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Lecture 3:
Loss Functions
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- Due tonight by 11:59pm
- Easy assignment
- Hardest part is learning how to use colab and how to 

submit on gradescope
- Worth 0% of your grade
- Used to evaluate how prepared you are to take this 

course

Administrative: Assignment 0
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Due 4/16 11:59pm

- K-Nearest Neighbor
- Linear classifiers: SVM, Softmax

Administrative: Assignment 1
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Administrative: EdStem

Please make sure to check and read all pinned EdStem posts.
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This Friday 9:30-10:30am and again 12:30-1:30pm 

Project Design & Backprop

Administrative: Fridays
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Project proposal due 4/29 11:59pm 

“Is X a valid project for 493G1?” 

- Anything related to deep learning or computer vision
- Maximum of 3 students per team
- Make a EdStem private post or come to TA Office Hours

More info on the website

Administrative: Course Project
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cat
dog
bird
deer
truck

Last time: Image Classification: A core task in Computer Vision

7

(assume given a set of labels)
{dog, cat, truck, plane, ...}

This image by Nikita is 
licensed under CC-BY 2.0

https://www.flickr.com/photos/malfet/1428198050
https://www.flickr.com/photos/malfet/
https://creativecommons.org/licenses/by/2.0/
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Recall from last time: Challenges of recognition

8

This image is CC0 1.0 public domain This image by Umberto Salvagnin 
is licensed under CC-BY 2.0 This image by jonsson is licensed 

under CC-BY 2.0

Illumination Deformation Occlusion

This image is CC0 1.0 public domain

Clutter

This image is CC0 1.0 public domain

Intraclass Variation

Viewpoint

https://pixabay.com/en/cat-cat-in-the-dark-eyes-staring-987528/
https://creativecommons.org/publicdomain/zero/1.0/deed.en
https://www.flickr.com/photos/34745138@N00/4068996309
https://www.flickr.com/photos/kaibara/
https://creativecommons.org/licenses/by/2.0/
https://commons.wikimedia.org/wiki/File:New_hiding_place_(4224719255).jpg
https://www.flickr.com/people/81571077@N00?rb=1
https://creativecommons.org/licenses/by/2.0/
https://pixabay.com/en/cat-camouflage-autumn-fur-animals-408728/
https://creativecommons.org/publicdomain/zero/1.0/deed.en
http://maxpixel.freegreatpicture.com/Cat-Kittens-Free-Float-Kitten-Rush-Cat-Puppy-555822
https://creativecommons.org/publicdomain/zero/1.0/deed.en
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Recall from last time: data-driven approach, kNN

9

1-NN classifier 5-NN classifier

train test

train testvalidation
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Recall from last time: Linear Classifier

10

f(x,W) = Wx + b
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Interpreting a Linear Classifier: Visual Viewpoint
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Example with an image with 4 pixels, and 3 classes (cat/dog/ship)

Input image

0.2 -0.5

0.1 2.0

1.5 1.3

2.1 0.0

0 .25

0.2 -0.3

1.1 3.2 -1.2

W

b

f(x,W) = Wx

Algebraic Viewpoint

-96.8Score 437.9 61.95

Visual Viewpoint
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Interpreting a Linear Classifier: Geometric Viewpoint
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f(x,W) = Wx + b

Array of 32x32x3 numbers
(3072 numbers total)

Cat image by Nikita is licensed under CC-BY 2.0Plot created using Wolfram Cloud

https://www.flickr.com/photos/malfet/1428198050
https://www.flickr.com/photos/malfet/
https://creativecommons.org/licenses/by/2.0/
https://sandbox.open.wolframcloud.com/app/objects/26bc9cd9-50a8-42a9-8dbf-7a265d9e79c8
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Linear Classifier
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Parametric Approach

15

Image

f(x,W) 10 numbers giving 
class scores

Array of 32x32x3 numbers
(3072 numbers total)

parameters
or weights

W
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Parametric Approach: Linear Classifier

