Lecture 4: Neural Networks and Backpropagation

Ranjay Krishna

Administrative: Assignment 1

Due 4/16 11:59pm

- K-Nearest Neighbor
- Linear classifiers: SVM, Softmax

Administrative: EdStem

Please make sure to check and read all pinned EdStem posts.



Administrative: Fridays

This Friday 9:30-10:30am and again 12:30-1:30pm

Project Design & Backprop

Come to office hours to talk about your ideas

Lecture 4 - 4

Administrative: Course Project

Project proposal due 4/29 11:59pm

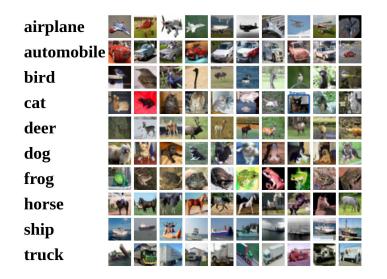
"Is X a valid project for 493G1?"

- Anything related to deep learning or computer vision
- Maximum of 3 students per team
- Make a EdStem private post or come to TA Office Hours

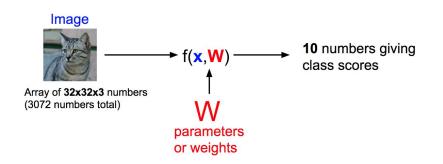
More info on the website

<u>April 10, 2025</u>

Recap: from last time



f(x,W) = Wx + b



Ranjay Krishna

Lecture 4 - 6

Recap: loss functions

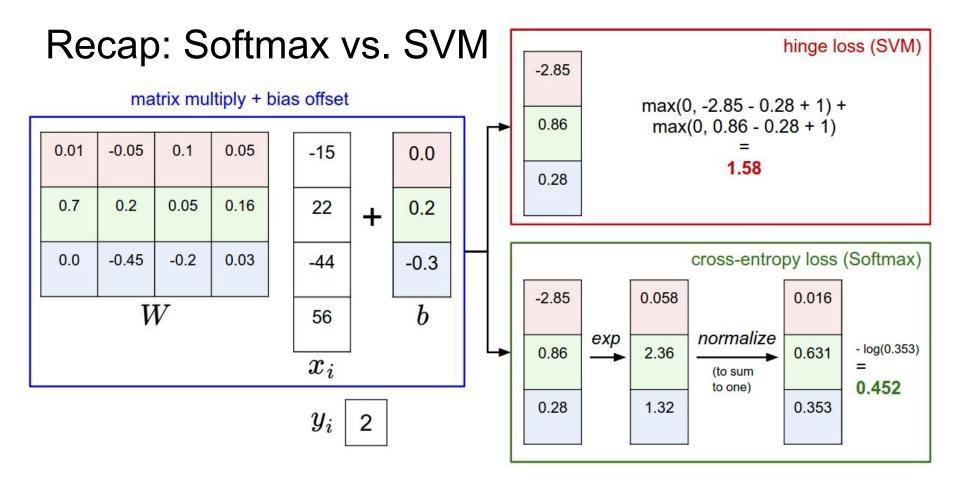
$$s=f(x;W)=Wx$$
 Linear score function
$$L_i=\sum_{j\neq y_i}\max(0,s_j-s_{y_i}+1) \quad \text{SVM loss (or softmax)}$$

$$L = \frac{1}{N} \sum_{i=1}^{N} L_i + \lambda \sum_k W_k^2$$

data loss + regularization

Ranjay Krishna

Lecture 4 - 7



Ranjay Krishna

Lecture 4 -

8

Optimization

Ranjay Krishna

Lecture 4 -

9

This image is CC0 1.0 public domain

April 10, 2025

10

Ranjay Krishna

Walking man image is CC0 1.0 public domain

Ranjay Krishna

Lecture 4 - 11

Strategy #1: A first very bad idea solution: Random search

```
# assume X train is the data where each column is an example (e.g. 3073 x 50,000)
# assume Y train are the labels (e.g. 1D array of 50,000)
# assume the function L evaluates the loss function
bestloss = float("inf") # Python assigns the highest possible float value
for num in xrange(1000):
 W = np.random.randn(10, 3073) * 0.0001 # generate random parameters
 loss = L(X train, Y train, W) # get the loss over the entire training set
 if loss < bestloss: # keep track of the best solution
   bestloss = loss
   bestW = W
 print 'in attempt %d the loss was %f, best %f' % (num, loss, bestloss)
# prints:
# in attempt 0 the loss was 9.401632, best 9.401632
# in attempt 1 the loss was 8.959668, best 8.959668
# in attempt 2 the loss was 9.044034, best 8.959668
# in attempt 3 the loss was 9.278948, best 8.959668
# in attempt 4 the loss was 8.857370, best 8.857370
# in attempt 5 the loss was 8.943151, best 8.857370
# in attempt 6 the loss was 8.605604, best 8.605604
# ... (trunctated: continues for 1000 lines)
```

Ranjay Krishna

Lecture 4 - 12

Lets see how well this works on the test set...

Assume X_test is [3073 x 10000], Y_test [10000 x 1]
scores = Wbest.dot(Xte_cols) # 10 x 10000, the class scores for all test examples
find the index with max score in each column (the predicted class)
Yte_predict = np.argmax(scores, axis = 0)
and calculate accuracy (fraction of predictions that are correct)
np.mean(Yte_predict == Yte)
returns 0.1555

15.5% accuracy! not bad! (SOTA is ~99.7%)

April 10, 2025

Ranjay Krishna

Lecture 4 - 13

Strategy #2: Follow the slope

Ranjay Krishna

Lecture 4 - 14

Strategy #2: Follow the slope

In 1-dimension, the derivative of a function:

$$rac{df(x)}{dx} = \lim_{h o 0} rac{f(x+h) - f(x)}{h}$$

In multiple dimensions, the **gradient** is the vector of (partial derivatives) along each dimension

The slope in any direction is the **dot product** of the direction with the gradient The direction of steepest descent is the **negative gradient**

Ranjay Krishna

current W:	
[0.34, -1.11, 0.78, 0.12, 0.55, 2.81, -3.1, -1.5,	
0.33,…] loss 1.25347	

gradient dW:

Ranjay Krishna

Lecture 4 - 16

current W:	W + h (first dim):	gradient dW:
[0.34, -1.11, 0.78, 0.12, 0.55, 2.81, -3.1, -1.5, 0.33,]	[0.34 + 0.0001 , -1.11, 0.78, 0.12, 0.55, 2.81, -3.1, -1.5, 0.33,] Ioss 1.25322	[?, ?, ?, ?, ?, ?, ?, ?, ?, ?,]

Ranjay Krishna

Lecture 4 - 17

current W:	W + h (first dim):	gradient dW:
[0.34, -1.11, 0.78, 0.12, 0.55, 2.81, -3.1, -1.5, 0.33,] loss 1.25347	[0.34 + 0.0001 , -1.11, 0.78, 0.12, 0.55, 2.81, -3.1, -1.5, 0.33,] Ioss 1.25322	$[-2.5, ?, ?, ?, ?, ?, ?, ?, ?,]$ $(1.25322 - 1.25347)/0.0001 = -2.5$ $\frac{df(x)}{dx} = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$?, ?,]

Ranjay Krishna

Lecture 4 - 18

current W:	W + h (second dim):
[0.34,	[0.34,
-1.11,	-1.11 + 0.0001 ,
0.78,	0.78,
0.12,	0.12,
0.55,	0.55,
2.81,	2.81,
-3.1,	-3.1,
-1.5,	-1.5,
0.33,]	0.33,]
loss 1.25347	loss 1.25353

[-2.5, ?, ?, ?, ?, ?, ?, ?, ?,...]

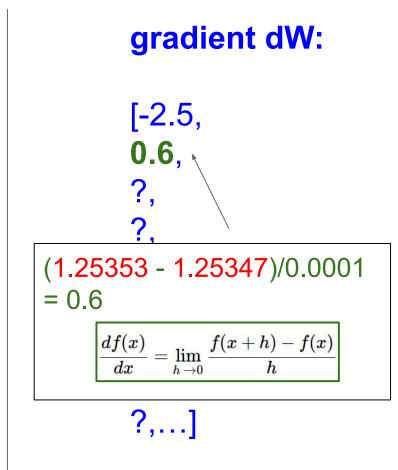
gradient dW:

April 10, 2025

Ranjay Krishna

Lecture 4 - 19

current W:	W + h (second dim):
[0.34,	[0.34,
-1.11,	-1.11 + 0.0001 ,
0.78,	0.78,
0.12,	0.12,
0.55,	0.55,
2.81,	2.81,
-3.1,	-3.1,
-1.5,	-1.5,
0.33,]	0.33,]
loss 1.25347	loss 1.25353



April 10, 2025

Ranjay Krishna

Lecture 4 - 20

current W:	W + h (third dim):
[0.34,	[0.34,
-1.11,	-1.11,
0.78,	0.78 + 0.0001 ,
0.12,	0.12,
0.55,	0.55,
2.81,	2.81,
-3.1,	-3.1,
-1.5,	-1.5,
0.33,]	0.33,]
loss 1.25347	loss 1.25347

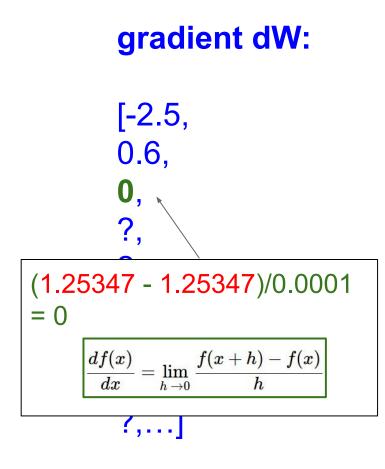
[-2.5, 0.6, ?, ?, ?, ?, ?, ?, ?,...]

gradient dW:

Ranjay Krishna

current W:	W + ł
[0.34,	[0.34,
-1.11,	-1.11,
0.78,	0.78 -
0.12,	0.12,
0.55,	0.55,
2.81,	2.81,
-3.1,	-3.1,
-1.5,	-1.5,
0.33,]	0.33,.
loss 1.25347	loss '

h (third dim): + 0.0001, . . . 1.25347



April 10, 2025

Ranjay Krishna

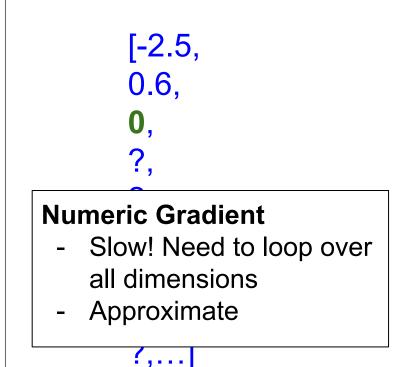
22

current	W :
---------	------------

[0.34, -1.11, 0.78, 0.12, 0.55, 2.81, -3.1, -1.5, 0.33,...] loss 1.25347

W + h (third dim): [0.34]-1.11, 0.78 + 0.0001, 0.12, 0.55, 2.81, -3.1, -1.5, 0.33,...] loss 1.25347

gradient dW:



April 10, 2025

Ranjay Krishna

This is silly. The loss is just a function of W:

$$egin{aligned} L &= rac{1}{N} \sum_{i=1}^N L_i + \sum_k W_k^2 \ L_i &= \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1) \ s &= f(x; W) = Wx \end{aligned}$$

want $\nabla_W L$

This is silly. The loss is just a function of W:

$$egin{aligned} L &= rac{1}{N} \sum_{i=1}^N L_i + \sum_k W_k^2 \ L_i &= \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1) \ s &= f(x; W) = Wx \end{aligned}$$

want $\nabla_W L$

Use calculus to compute an analytic gradient

This image is in the public domain

This image is in the public domain

April 10, 2025

Ranjay Krishna

current W:

[0.34, -1.11, 0.78, 0.12, 0.55, 2.81, -3.1, -1.5, 0.33,...] loss 1.25347

[-2.5, dW = ... 0.6, (some function 0, data and W) 0.2, 0.7, -0.5, 1.1, 1.3, -2.1,...]

gradient dW:

April 10, 2025

Ranjay Krishna

Lecture 4 -

In summary:

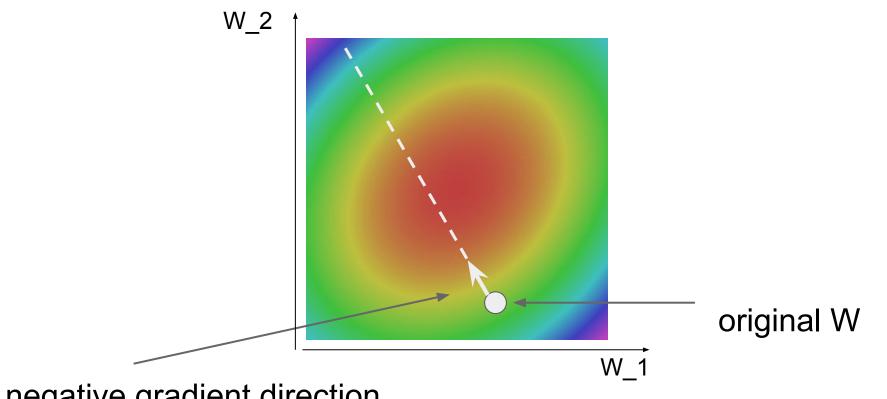
- Numerical gradient: approximate, slow, easy to write
- Analytic gradient: exact, fast, error-prone

=>

<u>In practice:</u> Always use analytic gradient, but check implementation with numerical gradient. This is called a **gradient check.**

Gradient Descent

```
# Vanilla Gradient Descent
while True:
    weights_grad = evaluate_gradient(loss_fun, data, weights)
    weights += - step_size * weights_grad # perform parameter update
```

negative gradient direction

Ranjay Krishna

Lecture 4 -

Stochastic Gradient Descent (SGD)

$$L(W) = \frac{1}{N} \sum_{i=1}^{N} L_i(x_i, y_i, W) + \lambda R(W)$$
$$\nabla_W L(W) = \frac{1}{N} \sum_{i=1}^{N} \nabla_W L_i(x_i, y_i, W) + \lambda \nabla_W R(W)$$

Full sum expensive when N is large!

Approximate sum using a **minibatch** of examples 32 / 64 / 128 common

April 10, 2025

```
# Vanilla Minibatch Gradient Descent
while True:
    data_batch = sample_training_data(data, 256) # sample 256 examples
    weights_grad = evaluate_gradient(loss_fun, data_batch, weights)
    weights += - step_size * weights_grad # perform parameter update
```

Ranjay Krishna

Calculating the analytical gradient requires calculus!

$$s = f(x; W) = Wx \quad \text{Linear score function}$$

$$L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1) \quad \text{SVM loss (or softmax)}$$

$$L = \frac{1}{N} \sum_{i=1}^{N} L_i + \lambda \sum_k W_k^2$$

data loss + regularization

April 10, 2025

How to find the best W?

$$\nabla_W L$$

Lecture 4 - 31

Before we discuss how to calculate gradients analytically,

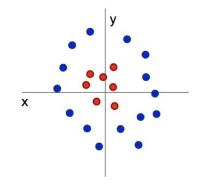
let's introduce neural networks

Problem: Linear Classifiers are not very powerful

Visual Viewpoint

Linear classifiers learn one template per class

Geometric Viewpoint



Linear classifiers can only draw linear decision boundaries

Ranjay Krishna

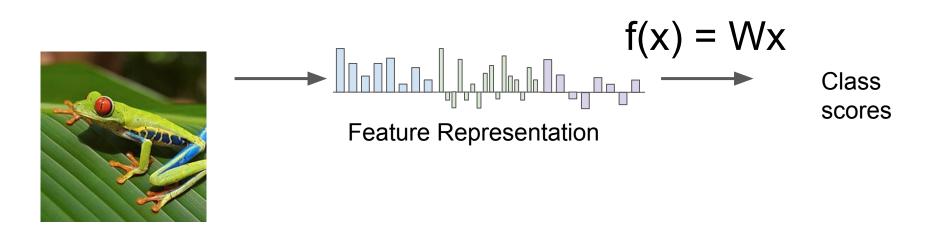
Lecture 4 - 33

Pixel Features

Ranjay Krishna

Lecture 4 - 34

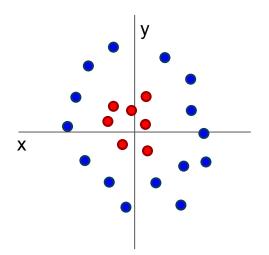
Image Features



Ranjay Krishna

Lecture 4 - 35

Image Features: Motivation



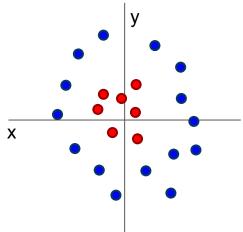
Cannot separate red and blue points with linear classifier

Ranjay Krishna

Lecture 4 - 36

Features become linearly separable through a non-linear transformation

 $f(x, y) = (r(x, y), \theta(x, y))$



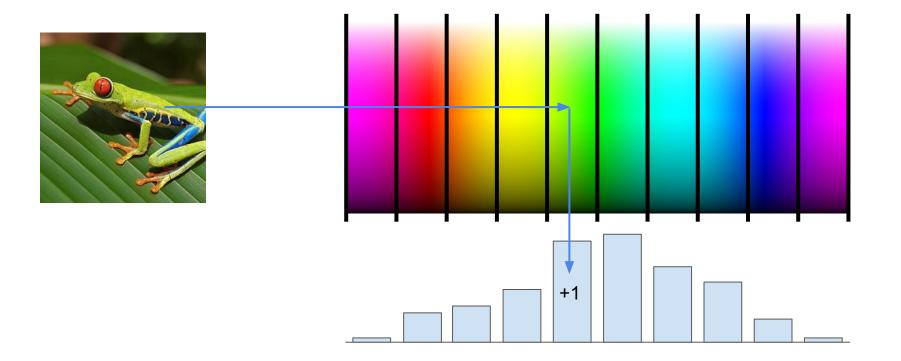
Cannot separate red and blue points with linear classifier After applying feature transform, points can be separated by linear classifier

θ

Ranjay Krishna

Lecture 4 - 37

Example: Color Histogram



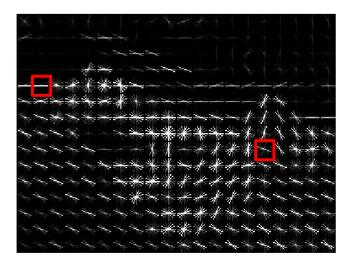
Ranjay Krishna

Lecture 4 - 38

Example: Histogram of Oriented Gradients (HoG)

Divide image into 8x8 pixel regions Within each region quantize edge direction into 9 bins

