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Lecture 19:
Generative AI Part 2
GANs & Diffusion
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● A5 is out. It is the last assignment.
● A5 deadline June 9th 11:59pm

● Almost done with the course :(

Administrative
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Administrative

3

Final project details:

- Poster session June 9th, 10:30AM - 12:20PM at Microsoft Atrium (CSE1)
- Upload PDFs here by tomorrow morning to have us print them
- Upload PDFs to Gradescope by Monday morning for grading purposes

- Final reports due June 9th

https://docs.google.com/forms/d/e/1FAIpQLSeJk-xf4C0w0215CmmXDLU3pEwkMeFcyGF7ifZOw0pPhtjSkA/viewform
https://www.gradescope.com/courses/1008129/assignments/6308375/
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Taxonomy of Generative Models

4

Generative models

Explicit density Implicit density

Direct

Tractable density Approximate density Markov Chain

Variational Markov Chain

Variational Autoencoder Boltzmann Machine

GSN
Diffusion

GAN

Figure copyright and adapted from Ian Goodfellow, Tutorial on Generative Adversarial Networks, 2017.

Fully Visible Belief Nets
- Autoregressive
- NADE
- MADE
- NICE / RealNVP
- Glow 
- Ffjord
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Very slow during both training and 
testing; N x N image requires 2N-1 
sequential steps!

Generative AI so far: Autoregressive models

5

Generate image pixels starting from corner

Dependency on previous pixels modeled 
using an RNN (LSTM)

 

[van der Oord et al. 2016]
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Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Variational Autoencoders: Intractability
Data likelihood:

Another idea: x: 28x28 image = 784-dim vector 
z: 20-dim vector
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Today: implicit density 
models

7
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Generative Adversarial 
Networks (GANs)
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Autoregressive models define tractable density function, optimize likelihood of 
training data:

VAEs define intractable density function with latent z:  

Cannot optimize directly, derive and optimize lower bound on likelihood instead

All the models together

9
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So far...

Autoregressive define tractable density function, optimize likelihood of training 
data:

VAEs define intractable density function with latent z:  

Cannot optimize directly, derive and optimize lower bound on likelihood instead

10

What if we give up on explicitly modeling density, and just want ability to sample?
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So far...

Autoregressive define tractable density function, optimize likelihood of training 
data:

VAEs define intractable density function with latent z:  

Cannot optimize directly, derive and optimize lower bound on likelihood instead
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What if we give up on explicitly modeling density, and just want ability to sample?
GANs: not modeling any explicit density function!
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Taxonomy of Generative Models

12

Generative models

Explicit density Implicit density

Direct

Tractable density Approximate density Markov Chain

Variational Markov Chain

Variational Autoencoder Boltzmann Machine

GSN
Diffusion

GAN

Figure copyright and adapted from Ian Goodfellow, Tutorial on Generative Adversarial Networks, 2017.

Fully Visible Belief Nets
- Autoregressive
- NADE
- MADE
- NICE / RealNVP
- Glow 
- Ffjord
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Generative Adversarial Networks

Setup: Assume we have data xi drawn from distribution pdata(x). Want to sample from pdata.

13
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Generative Adversarial Networks

Setup: Assume we have data xi drawn from distribution pdata(x). Want to sample from pdata.

Idea: Introduce a latent variable z with simple prior p(z) (e.g. assume z is a multivariate gaussian). 
Sample z ∼ p(z) and pass to a Generator Network x = G(z) 

Then x is a sample from the Generator distribution pG. We just need to make sure pG = pdata!

14
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Generative Adversarial Networks

Setup: Assume we have data xi drawn from distribution pdata(x). Want to sample from pdata.

Idea: Introduce a latent variable z with simple prior p(z) (e.g. assume z is a multivariate gaussian). 
Sample z ∼ p(z) and pass to a Generator Network x = G(z) 

Then x is a sample from the Generator distribution pG. We just need to make sure pG = pdata!

15

z G

Train Generator Network G to convert 
z into fake data x sampled from pG

Generator 
Network
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Real samples

Generative Adversarial Networks

Setup: Assume we have data xi drawn from distribution pdata(x). Want to sample from pdata.

Idea: Introduce a latent variable z with simple prior p(z) (e.g. assume z is a multivariate gaussian). 
Sample z ∼ p(z) and pass to a Generator Network x = G(z) 

Then x is a sample from the Generator distribution pG. We just need to make sure pG = pdata!

