@staticmethod
def backward(ctx, grad_z): - Upstream
(X,y,Z are ScalarS) grat- gradient

X, y = ctx.saved_tensors
grad_x =y *x grad_z # dz/dx % dL/dz Multiply upstream
grad_y = X *x grad_z # dz/dy * dL/dz | and local gradients
return grad_x, grad_y

Ranjay Krishna Lecture 5- 24 April 15, 2025

Example: PyTorch operators

pytorch / pytorch @Wwatch~ 1221 KuUnstar 26770 YFork 6340 &) SpatialClassNLLCriterion.c Canonicalize all includes in PyTorch. (#14849) 4 months ago
) spatialC allincludes in PyTorch. (#14849) 4 months ago
< Pull J i i Insight:
Code Issues 2,286 'ull requests 661 Projects 4 Wiki nsights taiDilatedConvolution lize all includes in PyTorch. (#14849) 4 months ago
i &) Spatialc g.c c allincludes in PyTorch. (#14849) 4 months ago
Tree: 517¢7¢9861~ pytorch / aten / src / THNN / generic / Upload files ~ Find file ~ History
Spati c c allincludes in PyTorch. (#14849) 4 months ago
B35 ezyang and facebook-github-bot Canonicalize allincludes in PyTorch. (#14849) == Latest commit 517¢7c9 on Dec 8, 2018 £ spatialFullDilatedConvolution.c Canonicalize all includes in PyTorch. (#14849) 4 months ago
E) SpatialMaxUnpooling.c Canonicalize all includes in PyTorch. (#14849) 4 months ago
) AbsCriterion.c Canonicalize all includes in PyTorch. (#14849) 4 months ago 2 g.c c lize allincludes in PyTorch. (#14849) 4 months ago
E) BCECriterion.c Canonicalize all includes in PyTorch. (#14849) 4 months ago 9. c allincludes in PyTorch. (#14849) 4 months ago;
[E) ClassNLLCriterion.c Canonicalize all includes in PyTorch. (#14849) 4 months ago B Spatiall allinchides in PyTorch: (#14849) 4 monthsago;
= B tiall 1} lud PyTorch. (#14849) 4 nths
[E) Col2im.c Canonicalize all includes in PyTorch. (#14849) 4 months ago ¢ alkincludes In yTorch: ¢) onthe 890,
—] THNN.h Canonicalize all includes in PyTorch. (#14849) 4 months ago
JELUC Canonicalize all includes in PyTorch. (#14849) 4 months ago i ¢) :
= Tanh.c Canonicalize all includes in PyTorch. (#14849) 4 months ago
) FeatureLPPooling.c Canonicalize all includes in PyTorch. (#14849) 4 months ago
) c c allincludes in PyTorch. (#14849) 4 months ago
5) GatedLinearUnit.c Canonicalize all includes in PyTorch. (#14849) 4 months ago
E g.c [allincludes in PyTorch. (#14849) 4 months ago
) HardTanh.c Canonicalize all includes in PyTorch. (#14849) 4 months ago
B nvolution.c all includes in PyTorch. (#14849) 4 months ago
[E Im2Col.c Canonicalize all includes in PyTorch. (#14849) 4 months ago
2 TemporalUpSamplingLinear.c Canonicalize all includes in PyTorch. (#14849) 4 months ago
=) IndexLinear.c Canonicalize all includes in PyTorch. (#14849) 4 months ago
=) Temporall ,c allincludes in PyTorch. (#14849) 4 months ago
[E) LeakyReLU.c Canonicalize all includes in PyTorch. (#14849) 4 months ago i}
] - all includes in PyTorch. (#14849) 4 months ago
E) LogSigmoid.c Canonicalize all includes in PyTorch. (#14849) 4 months ago
) gc G allincludes in PyTorch. (#14849) 4 months ago
=) MSECriterion.c Canonicalize all includes in PyTorch. (#14849) 4 months ago
2 g.c Ci lize all includes in PyTorch. (#14849) 4 months ago
) MultiL riterion.c [& all includes in PyTorch. (#14849) 4 months ago
lumetricC o all includes in PyTorch. (#14849) 4 months ago
) MultiMarginCriterion.c Canonicalize all includes in PyTorch. (#14849) 4 months ago
ul g i Y () 9 /olumetricDilatedConvolution.c [all includes in PyTorch. (#14849) 4 months ago
E) RReLU.c Canonicalize all includes in PyTorch. (#14849) 4 months ago i oo all nchudes i PyTorch; (#14540) P —
) Sigmoid.c Canonicalize all includes in PyTorch. (#14849) 4 months ago o 3 T allinchudes in PyTorch, (#14849) 4 montha ago
=) SmoothL1Criterion.c Canonicalize all includes in PyTorch. (#14849) 4 months ago E) VolumetricFullDilatedConvolution.c Canonicalize all includes in PyTorch. (#14849) 4 months ago
B SoftMarginCriterion.c Canonicalize all includes in PyTorch. (#14849) 4 months ago &) P— allincludes in PyTorch, (#14849) D
[E) SoftPlus.c Canonicalize all includes in PyTorch. (#14849) 4 months ago) c [all includes in PyTorch. (#14849) 4 months ago
2 Softshrink.c Canonicalize all includes in PyTorch. (#14849) 4 months ago Jumetrict ¢ ¢ allincludes in PyTorch. (#14849) 4 months ago
E) sparseLinear.c Canonicalize all includes in PyTorch. (#14849) 4 months ago lumetricUpSamplingTrilinear.c lize allincludes in PyTorch. (#14849) 4 months ago
) gc C all includes in PyTorch. (#14849) 4 months ago E) linear_upsampling.h Implement nn.functionalinterpolate based on upsample. (#8591) 9 months ago
) gc c all includes in PyTorch. (#14849) 4 months ago) pooling_shape.h Use integer math to compute output size of pooling operations (#14405) 4 months ago
) gc c allincludes in PyTorch. (#14849) 4 months ago B unfold.c Canonicalize allincludes in PyTorch. (#14849) 4 months ago