Lowe, "Object recognition from local scale-invariant features", ICCV 1999 Dalal and Triggs, "Histograms of oriented gradients for human detection," CVPR 2005



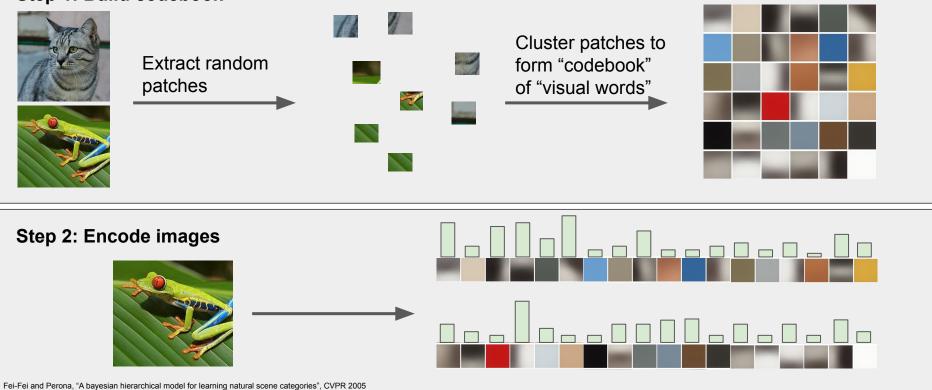
Example: 320x240 image gets divided into 40x30 bins; in each bin there are 9 numbers so feature vector has 30*40*9 = 10,800 numbers

Ranjay Krishna

Lecture 4 - 39

Example: Bag of Words

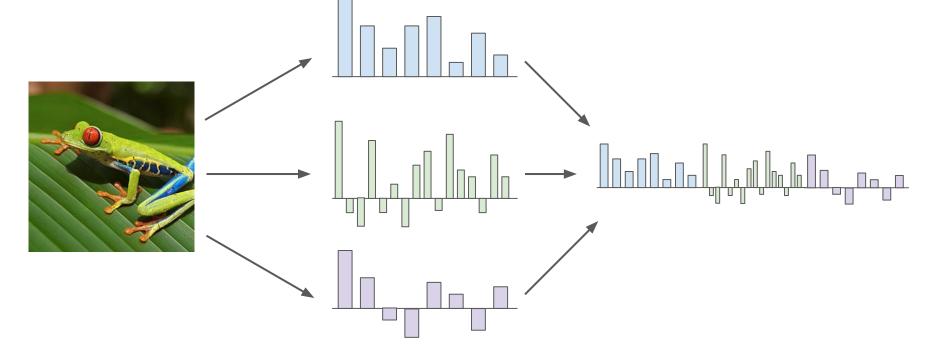
Step 1: Build codebook



Ranjay Krishna

Lecture 4 - 40

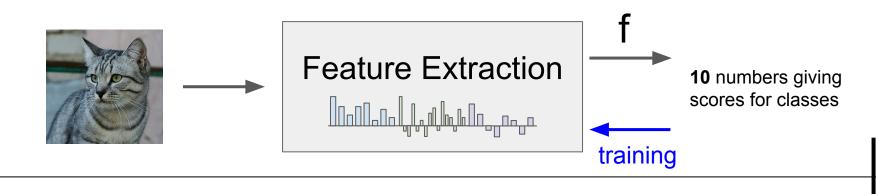
Combine many different features if unsure which features are better

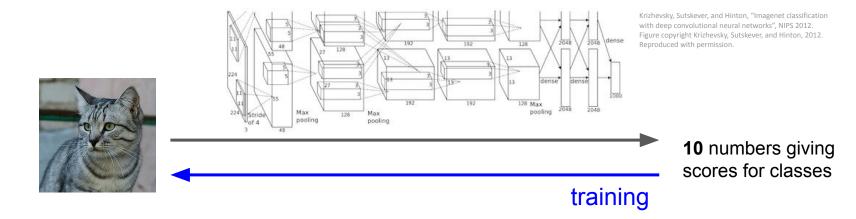


Ranjay Krishna

Lecture 4 - 41

Image features vs neural networks

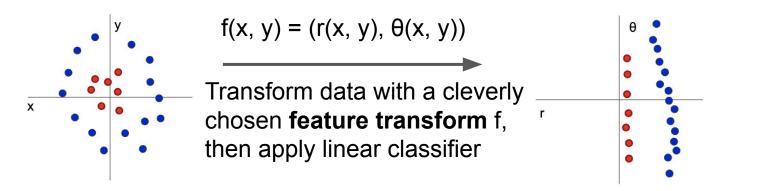




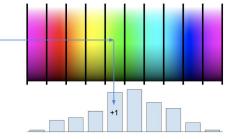
Ranjay Krishna

Lecture 4 - 42

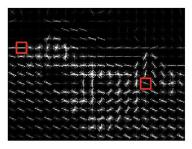
One Solution: Non-linear feature transformation



Color Histogram



Histogram of Oriented Gradients (HoG)



Ranjay Krishna

Lecture 4 - 43

Neural Networks

Lecture 4 - 44

Neural networks: the original linear classifier

(**Before**) Linear score function: f = Wx

$$x \in \mathbb{R}^D, W \in \mathbb{R}^{C \times D}$$

Neural networks: 2 layers

(Before) Linear score function: $egin{array}{cc} f = Wx \ (Now)$ 2-layer Neural Network $egin{array}{cc} f = W_2\max(0,W_1x) \ x \in \mathbb{R}^D, W_1 \in \mathbb{R}^{H imes D}, W_2 \in \mathbb{R}^{C imes H} \end{array}$

(In practice we will usually add a learnable bias at each layer as well)

Ranjay Krishna

Lecture 4 - 46

Neural networks: also called fully connected network

(Before) Linear score function: f = Wx(Now) 2-layer Neural Network $f = W_2 \max(0, W_1x)$ $x \in \mathbb{R}^D, W_1 \in \mathbb{R}^{H imes D}, W_2 \in \mathbb{R}^{C imes H}$

"Neural Network" is a very broad term; these are more accurately called "fully-connected networks" or sometimes "multi-layer perceptrons" (MLP)

(In practice we will usually add a learnable bias at each layer as well)

April 10, 2025

Ranjay Krishna

Neural networks: 3 layers

(**Before**) Linear score function: f = Wx

(Now) 2-layer Neural Network $f = W_2 \max(0, W_1 x)$ or 3-layer Neural Network

$$f=W_3\max(0,W_2\max(0,W_1x))$$

$$x \in \mathbb{R}^{D}, W_1 \in \mathbb{R}^{H_1 \times D}, W_2 \in \mathbb{R}^{H_2 \times H_1}, W_3 \in \mathbb{R}^{C \times H_2}$$

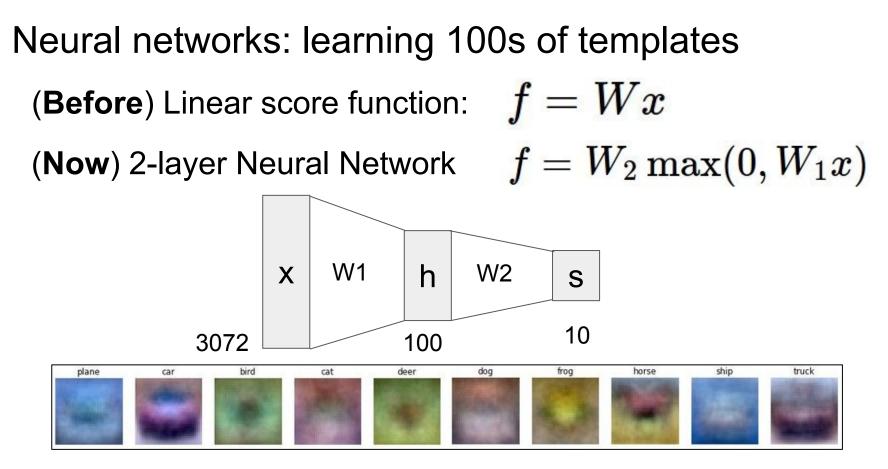
(In practice we will usually add a learnable bias at each layer as well)

Neural networks: hierarchical computation

(**Before**) Linear score function: f = Wx(Now) 2-layer Neural Network $f = W_2 \max(0, W_1 x)$ h W1 W2 Χ S 10 100 3072 $x \in \mathbb{R}^D, W_1 \in \mathbb{R}^{H \times D}, W_2 \in \mathbb{R}^{C \times H}$

Ranjay Krishna

Lecture 4 - 49



Learn 100 templates instead of 10.

Share templates between classes

April 10, 2025

Ranjay Krishna

Lecture 4 - 50

Examples of templates from real neural networks

April 10, 2025

Springenberg et al, "Striving for Simplicity: The All Convolutional Net", ICLR Workshop 2015 Figure copyright Jost Tobias Springenberg, Alexey Dosovitskiy, Thomas Brox, Martin Riedmiller, 2015; reproduced with permission.

Ranjay Krishna

Neural networks: why is max operator important?

(Before) Linear score function: f = Wx(Now) 2-layer Neural Network $f = W_2 \max(0, W_1 x)$

The function max(0, z) is called the **activation function**. **Q**: What if we try to build a neural network without one?

$$f = W_2 W_1 x$$

Neural networks: why is max operator important?

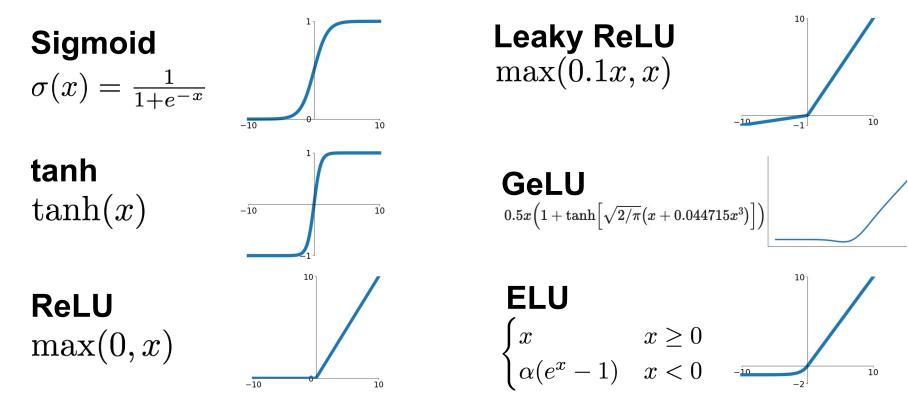
(Before) Linear score function: f = Wx(Now) 2-layer Neural Network $f = W_2 \max(0, W_1 x)$

The function max(0, z) is called the **activation function**. **Q**: What if we try to build a neural network without one?

$$f = W_2 W_1 x$$
 $W_3 = W_2 W_1 \in \mathbb{R}^{C \times H}, f = W_3 x$

A: We end up with a linear classifier again!

Activation functions

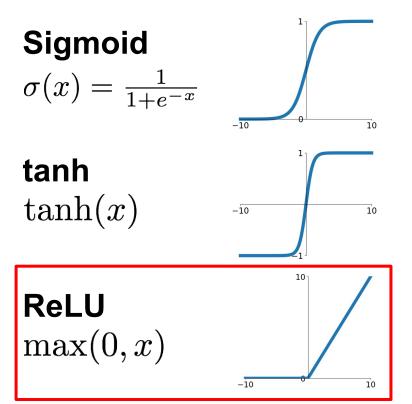


April 10, 2025

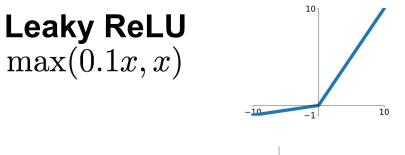
Lecture 4 - 54

Ranjay Krishna

Activation functions

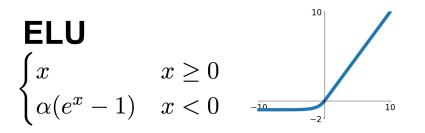


ReLU is a good default choice for most problems



 $\begin{array}{l} \textbf{GeLU} \\ 0.5x \Big(1 + \tanh \Big[\sqrt{2/\pi} \big(x + 0.044715 x^3 \big) \Big] \Big) \end{array}$

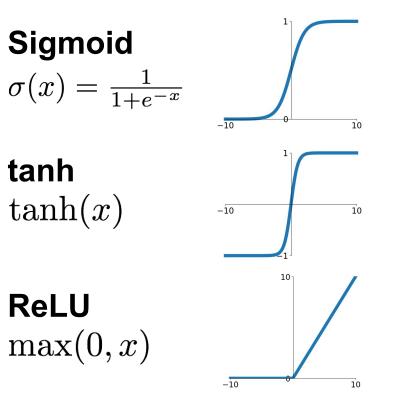
April 10, 2025



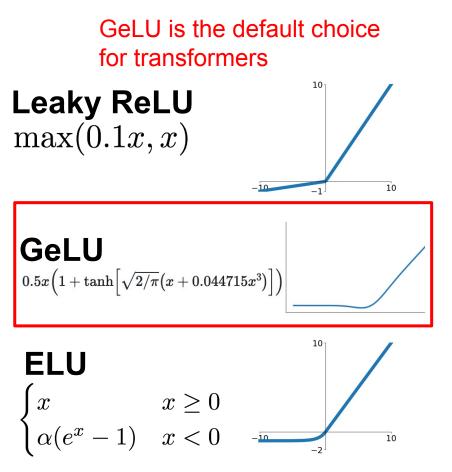
Ranjay Krishna

Lecture 4 - 55

Activation functions



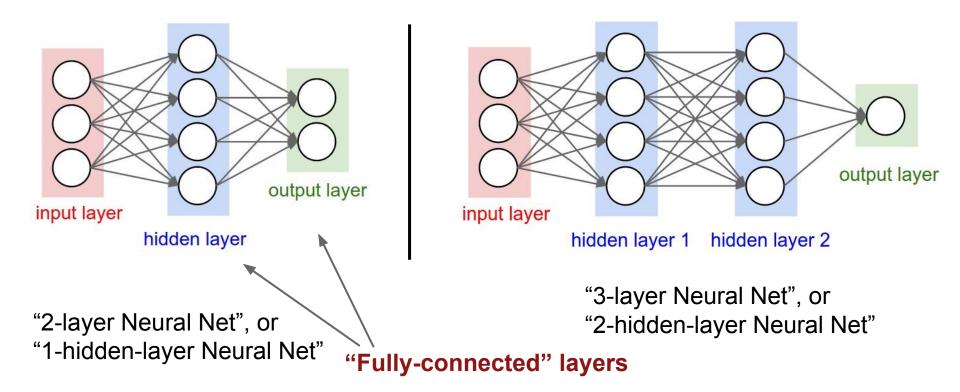
Ranjay Krishna



April 10, 2025

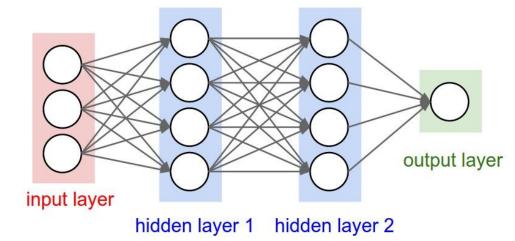
Lecture 4 - 56

Neural networks: Architectures



Ranjay Krishna

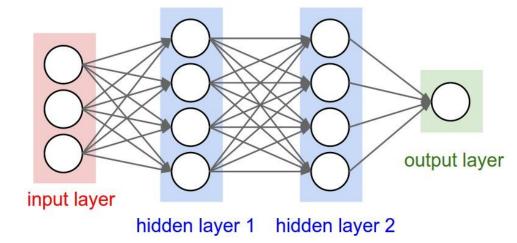
Lecture 4 - 57



forward-pass of a 3-layer neural network: f = lambda x: 1.0/(1.0 + np.exp(-x)) # activation function (use sigmoid) x = np.random.randn(3, 1) # random input vector of three numbers (3x1) h1 = f(np.dot(W1, x) + b1) # calculate first hidden layer activations (4x1) h2 = f(np.dot(W2, h1) + b2) # calculate second hidden layer activations (4x1) out = np.dot(W3, h2) + b3 # output neuron (1x1)

Ranjay Krishna

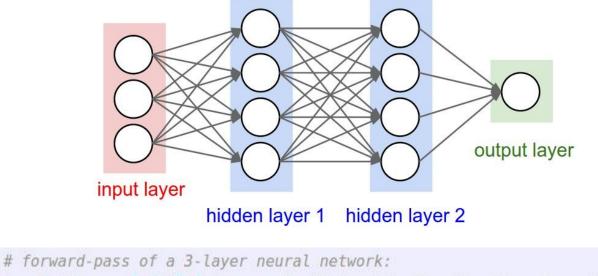
Lecture 4 - 58



forward-pass of a 3-layer neural network:
<pre>f = lambda x: 1.0/(1.0 + np.exp(-x)) # activation function (use sigmoid)</pre>
<pre>x = np.random.randn(3, 1) # random input vector of three numbers (3x1)</pre>
<pre>h1 = f(np.dot(W1, x) + b1) # calculate first hidden layer activations (4x1)</pre>
<pre>h2 = f(np.dot(W2, h1) + b2) # calculate second hidden layer activations (4x1)</pre>
<pre>out = np.dot(W3, h2) + b3 # output neuron (1x1)</pre>

Ranjay Krishna

Lecture 4 - 59



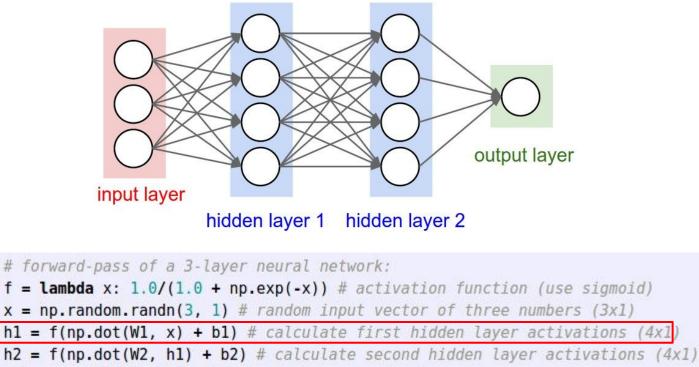
f = lambda x: 1.0/(1.0 + np.exp(-x)) # activation function (use sigmoid)

x = np.random.randn(3, 1) # random input vector of three numbers (3x1)

h1 = f(np.dot(W1, x) + b1) # calculate first hidden layer activations (4x1) h2 = f(np.dot(W2, h1) + b2) # calculate second hidden layer activations (4x1) out = np.dot(W3, h2) + b3 # output neuron (1x1)