16

z G

Train Generator Network G to convert 
z into fake data x sampled from pG
by ”fooling” the discriminator D

Generator 
Network

D
fake

real

Train Discriminator Network D to 
classify data as real or fake (1/0)

Discriminator 
Network
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Real samples

Generative Adversarial Networks

Setup: Assume we have data xi drawn from distribution pdata(x). Want to sample from pdata.

Idea: Introduce a latent variable z with simple prior p(z) (e.g. assume z is a multivariate gaussian). 
Sample z ∼ p(z) and pass to a Generator Network x = G(z) 

Then x is a sample from the Generator distribution pG. We just need to make sure pG = pdata!

17

z G

Train Generator Network G to convert 
z into fake data x sampled from pG
by ”fooling” the discriminator D

Generator 
Network

D
fake

real

Train Discriminator Network D to 
classify data as real or fake (1/0)

Jointly train G and 
D. Hopefully pG 
converges to pdata!

Discriminator 
Network
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Generative Adversarial Networks

Jointly train generator G and discriminator D with a minimax game

18
Real 

z G
Generator

D
fake

real

Discriminator
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Generative Adversarial Networks

Jointly train generator G and discriminator D with a minimax game

19
Real 

z G
Generator

D
fake

real

Discriminator

Discriminator wants 
D(x) = 1 for real data
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Generative Adversarial Networks

Jointly train generator G and discriminator D with a minimax game

20
Real 

z G
Generator

D
fake

real

Discriminator

Discriminator wants 
D(x) = 1 for real data

Discriminator wants 
D(x) = 0 for fake data
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Generative Adversarial Networks

Jointly train generator G and discriminator D with a minimax game

21
Real 

z G
Generator

D
fake

real

Discriminator

Generator wants 
D(x) = 1 for fake data
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Generative Adversarial Networks

Jointly train generator G and discriminator D with a minimax game

Train G and D using alternating gradient updates

22
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Generative Adversarial Networks

Jointly train generator G and discriminator D with a minimax game

Train G and D using alternating gradient updates
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Generative Adversarial Networks

Jointly train generator G and discriminator D with a minimax game

Train G and D using alternating gradient updates
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Generative Adversarial Networks

Jointly train generator G and discriminator D with a minimax game

Train G and D using alternating gradient updates

25

We are not minimizing any 
overall loss! No training 
curves to look at!
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Generative Adversarial Networks

Jointly train generator G and discriminator D with a minimax game

26

At start of training, generator is very bad and 
discriminator can easily tell apart real/fake, so 
D(G(z)) close to 0
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At start of training, generator is very bad and 
discriminator can easily tell apart real/fake, so 
D(G(z)) close to 0
Problem: Why is this a problem?

Generative Adversarial Networks

Jointly train generator G and discriminator D with a minimax game

27

Gradients are near 0 when G 
produces a bad image

Gradients are high when 
generator produces good data
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At start of training, generator is very bad and 
discriminator can easily tell apart real/fake, so 
D(G(z)) close to 0
Problem: Vanishing gradients for G
How do we fix this?

Generative Adversarial Networks

Jointly train generator G and discriminator D with a minimax game

28

Gradients are near 0 when G 
produces a bad image

Gradients are high when 
generator produces good data
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At start of training, generator is very bad and 
discriminator can easily tell apart real/fake, so 
D(G(z)) close to 0
Problem: Vanishing gradients for G
Solution: Train G to minimize –log(D(G(z)), 
instead of log(1-D(G(z)). Then G gets strong 
gradients at start of training!

Generative Adversarial Networks

Jointly train generator G and discriminator D with a minimax game

29
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Generative Adversarial Networks

Jointly train generator G and discriminator D with a minimax game

30

At start of training, generator is very bad and 
discriminator can easily tell apart real/fake, so 
D(G(z)) close to 0
Problem: Vanishing gradients for G
Solution: Train G to minimize –log(D(G(z)), 
instead of log(1-D(G(z)). Then G gets strong 
gradients at start of training!

Gradients are high

Gradients are low
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Generative adversarial networks

Once trained, throw away the discriminator and use G to generate new images

31

z G
Generator
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Generative Adversarial Nets

32

Nearest neighbor from training set

Generated samples

Ian Goodfellow et al., “Generative 
Adversarial Nets”, NIPS 2014

Figures copyright Ian Goodfellow et al., 2014. Reproduced with permission.
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Generative Adversarial Nets

33

Nearest neighbor from training set

Generated samples (CIFAR-10)

Ian Goodfellow et al., “Generative 
Adversarial Nets”, NIPS 2014

Figures copyright Ian Goodfellow et al., 2014. Reproduced with permission.
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Generative Adversarial Nets: Convolutional Architectures

34

Radford et al, “Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks”, ICLR 2016
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Generator is an upsampling network with fractionally-strided convolutions
Discriminator is a convolutional network

Generative Adversarial Nets: Convolutional Architectures

35

Radford et al, “Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks”, ICLR 2016
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Radford et al,
 ICLR 2016

Samples 
from the 
model look 
much 
better!