Ranjay Krishna Lecture 5 - 25 April 15, 2025

#ifndef TH_GENERIC_FILE

#define TH_GENERIC_FILE "THNN/generic/Sigmoid.c" PyTO rCh Singid Iayer

#else

void THNN_(Sigmoid_updateOutput) (rw
THNNState *state, FO ard
THTensor *xinput,].
THTensor xoutput) _

{ 0($)—— 1 —

THTensor_(sigmoid) (output, input); —+_ €
}

void THNN_(Sigmoid_updateGradInput) (
THNNState *state,
THTensor *xgradOutput,
THTensor *xgradInput,
THTensor xoutput)

THNN_CHECK_NELEMENT (output, gradOutput);

THTensor_(resizeAs) (gradInput, output);

TH_TENSOR_APPLY3(scalar_t, gradInput, scalar_t, gradOutput, scalar_t, output,
scalar_t z = xoutput_data;
*gradInput_data = *gradOutput_data * (1. - z) * z;

);

#endif Source

Ranjay Krishna Lecture 5 - 26 April 15, 2025

https://github.com/pytorch/pytorch/blob/517c7c98610402e2746586c78987c64c28e024aa/aten/src/THNN/generic/Sigmoid.c

#ifndef TH_GENERIC_FILE
#define TH_GENERIC_FILE "THNN/generic/Sigmoid.c"

PyTorch sigmoid layer

static void sigmoid_kernel(TensorIterator& iter) {
AT_DISPATCH_FLOATING_TYPES(iter.dtype(), "sigmoid_cpu", [&]() {
unary_kernel_vec(

#else

void THNN_(Sigmoid_updateOutput) (rw
THNNState *state, FO ard
THTensor *xinput,].
THTensor xoutput) _

{ CJ'(:Z:) -]- —T

THTensor_(sigmoid) (output, input); -+_ €
¥

void THNN_(Sigmoid_updateGradInput) (
THNNState *state,
THTensor xgradOutput,

1)

iter,
[=](scalar_t a) —> scalar_t {|return (17 (1 + std::exp((—a))));l}.
[=](Vec256<scalar_t> a) {

a = Vec256<scalar_t>((scalar_t)(0)) - a;

a = a.exp();

a = Vec256<scalar_t>((scalar_t)(1)) + a;

a = a.reciprocal();

S Forward actually
defined elsewhere...

THTensor *xgradInput,
THTensor xoutput)

return

(1 /7 (1 + std::exp((-a))));

THNN_CHECK_NELEMENT (output, gradOutput);

THTensor_(resizeAs) (gradInput, output);

TH_TENSOR_APPLY3(scalar_t, gradInput, scalar_t, gradOutput, scalar_t, output,
scalar_t z = xoutput_data;
*gradInput_data = *gradOutput_data * (1. - z) * z;

)i

#endif

SENEVAGEE! Lecture 5 - 27

Source

April 15, 2025

https://github.com/pytorch/pytorch/blob/517c7c98610402e2746586c78987c64c28e024aa/aten/src/THNN/generic/Sigmoid.c
https://github.com/pytorch/pytorch/blob/82b570528db0a43fc04bb90f5d4538c01e4a5582/aten/src/ATen/native/cpu/UnaryOpsKernel.cpp

#ifndef TH_GENERIC_FILE

#define TH_GENERIC_FILE "THNN/generic/Sigmoid.c" PyTO rCh Singid Iayer

#else
static void sigmoid_kernel(TensorIterator& iter) {
void THNN_(Sigmoid_updateOutput) (FO ard AT_DISPATCH_FLOATING_TYPES(iter.dtype(), "sigmoid_cpu", [&]() {
THNNState *state, unary_kernel.vec!
. iter,
THTensor *input, 1 [=](scalar_t a) -> scalar_t { return (1 / (1 + std::exp((-a)))); },
THTensor *output) O'(fL') _ [=](Vec256<scalar_t> a) {
{ - 1 + e_x a = Vec256<scalar_t>((scalar_t)(0)) - a;
THTensor_(sigmoid) (output, input); a = a.exp();
} a = Vec256<scalar_t>((scalar_t)(1)) + a;
a = a.reciprocal();
return a;
void THNN_(Sigmoid_updateGradInput) (1 Forward aCtua”y
THNNState *state }; i
: defined elsewhere...
THTensor xgradOutput, Y
THTensor *xgradInput,
THTensor xoutput)
{
THNN_CHECK_NELEMENT (output, gradOutput);
THTensor_(resizeAs)(gradInput, output); Backward
TH_TENSOR_APPLY3(scalar_t, gradInput, scalar_t, gradOutput, scalar_t, output,
scalar_t z = xoutput_data;
xgradInput_data = *gradOutput_data *x (1. - z) * z; (()) ()
—] i
p l—o0o(x))o(x
¥
#endif Source

Ranjay Krishna Lecture 5 - 28 April 15, 2025

https://github.com/pytorch/pytorch/blob/517c7c98610402e2746586c78987c64c28e024aa/aten/src/THNN/generic/Sigmoid.c
https://github.com/pytorch/pytorch/blob/82b570528db0a43fc04bb90f5d4538c01e4a5582/aten/src/ATen/native/cpu/UnaryOpsKernel.cpp

So far: backprop with scalars

What about vector-valued functions?

Ranjay Krishna Lecture 5 - April 15, 2025

Recap: Vector derivatives

Scalar to Scalar
reR,yeR

Regular derivative:

dy
— R
0x€

If x changes by a
small amount, how
much will y change?

Ranjay Krishna Lecture 5 - April 15, 2025

Recap: Vector derivatives

Scalar to Scalar Vector to Scalar

reRyeR reRY yeR
Regular derivative: Derivative is Gradient:
dy dy o~ (9 Ay
R cR (—) =
(9:5 = afE dz). Oz,
If x changes by a For each element of x,
small amount, how if it changes by a small

much will y change? amount then how much
will y change?