Ranjay Krishna

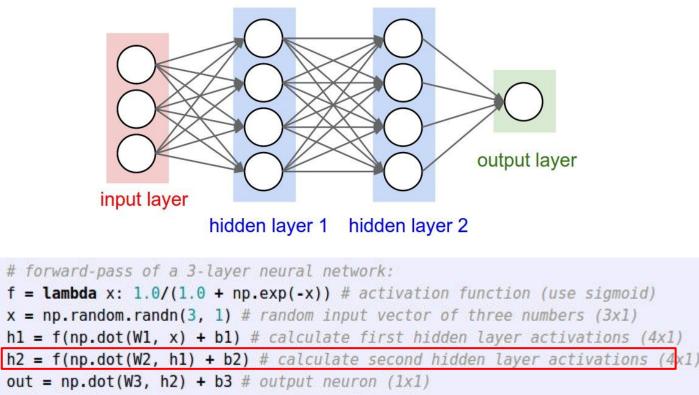
Lecture 4 - 60



out = np.dot(W3, h2) + b3 # output neuron (1x1)

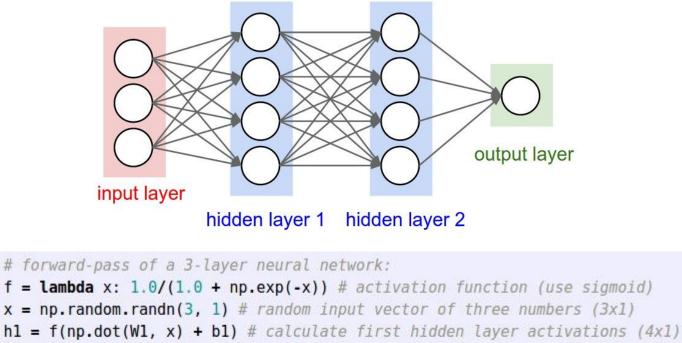
Ranjay Krishna

Lecture 4 - 61



Ranjay Krishna

Lecture 4 - 62



h2 = f(np.dot(W2, h1) + b2) # calculate second hidden layer activations (4x1)

out = np.dot(W3, h2) + b3 # output neuron (1x1)

Ranjay Krishna

Lecture 4 - 63

```
import numpy as np
 1
    from numpy.random import randn
 2
 3
    N, D in, H, D out = 64, 1000, 100, 10
 4
    x, y = randn(N, D_in), randn(N, D_out)
 5
    w1, w2 = randn(D in, H), randn(H, D out)
 6
 7
    for t in range(2000):
 8
 9
      h = 1 / (1 + np.exp(-x.dot(w1)))
10
      y_pred = h.dot(w2)
11
      loss = np.square(y pred - y).sum()
      print(t, loss)
12
13
14
      grad y pred = 2.0 * (y pred - y)
      grad_w2 = h.T.dot(grad_y_pred)
15
      grad h = grad y pred.dot(w2.T)
16
      grad_w1 = x.T.dot(grad_h * h * (1 - h))
17
18
      w1 -= 1e-4 * grad w1
19
20
      w^2 -= 1e^{-4} * qrad w^2
```

Ranjay Krishna

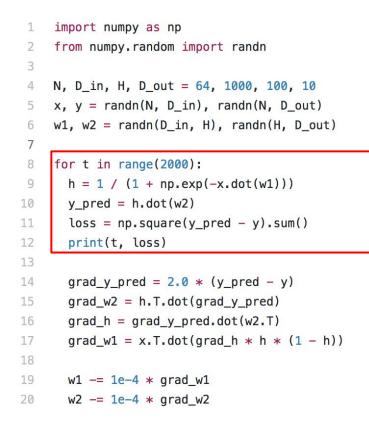
Lecture 4 - 64

```
import numpy as np
 1
    from numpy.random import randn
 2
 3
    N, D_in, H, D_out = 64, 1000, 100, 10
 4
    x, y = randn(N, D_in), randn(N, D_out)
 5
    w1, w2 = randn(D in, H), randn(H, D out)
 6
 7
    for t in range(2000):
 8
 9
      h = 1 / (1 + np.exp(-x.dot(w1)))
10
      y_pred = h.dot(w2)
11
      loss = np.square(y pred - y).sum()
      print(t, loss)
12
13
14
      grad y pred = 2.0 * (y pred - y)
      grad_w2 = h.T.dot(grad_y_pred)
15
      grad h = grad y pred.dot(w2.T)
16
      grad_w1 = x.T.dot(grad_h * h * (1 - h))
17
18
      w1 -= 1e-4 * grad w1
19
20
      w^2 -= 1e^{-4} * qrad w^2
```

Define the network

Ranjay Krishna

Lecture 4 - 65



Define the network

Forward pass

Ranjay Krishna

Lecture 4 - 66

```
import numpy as np
 1
    from numpy.random import randn
 2
 3
    N, D in, H, D out = 64, 1000, 100, 10
 4
    x, y = randn(N, D_in), randn(N, D_out)
 5
    w1, w2 = randn(D in, H), randn(H, D out)
 6
 7
    for t in range(2000):
 8
      h = 1 / (1 + np.exp(-x.dot(w1)))
 9
10
      y_pred = h.dot(w2)
11
      loss = np.square(y pred - y).sum()
       print(t, loss)
12
13
       grad_y pred = 2.0 * (y pred - y)
14
       grad_w2 = h.T.dot(grad_y_pred)
15
       grad h = grad y pred.dot(w2.T)
16
      grad_w1 = x.T.dot(grad_h * h * (1 - h))
17
18
      w1 -= 1e-4 * grad w1
19
20
      w^2 -= 1e^{-4} * qrad w^2
```

Define the network

Forward pass

Calculate the analytical gradients

Ranjay Krishna

Lecture 4 - 67

```
import numpy as np
 1
    from numpy.random import randn
 2
 3
    N, D in, H, D out = 64, 1000, 100, 10
 4
    x, y = randn(N, D_in), randn(N, D_out)
 5
    w1, w2 = randn(D in, H), randn(H, D out)
 6
 7
    for t in range(2000):
 8
 9
      h = 1 / (1 + np.exp(-x.dot(w1)))
10
      y_pred = h.dot(w2)
11
      loss = np.square(y pred - y).sum()
      print(t, loss)
12
13
14
      grad y pred = 2.0 * (y pred - y)
      grad_w2 = h.T.dot(grad_y_pred)
15
16
      grad h = grad y pred.dot(w2.T)
      grad_w1 = x.T.dot(grad_h * h * (1 - h))
17
18
19
      w1 -= 1e-4 * grad w1
20
      w2 = 1e - 4 * qrad w2
```

Define the network

Forward pass

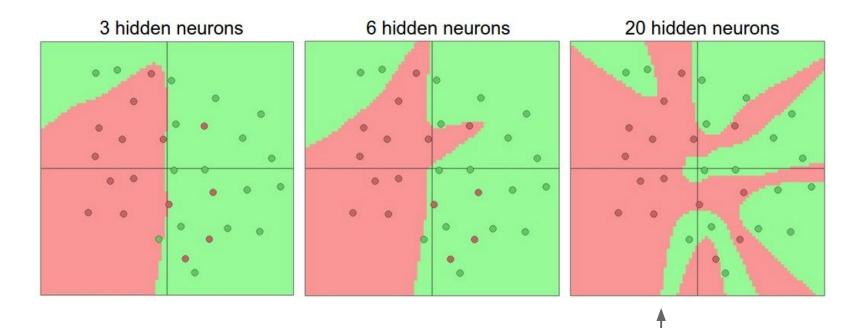
Calculate the analytical gradients

Gradient descent

Ranjay Krishna

Lecture 4 - 68

Setting the number of layers and their sizes



more neurons = more capacity

Ranjay Krishna

Lecture 4 -

Do not use size of neural network as a regularizer. Use stronger regularization instead:

 $\lambda = 0.001$ $\lambda = 0.01$ $\lambda = 0.1$ 0 0 0 0 0 1 $L(W) = \frac{1}{N} \sum_{i=1}^{N} L_i(f(x_i, W), y_i) + \lambda R(W)$

Ranjay Krishna

Lecture 4 -

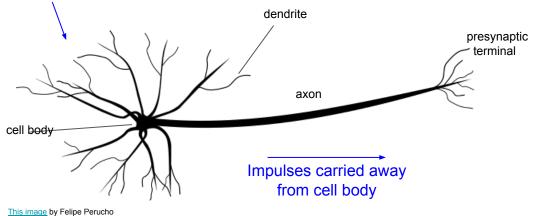
70

This image by Fotis Bobolas is licensed under CC-BY 2.0

Ranjay Krishna

Lecture 4 - 71

Impulses carried toward cell body



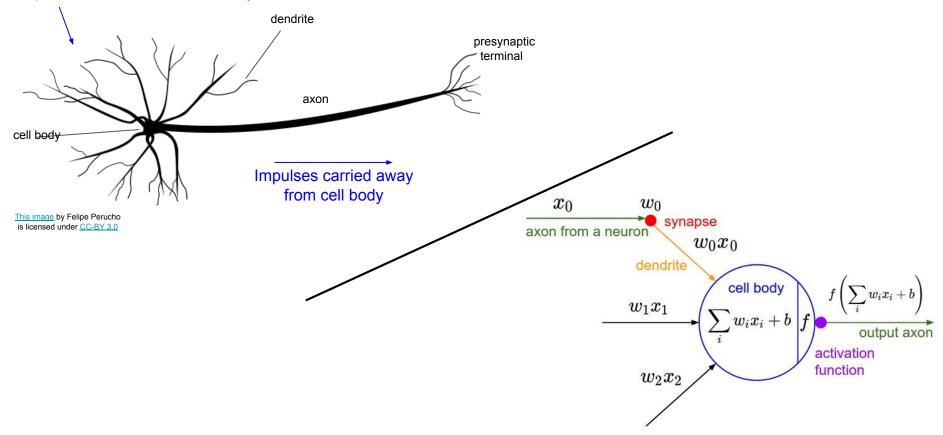
is licensed under CC-BY 3.0

Ranjay Krishna

Lecture 4 - 72

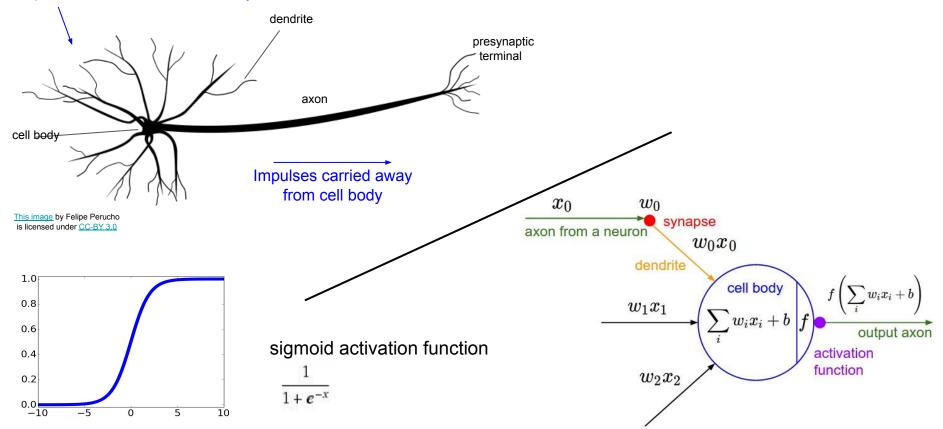
Impulses carried toward cell body

Ranjay Krishna



April 10, 2025

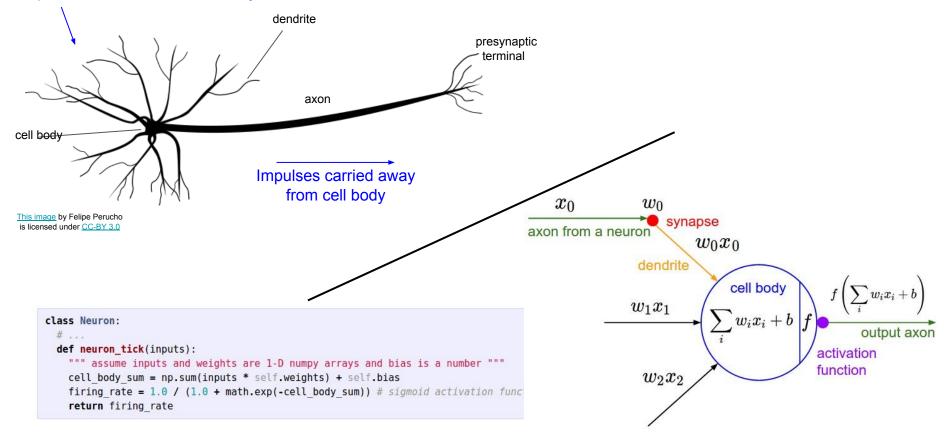
Impulses carried toward cell body



Ranjay Krishna

Lecture 4 - 74

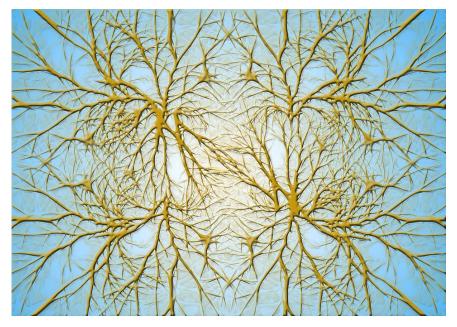
Impulses carried toward cell body



Ranjay Krishna

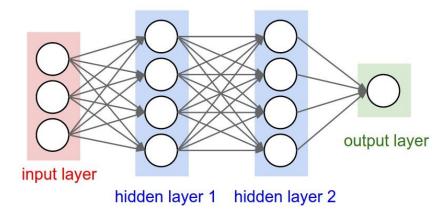
Lecture 4 - 75

Biological Neurons: Complex connectivity patterns



This image is CC0 Public Domain

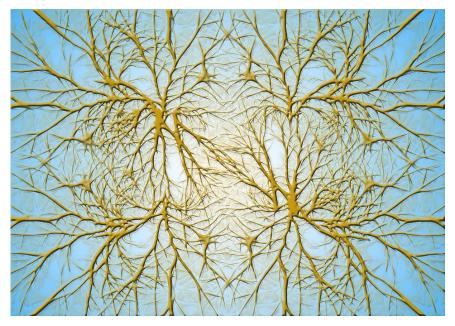
Neurons in a neural network: Organized into regular layers for computational efficiency



April 10, 2025

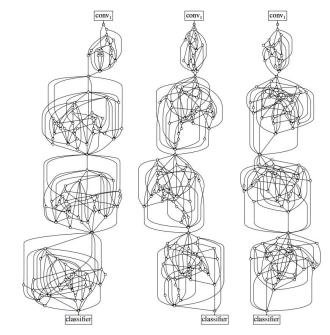
Ranjay Krishna

Biological Neurons: Complex connectivity patterns



This image is CC0 Public Domain

But neural networks with random connections can work too!



Xie et al, "Exploring Randomly Wired Neural Networks for Image Recognition", arXiv 2019

Ranjay Krishna

Lecture 4 - 77

Be very careful with your brain analogies!

Biological Neurons:

- Many different types
- Dendrites can perform complex non-linear computations
- Synapses are not a single weight but a complex non-linear dynamical system

[Dendritic Computation. London and Hausser]

Now let's calculate the analytical gradients

Plugging in neural networks with loss functions

$$s = f(x; W_1, W_2) = W_2 \max(0, W_1 x)$$
 Nonlinear score function
$$L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)$$
 SVM Loss on predictions

$$L = \frac{1}{N} \sum_{i=1}^{N} L_i + \lambda R(W_1) + \lambda R(W_2)$$
 Total loss: data loss + regularization

Ranjay Krishna

 $R(W) = \sum W_k^2$ Regularization

Lecture 4 - 80

Problem: How to compute gradients?

$$\begin{split} s &= f(x; W_1, W_2) = W_2 \max(0, W_1 x) \quad \text{Nonlinear score function} \\ L_i &= \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1) \quad \text{SVM Loss on predictions} \\ R(W) &= \sum_k W_k^2 \quad \text{Regularization} \\ L &= \frac{1}{N} \sum_{i=1}^N L_i + \lambda R(W_1) + \lambda R(W_2) \quad \text{Total loss: data loss + regularization} \\ \text{If we can compute } \frac{\partial L}{\partial W_1}, \frac{\partial L}{\partial W_2} \text{ then we can learn } W_1 \text{ and } W_2 \end{split}$$

Ranjay Krishna

Lecture 4 - 81

(Bad) Idea: Derive $\nabla_W L$ on paper

$$s = f(x; W) = Wx$$

$$L_{i} = \sum_{j \neq y_{i}} \max(0, s_{j} - s_{y_{i}} + 1)$$

$$= \sum_{j \neq y_{i}} \max(0, W_{j,:} \cdot x + W_{y_{i},:} \cdot x + 1)$$

$$L = \frac{1}{N} \sum_{i=1}^{N} L_{i} + \lambda \sum_{k} W_{k}^{2}$$

$$= \frac{1}{N} \sum_{i=1}^{N} \sum_{j \neq y_{i}} \max(0, W_{j,:} \cdot x + W_{y_{i},:} \cdot x + 1) + \lambda \sum_{k} W_{k}^{2}$$

$$\nabla_{W}L = \nabla_{W} \left(\frac{1}{N} \sum_{i=1}^{N} \sum_{j \neq y_{i}} \max(0, W_{j,:} \cdot x + W_{y_{i},:} \cdot x + 1) + \lambda \sum_{k} W_{k}^{2} \right)$$

Problem: Very tedious: Lots of matrix calculus, need lots of paper

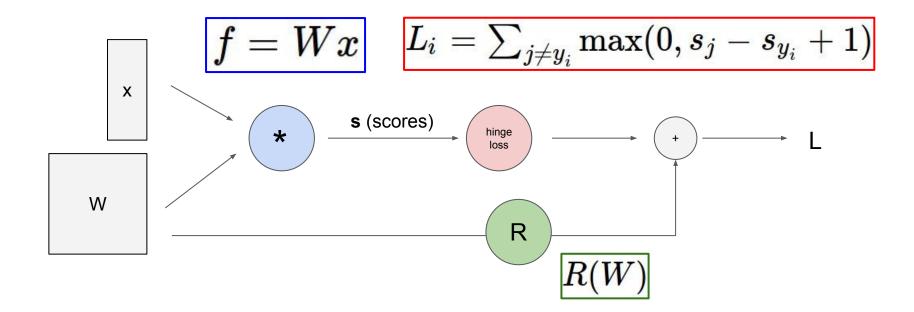
Problem: What if we want to change loss? E.g. use softmax instead of SVM? Need to re-derive from scratch =(

Problem: Not feasible for very complex models!