16

Image

parameters
or weights

W

f(x,W) 10 numbers giving 
class scores

Array of 32x32x3 numbers
(3072 numbers total)

f(x,W) = Wx
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Parametric Approach: Linear Classifier

17

Image

parameters
or weights

W

f(x,W) 10 numbers giving 
class scores

Array of 32x32x3 numbers
(3072 numbers total)

f(x,W) = Wx
10x1 10x3072

3072x1
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Parametric Approach: Linear Classifier

18

Image

parameters
or weights

W

f(x,W) 10 numbers giving 
class scores

Array of 32x32x3 numbers
(3072 numbers total)

f(x,W) = Wx + b
3072x1

10x1 10x3072
10x1
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This image is CC0 1.0 public domain

Neural Network

Linear 
classifiers

http://maxpixel.freegreatpicture.com/Play-Wooden-Blocks-Tower-Kindergarten-Child-Toys-1864718
https://creativecommons.org/publicdomain/zero/1.0/deed.en
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[Krizhevsky et al. 2012]

[He et al. 2015]

Linear layers
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Recall CIFAR10

21

50,000 training images
   each image is 32x32x3

10,000 test images.
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Algebraic viewpoint: Example with an image with 4 pixels, and 3 
classes (cat/dog/ship)

Input image

56

231

24

2

56 231

24 2

Flatten tensors into a vector
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Algebraic viewpoint: Example with an image with 4 pixels, and 3 
classes (cat/dog/ship)

0.2 -0.5 0.1 2.0

1.5 1.3 2.1 0.0

0 0.25 0.2 -0.3

W
Input image

56

231

24

2

56 231

24 2

1.1

3.2

-1.2

+
-96.8

437.9

61.95

=
Cat score

Dog score

Ship score

b

Flatten tensors into a vector
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Algebraic viewpoint: Example with an image with 4 pixels, and 3 
classes (cat/dog/ship)

0.2 -0.5 0.1 2.0

1.5 1.3 2.1 0.0

0 0.25 0.2 -0.3

W
Input image

56

231

24

2

56 231

24 2

1.1

3.2

-1.2

+
-96.8

437.9

61.95

=
Cat score

Dog score

Ship score

b

Flatten tensors into a vector

(2,2)

(3,4)
(4,)

(3,)

(3,)
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Algebraic viewpoint: Example with an image with 4 pixels, and 3 
classes (cat/dog/ship)

0.2 -0.5 0.1 2.0

1.5 1.3 2.1 0.0

0 0.25 0.2 -0.3

W
Input image

56

231

24

2

56 231

24 2

1.1

3.2

-1.2

+
-96.8

437.9

61.95

=
Cat score

Dog score

Ship score

b

Flatten tensors into a vector

Likelihood of being a cat
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Algebraic viewpoint: Example with an image with 4 pixels, and 3 
classes (cat/dog/ship)

0.2 -0.5 0.1 2.0

1.5 1.3 2.1 0.0

0 0.25 0.2 -0.3

W
Input image

56

231

24

2

56 231

24 2

1.1

3.2

-1.2

+
-96.8

437.9

61.95

=
Cat score

Dog score

Ship score

b

Flatten tensors into a vector

Cat template
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Algebraic viewpoint: Bias trick to simply computation

0.2 -0.5 0.1 2.0

1.5 1.3 2.1 0.0

0 0.25 0.2 -0.3

W;b
Input image

56

231

24

2

1

56 231

24 2

1.1

3.2

-1.2

-96.8

437.9

61.95

=
Cat score

Dog score

Ship score

Flatten tensors into a vector

(3,5)
(5,)
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Visual Viewpoint: learning templates

28

Algebraic viewpoint:
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Visual Viewpoint: learning templates

29
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Visual Viewpoint: learning templates

30
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Visual Viewpoint: learning templates
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Visual Viewpoint: learning templates

32
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Geometric Viewpoint: linear decision boundaries

33

f(x,W) = Wx + b

Array of 32x32x3 numbers
(3072 numbers total)