Ranjay Krishna Lecture 5 -

April 15, 2025

Remember this example from last lecture?

w0 2.00 1
f(w’x) = 1 + e—('u’o;to+’l£'1171+'w2)

Sigmoid

100 | /&). -100 _—— (D137 1ML 073
020 \'/ 020 Y 053 __J 053 | 100

0.20

Derivative is Gradient:
Vector to Scalar erivative is Gradien

i 8y dy dy 0.40
1.00 N N (9%Y) _
|:_2_00j| reR Y € R o7 % cR (8.7:)” - Oz, |:—0.60j|

Ranjay Krishna Lecture 5 - 32 April 15, 2025

Recap: Vector derivatives

Scalar to Scalar Vector to Scalar

rceR,yceR reRY yeR

Regular derivative: Derivative is Gradient:
Jy dy N (9y\ _ 9y
o =8 B = K (%)n - Oz

For each element of x,
if it changes by a small
amount then how much
will y change?

If x changes by a
small amount, how
much will y change?

Ranjay Krishna Lecture 5 -

@ c RNxM (

Vector to Vector
reRY yeRM

Derivative is Jacobian:
0y> _ Oym
n.m

(,) T % (9.”5,,1

For each element of x, if it
changes by a small amount
then how much will each
element of y change?

April 15, 2025

Backprop with Vectors

T Loss L still a scalar!

\
y/’

SENEVAGEE! Lecture 5 - 34 April 15, 2025

Backprop with Vectors

D

X

L

Ranjay Krishna

\
/

Lecture 5 -

Loss L still a scalar!

rARD

Z

>

35

April 15, 2025

Backprop with Vectors

D

X

L

Ranjay Krishna

\
/

Lecture 5 -

Loss L still a scalar!

rARD

Z

>

36

oL
0z

“Upstream gradient”

April 15, 2025

Backprop with Vectors

DX . \
OL

“Upstream gradient”

For each element of z, how
much does it influence L?

Loss L still a scalar!

Ranjay Krishna Lecture 5 - 37 April 15, 2025

Backprop with Vectors

D T Loss L still a scalar!
X \
o)
207 Z|D,
ax T
“Downstream < f >
gradients” =

L
Dyg% 0z y4

N

Z
— 7 “Upstream gradient”
Y For each element of z, how

much does it influence L?

Ranjay Krishna Lecture 5 - 38 April 15, 2025

Backprop with Vectors

Loss L still a scalar!

“local

D |
s iz 7 A DZ
——
“Downstream Oz Oz f >
gradients” = ==
= | D
D, |9 % 0z] =

— “Upstream gradient”
Y
For each element of z, how
much does it influence L?

Ranjay Krishna Lecture 5 - 39 April 15, 2025

Backprop with Vectors

Loss L still a scalar!

D |Z “local
Q 05,/ I, xD] 21D,
———
“Downstream Oz 0z f >
gradients” 0z =
D, xD,] L]
Dy Y % Jacobian 0z Z

— matrices “Upstream gradient”
Y For each element of z, how
much does it influence L?

SENEVAGEE! Lecture 5 - 40 April 15, 2025

Backprop with Vectors

“Downstream .
Matrix-vector

gradients” :

08—

y 0z Y
A 0%
3“
y

Ranjay Krishna

“local

Loss L still a scalar!

matrices

gradients”
D, xD,] Z|D,
e D fD] -
X oL
Jhcobian oz | b,

“Upstream gradient”

For each element of z, how
much does it influence L?

Lecture 5 - 41

April 15, 2025

Gradients of variables wrt loss have same dims as the original variable

D

X

L

Loss L still a scalar!

D

X

SENEVAGEE! Lecture 5 - 42 April 15, 2025

“Upstream gradient”
D) For each element of z, how
y much does it influence L?

Backprop with Vectors

Ranjay Krishna

4D input x:
»E

2] ——
o

1] .

f(x) = max(0,x)
(elementwise)

Lecture 5 -

4D output z:

—_—

—_—

—_—

_—

1

[0]
3]
0]

April 15, 2025

Backprop with Vectors

4D input x: 4D output z:
[1] — [1]
2 f(x) = max(0,x) | [0]

: 31: "| (elementwise) : 8 :
4D dL/dz:
4

-1 ~— Upstream
[5]—— gradient

9'4—

SENEVAGEE! Lecture 5 - April 15, 2025

Backprop with Vectors

4D input x: 4D output z:
[1] — [1
2 () =max(0,x) | LY
: 31: — | (elementwise) ! 8 :
Jacobian dz/dx 4D dL/dz:
1 Z — [4]
(00 : [-1]——— Upstream
10] ~——— [5]——— gradient
0] — [9] —

SENEVAGEE! Lecture 5 - April 15, 2025

Backprop with Vectors

4D input x: 4D output z:
[1] — [1]
2 f(x) =max(0,x) | L O
: 31: "| (elementwise) : 8 :
[dz/dx] [dL/dZ] 4D dL/dz:
1 141 — 1[4
(00 11-1] —— [-1]~——— Upstream
10]1[5] ———[5]~——— 9radient
ojf¢] —109]——

SENEVAGEE! Lecture 5 - April 15, 2025

Backprop with Vectors

4D input x:

Ranjay Krishna

[1]
(-2]
5

1

s

>

 —_

f(x) = max(0,x)
(elementwise)

4D dL/dx:

[4]

o 010

-—

+—

-—

-«—

dz/dx] [dL/dZ]
[1 1[4]
000][-1]
C01ts |

1[5]
0][9]

Lecture 5 -

4D output z:

>

s

>

 —_

4D dL/dz:

-—

+—

-—

-«—

1

[0]
3]
0]

[4]
[-1
[O]

[9]