Ranjay Krishna

Lecture 4 - 82

Better Idea: Computational graphs + Backpropagation



Lecture 4 - 83

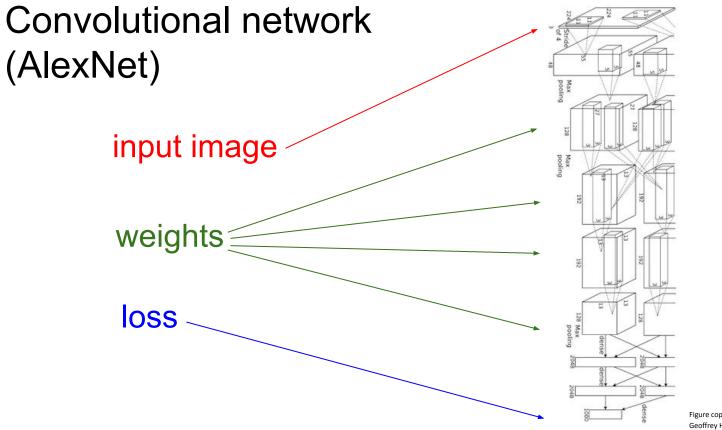


Figure copyright Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission.

Ranjay Krishna

Lecture 4 - 84

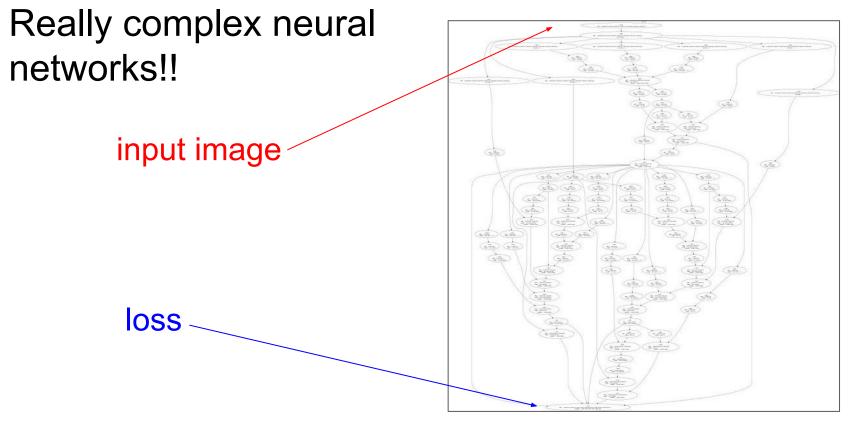


Figure reproduced with permission from a Twitter post by Andrej Karpathy.

Ranjay Krishna

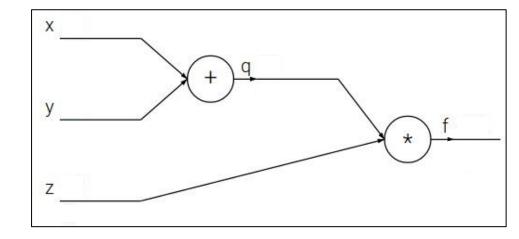
Lecture 4 - 85

Solution: Backpropagation

$$f(x,y,z) = (x+y)z$$

Lecture 4 - 87

$$f(x,y,z) = (x+y)z$$

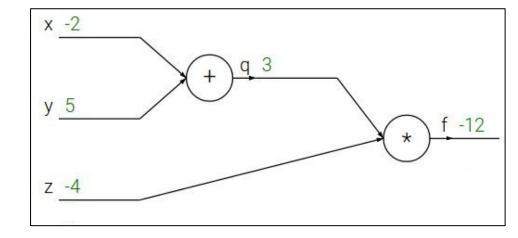


Ranjay Krishna

Lecture 4 - 88

$$f(x, y, z) = (x + y)z$$

e.g. x = -2, y = 5, z = -4

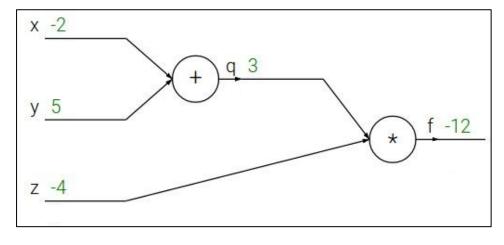


Ranjay Krishna

Lecture 4 - 89

$$f(x,y,z) = (x+y)z$$

e.g. x = -2, y = 5, z = -4
 $q = x + y$ $rac{\partial q}{\partial x} = 1, rac{\partial q}{\partial y} = 1$



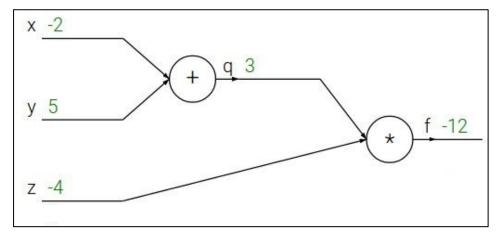
Ranjay Krishna

Lecture 4 - 90

$$f(x, y, z) = (x + y)z$$

e.g. x = -2, y = 5, z = -4

$$egin{array}{ll} q=x+y & rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1 \ f=qz & rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q \end{array}$$



Ranjay Krishna

Lecture 4 - 91

$$f(x, y, z) = (x + y)z$$

e.g. x = -2, y = 5, z = -4

$$q=x+y \hspace{0.5cm} rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

$$egin{aligned} f &= qz & rac{\partial f}{\partial q} &= z, rac{\partial f}{\partial z} &= q \end{aligned}$$
 Want: $rac{\partial f}{\partial x}, rac{\partial f}{\partial y}, rac{\partial f}{\partial z} \end{aligned}$

Want:
$$\frac{\partial f}{\partial x}$$
,

$$x \frac{-2}{y 5} + q 3$$

$$x \frac{f -12}{t}$$

$$z \frac{-4}{t}$$

April 10, 2025

Ranjay Krishna

$$f(x, y, z) = (x + y)z$$

e.g. x = -2, y = 5, z = -4

$$q=x+y$$
 $rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

Want:
$$\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$$

$$x \xrightarrow{-2} + q \xrightarrow{3}$$

$$y \xrightarrow{5} + f \xrightarrow{-12}$$

$$z \xrightarrow{-4} \xrightarrow{f \xrightarrow{-12}}$$

$$\frac{\partial f}{\partial f}$$

April 10, 2025

Ranjay Krishna

$$f(x, y, z) = (x + y)z$$

e.g. x = -2, y = 5, z = -4

$$q=x+y$$
 $rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$

$$egin{aligned} f &= qz & rac{\partial f}{\partial q} &= z, rac{\partial f}{\partial z} &= q \end{aligned}$$
 Want: $rac{\partial f}{\partial x}, rac{\partial f}{\partial y}, rac{\partial f}{\partial z} \end{aligned}$

Want:
$$\frac{\partial f}{\partial x}$$
,

$$x \xrightarrow{-2} + q \xrightarrow{3}$$

$$y \xrightarrow{5} + f \xrightarrow{-12}$$

$$z \xrightarrow{-4} \xrightarrow{f \xrightarrow{-12}}$$

$$\frac{\partial f}{\partial f}$$

April 10, 2025

Ranjay Krishna

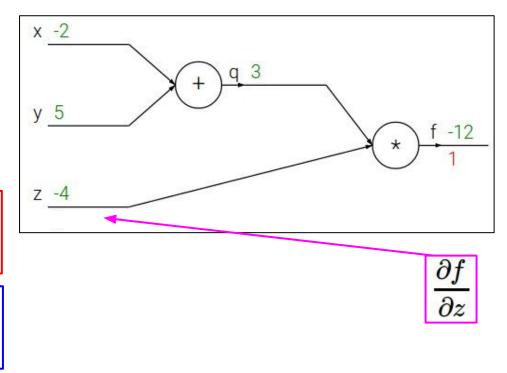
$$f(x, y, z) = (x + y)z$$

e.g. x = -2, y = 5, z = -4

$$q=x+y$$
 $rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$

$$f = qz$$
 $rac{\partial f}{\partial q} = z, rac{\partial f}{\partial z} = q$
Want: $rac{\partial f}{\partial x}, rac{\partial f}{\partial y}, rac{\partial f}{\partial z}$

Want:
$$\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y},$$



Ranjay Krishna

Lecture 4 - 95

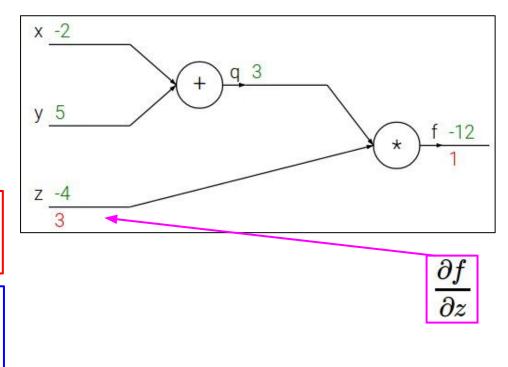
$$f(x, y, z) = (x + y)z$$

e.g. x = -2, y = 5, z = -4

$$q=x+y$$
 $rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$

$$f = qz$$
 $rac{\partial f}{\partial q} = z, rac{\partial f}{\partial z} = q$
Want: $rac{\partial f}{\partial x}, rac{\partial f}{\partial y}, rac{\partial f}{\partial z}$

Want:
$$\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y},$$



April 10, 2025

Ranjay Krishna

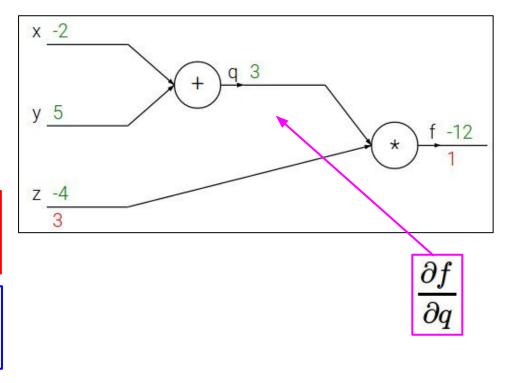
$$f(x, y, z) = (x + y)z$$

e.g. x = -2, y = 5, z = -4

$$q=x+y \hspace{0.5cm} rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

Want:
$$\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$$



April 10, 2025

Ranjay Krishna

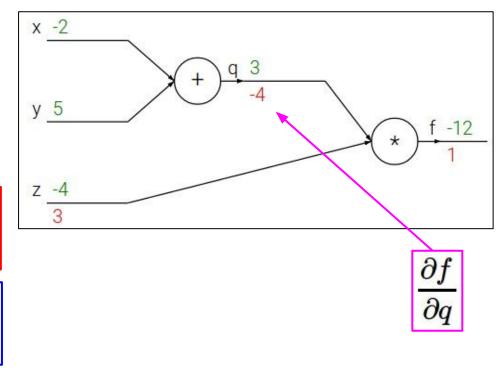
$$f(x, y, z) = (x + y)z$$

e.g. x = -2, y = 5, z = -4

$$q=x+y \hspace{0.5cm} rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

$$egin{aligned} f = qz & rac{\partial f}{\partial q} = z, rac{\partial f}{\partial z} = q \end{aligned}$$
 Want: $rac{\partial f}{\partial x}, rac{\partial f}{\partial y}, rac{\partial f}{\partial z} \end{aligned}$

Want:
$$\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y},$$



April 10, 2025

Ranjay Krishna

$$f(x, y, z) = (x + y)z$$

e.g. x = -2, y = 5, z = -4

$$q=x+y$$
 $rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$

$$egin{aligned} f = qz & rac{\partial f}{\partial q} = z, rac{\partial f}{\partial z} = q \end{aligned}$$
 Want: $rac{\partial f}{\partial x}, rac{\partial f}{\partial y}, rac{\partial f}{\partial z} \end{aligned}$

$$x \xrightarrow{-2} y \xrightarrow{f} + y \xrightarrow{f} -4$$

$$y \xrightarrow{f} -4$$

$$z \xrightarrow{-4} \xrightarrow{g} + y \xrightarrow{f} -4$$

$$x \xrightarrow{f} -12$$

$$x \xrightarrow{f} -12$$

$$x \xrightarrow{f} -12$$

$$y \xrightarrow{f} -12$$

April 10, 2025

Ranjay Krishna

$$f(x, y, z) = (x + y)z$$

e.g. x = -2, y = 5, z = -4

$$q=x+y \hspace{0.5cm} rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

Want: $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$

x
$$\frac{-2}{y}$$

y $\frac{5}{-4}$
z $\frac{-4}{3}$
Chain rule:
 $\frac{\partial f}{\partial y} = \frac{\partial f}{\partial q} \frac{\partial q}{\partial y}$
Upstream Local

gradient gradient

April 10, 2025

Ranjay Krishna

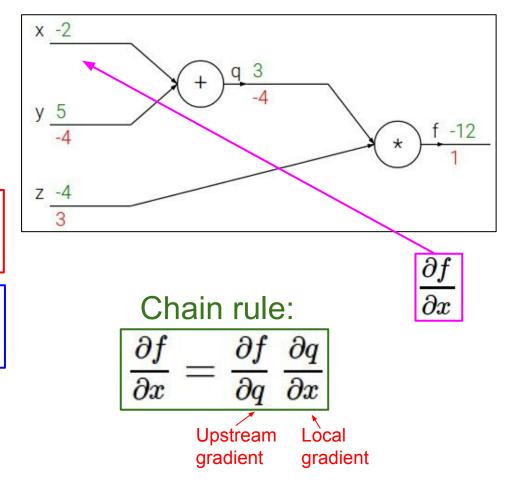
$$f(x, y, z) = (x + y)z$$

e.g. x = -2, y = 5, z = -4

$$q=x+y \hspace{0.5cm} rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

Want: $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$



April 10, 2025

Ranjay Krishna

$$f(x, y, z) = (x + y)z$$

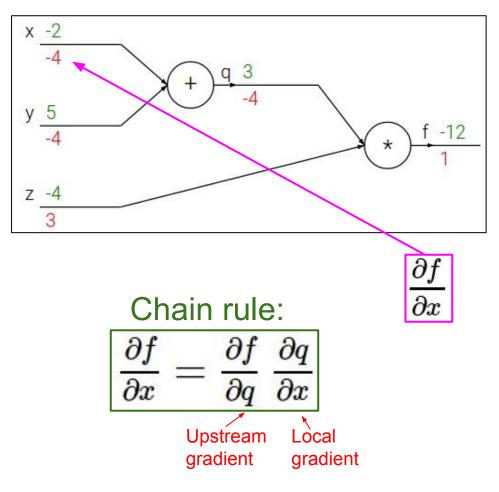
e.g. x = -2, y = 5, z = -4

$$q=x+y$$
 $rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

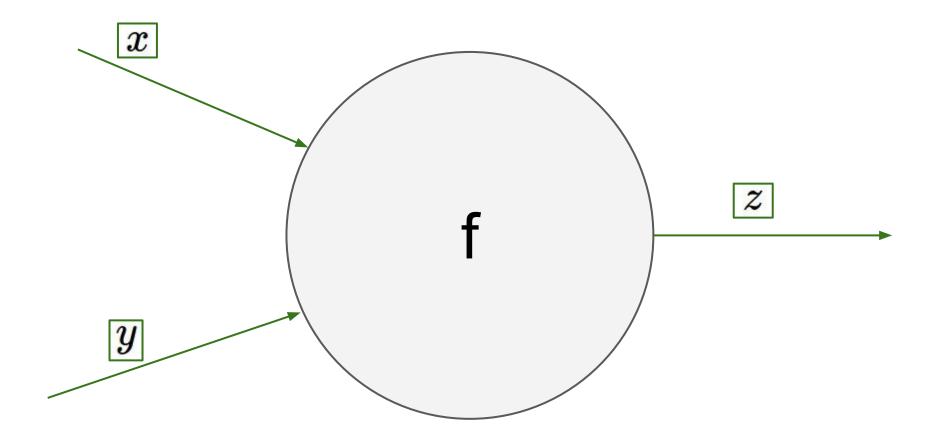
Want:

$$rac{\overline{\partial q}}{\overline{\partial q}} = z, - rac{\partial f}{\partial x}, rac{\partial f}{\partial y}, rac{\partial f}{\partial z}$$