Cat image by Nikita is licensed under CC-BY 2.0Plot created using Wolfram Cloud

https://www.flickr.com/photos/malfet/1428198050
https://www.flickr.com/photos/malfet/
https://creativecommons.org/licenses/by/2.0/
https://sandbox.open.wolframcloud.com/app/objects/26bc9cd9-50a8-42a9-8dbf-7a265d9e79c8
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Geometric Viewpoint: linear decision boundaries

34

f(x,W) = Wx + b

Array of 32x32x3 numbers
(3072 numbers total)

Cat image by Nikita is licensed under CC-BY 2.0Plot created using Wolfram Cloud

https://www.flickr.com/photos/malfet/1428198050
https://www.flickr.com/photos/malfet/
https://creativecommons.org/licenses/by/2.0/
https://sandbox.open.wolframcloud.com/app/objects/26bc9cd9-50a8-42a9-8dbf-7a265d9e79c8
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Geometric Viewpoint: linear decision boundaries

35

f(x,W) = Wx + b

Array of 32x32x3 numbers
(3072 numbers total)

Cat image by Nikita is licensed under CC-BY 2.0Plot created using Wolfram Cloud

https://www.flickr.com/photos/malfet/1428198050
https://www.flickr.com/photos/malfet/
https://creativecommons.org/licenses/by/2.0/
https://sandbox.open.wolframcloud.com/app/objects/26bc9cd9-50a8-42a9-8dbf-7a265d9e79c8
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Hard cases for a linear classifier

36

Class 1: 
First and third quadrants

Class 2: 
Second and fourth quadrants

Class 1: 
1 <= L2 norm <= 2

Class 2:
Everything else

Class 1: 
Three modes

Class 2:
Everything else
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Recall the Minsky report 1969 from last lecture
Unable to learn the XNOR function

37
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Three viewpoints for interpreting linear classifiers

38
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Next: How to train the weights in a Linear Classifier 

39

1. Define a loss function that quantifies our unhappiness with the scores 
across the training data.

2. Come up with a way of efficiently finding the parameters that minimize the 
loss function. (optimization)

TODO:
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Example output for CIFAR-10:

40

Cat image by Nikita is licensed under CC-BY 2.0; Car image is CC0 1.0 public domain; Frog image is in the public domain

● A random W produces 
the following 10 scores 
for the 3 images to the 
left. 

● 10 scores because there 
are 10 classes. 

● First column bad because 
dog is highest. 

● Second column good. 
● Third column bad 

because frog is highest

https://www.flickr.com/photos/malfet/1428198050
https://www.flickr.com/photos/malfet/
https://creativecommons.org/licenses/by/2.0/
https://www.pexels.com/photo/audi-cabriolet-car-red-2568/
https://creativecommons.org/publicdomain/zero/1.0/
https://en.wikipedia.org/wiki/File:Red_eyed_tree_frog_edit2.jpg
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cat

frog

car

3.2
5.1
-1.7

4.9
1.3

2.0 -3.1
2.5
2.2

Suppose: 3 training examples, 3 classes.
With some W the scores                           are:
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cat

frog

car

3.2
5.1
-1.7

4.9
1.3

2.0 -3.1
2.5
2.2

Suppose: 3 training examples, 3 classes.
With some W the scores                           are:

A loss function tells how good 
our current classifier is
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cat

frog

car

3.2
5.1
-1.7

4.9
1.3

2.0 -3.1
2.5
2.2

Suppose: 3 training examples, 3 classes.
With some W the scores                           are:

A loss function tells how good 
our current classifier is

Given a dataset of examples

Where       is image and 
                  is (integer) label
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cat

frog

car

3.2
5.1
-1.7

4.9
1.3

2.0 -3.1
2.5
2.2

Suppose: 3 training examples, 3 classes.
With some W the scores                           are:

A loss function tells how good 
our current classifier is

Given a dataset of examples

Where       is image and 
                  is (integer) label

Loss over the dataset is a 
average of loss over examples:
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cat

frog

car

3.2
5.1
-1.7

4.9
1.3

2.0 -3.1
2.5
2.2

Suppose: 3 training examples, 3 classes.
With some W the scores                           are:

Multiclass SVM loss:

Given an example
where        is the image and
where       is the (integer) label,

and using the shorthand for the 
scores vector:

the SVM loss has the form:
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cat

frog

car

3.2
5.1
-1.7

4.9
1.3

2.0 -3.1
2.5
2.2

Suppose: 3 training examples, 3 classes.
With some W the scores                           are:

Multiclass SVM loss:

Given an example
where        is the image and
where       is the (integer) label,

and using the shorthand for the 
scores vector:

the SVM loss has the form:
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cat

frog

car

3.2
5.1
-1.7

4.9
1.3

2.0 -3.1
2.5
2.2

Suppose: 3 training examples, 3 classes.
With some W the scores                           are:

Multiclass SVM loss:

Given an example
where        is the image and
where       is the (integer) label,

and using the shorthand for the 
scores vector:

the SVM loss has the form:
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cat

frog

car

3.2
5.1
-1.7

4.9
1.3

2.0 -3.1
2.5
2.2

Suppose: 3 training examples, 3 classes.
With some W the scores                           are:

Multiclass SVM loss:

Given an example
where        is the image and
where       is the (integer) label,

and using the shorthand for the 
scores vector:

the SVM loss has the form:
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cat

frog

car

3.2
5.1
-1.7

4.9
1.3

2.0 -3.1
2.5
2.2

Suppose: 3 training examples, 3 classes.
With some W the scores                           are:

Given an example
where        is the image and
where       is the (integer) label,

and using the shorthand for the 
scores vector:

the SVM loss has the form:

Interpreting Multiclass SVM loss:

Loss

difference in 
scores between 
correct and 
incorrect class
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cat

frog

car

3.2
5.1
-1.7

4.9
1.3

2.0 -3.1
2.5
2.2

Suppose: 3 training examples, 3 classes.
With some W the scores                           are:

Given an example
where        is the image and
where       is the (integer) label,

and using the shorthand for the 
scores vector:

the SVM loss has the form:

Interpreting Multiclass SVM loss:

difference in 
scores between 
correct and 
incorrect class

Loss
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cat

frog

car

3.2
5.1
-1.7

4.9
1.3

2.0 -3.1
2.5
2.2

Suppose: 3 training examples, 3 classes.
With some W the scores                           are:

Given an example
where        is the image and
where       is the (integer) label,

and using the shorthand for the 
scores vector:

the SVM loss has the form:

Interpreting Multiclass SVM loss:

difference in 
scores between 
correct and 
incorrect class

Loss
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cat

frog

car

3.2
5.1
-1.7

4.9
1.3

2.0 -3.1
2.5
2.2

Suppose: 3 training examples, 3 classes.
With some W the scores                           are:

Multiclass SVM loss:

Given an example
where        is the image and
where       is the (integer) label,

and using the shorthand for the 
scores vector:

the SVM loss has the form:
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= max(0, 5.1 - 3.2 + 1) 
   +max(0, -1.7 - 3.2 + 1)

53

cat

frog

car

3.2
5.1
-1.7

4.9
1.3

2.0 -3.1
2.5
2.2

Suppose: 3 training examples, 3 classes.
With some W the scores                           are:

Multiclass SVM loss:

Given an example
where        is the image and
where       is the (integer) label,

and using the shorthand for the 
scores vector:

the SVM loss has the form:

Losses: 2.9
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= max(0, 5.1 - 3.2 + 1) 
   +max(0, -1.7 - 3.2 + 1)

54

cat

frog

car

3.2
5.1
-1.7

4.9
1.3

2.0 -3.1
2.5
2.2

Suppose: 3 training examples, 3 classes.
With some W the scores                           are:

Multiclass SVM loss:

Given an example
where        is the image and
where       is the (integer) label,

and using the shorthand for the 
scores vector:

the SVM loss has the form:

Losses: 2.9
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cat

frog

car

3.2
5.1
-1.7

4.9
1.3

2.0 -3.1
2.5
2.2

Suppose: 3 training examples, 3 classes.
With some W the scores                           are:

Multiclass SVM loss:

Given an example
where        is the image and
where       is the (integer) label,

and using the shorthand for the 
scores vector:

the SVM loss has the form:

= max(0, 5.1 - 3.2 + 1) 
   +max(0, -1.7 - 3.2 + 1)
= max(0, 2.9) + max(0, -3.9)

Losses: 2.9
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cat

frog

car

3.2
5.1
-1.7

4.9
1.3

2.0 -3.1
2.5
2.2

Suppose: 3 training examples, 3 classes.
With some W the scores                           are:

Multiclass SVM loss:

Given an example
where        is the image and
where       is the (integer) label,

and using the shorthand for the 
scores vector:

the SVM loss has the form:

= max(0, 5.1 - 3.2 + 1) 
   +max(0, -1.7 - 3.2 + 1)
= max(0, 2.9) + max(0, -3.9)
= 2.9 + 0
= 2.9Losses: 2.9
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cat

frog

car

3.2
5.1
-1.7

4.9
1.3

2.0 -3.1
2.5
2.2

Suppose: 3 training examples, 3 classes.
With some W the scores                           are:

Multiclass SVM loss:

Given an example
where        is the image and
where       is the (integer) label,

and using the shorthand for the 
scores vector:

the SVM loss has the form:

Losses:

= max(0, 1.3 - 4.9 + 1) 
   +max(0, 2.0 - 4.9 + 1)
= max(0, -2.6) + max(0, -1.9)
= 0 + 0
= 002.9
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cat

frog

car

3.2
5.1
-1.7

4.9
1.3

2.0 -3.1
2.5
2.2

Suppose: 3 training examples, 3 classes.
With some W the scores                           are:

Multiclass SVM loss:

Given an example
where        is the image and
where       is the (integer) label,

and using the shorthand for the 
scores vector:

the SVM loss has the form:

Losses:

= max(0, 2.2 - (-3.1) + 1) 
   +max(0, 2.5 - (-3.1) + 1)
= max(0, 6.3) + max(0, 6.6)
= 6.3 + 6.6
= 12.912.92.9 0
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cat

frog

car

3.2
5.1
-1.7

4.9
1.3

2.0 -3.1
2.5
2.2

Suppose: 3 training examples, 3 classes.
With some W the scores                           are:

Multiclass SVM loss:

Given an example
where        is the image and
where       is the (integer) label,

and using the shorthand for the 
scores vector:

the SVM loss has the form:

Loss over full dataset is average:

Losses: 12.92.9 0 L = (2.9 + 0 + 12.9)/3 
   = 5.27
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Q1: What happens to loss if car 
scores decrease by 0.5 for this 
training example?

60

cat

frog

car 4.9
1.3

2.0

Suppose: 3 training examples, 3 classes.
With some W the scores                           are:

Multiclass SVM loss:

Losses: 0
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Q1: What happens to loss if car 
scores decrease by 0.5 for this 
training example?

Q2: what is the min/max possible 
SVM loss Li?

61

cat

frog

car 4.9
1.3

2.0

Suppose: 3 training examples, 3 classes.
With some W the scores                           are:

Multiclass SVM loss:

Losses: 0
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cat

frog

car 4.9
1.3

2.0

Suppose: 3 training examples, 3 classes.
With some W the scores                           are:

Multiclass SVM loss:

Losses: 0

Q1: What happens to loss if car 
scores decrease by 0.5 for this 
training example?

Q2: what is the min/max possible 
SVM loss Li?