Upstream
gradient

April 15, 2025

Backprop with Vectors

4D input x:

Jacobian is sparse:
off-diagonal entries
always zero! Never
explicitly form
Jacobian -- instead
use implicit
multiplication

Ranjay Krishna

[1]
(-2]
[3]

1

s

>

 —_

f(x) = max(0,x)
(elementwise)

4D dL/dx:

[4]

o 010

-—

+—

-—

-«—

dz/dx] [dL/dz]
[1 1[4]
000][-1]

C011s

1[5]
0][9]

Lecture 5 -

4D output z:

>

s

>

 —_

4D dL/dz:

-—

+—

-—

-«—

1

[0]
3]
0]

[4]
[-1
[O]

[9]

Upstream
gradient

April 15, 2025

Backprop with Vectors

4D input x: 4D output z:
[1] [1]
R _ 0]
Jacobian is sparse: : 3 - f(X) - max(Q,x) : 3 :
off-diagonal entries . | (elementwise) | ! :
always zero! Never [1] ——— — [0]
explic_itly fqrm
et Y 4D dL/dx: [dz/dx] [dL/dz] 4D dL/dz:
multiplication (4] —[4]
(0] (8_L) _ <2’_§>¢ it £; >0 — [-1]~—— Upstream
5] \9d%/, 0 otherwise — [& | —— gradient
(0] ~[9]—

SENEVAGEE! Lecture 5 - April 15, 2025

Backprop with Matrices (or Tensors) Loss L still a scalar!

dL/dx always has the
same shape as x!

[DxM] [T

Z] [BxM,]

>

.I:

Jacobian
matrices

Matrix-vector

multiply
[Dyx |Vly] Y /

Ranjay Krishna Lecture 5 - 50 April 15, 2025

Backprop with Matrices (or Tensors) Loss L still a scalar!

dL/dx always has the

[DXXMX] L same shape as x!
[D,xM,] \
=~ 9; s Z| [D xM]
“D t (9,1* dZ f >
own_S realm Matrix-vector =
gradients w’ oL
- | [P_xM
[DVXMV] yA/L Jacobian 0z [D;xM.]

matrices “Upstream gradient”

gz 0L
— A 0%
Y
[DyXMy] For each element of z, how

much does it influence L?

Ranjay Krishna Lecture 5 - 51 April 15, 2025

Backprop with Matrices (or Tensors)

Loss L still a scalar!

dL/dx always has the

x (11
DM 2 local same shape as x!
\ gradients”
[D xM] 9
=< 9297 Z| [D_xM]
Ox 07\ z z
“Downstream Matri < -
: . atrix-vector Oz
gradients multiply @ 5L
D xM / - | [D_.xM_]
ByMI Y 3z 0L Jacobian 0z £
D xM] By 07 matrices “Upstream gradient”
X
y oy For each element of y, how much For each element of z, how
does it influence each element of z2 Much does it influence L?
Ranjay Krishna Lecture 5 - 52 April 15, 2025

Backprop with Matrices (or Tensors) Loss L still a scalar!

dL/dx always has the

[D,xM,] [local same shape as x!
\ gradients”
[D,xM,]
X X =< 929, [(D,*xM,)*(D,xM,)] z| [D.xM_]
0').,{' d\ 4 Zz
“Down_strea},m Matrix-vector ¢ Oz > _
gradients multiply B [(D,xM)*(D,*xM,)] oL
D xM / —-| [D,xM]
[y y] Yy 57 @ Jacobian 0z £t
5 XM Dy 07 matrices “Upstream gradient”
[y y] For each element of y, how much For each element of z, how

does it influence each element of z? Much does it influence L?

Ranjay Krishna Lecture 5 - 93 April 15, 2025

Backprop with Matrices

Ranjay Krishna

Matrix Multiply

Yn,m = E Ln,dWd,m
d

Lecture 5 - 54

y: [NxM]
13 9 -2 -6]
[52 17 1]
dL/dy: [NxM]
[2 3-3 9]
[-8 1 4

April 15, 2025

Backprop with Matrices

y: [NxM]
13 9 -2 -6]

x: [NxD] Matrix Multiply [9217 1]
[2 1 -3]

[3 4 2] Yriyrs = Y o, 08 dL/dy: [NXM]
w:[DxM] ’ [23-39]

[321-1] Jacobians: [-8146]

[2 13 2] dy/dx: [(NxD)x(NxM)]

[32 1-2]

dy/dw: [(DxM)x(NxM)]

For a neural net we may have
N=64, D=M=4096
Each Jacobian takes ~256 GB of
memory! Must work with them implicitly!

Ranjay Krishna

Lecture 5 - 55 April 15, 2025

Backprop with Matrices

y: [NxM]
13 9 -2 -6]
x: [NxD] Matrix Multiply [9217 1]
[2 (1]-3]
[3 4 2] Yriyrs = Y o, 08 dL/dy: [NXM]
w:[DxM] — ¢ [2 3-3 9]
[32 1-1] Q: What parts of y [-8 14 6]
[2 1 3 2] are affected by one
[3 2 1-2] element of x?