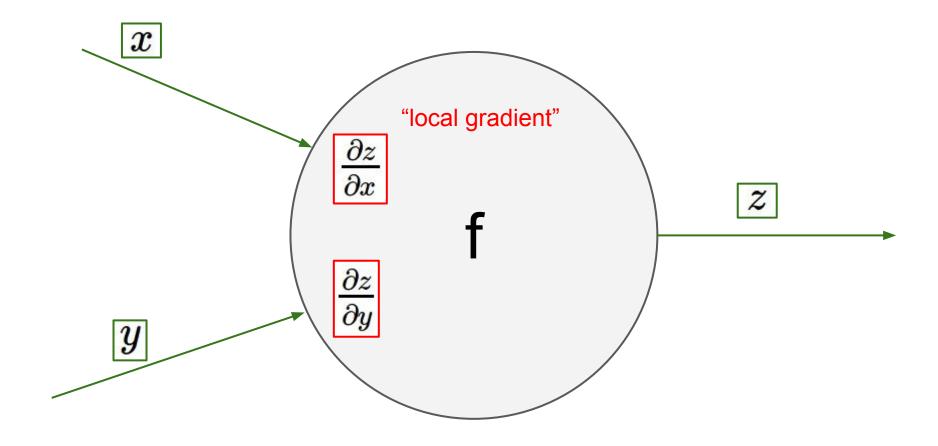


April 10, 2025

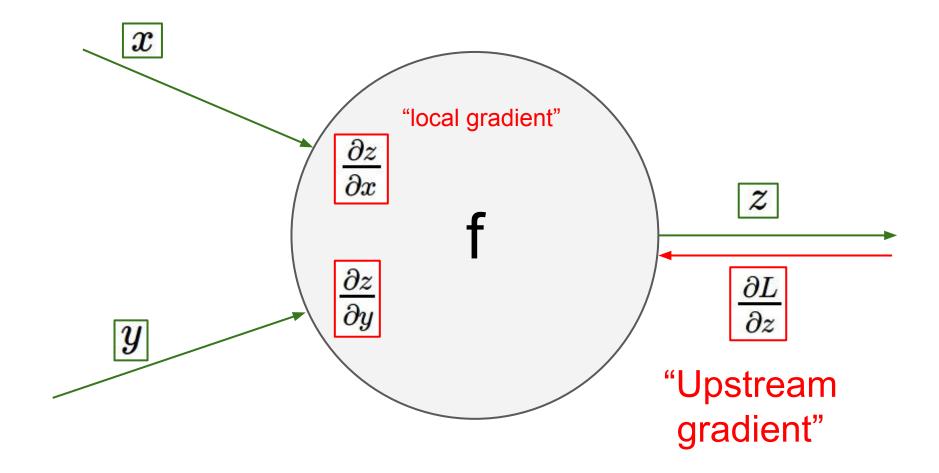
Ranjay Krishna



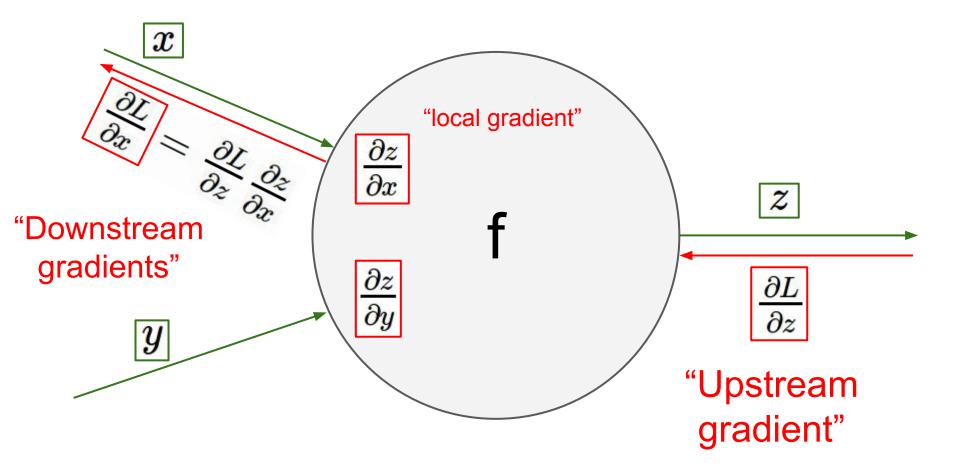
Lecture 4 - 103



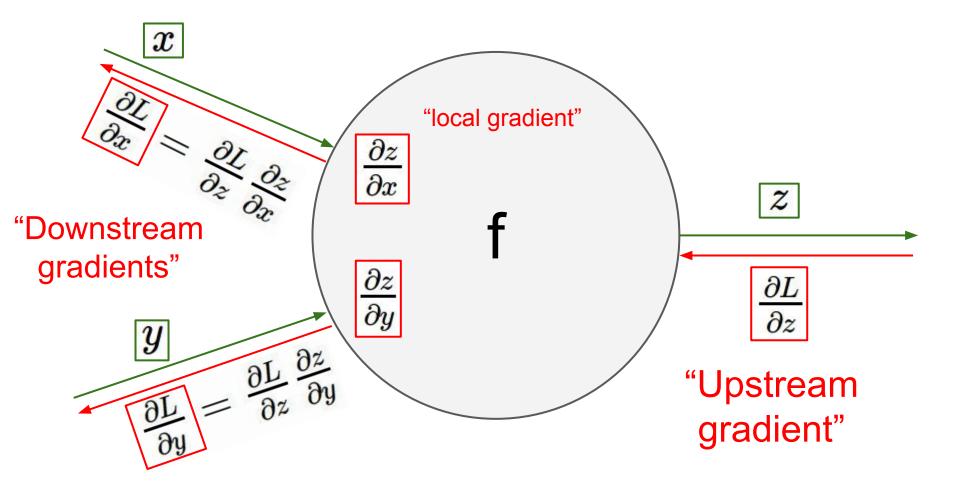
Lecture 4 - 104



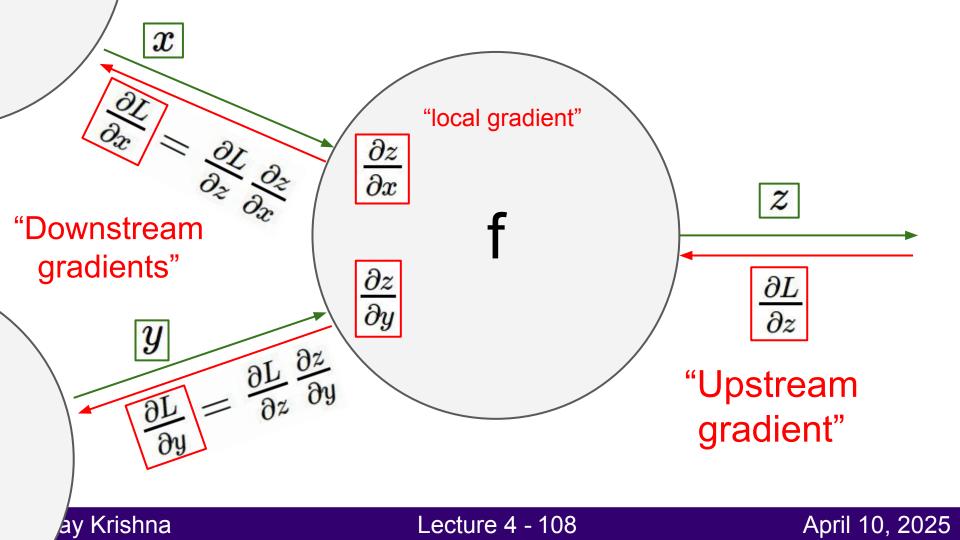
Lecture 4 - 105



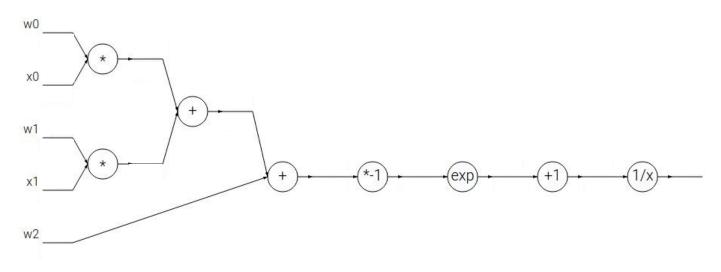
Lecture 4 - 106



Lecture 4 - 107



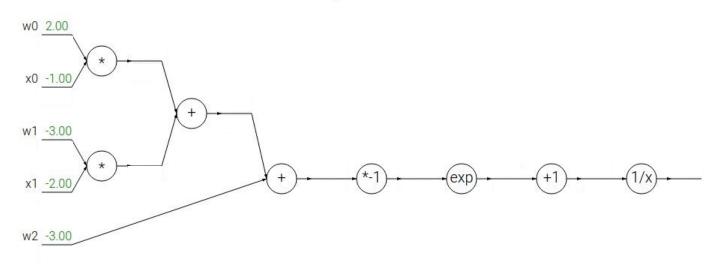
$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$



Ranjay Krishna

Lecture 4 - 109

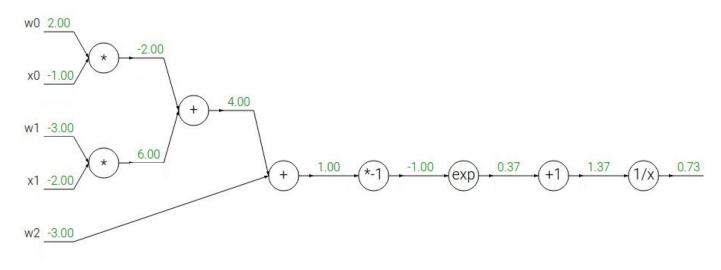
$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$



Ranjay Krishna

Lecture 4 - 110

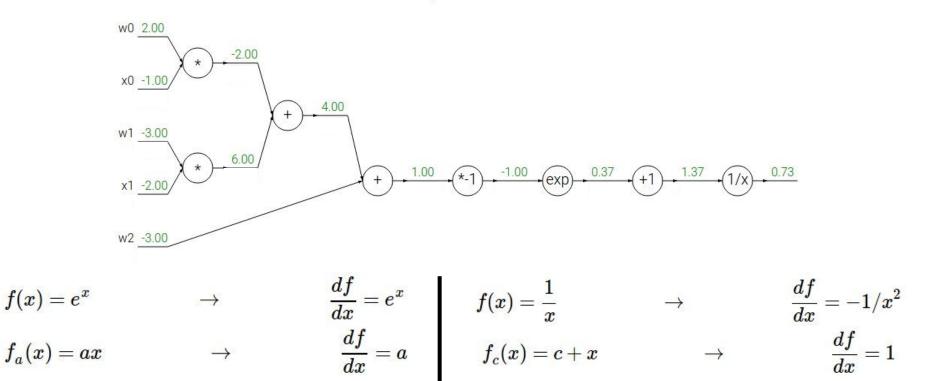
$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$



Ranjay Krishna

Lecture 4 - 111

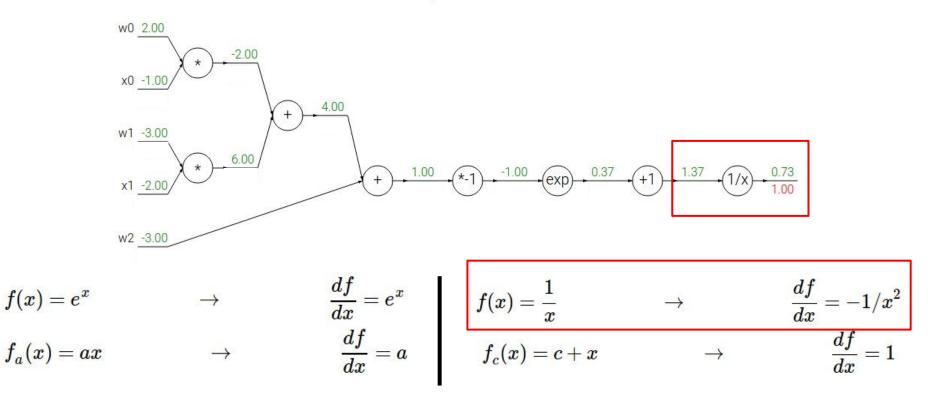
$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$



Ranjay Krishna

Lecture 4 - 112

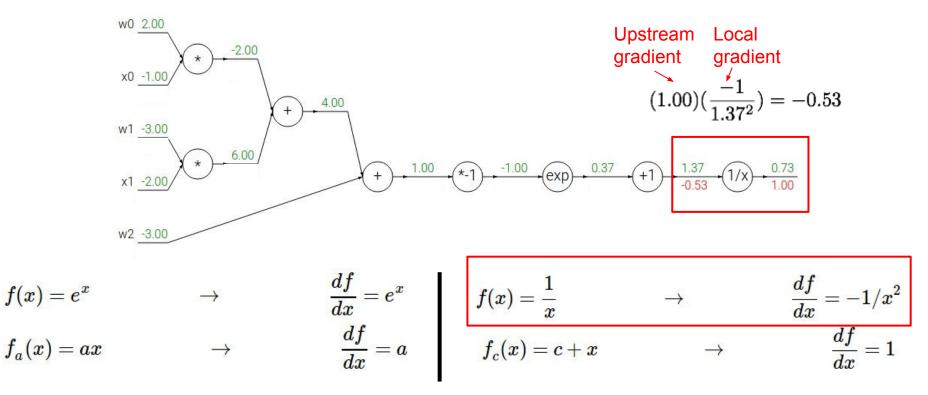
$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$



Ranjay Krishna

Lecture 4 - 113

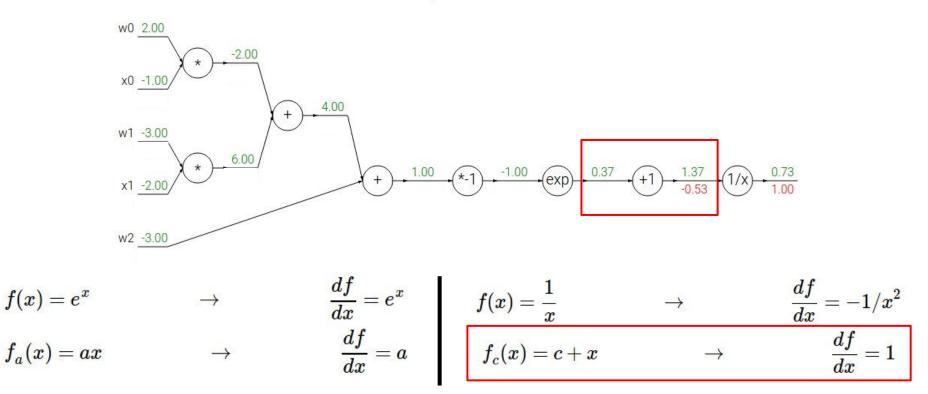
$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$



Ranjay Krishna

Lecture 4 - 114

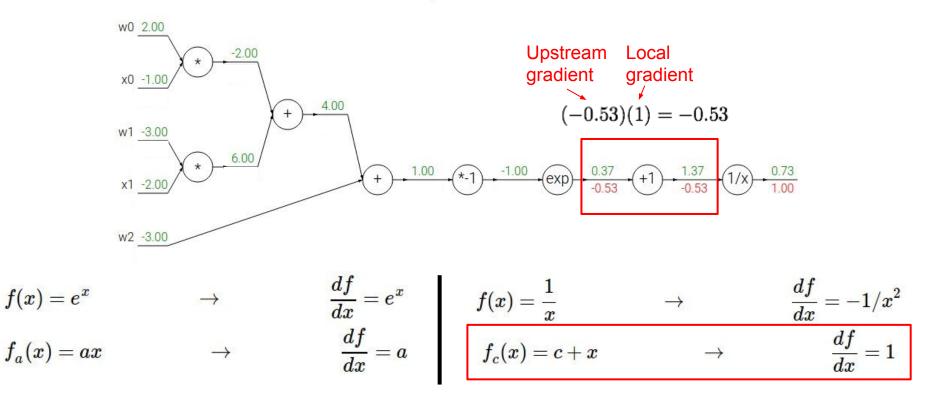
$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$



Ranjay Krishna

Lecture 4 - 115

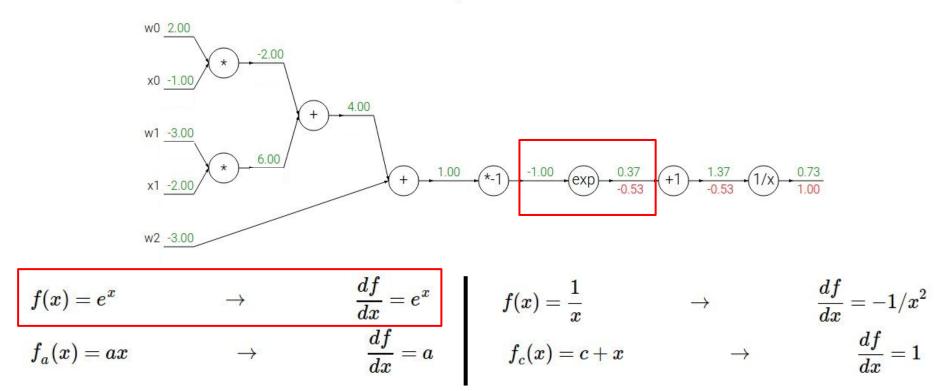
$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$



Ranjay Krishna

Lecture 4 - 116

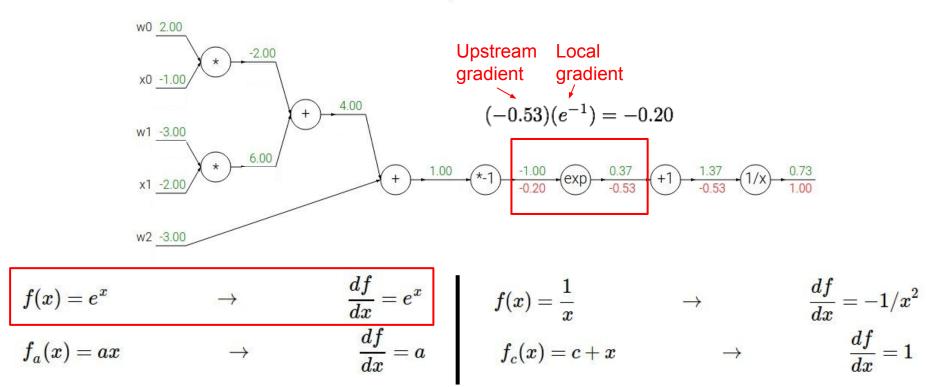
$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$



Ranjay Krishna

Lecture 4 - 117

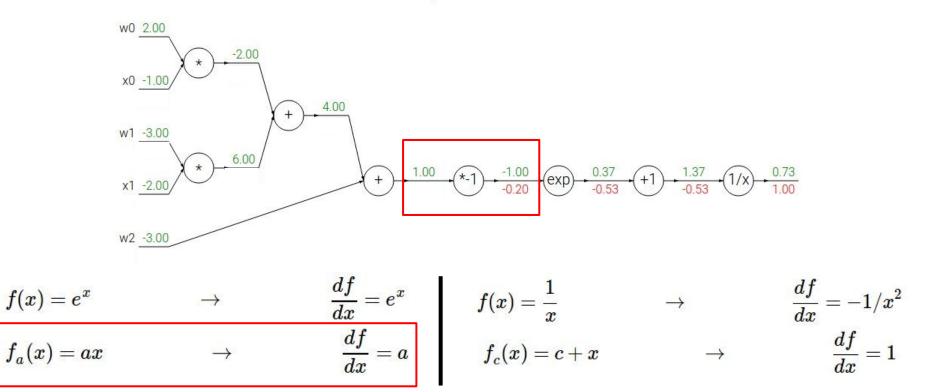
$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$



Ranjay Krishna

Lecture 4 - 118

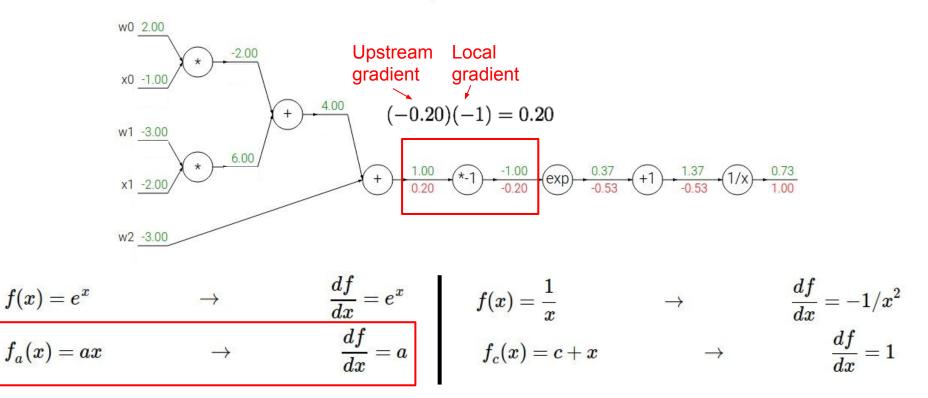
$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$