Generative Adversarial Nets: Convolutional Architectures
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Radford et al,
 ICLR 2016

Interpolating 
between 
random 
points in latent 
space

Generative Adversarial Nets: Convolutional Architectures
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Generative Adversarial Nets: Interpretable Vector Math

38

Smiling woman Neutral woman Neutral man

Samples 
from the 
model

Radford et al, ICLR 2016
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Smiling woman Neutral woman Neutral man

Samples 
from the 
model

Average Z 
vectors, do 
arithmetic

Radford et al, ICLR 2016

Generative Adversarial Nets: Interpretable Vector Math
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Smiling woman Neutral woman Neutral man

Smiling ManSamples 
from the 
model

Average Z 
vectors, do 
arithmetic

Radford et al, ICLR 2016

Generative Adversarial Nets: Interpretable Vector Math
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Glasses man No glasses man No glasses woman

Woman with glasses

Radford et al, 
ICLR 2016

Generative Adversarial Nets: Interpretable Vector Math
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https://github.com/hindupuravinash/the-gan-zoo

See also: https://github.com/soumith/ganhacks for tips and tricks for 
trainings GANs

Since then: Explosion of GANs
“The GAN Zoo”

https://github.com/soumith/ganhacks
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LSGAN, Zhu 2017.
Wasserstein GAN, Arjovsky 2017. Improved Wasserstein GAN, Gulrajani 2017.

GAN improvements: better loss functions
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Progressive GAN, Karras 2018.

GAN improvements: higher resolution
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GAN transformations

45

CycleGAN. Zhu et al. 2017.

Source->Target domain transfer

Pix2pix. Isola 2017. Many examples at 
https://phillipi.github.io/pix2pix/
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BigGAN: 512x512 images

46

Brock et al., 2019
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GANs with self-attention mechanism

47

Zhang et al, “Self-Attention Generative Adversarial Networks”, ICML 2019
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Controlled generation with GANs

Park et al, “Semantic 
Image Synthesis with 
Spatially-Adaptive 
Normalization”, CVPR 
2019

48
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Controlled generation with GANs

Park et al, “Semantic 
Image Synthesis with 
Spatially-Adaptive 
Normalization”, CVPR 
2019

49
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Controlled generation with GANs

Park et al, “Semantic 
Image Synthesis with 
Spatially-Adaptive 
Normalization”, CVPR 
2019

50
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Conditional GANs: StyleGAN

Y is text that describes the image you want to generate

51

Karras et al, “Analyzing and Improving the Image Quality of StyleGAN”, CVPR 2020
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Conditional GANs: StyleGAN

Y is text that describes the image you want to generate

52

Karras et al, “Analyzing and Improving the Image Quality of StyleGAN”, CVPR 2020
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Conditional GANs: StyleGAN

Y is text that describes the image you want to generate

53

Karras et al, “Analyzing and Improving the Image Quality of StyleGAN”, CVPR 2020
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Scene graphs to GANs

Specifying exactly what kind of image you want to 
generate.

The explicit structure in scene graphs provides better image 
generation for complex scenes.

54
Johnson et al. Image Generation from Scene Graphs, CVPR 2019

Figures copyright 2019. Reproduced with permission.
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HYPE: Human eYe Perceptual Evaluations

Zhou, Gordon, Krishna et al. HYPE: Human eYe Perceptual Evaluations, NeurIPS 2019

55
Figures copyright 2019. Reproduced with permission.
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Summary: GANs

56

Pros:
- Beautiful samples, was state-of-the-art until diffusion models!

Cons:
- Trickier / more unstable to train
- Can’t solve inference queries such as p(x), p(z|x)

Active areas of research:
- Better loss functions, more stable training (Wasserstein GAN, LSGAN, many others)
- Conditional GANs, GANs for all kinds of applications
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Diffusion models

57
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Diffusion Models are outperforming GANs

58

Dhariwal & Nichol. “Diffusion Models Beat 
GANs on Image Synthesis”, OpenAI 2021

Ho et al. “Cascaded Diffusion Models for High 
Fidelity Image Generation”, Google 2021
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Text-to-Image (T2I) Generation

59

Ramesh et al. “Hierarchical Text-Conditional 
Image Generation with CLIP Latents” 2022

Saharia et al. “Photorealistic Text-to-Image 
Diffusion Models with Deep Language 
Understanding” 2022

ImagenDall-E2
“A group of teddy bears in suit in a corporate 
office celebrating the birthday of their friend. 
There is a pizza cake on the desk.”