Ranjay Krishna

Lecture 5 - 56 April 15, 2025

Backprop with Matrices y: [NxM]

13 9 -2 -6]]
x: [NxD] Matrix Multiply [9217 1]
[2 ({1]-3]
[3 4 2] Yriyrs = Y o, 08 dL/dy: [NXM]
w:[DxM] — ¢ — [|12.3-3 9]
[32 1-1] Q: What parts of y [-8 14 6]
[2 1 3 2] are affected by one
[3 2 1-2] element of x?
A:|Tn a4 |affects the
whole row Yn .
aL e ()L 0,1/11 ,m
(().’17,1_(1 B 5 0@/71.771 Ox‘n.d
Ranjay Krishna Lecture 5 - 57 April 15, 2025

Backprop with Matrices y: [NxM]

13 9 [-2] -6]]
X: [NxD] Matrix Multiply [5217 1]
[2 (1]-3]
[3 4 2] Yriyrs = Y o, 08 dL/dy: [NXM]
w: [DxM] —— g [[2 3-3 9]
[3 2 1-1] Q: What parts of y Q: Howmuch' [-8 14 6]
[2 1 3 2] are affected by one 'does[Tn.d
[3 2 1-2] element of x? affect| Yn,m|?
A:|Tn a4 |affects the
whole row Yn .
aL e ()L 0!/” .m
0%y, 4 B = 0?/71.171 0Ty d
Ranjay Krishna Lecture 5 - 58 April 15, 2025

Backprop with Matrices y: [NxM]

13 9 [-2] -6]]
x: [NxD] Matrix Multiply [9217 1]
[2 (1]-3]
[3 4 2] Yriyrs = Y o, 08 dL/dy: [NXM]
w: [DxM] —— g [[2 3-3 9]
[3 2 1-1] Q: What parts of y Q: Howmuch' [-8 14 6]
[2 1]3]2] are affected by one does|[Tn.d
[3 2 1-2] element of x? affect| Yn,m|?
A:|Tn a4 |affects the A:|lwgm
whole row Yn .
dL. '0yu.sm oL
()In d Z ()UH m ()En d - m Oyn.'m U)d“,n
SENEVAGENE Lecture 5 - 59 April 15, 2025

Backprop with Matrices y: [NxM]

13 9 [-2] -6]]
x: [NxD] Matrix Multiply [9217 1]
[2 (1]-3]
[3 4 2] Yriyrs = Y o, 08 dL/dy: [NXM]
w: [DxM] —— g [[2 3-3 9]
[3 2 1-1] Q: What parts of y Q Howmuch [-8146]
[2 1|3 2] are affected by one does|[Tn.d
[32 1-2] element of x? affect| Yn,m|?
_ ~ A:|Tn. d |affects the A: Wy
[NxD] [NxM] [MxD] \whole row ¥n.- |
8L [BLY o OL Yy m OL
0—1 - (0_U> N ()In d Z ()l/n m ()En d a 5 Oyn.-m e
Ranjay Krishna Lecture 5 - 60 April 15, 2025

Backprop with Matrices y: [NxM]

13 9 [-2] -6]]
x: [NxD] Matrix Multiply [52 17 1]
[2[1]-3]
[3 4 2] Yriyrs = Y o, 08 dL/dy: [NXM]
w: [DxM] — ¢ — [[2.3-3 9]
[3 2 1-1] [-8 1 4 6]
[2 113] 2] _ -
(32 1-2] By similar logic:
INxD] [NxM] [MxD] DxM] [DxN] [NxM] These formulas are
() easy to remember: they
oL _ (d_L> Ll 8_L — T (9_L are the only way to
Ox dy) ow Oy make shapes match up!

Ranjay Krishna Lecture 5 - 61 April 15, 2025

Wrapping up: Neural Networks
Linear score function: f — Wa
2-layer Neural Network f = Womax(0, Wix)

X W1 |h| W2 |g

deer

plane car bird cat
. ' s

3072 100 10

dog frog horse ship truck

Ranjay Krishna Lecture 5 - 62 April 15, 2025

Next: Convolutional Neural Networks

Image Maps

Fully Connected

Input

Convolutions
Subsamplmg

lllustration of LeCun et al. 1998

Ranjay Krishna Lecture 5 - 63 April 15, 2025

Recap: Fully Connected Layer

32x32x3 image -> stretch to 3072 x 1

input

Wz
1 >
3072 10 X 3072
weights
Ranjay Krishna Lecture 5 - 64

—

1

activation

o

10

April 15, 2025

Fully Connected Layer

32x32x3 image -> stretch to 3072 x 1

input

3072

Ranjay Krishna

—>

Wax

10 x 3072
weights

Lecture 5 - 65

activation
/4 10
1 number:

the result of taking a dot product
between a row of W and the input
(a 3072-dimensional dot product)

April 15, 2025

Convolution Layer

32x32x3 image -> preserve spatial structure

32 height
Main idea: only look at

small patches of an image

3 depth

Ranjay Krishna Lecture 5 - 66 April 15, 2025

Convolution Layer

32x32x3 image

ox5x3 filter
32 L/
I Convolve the filter with the image
i.e. “slide over the image spatially,

computing dot products”

32

3

Ranjay Krishna Lecture 5 - 67 April 15, 2025

CO nVOI Ut|0n I—ayer Filters always extend the full
S depth of the input volume

32x32x3 image /
9x5x3 filter
32 L/
I Convolve the filter with the image
i.e. “slide over the image spatially,

computing dot products”

32

Ranjay Krishna Lecture 5 - 68 April 15, 2025

Convolution Layer

__— 32x32x3 image

5x5x3 filter w
=
the result of taking a dot product between the

filter and a small 5x5x3 chunk of the image

32 (i.e. 5*5*3 = 75-dimensional dot product + bias)

] wiz+b

™~ 1 number:

Ranjay Krishna Lecture 5 - 69 April 15, 2025

Convolution Layer

32

0

32

Ranjay Krishna Lecture 5 - 70 April 15, 2025

Convolution Layer

Ranjay Krishna

32

==

32

Lecture 5 - 71

April 15, 2025

Convolution Layer

32

Ranjay Krishna Lecture 5- 72 April 15, 2025

Convolution Layer

32

Ranjay Krishna Lecture 5 - 73 April 15, 2025

Convolution Layer

activation map

__— 32x32x3 image

5x5x3 filter /
2
@>@ N

convolve (slide) over all

spatial locations
32 28

Ranjay Krishna Lecture 5- 74 April 15, 2025

Convolution Layer consider a second, green filter

_— 32x32x3 image activation maps

5x5x3 filter %
2
@>@ &

convolve (slide) over all

spatial locations
32 / 28

Ranjay Krishna Lecture 5 - 75 April 15, 2025

For example, if we had 6 5x5 filters, we’ll get 6 separate activation maps:

activation maps

N

Convolution Layer

g A

3 6

28

We stack these up to get a “new image” of size 28x28x6!