Ranjay Krishna

Lecture 4 - 119

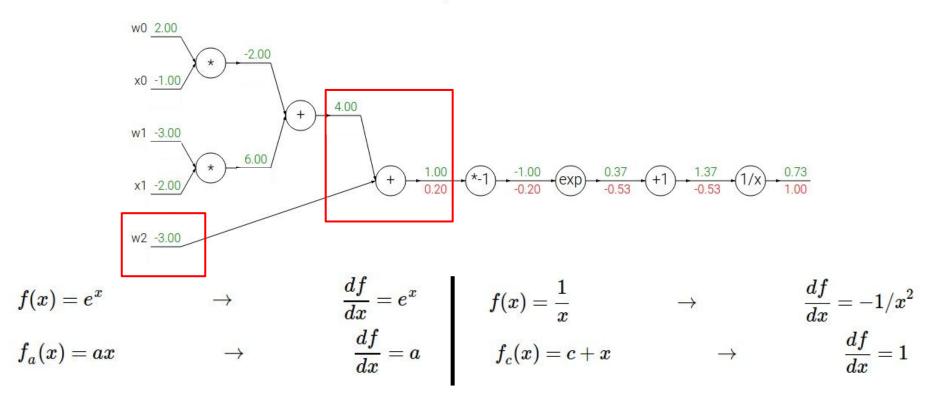
$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$



Ranjay Krishna

Lecture 4 - 120

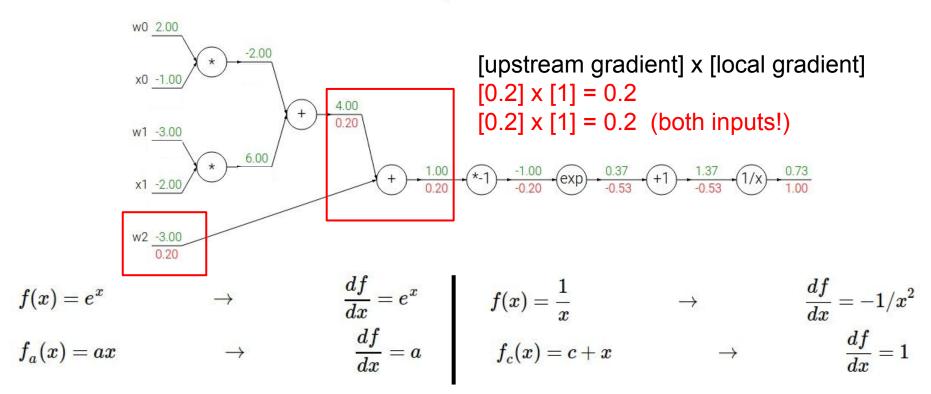
$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$



Ranjay Krishna

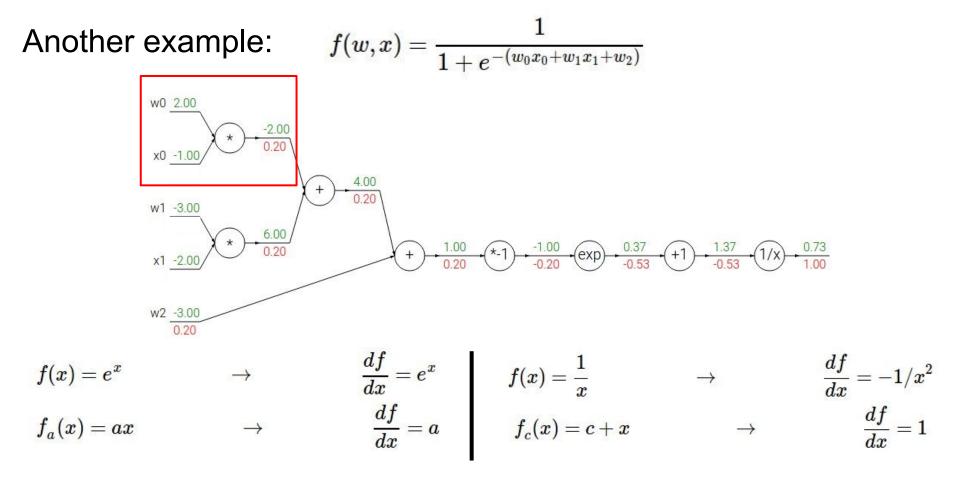
Lecture 4 - 121

$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$



Ranjay Krishna

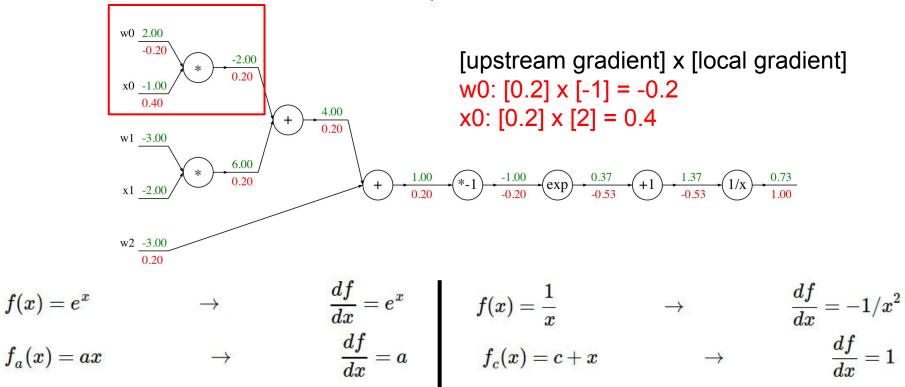
Lecture 4 - 122



Ranjay Krishna

Lecture 4 - 123

$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$



Ranjay Krishna

Lecture 4 - 124

w0 2.00

x0 -1.00

w1 -3.00

x1 -2.00

w2 -3.00 0.20

0.40

-0.20

$$f(w,x) = \frac{1}{1 + e^{-(w_0 x_0 + w_1 x_1 + w_2)}}$$

$$\frac{f(w,x) = \frac{1}{1 + e^{-(w_0 x_0 + w_1 x_1 + w_2)}}$$

$$\frac{f(w,x) = \frac{1}{1 + e^{-x}}$$

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

$$\frac{f(w,x) = \frac{1}{1 + e^{-x}}$$

Computational graph representation may not be unique. Choose one where local gradients at each node can be easily expressed!

0.73

1.00

1/x

1.37

-0.53

Ranjay Krishna

Lecture 4 - 125

w0 2.00

x0 -1.00

w1 -3.00

x1 -2.00

w2 -3.00 0.20

0.40

-0.20

e:
$$f(w,x) = \frac{1}{1 + e^{-(w_0 x_0 + w_1 x_1 + w_2)}}$$
 Corrept
be under the second second function $\sigma(x) = \frac{1}{1 + e^{-x}}$ each each each each each each each exp
 $+ \frac{4.00}{0.20}$ $+ \frac{1.00}{0.20}$ $+ \frac{1.00$

Computational graph representation may not be unique. Choose one where local gradients at each node can be easily expressed!

0.73

1.00

Sigmoid local gradient: $\frac{d\sigma(x)}{dx} = \frac{e^{-x}}{(1+e^{-x})^2} = \left(\frac{1+e^{-x}-1}{1+e^{-x}}\right) \left(\frac{1}{1+e^{-x}}\right) = (1-\sigma(x))\sigma(x)$

Ranjay Krishna

Lecture 4 - 126

Another examp

w0 2.00

x0 -1.00

w1 -3.00

x1 -2.00

w2 -3.00

0.20

0.40

-0.20

ple:
$$f(w,x) = \frac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$

Sigmoid function $\sigma(x) = \frac{1}{1+e^{-x}}$ Computational graph
where local gradient each node can be expressed!
 $(x) = \frac{1}{1+e^{-x}}$ Sigmoid each node can be expressed!
 $(x) = \frac{1}{1+e^{-x}}$ Sigmoid $(x) = \frac{1}{1+e^{-x}}$ Sigmoid each node can be expressed!
 $(x) = \frac{1}{1+e^{-x}}$ Sigmoid $(x) = \frac{1}{1+e^{-x}}$ Sigm

utational graph entation may not que. Choose one local gradients at ode can be easily sed!

0.73

1.00

April 10, 2025

 $\frac{d\sigma(x)}{dx} = \frac{e^{-x}}{(1+e^{-x})^2} = \left(\frac{1+e^{-x}-1}{1+e^{-x}}\right) \left(\frac{1}{1+e^{-x}}\right) = (1-\sigma(x))\sigma(x)$ Sigmoid local gradient:

Ranjay Krishna

Lecture 4 - 127

w0 2.00

x0 -1.00

w1 -3.00

x1 -2.00

w2 -3.00

0.20

0.40

-0.20

e:
$$f(w,x) = \frac{1}{1 + e^{-(w_0 x_0 + w_1 x_1 + w_2)}}$$
 Composing the function $\sigma(x) = \frac{1}{1 + e^{-x}}$ and $\sigma(x) = \frac{1}{1 + e$

Computational graph representation may not be unique. Choose one where local gradients at each node can be easily expressed!

0.73

1.00

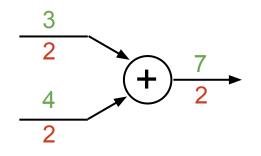
[upstream gradient] x [local gradient] [1.00] x [(1 - 0.73) (0.73)] = 0.2

Sigmoid local $\frac{d\sigma(x)}{dx} = \frac{e^{-x}}{(1+e^{-x})^2} = \left(\frac{1+e^{-x}-1}{1+e^{-x}}\right) \left(\frac{1}{1+e^{-x}}\right) = (1-\sigma(x))\sigma(x)$ gradient:

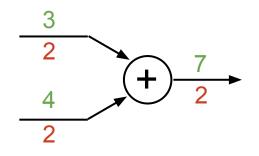
Ranjay Krishna

Lecture 4 - 128

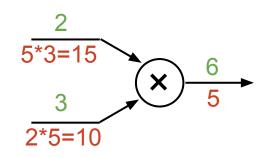
add gate: gradient distributor



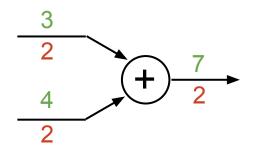
add gate: gradient distributor



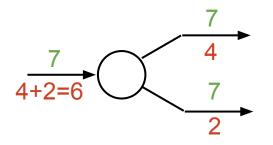
mul gate: "swap multiplier"



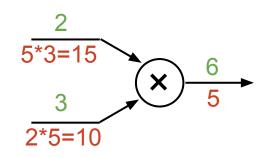
add gate: gradient distributor



copy gate: gradient adder



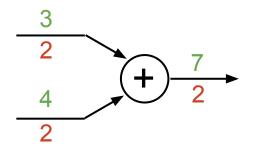
mul gate: "swap multiplier"



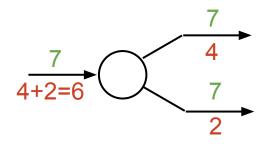
Ranjay Krishna

Lecture 4 - 131

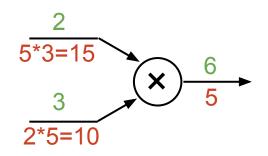
add gate: gradient distributor



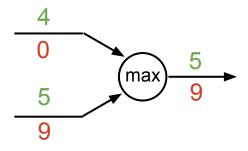
copy gate: gradient adder



mul gate: "swap multiplier"



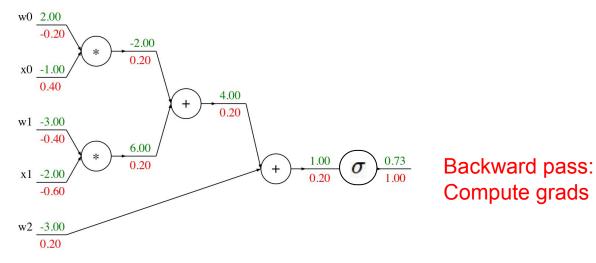
max gate: gradient router



April 10, 2025

Ranjay Krishna

Lecture 4 - 132

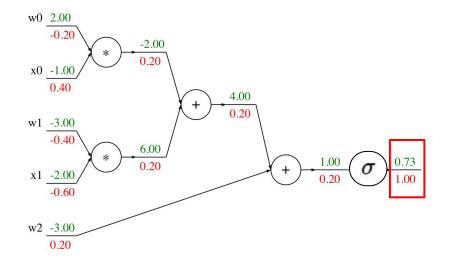


Forward pass: Compute output def f(w0, x0, w1, x1, w2):
 s0 = w0 * x0
 s1 = w1 * x1
 s2 = s0 + s1
 s3 = s2 + w2
 L = sigmoid(s3)

$grad_L = 1.0$
$grad_s3 = grad_L * (1 - L) * L$
grad_w2 = grad_s3
grad_s2 = grad_s3
grad_s0 = grad_s2
grad_s1 = grad_s2
grad_w1 = grad_s1 * x1
grad_x1 = grad_s1 * w1
grad_w0 = grad_s0 * x0
grad_x0 = grad_s0 * w0

Ranjay Krishna

Lecture 4 - 133



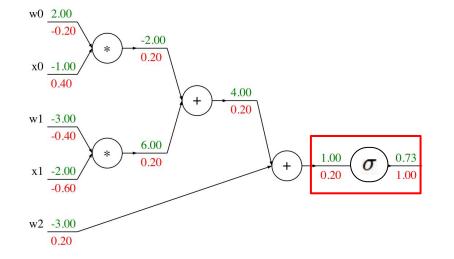
def	f(w0,	x0, w1,	x1,	w2):
s	0 = w0	* X0		
s	l = w1	* x1		
S	2 = s0	+ s1		
s	3 = s2	+ w2		
L	= sigr	noid(s3)		

Base case grad_L = 1.0 grad_s3 = grad_L * (1 - L) * L grad_w2 = grad_s3 grad_s2 = grad_s3 grad_s0 = grad_s2 grad_s1 = grad_s2 grad_w1 = grad_s1 * x1 grad_x1 = grad_s1 * w1 grad_w0 = grad_s0 * x0 grad_x0 = grad_s0 * w0

Ranjay Krishna

Lecture 4 - 134

Forward pass: Compute output



	<pre>def f(w0,</pre>	x0, w1, x1,	w2):
	s0 = w0	* X0	
Forward pass:	s1 = w1	* x1	
Compute output	s2 = s0	+ s1	
Compute output	s3 = s2	+ w2	

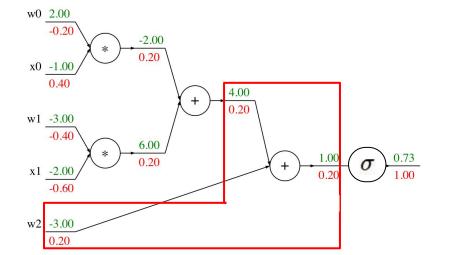
Sigmoid

grad_L = 1.0
$grad_s3 = grad_L * (1 - L) * L$
grad_w2 = grad_s3
grad_s2 = grad_s3
grad_s0 = grad_s2
grad_s1 = grad_s2
grad_w1 = grad_s1 * x1
grad_x1 = grad_s1 * w1
grad_w0 = grad_s0 * x0
grad_x0 = grad_s0 * w0

L = sigmoid(s3)

Ranjay Krishna

Lecture 4 - 135



Forward pass: Compute output

Add gate

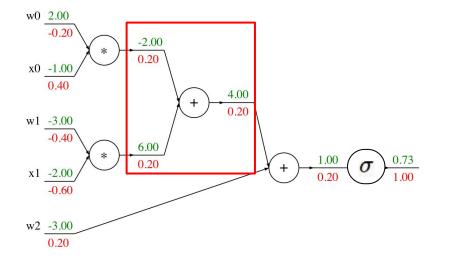
de	ef	f(v	v0,	X),	w1,	x1,
	s0	=	w0	*	x٥)	
	s1	=	w1	*	x1	-	
	s2	=	s0	+	s1		
	s3	=	s2	+	w2	2	
	L	= 5	sigr	no:	id(s3)	

	$grad_L = 1.0$
_	<u>grad_s3 = grad_L * (1 - L) * L</u>
	grad_w2 = grad_s3
	grad_s2 = grad_s3
	grad_s0 = grad_s2
	grad_s1 = grad_s2
	grad_w1 = grad_s1 * x1
	grad_x1 = grad_s1 * w1
	grad_w0 = grad_s0 * x0
	grad_x0 = grad_s0 * w0

w2):

Ranjay Krishna

Lecture 4 - 136



	s0 =
Forward pass: Compute output	s1 =
	s2 =
	s3 =

Add gate

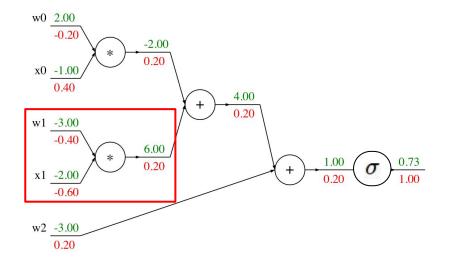
d

ef f(w0,	x0,	w1,	x1,	w2):
s0 = w0	* X(0		
s1 = w1	* X	1		
s2 = s0	+ s:	1		
s3 = s2	+ W2	2		
L = sign	noid	(s3)		

$grad_L = 1.0$
grad_s3 = grad_L * (1 - L) * L
grad_w2 = grad_s3
grad_s2 = grad_s3
grad_s0 = grad_s2
grad_s1 = grad_s2
grad_w1 = grad_s1 * x1
grad_x1 = grad_s1 * w1
grad_w0 = grad_s0 * x0
grad_x0 = grad_s0 * w0

Ranjay Krishna

Lecture 4 - 137



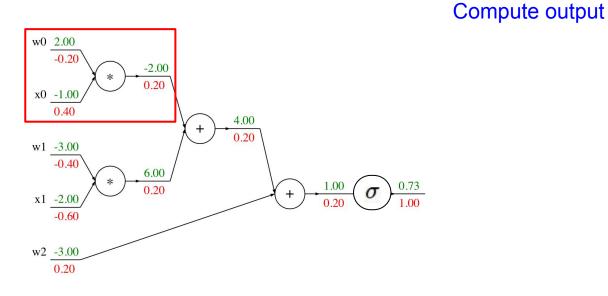
(<pre>lef f(w0, x0, w1, x1, w2):</pre>
	s0 = w0 * x0
Forward pass:	s1 = w1 * x1
Compute output	s2 = s0 + s1
Compute output	s3 = s2 + w2
	L = sigmoid(s3)

grad_L = 1.0
grad_s3 = grad_L * (1 - L) * L
grad_w2 = grad_s3
grad_s2 = grad_s3
grad_s0 = grad_s2
grad_s1 = grad_s2
grad_w1 = grad_s1 * x1
grad_x1 = grad_s1 * w1
grad_w0 = grad_s0 * x0
grad_x0 = grad_s0 * w0

Ranjay Krishna

Lecture 4 - 138

Multiply gate



Multiply gate

Forward pass:

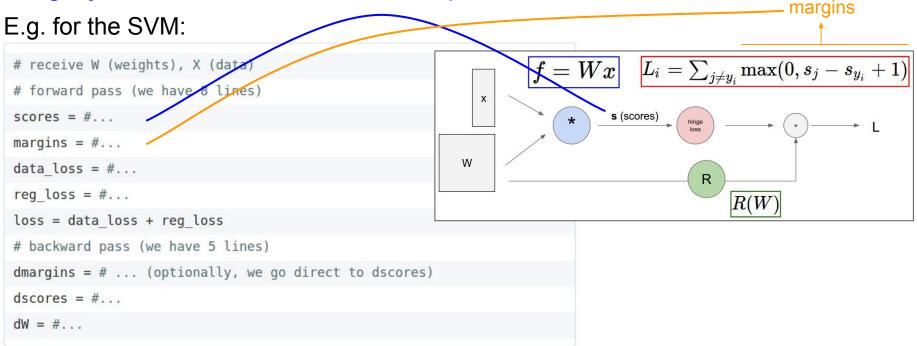
d	<mark>ef f</mark> (w0,	x0, w1, x1,	w2):
	s0 = w0		
	s1 = w1	* x1	
	s2 = s0	+ s1	
	s3 = s2		
	L = sign	noid(s3)	

Ranjay Krishna

Lecture 4 - 139

"Flat" Backprop: Do this for assignment 2!