Q3: At initialization W is small so 
all s ≈ 0. What is the loss Li, 
assuming N examples and C 
classes?
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cat

frog

car

3.2
5.1
-1.7

4.9
1.3

2.0 -3.1
2.5
2.2

Suppose: 3 training examples, 3 classes.
With some W the scores                           are:

Multiclass SVM loss:

Given an example
where        is the image and
where       is the (integer) label,

and using the shorthand for the 
scores vector:

the SVM loss has the form:

Q4: What if the sum 
was over all classes? 
(including j = y_i)Losses: 12.92.9 0
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cat

frog

car

3.2
5.1
-1.7

4.9
1.3

2.0 -3.1
2.5
2.2

Suppose: 3 training examples, 3 classes.
With some W the scores                           are:

Multiclass SVM loss:

Given an example
where        is the image and
where       is the (integer) label,

and using the shorthand for the 
scores vector:

the SVM loss has the form:

Q5: What if we used 
mean instead of 
sum?Losses: 12.92.9 0
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cat

frog

car

3.2
5.1
-1.7

4.9
1.3

2.0 -3.1
2.5
2.2

Suppose: 3 training examples, 3 classes.
With some W the scores                           are:

Multiclass SVM loss:

Given an example
where        is the image and
where       is the (integer) label,

and using the shorthand for the 
scores vector:

the SVM loss has the form:

Q6: What if we used

Losses: 12.92.9 0
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cat

frog

car

3.2
5.1
-1.7

4.9
1.3

2.0 -3.1
2.5
2.2

Suppose: 3 training examples, 3 classes.
With some W the scores                           are:

Multiclass SVM loss:

Given an example
where        is the image and
where       is the (integer) label,

and using the shorthand for the 
scores vector:

the SVM loss has the form:

Q6: What if we used

Losses: 12.92.9 0

Given an example
where        is the image and
where       is the (integer) label,

and using the shorthand for the 
scores vector:

the SVM loss has the form:

difference in 
scores between 
correct and 
incorrect class

Loss
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Multiclass SVM Loss: Example code

67

# First calculate scores
# Then calculate the margins sj - syi + 1
# only sum j is not yi, so when j = yi, set to zero.
# sum across all j
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Q7. Suppose that we found a W such that L = 0. 
Is this W unique? 

68
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E.g. Suppose that we found a W such that L = 0. 
Is this W unique?

No! 2W is also has L = 0! 
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Suppose: 3 training examples, 3 classes.
With some W the scores                           are:

cat

frog

car

3.2
5.1
-1.7

4.9
1.3

2.0 -3.1
2.5
2.2

= max(0, 1.3 - 4.9 + 1) 
   +max(0, 2.0 - 4.9 + 1)
= max(0, -2.6) + max(0, -1.9)
= 0 + 0
= 0

0Losses: 2.9

Before:

With W twice as large:
= max(0, 2.6 - 9.8 + 1) 
   +max(0, 4.0 - 9.8 + 1)
= max(0, -6.2) + max(0, -4.8)
= 0 + 0
= 0



Ranjay Krishna Lecture 3 - April 08, 202571

E.g. Suppose that we found a W such that L = 0. 
Is this W unique?

No! 2W is also has L = 0! 
How do we choose between W and 2W?
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Regularization

72

Data loss: Model predictions 
should match training data
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Regularization

73

Data loss: Model predictions 
should match training data

Regularization: Prevent the model 
from doing too well on training data



Ranjay Krishna Lecture 3 - April 08, 2025

Regularization intuition: toy example training data

74

x

y
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Regularization intuition: Prefer Simpler Models

75

x

y
f1 f2
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Regularization: Prefer Simpler Models

76

x

y
f1 f2

Regularization pushes against fitting the data 
too well so we don’t fit noise in the data
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Regularization

77

Data loss: Model predictions 
should match training data

Regularization: Prevent the model 
from doing too well on training data

Occam’s Razor: Among multiple 
competing hypotheses, the simplest is the 
best, William of Ockham 1285-1347
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Regularization

78

Data loss: Model predictions 
should match training data

Regularization: Prevent the model 
from doing too well on training data

= regularization strength
(hyperparameter)
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Regularization