Ranjay Krishna Lecture 5 - 76 April 15, 2025

Preview: ConvNet is a sequence of Convolution Layers, interspersed with
activation functions

32 28

CONYV,
RelLU
e.g.6
5x5x3
filters

32 28

Ranjay Krishna Lecture 5 - 77 April 15, 2025

Preview: ConvNet is a sequence of Convolution Layers, interspersed with
activation functions

32 28 o4
CONV, CONV. CONV.
RelU RelU RelU
2-95- % e.g. 10
XoX 5x5x6
32 filters 28 Fltore 24
3 6 10

Ranjay Krishna Lecture 5 - 78 April 15, 2025

Preview [Zeiler and Fergus 2013] 3t i Smomon s s 014,
: : Linearly
Low-level Mid-level High-level separable
features features features .
classifier

VGG-16 Conv1 1 VGG-16 Conv3._ VGG-16 Convs 3

Ranjay Krishna Lecture 5- 79 April 15, 2025

Linearly
separable —
classifier

Preview Low-level | | Mid-level | High-level

features | features | features

v

ol

nv5._3

g

VGG-16 Conv1_ 1 VGG-16 Conv3. 2 VGG-16 Co

Retinal ganglion cell LGN and V1
receptive fields simple cells Complex cells:

Q Response to light

orientation and movement
Hypercomplex cells:

response to movement
with an end point

— O AN

) 2 S \

\]\ No response Response
(end point)

Ranjay Krishna Lecture 5 - 80 April 15, 2025

, SRECGINEEEMNITAFEENE S ESOAETISEEREERG
one filter => _
one activation map example 5x5 filters
g ~ (32 total)

Activations:

We call the layer convolutional
because it is related to convolution
of two signals:

fleylsgleyl = Y, D fln.nl-glx—n,y—n,]

ny=—oco i, =—oco T

elementwise multiplication and sum of
a filter and the signal (image)

Figure copyright Andrej Karpathy.

Ranjay Krishna Lecture 5 - 81 April 15, 2025

preview:

RELU RELU RELU RELU RELU RELU
CONV |CONV CONV | CONV CONV | CONV FC

St e i

(R %

Sl EEELEE!

Ranjay Krishna Lecture 5 - 82 April 15, 2025

A closer look at spatial dimensions:

activation map

__— 32x32x3 image

5x5x3 filter /
2
@>@ *

convolve (slide) over all

spatial locations
32 28

Ranjay Krishna Lecture 5 - 83 April 15, 2025

A closer look at spatial dimensions:

14

/X7 input (spatially)
assume 3x3 filter

Ranjay Krishna Lecture 5 - 84 April 15, 2025

A closer look at spatial dimensions:

14

/X7 input (spatially)
assume 3x3 filter

Ranjay Krishna Lecture 5 - 85 April 15, 2025

A closer look at spatial dimensions:

14

/X7 input (spatially)
assume 3x3 filter

Ranjay Krishna Lecture 5 - 86 April 15, 2025

A closer look at spatial dimensions:

14

/X7 input (spatially)
assume 3x3 filter

Ranjay Krishna Lecture 5 - 87 April 15, 2025

A closer look at spatial dimensions:

14

/X7 input (spatially)
assume 3x3 filter

=> 5x5 output

Ranjay Krishna Lecture 5 - 88 April 15, 2025

A closer look at spatial dimensions:

I4
/X7 input (spatially)

assume 3x3 filter
applied with stride 2

Ranjay Krishna Lecture 5 - 89 April 15, 2025

A closer look at spatial dimensions:

I4
/X7 input (spatially)

assume 3x3 filter
applied with stride 2

Ranjay Krishna Lecture 5 - 90 April 15, 2025

A closer look at spatial dimensions:

14

/X7 input (spatially)
assume 3x3 filter
applied with stride 2
=> 3x3 output!

Ranjay Krishna Lecture 5 - 91 April 15, 2025

A closer look at spatial dimensions:

I4
/X7 input (spatially)

assume 3x3 filter
applied with stride 3?

Ranjay Krishna Lecture 5 - 92 April 15, 2025

A closer look at spatial dimensions:

14

/X7 input (spatially)
assume 3x3 filter
applied with stride 3?

7 doesn’t fit!
cannot apply 3x3 filter on
/X7 input with stride 3.

Ranjay Krishna Lecture 5 - 93 April 15, 2025

Output size:
(N - F) / stride + 1

eg.N=7,F=3:
stride1=>(7-3)1+1=5
stride2=>(7-3)/2+1=3
stride 3=>(7-3)/3+1=2.33:\

Ranjay Krishna Lecture 5 - 94 April 15, 2025

n practice: Common to zero pad the border
ol Il Il Bl B e.g. input 7x7
0 3x3 filter, applied with stride 1
0 pad with 1 pixel border => what is the output?
0
0
(recall:)
(N - F)/ stride + 1

Ranjay Krishna Lecture 5 - 95 April 15, 2025

n practice: Common to zero pad the border
ol Il Il Bl B e.g. input 7x7
0 3x3 filter, applied with stride 1
0 pad with 1 pixel border => what is the output?
° 7x7 output!
0
(recall:)
(N + 2P - F) / stride + 1

Ranjay Krishna Lecture 5 - 96 April 15, 2025

0|0

0

0

0

0

Ranjay Krishna

n practice: Common to zero pad the border

e.g. input 7x7
3x3 filter, applied with stride 1
pad with 1 pixel border => what is the output?