Stage your forward/backward computation!



Ranjay Krishna

Lecture 4 - 140

"Flat" Backprop: Do this for assignment 1!

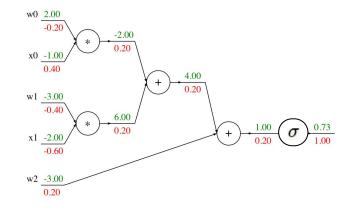
E.g. for two-layer neural net:

```
# receive W1,W2,b1,b2 (weights/biases), X (data)
# forward pass:
h1 = #... function of X,W1,b1
scores = #... function of h1,W2,b2
loss = #... (several lines of code to evaluate Softmax loss)
# backward pass:
dscores = #...
dh1, dW2, db2 = #...
dW1, db1 = #...
```

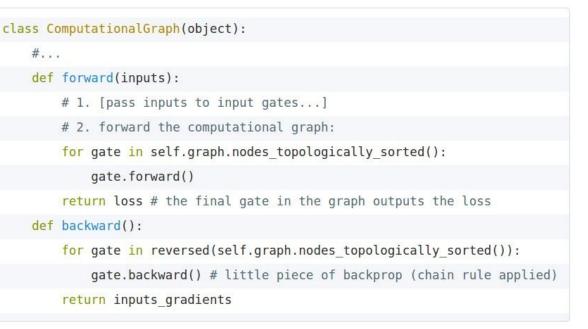
Ranjay Krishna

Lecture 4 - 141

Backprop Implementation: Modularized API



Graph (or Net) object (rough pseudo code)

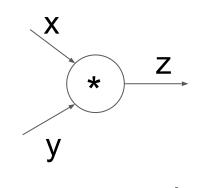


Ranjay Krishna

Lecture 4 - 142

Modularized implementation: forward / backward API

Gate / Node / Function object: Actual PyTorch code



(x,y,z are scalars)

<pre>class Multiply(torch.autograd.Function): @staticmethod</pre>	
<pre>def forward(ctx, x, y): ctx.save_for_backward(x, y) z = x * y return z</pre>	Need to stash some values for use in backward
<pre>@staticmethod def backward(ctx, grad_z): x, y = ctx.saved_tensors</pre>	_ Upstream gradient
<pre>grad_x = y * grad_z # dz/dx * dL/dz grad_y = x * grad_z # dz/dy * dL/dz return grad_x, grad_y</pre>	Multiply upstream and local gradients

Ranjay Krishna

Lecture 4 - 143

Example: PyTorch operators

pytorch / pytorch			1,221	🖈 Uns	tar 26,770	¥ Fork	6,340
⇔Code ③Issues 2,286 n	Pull requests 561 III Projects 4	🗉 Wiki 🔟 Ins	ights				
Tree: 517c7c9861 - pytorch / aten	/ src / THNN / generic /		Create r	iew file	Upload files	Find file	History
ezyang and facebook-github-bot C	anonicalize all includes in PyTorch. (#14849)			Lates	st commit 517	c7c9 on Dec	: 8, 2018
AbsCriterion.c	Canonicalize all includes in PyTorch. (#	14849)	4 months ago				
BCECriterion.c	Canonicalize all includes in PyTorch. (#	14849)				4 mor	nths ago
ClassNLLCriterion.c	Canonicalize all includes in PyTorch. (#	14849)				4 mor	nths ago
Col2Im.c	Canonicalize all includes in PyTorch. (#	14849)				4 mor	nths ago
ELU.c	Canonicalize all includes in PyTorch. (#	14849)				4 mor	nths ago
FeatureLPPooling.c	Canonicalize all includes in PyTorch. (#	14849)				4 mor	nths ago
GatedLinearUnit.c	Canonicalize all includes in PyTorch. (#	14849)				4 mor	nths ago
HardTanh.c	Canonicalize all includes in PyTorch. (#	14849)				4 mor	nths ago
Im2Col.c	Canonicalize all includes in PyTorch. (#	14849)				4 mor	nths ago
IndexLinear.c	Canonicalize all includes in PyTorch. (#	14849)				4 mor	nths ago
LeakyReLU.c	Canonicalize all includes in PyTorch. (#	14849)				4 mor	nths ago
LogSigmoid.c	Canonicalize all includes in PyTorch. (#	14849)				4 mor	nths ago
MSECriterion.c	Canonicalize all includes in PyTorch. (#	14849)				4 mor	nths ago
MultiLabelMarginCriterion.c	Canonicalize all includes in PyTorch. (#	14849)				4 mor	nths ago
MultiMarginCriterion.c	Canonicalize all includes in PyTorch. (#	14849)				4 mor	nths ago
RReLU.c	Canonicalize all includes in PyTorch. (#	14849)				4 mor	nths ago
Sigmoid.c	Canonicalize all includes in PyTorch. (#	14849)				4 mor	nths ago
SmoothL1Criterion.c	Canonicalize all includes in PyTorch. (#	14849)				4 mor	nths ago
SoftMarginCriterion.c	Canonicalize all includes in PyTorch. (#	14849)				4 mor	nths ago
SoftPlus.c	Canonicalize all includes in PyTorch. (#	14849)				4 mor	nths ago
SoftShrink.c	Canonicalize all includes in PyTorch. (#	14849)				4 mor	nths ago
SparseLinear.c	Canonicalize all includes in PyTorch. (#	14849)				4 mor	nths ago
SpatialAdaptiveAveragePooling.c	Canonicalize all includes in PyTorch. (#	14849)				4 mor	nths ago
SpatialAdaptiveMaxPooling.c	Canonicalize all includes in PyTorch. (#	14849)				4 mor	nths ago
SpatialAveragePooling.c	Canonicalize all includes in PyTorch. (#	14849)				4 mor	nths ago

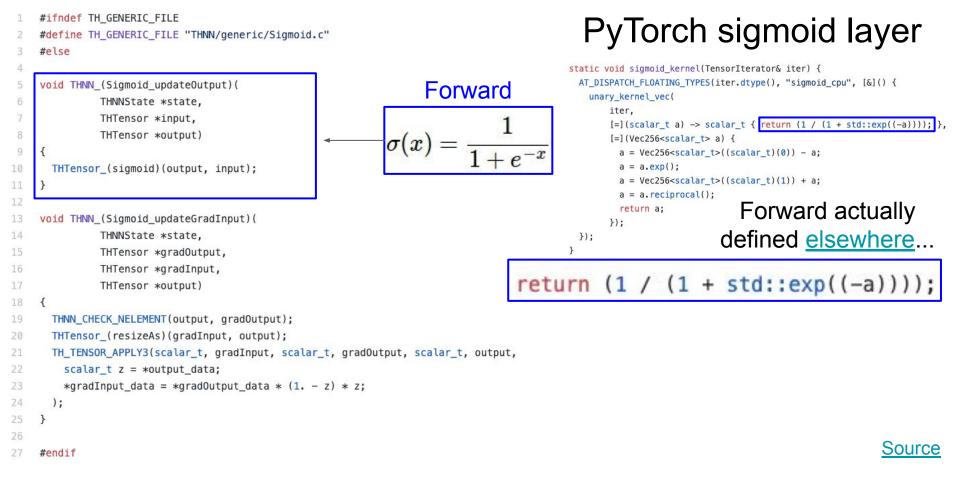
SpatialClassNLLCriterion.c	Canonicalize all includes in PyTorch. (#14849)	4 months age
SpatialConvolutionMM.c	Canonicalize all includes in PyTorch. (#14849)	4 months ag
SpatialDilatedConvolution.c	Canonicalize all includes in PyTorch. (#14849)	4 months age
SpatialDilatedMaxPooling.c	Canonicalize all includes in PyTorch. (#14849)	4 months ag
SpatialFractionalMaxPooling.c	Canonicalize all includes in PyTorch. (#14849)	4 months ag
SpatialFullDilatedConvolution.c	Canonicalize all includes in PyTorch. (#14849)	4 months ag
SpatialMaxUnpooling.c	Canonicalize all includes in PyTorch. (#14849)	4 months ag
SpatialReflectionPadding.c	Canonicalize all includes in PyTorch. (#14849)	4 months ag
SpatialReplicationPadding.c	Canonicalize all includes in PyTorch. (#14849)	4 months ag
SpatialUpSamplingBilinear.c	Canonicalize all includes in PyTorch. (#14849)	4 months ag
SpatialUpSamplingNearest.c	Canonicalize all includes in PyTorch. (#14849)	4 months ag
THNN.h	Canonicalize all includes in PyTorch. (#14849)	4 months ag
Tanh.c	Canonicalize all includes in PyTorch. (#14849)	4 months ag
TemporalReflectionPadding.c	Canonicalize all includes in PyTorch. (#14849)	4 months ag
TemporalReplicationPadding.c	Canonicalize all includes in PyTorch. (#14849)	4 months ag
TemporalRowConvolution.c	Canonicalize all includes in PyTorch. (#14849)	4 months ag
TemporalUpSamplingLinear.c	Canonicalize all includes in PyTorch. (#14849)	4 months ag
TemporalUpSamplingNearest.c	Canonicalize all includes in PyTorch. (#14849)	4 months ag
VolumetricAdaptiveAveragePoolin	Canonicalize all includes in PyTorch. (#14849)	4 months ag
VolumetricAdaptiveMaxPooling.c	Canonicalize all includes in PyTorch. (#14849)	4 months ag
VolumetricAveragePooling.c	Canonicalize all includes in PyTorch. (#14849)	4 months ag
VolumetricConvolutionMM.c	Canonicalize all includes in PyTorch. (#14849)	4 months ag
VolumetricDilatedConvolution.c	Canonicalize all includes in PyTorch. (#14849)	4 months ag
VolumetricDilatedMaxPooling.c	Canonicalize all includes in PyTorch. (#14849)	4 months ag
VolumetricFractionalMaxPooling.c	Canonicalize all includes in PyTorch. (#14849)	4 months ag
VolumetricFullDilatedConvolution.c	Canonicalize all includes in PyTorch. (#14849)	4 months ag
VolumetricMaxUnpooling.c	Canonicalize all includes in PyTorch. (#14849)	4 months ag
VolumetricReplicationPadding.c	Canonicalize all includes in PyTorch. (#14849)	4 months ag
VolumetricUpSamplingNearest.c	Canonicalize all includes in PyTorch. (#14849)	4 months ag
VolumetricUpSamplingTrilinear.c	Canonicalize all includes in PyTorch. (#14849)	4 months ag
linear_upsampling.h	Implement nn.functional.interpolate based on upsample. (#8591)	9 months ag
pooling_shape.h	Use integer math to compute output size of pooling operations (#14405)	4 months ag
) unfold.c	Canonicalize all includes in PyTorch. (#14849)	4 months ag

Ranjay Krishna

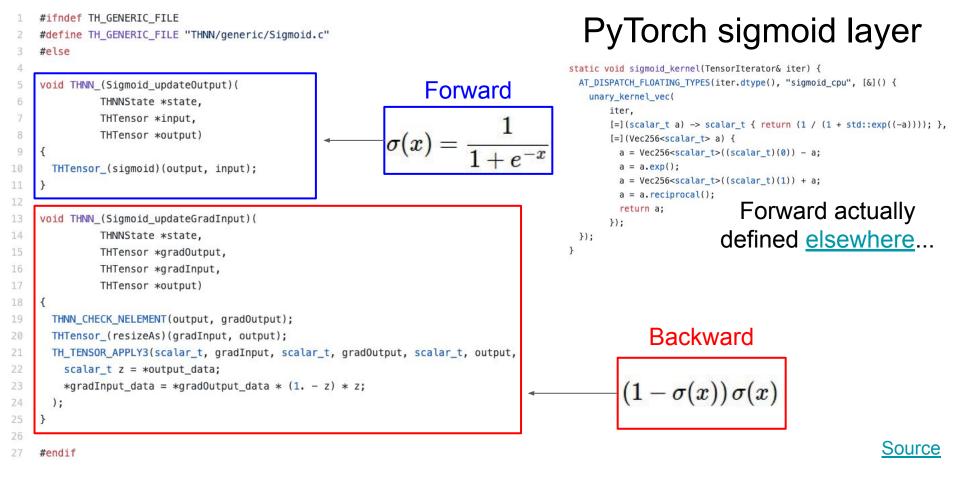
Lecture 4 - 144

```
#ifndef TH GENERIC FILE
                                                                                          PyTorch sigmoid layer
    #define TH_GENERIC_FILE "THNN/generic/Sigmoid.c"
    #else
    void THNN (Sigmoid updateOutput)(
                                                                 Forward
              THNNState *state,
              THTensor *input,
              THTensor *output)
                                                           \sigma(x) =
 9
      THTensor_(sigmoid)(output, input);
    void THNN_(Sigmoid_updateGradInput)(
14
              THNNState *state,
              THTensor *gradOutput,
              THTensor *gradInput,
              THTensor *output)
18
    {
19
      THNN_CHECK_NELEMENT(output, gradOutput);
      THTensor_(resizeAs)(gradInput, output);
20
21
      TH_TENSOR_APPLY3(scalar_t, gradInput, scalar_t, gradOutput, scalar_t, output,
22
        scalar_t z = *output_data;
        *gradInput_data = *gradOutput_data * (1. - z) * z;
23
      );
24
25
    3
                                                                                                                                         Source
    #endif
```

Lecture 4 - 145



Lecture 4 - 146



Lecture 4 - 147

Summary for today:

- (Fully-connected) Neural Networks are stacks of linear functions and nonlinear activation functions; they have much more representational power than linear classifiers
- backpropagation = recursive application of the chain rule along a computational graph to compute the gradients of all inputs/parameters/intermediates
- implementations maintain a graph structure, where the nodes implement the forward() / backward() API
- **forward**: compute result of an operation and save any intermediates needed for gradient computation in memory
- **backward**: apply the chain rule to compute the gradient of the loss function with respect to the inputs

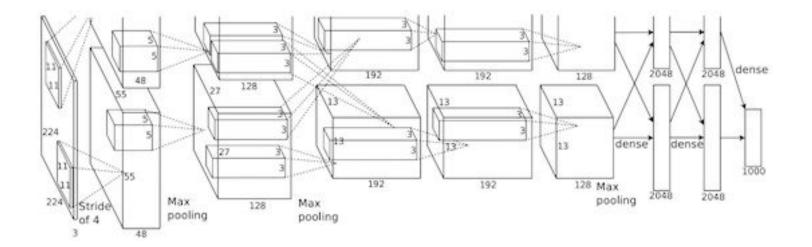
Ranjay Krishna

So far: backprop with scalars

Next time: vector-valued functions!

Lecture 4 - 149

Next Time: Convolutional neural networks



Ranjay Krishna

Lecture 4 - 150

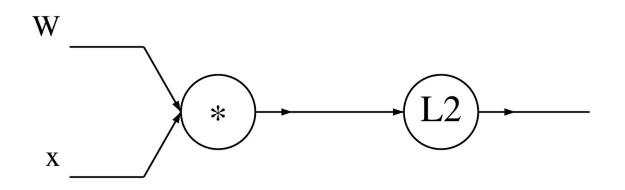
A vectorized example: $f(x, W) = ||W \cdot x||^2 = \sum_{i=1}^{n} (W \cdot x)_i^2$

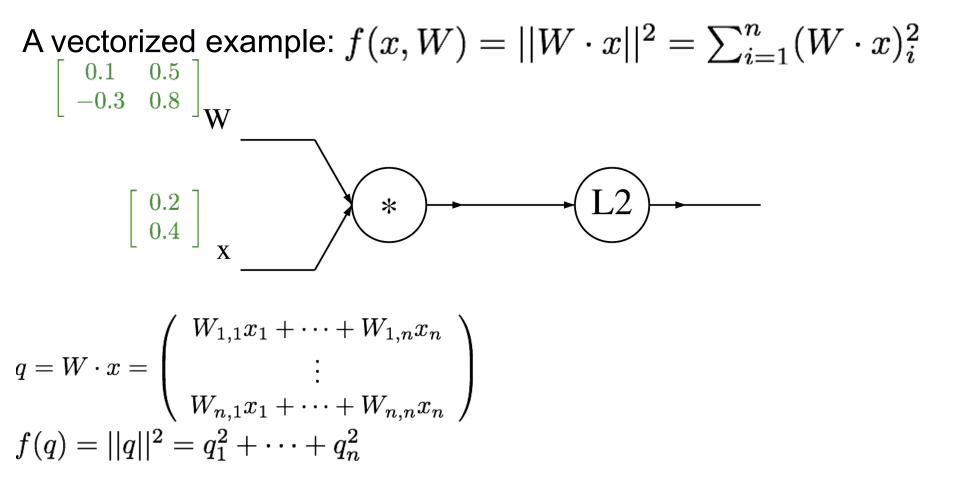
Ranjay Krishna

Lecture 4 - 151

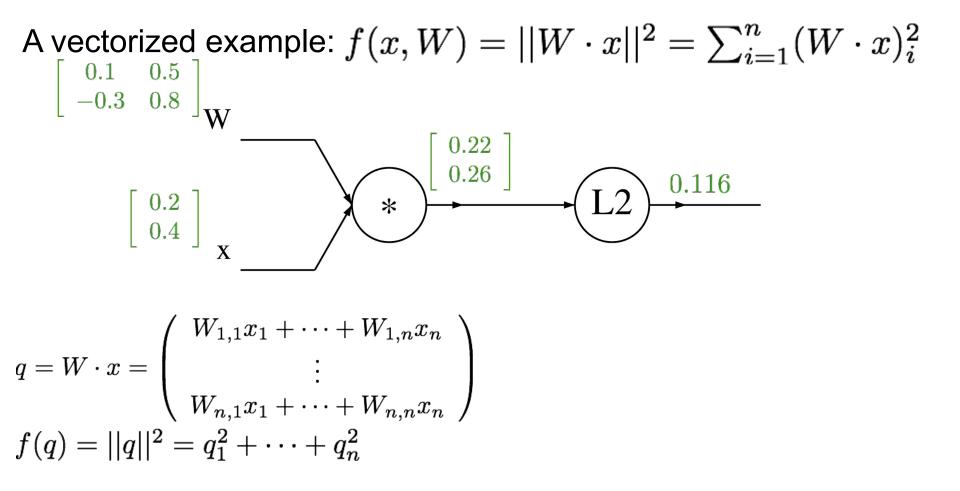
A vectorized example: $f(x, W) = ||W \cdot x||^2 = \sum_{i=1}^n (W \cdot x)_i^2$ $\bigcup_{i \in \mathbb{R}^n \in \mathbb{R}^{n \times n}} ||W \cdot x||^2 = \sum_{i=1}^n (W \cdot x)_i^2$