79

Data loss: Model predictions 
should match training data

Regularization: Prevent the model 
from doing too well on training data

= regularization strength
(hyperparameter)

Simple examples
L2 regularization: 
L1 regularization: 
Elastic net (L1 + L2): 
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Regularization

80

Data loss: Model predictions 
should match training data

Regularization: Prevent the model 
from doing too well on training data

= regularization strength
(hyperparameter)

Simple examples
L2 regularization: 
L1 regularization: 
Elastic net (L1 + L2): 

More complex:
Dropout
Batch normalization, layer norm
Stochastic depth, fractional pooling, etc



Ranjay Krishna Lecture 3 - April 08, 2025

Regularization

81

Data loss: Model predictions 
should match training data

Regularization: Prevent the model 
from doing too well on training data

= regularization strength
(hyperparameter)

Why regularize?
- Express preferences over weights
- Make the model simple so it works on test data
- Improve optimization by adding curvature
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Regularization: Expressing Preferences

82

L2 Regularization

Which of w1 or w2 will 
the L2 regularizer prefer?
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Regularization: Expressing Preferences

83

L2 Regularization

L2 regularization likes to 
“spread out” the weights 

Which of w1 or w2 will 
the L2 regularizer prefer?
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Regularization: Expressing Preferences

84

L2 Regularization

L2 regularization likes to 
“spread out” the weights 

Which one would L1 
regularization prefer? 

Which of w1 or w2 will 
the L2 regularizer prefer?
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Softmax classifier

85
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Softmax Classifier (Multinomial Logistic Regression)

cat

frog

car

3.2
5.1
-1.7

Want to interpret raw classifier scores as probabilities
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Softmax Classifier (Multinomial Logistic Regression)

cat

frog

car

3.2
5.1
-1.7

Want to interpret raw classifier scores as probabilities
Softmax 
Function



Ranjay Krishna Lecture 3 - April 08, 202588

Softmax Classifier (Multinomial Logistic Regression)

cat

frog

car

3.2
5.1
-1.7

Want to interpret raw classifier scores as probabilities
Softmax 
Function

24.5
164.0
0.18

exp

unnormalized 
probabilities

Probabilities 
must be >= 0
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Softmax Classifier (Multinomial Logistic Regression)

cat

frog

car

3.2
5.1
-1.7

Want to interpret raw classifier scores as probabilities
Softmax 
Function

24.5
164.0
0.18

0.13
0.87
0.00

exp normalize

unnormalized 
probabilities

Probabilities 
must be >= 0

Probabilities 
must sum to 1

probabilities
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Softmax Classifier (Multinomial Logistic Regression)

cat

frog

car

3.2
5.1
-1.7

Want to interpret raw classifier scores as probabilities
Softmax 
Function

24.5
164.0
0.18

0.13
0.87
0.00

exp normalize

unnormalized 
probabilities

Probabilities 
must be >= 0

Probabilities 
must sum to 1

probabilitiesUnnormalized 
log-probabilities / logits
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Softmax Classifier (Multinomial Logistic Regression)

cat

frog

car

3.2
5.1
-1.7

Want to interpret raw classifier scores as probabilities
Softmax 
Function

24.5
164.0
0.18

0.13
0.87
0.00

exp normalize

unnormalized 
probabilities

Probabilities 
must be >= 0

Probabilities 
must sum to 1

probabilitiesUnnormalized 
log-probabilities / logits

Li = -log(0.13)
      = 2.04
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Softmax Classifier (Multinomial Logistic Regression)

cat

frog

car

3.2
5.1
-1.7

Want to interpret raw classifier scores as probabilities
Softmax 
Function

24.5
164.0
0.18

0.13
0.87
0.00

exp normalize

unnormalized 
probabilities

Probabilities 
must be >= 0

Probabilities 
must sum to 1

probabilitiesUnnormalized 
log-probabilities / logits

Li = -log(0.13)
      = 2.04

Maximum Likelihood Estimation
Choose weights to maximize the 
likelihood of the observed data
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Softmax Classifier (Multinomial Logistic Regression)