7x7 output!
in general, common to see CONV layers with
stride 1, filters of size FxF, and zero-padding with
(F-1)/2. (will preserve size spatially)
e.g. F =3 => zero pad with 1

F =5 => zero pad with 2

F =7 => zero pad with 3

Lecture 5 - 97 April 15, 2025

Remember back to...
E.g. 32x32 input convolved repeatedly with 5x5 filters shrinks volumes spatially!
(32 -> 28 -> 24 ...). Shrinking too fast is not good, doesn’t work well.

32 28 24
CONYV, CONYV, CONYV,
RelLU RelLU RelLU
e.g.6 e.g. 10
ox5x3 5Xx5x6
32 filters 28 filters 24
3 6 10

Ranjay Krishna Lecture 5 - 98 April 15, 2025

Examples time: / /

Input volume: 32x32x3
10 5x5 filters with stride 1, pad 2 i

<
A

Let’'s assume output size is HxWxD.
What is D?

Ranjay Krishna Lecture 5 - 99 April 15, 2025

Examples time: / /

Input volume: 32x32x3
10 5x5 filters with stride 1, pad 2 _/

Let’'s assume output size is HxWxD.
What is D? 10

Ranjay Krishna Lecture 5- 100 April 15, 2025

Examples time: / /

Input volume: 32x32x3
10 5x5 filters with stride 1, pad 2 _/

<

Let’'s assume output size is HxWxD.

What is D? 10
What is H or W?

Ranjay Krishna Lecture 5 - 101 April 15, 2025

Examples time: / /

Input volume: 32x32x3
10 5x5 filters with stride 1, pad 2 _/ _/

Let’'s assume output size is HxWxD.

What is D? 10
What is H or W? (32+2*2-5)/1+1 = 32

Ranjay Krishna Lecture 5 - 102 April 15, 2025

Examples time: / /

Input volume: 32x32x3
10 5x5 filters with stride 1, pad 2 _/ _/

Let’'s assume output size is HxWxD.
What is D? 10

What is H or W? (32+2*2-5)/1+1 = 32
So the total output size is: 32x32x10

Ranjay Krishna Lecture 5- 103 April 15, 2025

Examples time: / /

Input volume: 32x32x3
10 5x5 filters with stride 1, pad 2 i

<
A

Number of parameters in this layer?

Ranjay Krishna Lecture 5 - 104 April 15, 2025

Examples time: / /

Input volume: 32x32Xx
10 5x5 filters with stride 1, pad 2 _/

Number of parameters in this layer?
each filter has 5*5*3 + 1 = 76 params (+1 for bias)
=> 7610 =760

Ranjay Krishna Lecture 5- 105 April 15, 2025

Convolution layer: summary

Let's assume inputis W, xH, x C
Conv layer needs 4 hyperparameters:
- Number of filters K
- The filter size F
- The stride S
- The zero padding P
This will produce an output of W, x H, x K
where:
- W, =(W,-F +2P)/S+1
- H,=(H, -F +2P)/S + 1
Number of parameters: F2KC and K biases

Ranjay Krishna Lecture 5- 106 April 15, 2025

Convolution layer: summary Common settings:

, . . K = f2, 2,64,128,512
Let's assume inputis W, xH, x C) (Eiw§rgi1 ;2 13 64,128, 512
Conv layer needs 4 hyperparameters: . f- 5: g = 1: P=2

- Number of filters K - F=5,S =2, P=7? (whatever fits)
- F=1,8=1,P=0

- The filter size F

- The stride S

- The zero padding P
This will produce an output of W, x H, x K
where:

- W, =(W, -F +2P)/S+1

- H,=(H,-F +2P)/S +1
Number of parameters F°CK and K biases

Ranjay Krishna Lecture 5 - 107 April 15, 2025

(btw, 1x1 convolution layers are very useful)

1x1 CONV

o6 with 32 filters 56

(each filter has size
1x1x64, and performs a
64-dimensional dot

56 product)

64 32

56

Ranjay Krishna Lecture 5- 108 April 15, 2025

(btw, 1x1 convolution layers are a very useful)

L

1x1 CONV
o6 with 32 filters

56

(each filter has size
1x1x64, and performs a
64-dimensional dot

56 product)

64 32

56

Ranjay Krishna Lecture 5- 109 April 15, 2025

Example: CONV
layer in PyTorch

Conv layer needs 4 hyperparameters:

- Number of filters K
- The filter size F

- The stride S

- The zero padding P

Conv2d

CLASS torch.nn.Conv2d(in_channels, out_channels, kernel_size, stride=1, padding=0,
dilation=1, groups=1, bias=Tzrue)

Applies a 2D convolution over an input signal composed of several input planes.

In the simplest case, the output value of the layer with input size (N, Ciy, H, W) and output
(N, Couty Houty Wout) can be precisely described as:

Cin—1
out(Ni, Cou,) = bias(Cour,) + Y, weight(Cou, , k) % input(N;, k)
k=0
where * is the valid 2D cross-correlation operator, N is a batch size, C' denotes a number of channels, H is a height of

input planes in pixels,and W is width in pixels.

e stride controls the stride for the cross-correlation, a single number or a tuple.
« padding controls the amount of implicit zero-paddings on both sides for padding number of points for each
dimension.
e dilation controls the spacing between the kernel points; also known as the a trous algorithm. It is harder to
describe, but this link has a nice visualization of what dilation does.
« groups controls the connections between inputs and outputs. in_channels and out_channels must both be
divisible by groups. For example,
o Atgroups=1, all inputs are convolved to all outputs.
o At groups=2, the operation becomes equivalent to having two conv
layers side by side, each seeing half the input channels, and producing
half the output channels, and both subsequently concatenated.

o Atgroups= in_channels, each input channel is convolved with its

own set of filters, of size: {%J 3

The parameters kernel_size, stride, padding, dilation can either be:

¢ asingle int -in which case the same value is used for the height and
width dimension
¢ a tuple of two ints - in which case, the first int is used for the height

dimension, and the second int for the width dimension L
PyTorch is licensed under BSD 3-clause.