A vectorized example: $f(x, W) = ||W \cdot x||^2 = \sum_{i=1}^{n} (W \cdot x)_i^2$

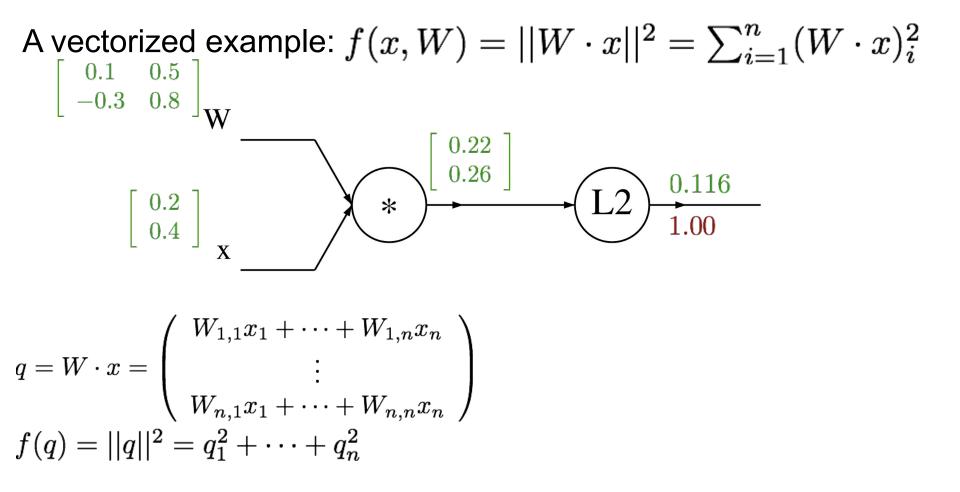




Lecture 4 - 154



Lecture 4 - 155



Lecture 4 - 156

A vectorized example:
$$f(x, W) = ||W \cdot x||^2 = \sum_{i=1}^{n} (W \cdot x)_i^2$$

 $\begin{bmatrix} 0.1 & 0.5 \\ -0.3 & 0.8 \end{bmatrix}_W$
 $\begin{bmatrix} 0.2 \\ 0.4 \end{bmatrix}_X$
 $q = W \cdot x = \begin{pmatrix} W_{1,1}x_1 + \dots + W_{1,n}x_n \\ \vdots \\ W_{n,1}x_1 + \dots + W_{n,n}x_n \end{pmatrix}$
 $f(q) = ||q||^2 = q_1^2 + \dots + q_n^2$
 $\frac{\partial f}{\partial q_i} = 2q_i$
 $\nabla_q f = 2q$

Lecture 4 - 157

A vectorized example:
$$f(x, W) = ||W \cdot x||^2 = \sum_{i=1}^{n} (W \cdot x)_i^2$$

$$\begin{bmatrix} 0.1 & 0.5 \\ -0.3 & 0.8 \end{bmatrix}_W$$

$$\begin{bmatrix} 0.2 \\ 0.4 \end{bmatrix}_x$$

$$\begin{bmatrix} 0.2 \\ 0.4 \end{bmatrix}_x$$

$$\begin{bmatrix} 0.2 \\ 0.4 \end{bmatrix}_x$$

$$\begin{bmatrix} 0.2 \\ 0.4 \\ 0.52 \end{bmatrix}$$

$$\begin{bmatrix} 0.2 \\ 0.4 \\ 0.52 \end{bmatrix}$$

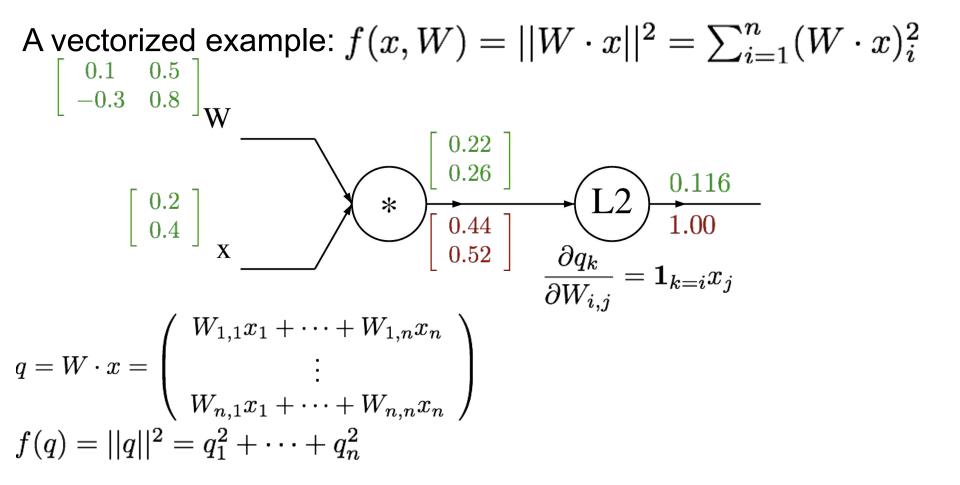
$$\begin{bmatrix} 0.2 \\ 0.116 \\ 1.00 \end{bmatrix}$$

$$\frac{\partial f}{\partial q_i} = 2q_i$$

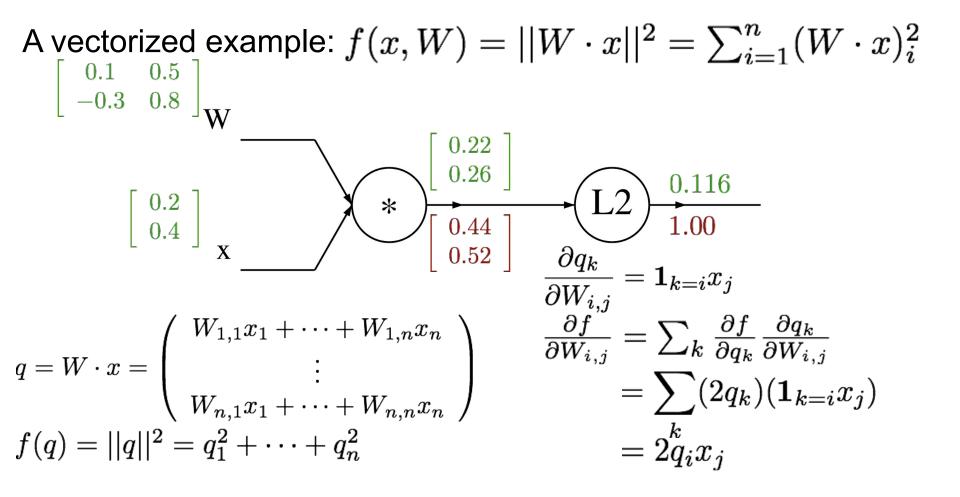
$$\begin{bmatrix} 0 \\ 0.4 \\ 0.52 \end{bmatrix}$$

$$f(q) = ||q||^2 = q_1^2 + \dots + q_n^2$$

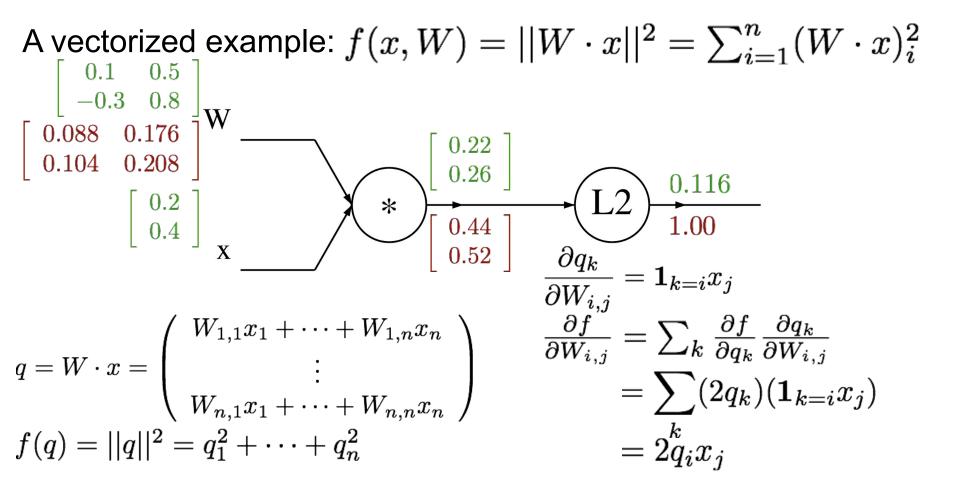
Lecture 4 - 158



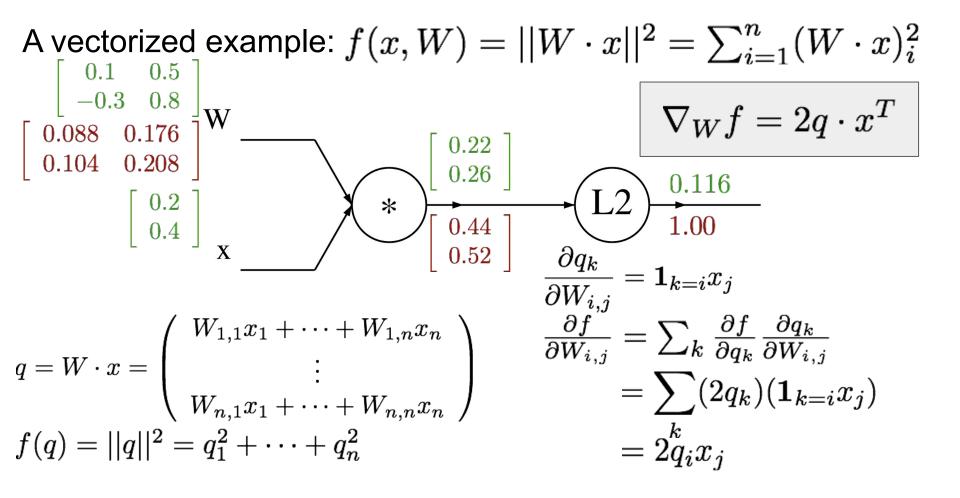
Lecture 4 - 159



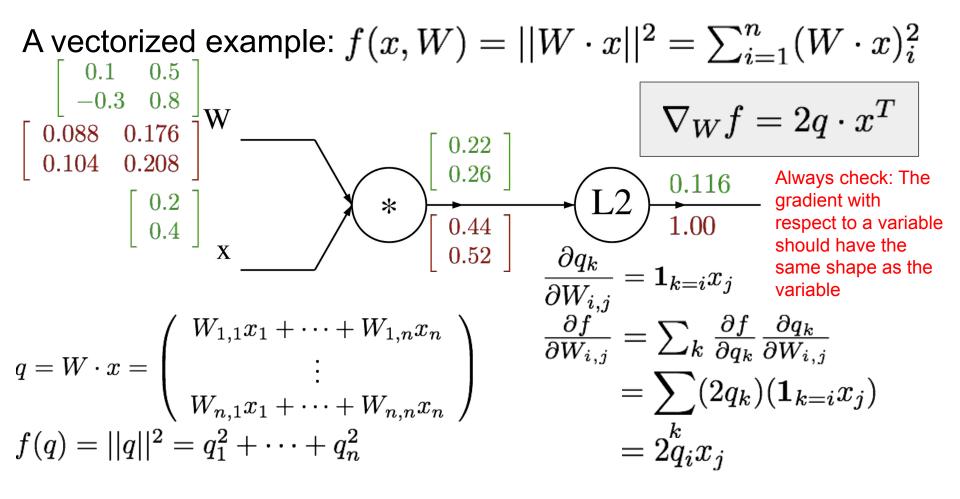
Lecture 4 - 160



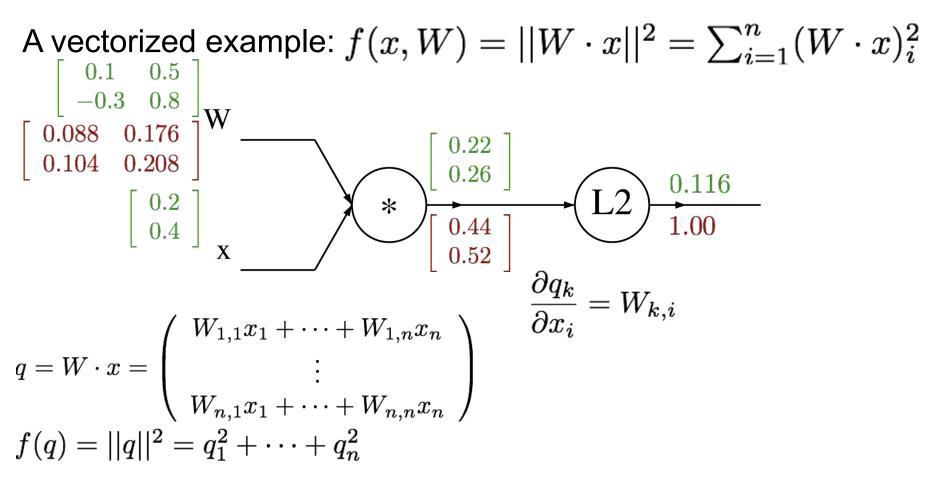
Lecture 4 - 161



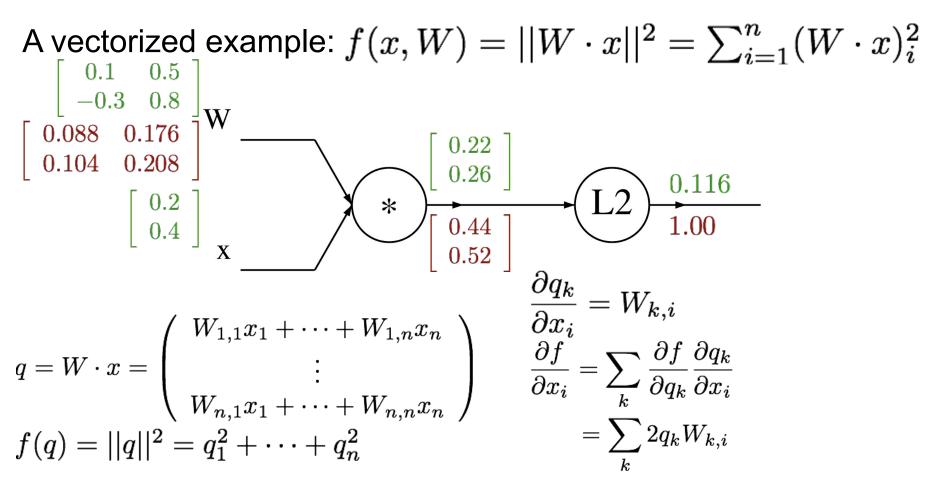
Lecture 4 - 162



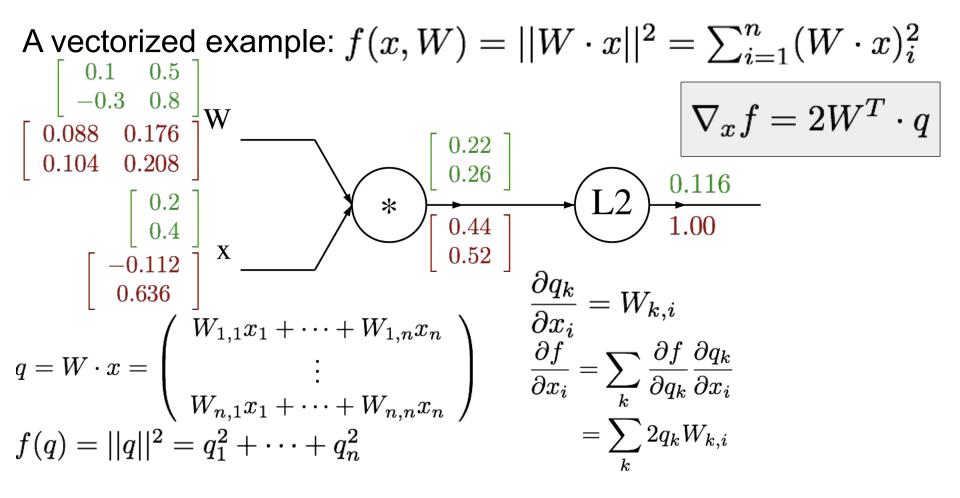
Lecture 4 - 163



Lecture 4 - 164

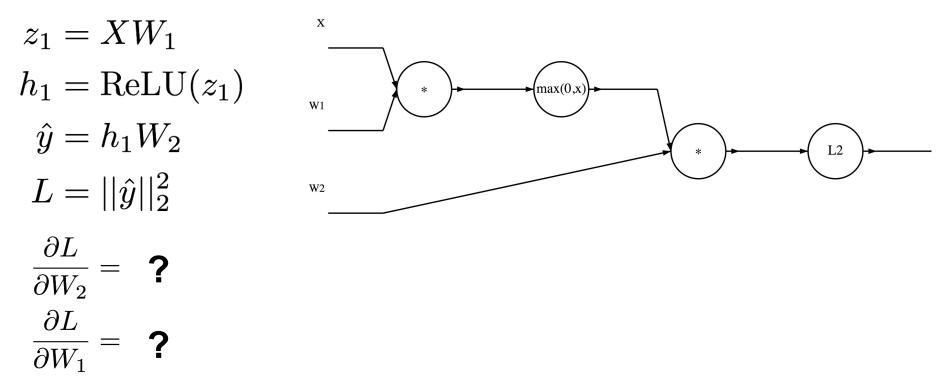


Lecture 4 - 165



Lecture 4 - 166

In discussion section: A matrix example...



Ranjay Krishna

Lecture 4 - 167