cat

frog

car

3.2
5.1
-1.7

Want to interpret raw classifier scores as probabilities
Softmax 
Function

24.5
164.0
0.18

0.13
0.87
0.00

exp normalize

unnormalized 
probabilities

Probabilities 
must be >= 0

Probabilities 
must sum to 1

probabilitiesUnnormalized 
log-probabilities / logits

1.00
0.00
0.00
Correct 
probs

compare
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Softmax Classifier (Multinomial Logistic Regression)

cat

frog

car

3.2
5.1
-1.7

Want to interpret raw classifier scores as probabilities
Softmax 
Function

24.5
164.0
0.18

0.13
0.87
0.00

exp normalize

unnormalized 
probabilities

Probabilities 
must be >= 0

Probabilities 
must sum to 1

probabilitiesUnnormalized 
log-probabilities / logits

1.00
0.00
0.00
Correct 
probs

compare

Kullback–Leibler 
divergence
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Softmax Classifier (Multinomial Logistic Regression)

cat

frog

car

3.2
5.1
-1.7

Want to interpret raw classifier scores as probabilities
Softmax 
Function

24.5
164.0
0.18

0.13
0.87
0.00

exp normalize

unnormalized 
probabilities

Probabilities 
must be >= 0

Probabilities 
must sum to 1

probabilitiesUnnormalized 
log-probabilities / logits

1.00
0.00
0.00
Correct 
probs

compare

Cross Entropy
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Softmax Classifier (Multinomial Logistic Regression)

cat

frog

car

3.2
5.1
-1.7

Want to interpret raw classifier scores as probabilities
Softmax 
Function

Maximize probability of correct class Putting it all together:
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Q1: What is the min/max possible softmax loss Li?

97

Softmax Classifier (Multinomial Logistic Regression)

cat

frog

car

3.2
5.1
-1.7

Want to interpret raw classifier scores as probabilities
Softmax 
Function

Maximize probability of correct class Putting it all together:
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Softmax Classifier (Multinomial Logistic Regression)

cat

frog

car

3.2
5.1
-1.7

Want to interpret raw classifier scores as probabilities
Softmax 
Function

Maximize probability of correct class Putting it all together:

Q1: What is the min/max possible softmax loss Li?

Q2: At initialization all sj will be approximately equal; 
what is the softmax loss Li, assuming C classes?
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Softmax Classifier (Multinomial Logistic Regression)

cat

frog

car

3.2
5.1
-1.7

Want to interpret raw classifier scores as probabilities
Softmax 
Function

Maximize probability of correct class Putting it all together:

Q2: At initialization all s will be 
approximately equal; what is the loss?
A: -log(1/C) = log(C), 
If C = 10, then Li = log(10) ≈ 2.3
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Softmax vs. SVM
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Softmax vs. SVM
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Softmax vs. SVM

assume scores:
[10, -2, 3]
[10, 9, 9]
[10, -100, -100]
and 

Q: What is the SVM loss? 
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Softmax vs. SVM

assume scores:
[10, -2, 3]
[10, 9, 9]
[10, -100, -100]
and 

Q: What is the SVM loss? 

Q: Is the Softmax loss zero for 
any of them?
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Q: What is the SVM loss? 

Q: Is the Softmax loss zero for 
any of them?

I doubled the correct class 
score from 10 -> 20?

104

Softmax vs. SVM

assume scores:
[20, -2, 3]
[20, 9, 9]
[20, -100, -100]
and 
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Recap
- We have some dataset of (x,y)
- We have a score function: 
- We have a loss function: 

e.g.

Softmax

SVM

Full loss
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Recap
- We have some dataset of (x,y)
- We have a score function: 
- We have a loss function: 

e.g.

Softmax

SVM

Full loss

How do we find the best W?
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Next time:
Optimization & backpropagation

107