Lecture 5 - 110 April 15, 2025

Ranjay Krishna

https://pytorch.org/
https://github.com/pytorch/examples/blob/master/LICENSE

Example: CONV
xample:
I . keras.layers.Conv2D(filters, kernel_size, strides=(1, 1), padding='valid', data_format=None, d:

2D convolution layer (e.g. spatial convolution over images).

This layer creates a convolution kernel that is convolved with the layer input to produce a tensor of
outputs. If use_bias is True, a bias vector is created and added to the outputs. Finally, if

activation is not None , it is applied to the outputs as well.
When using this layer as the first layer in a model, provide the keyword argument input_shape
(tuple of integers, does not include the batch axis), e.g. input_shape=(128, 128, 3) for 128x128

RGB pictures in data_format="channels_last" .

Arguments

filters: Integer, the dimensionality of the output space (i.e. the number of output filters in the

convolution).

« kernel_size: An integer or tuple/list of 2 integers, specifying the height and width of the 2D
convolution window. Can be a single integer to specify the same value for all spatial dimensions.

« strides: An integer or tuple/list of 2 integers, specifying the strides of the convolution along the

height and width. Can be a single integer to specify the same value for all spatial dimensions.

Conv Iayer needs 4 hyperpa rameters Specifying any stride value != 1 is incompatible with specifying any dilation_rate value!= 1.

« padding: one of "valid" or "same" (case-insensitive). Note that "same" is slightly inconsistent

= N U m ber Of fl Ite rS K across backends with strides != 1, as described here

_ The fllter SIZG F « data_format: A string, one of "channels_last" or "channels_first" . The ordering of the
. dimensions in the inputs. "channels_last" corresponds to inputs with shape (batch, height,
= The Stl‘lde S width, channels) while "channels_first" corresponds to inputs with shape (batch, channels,

- The Ze ro paddlng P height, width) . It defaults to the image_data_format value found in your Keras config file at

~/.keras/keras. json . If you never set it, then it will be "channels_last".

Keras is licensed under the MIT license.

Ranjay Krishna Lecture 5 - 111 April 15, 2025

https://keras.io/
https://github.com/keras-team/keras/blob/master/LICENSE

The brain/neuron view of CONV Layer

_— 32x32x3 image

ox5x3 filter
2
\ 1 number:

32 the result of taking a dot product between
the filter and this part of the image
(i.e. 5*5*3 = 75-dimensional dot product)

Ranjay Krishna Lecture 5- 112 April 15, 2025

The brain/neuron view of CONV Layer

_— 32x32x3 image -

axon from a neuron

5x5x3 filter g

32— -
1 number:

It's just a neuron with local
connectivity... F
32 the result of taking a dot product between
the filter and this part of the image . =
(i.e. 5*5*3 = 75-dimensional dot product) I/ @

output axon

activation
function

Ranjay Krishna Lecture 5- 113 April 15, 2025

Receptive field

v /]

XO 28 An activation map is a 28x28 sheet of neuron
_— | outputs:

1. Each is connected to a small region in the input
2. All of them share parameters

32 AS “5x5 filter” -> “5x5 receptive field for each neuron”

Ranjay Krishna Lecture 5 - 114 April 15, 2025

The brain/neuron view of CONV Layer

32

7 28 E.g. with 5 filters,

Il O O O O () CONYV layer consists of
neurons arranged in a 3D grid
(28x28x5)

There will be 5 different
32 28 neurons all looking at the same
region in the input volume

Ranjay Krishna Lecture 5 - 115 April 15, 2025

Fully connected layer is a special convolution
Each neuron

32x32x3 image -> stretch to 3072 x 1 looks at the full

iInput volume
input activation
Wz
1 10 x 3072 s
3072 * 10
weights
1 number:

the result of taking a dot product
between a row of W and the input
(a 3072-dimensional dot product)

Ranjay Krishna Lecture 5 - 116 April 15, 2025

FOUR layers in total: CONV/ReLU/POOL/FC

RELU RELU RELU RELU RELU RELU
CONV |CONV CONV | CONV CONV | CONV FC

T AT A

Ranjay Krishna Lecture 5 - 117 April 15, 2025

Pooling layer
- makes the representations smaller and more manageable
- operates over each activation map independently:

224x224x64

112x112x64

pool

.—>

|

—

224

— 112
downsampling
112

Ranjay Krishna Lecture 5- 118

April 15, 2025

MAX POOLING

Single depth slice

X 11112 | 4
max pool with 2x2 filters
5| 6|7 | 8 and stride 2 6 | 8
31210 3|4
1123 | 4
y

Ranjay Krishna Lecture 5 - 119 April 15, 2025

Pooling layer: summary

Let's assume inputis W, xH, x C
Conv layer needs 2 hyperparameters:
- The spatial extent F
- The stride S

This will produce an output of W, x H, x C where:
- W, =(W,-F)/S+1
- H,=(H,-F)/[S+1

Number of parameters: O

Ranjay Krishna Lecture 5 - 120 April 15, 2025

Fully Connected Layer (FC layer)

- Contains neurons that connect to the entire input volume, as in ordinary Neural
Networks

ELU RELU RELU RELU RELU RELU
CONV lCONVl CONVl CONV lCONVl

|

& -
= e
a el
E 4
g -
= i
E !
=

LETRENLD

Ranjay Krishna Lecture 5 - 121 April 15, 2025

Summary

- ConvNets stack CONV,POOL,FC layers

- Trend towards smaller filters and deeper architectures

- Trend towards getting rid of POOL/FC layers (just CONV)

- Between 2012-2016 architectures looked like
[([CONV-RELU)*N-POOL?]*M-(FC-RELU)*K,SOFTMAX
where N is usually up to ~5, M is large, 0 <= K <= 2.
- but recent advances such as ResNet/GooglLeNet

have challenged this paradigm

Ranjay Krishna Lecture 5 - 122 April 15, 2025