“a teddy bear on a skateboard in times square”
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Text-to-Image (T2I) Generation

Mega thread on Twitter/X about Stable Diffusion

60

Stable Diffusion

Rombach et al. “High-Resolution Image Synthesis with Latent Diffusion Models” 2022

https://twitter.com/daniel_eckler/status/1572210382944538624
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Application of diffusion: Image Super-resolution

Gif on this slide is not 
displayed in pdf

61

Saharia et al., Image Super-Resolution via Iterative Refinement, ICCV 2021
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But what is a diffusion model?

62
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GANs give up on explicitly modeling density and just learns to sample “real” data

So far...

Autoregressive define tractable density function, optimize likelihood of training 
data:

VAEs define intractable density function with latent z:  

Cannot optimize directly, derive and optimize lower bound on likelihood instead

63
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GANs give up on explicitly modeling density and just learns to sample “real” data

All these methods generate data in one forward step! Why this is hard?

So far...

Autoregressive define tractable density function, optimize likelihood of training 
data:

VAEs define intractable density function with latent z:  

Cannot optimize directly, derive and optimize lower bound on likelihood instead

64
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Taxonomy of Generative Models

65

Generative models

Explicit density Implicit density

Direct

Tractable density Approximate density Markov Chain

Variational Markov Chain

Variational Autoencoder Boltzmann Machine

GSN
Diffusion

GAN

Figure copyright and adapted from Ian Goodfellow, Tutorial on Generative Adversarial Networks, 2017.

Fully Visible Belief Nets
- Autoregressive
- NADE
- MADE
- NICE / RealNVP
- Glow 
- Ffjord
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VAEs define intractable density function with latent z:  

Cannot optimize directly, derive and optimize lower bound on likelihood instead:

Recall VAEs

66
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Encoder network

Input Data

First loss for the encoder

Make the latent 
variable distribution 
as similar to a unit 
normal distribution

This equation has an analytical solution

67
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Encoder network

Decoder network

Sample z from

Input Data

Second loss for both decoder and encoder
Maximize likelihood of original 
input being reconstructed

68
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VAEs for images look like this

- We learn 2 networks, one to encode and one to decode
- We ensure that z is similar to a unit normal noise
- To sample new images, we can sample from the unit normal and decode in 1 step

69

~

Encoder

Decoder
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Markovian Hierarchical VAEs

70

- We learn 2T networks, one to encode and one to decode
- We ensure that zT is similar to a unit normal noise
- To sample new images, we can sample from the unit normal and decode in T step

~

Encoder2 EncoderTEncoder1

Decoder2 DecoderTDecoder1
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Markovian Hierarchical VAEs - same derivation

71
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Markovian Hierarchical VAEs - same derivation
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This KL term (between 
Gaussians for encoder and z 
prior)

Markovian Hierarchical VAEs - same derivation

73

pθ(z|x) intractable but we 
know KL divergence always  
>= 0.

Reconstruction objective maximizes the 
likelihood of data pθ(x|z)
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Markovian Hierarchical VAEs

74

Keeping just the first two terms:
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Markovian Hierarchical VAEs

75

Keeping just the first two terms:
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Markovian Hierarchical VAEs

76

where the joint probability distribution is:

This is very similar to the autoregressive model formula

Keeping just the first two terms:
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Markovian Hierarchical VAEs

77

where the joint probability distribution is:

And the encoder posterior is:

Keeping just the first two terms:
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Markovian Hierarchical VAEs

78

where the joint probability distribution is:

And the encoder posterior is:

Keeping just the first two terms:

Why is this a hard objective to train?
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Markovian Hierarchical VAEs

79

where the joint probability distribution is:

And the encoder posterior is:

Keeping just the first two terms:

Why is this a hard objective to train?
1. There are too many networks to learn.
2. The objective function is expensive!
3. It collapses easily!
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- Why is this a hard objective to train?
- 1. There are too many networks to learn.
- 2. The objective function is expensive!
- 3. It collapses easily!

Markovian Hierarchical VAEs

80

~

Encoder2 EncoderTEncoder1

Decoder2 DecoderTDecoder1
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Diffusion models are a special case
With a more interpretable, simpler objective.

81

~

Encoder2 EncoderTEncoder1

Decoder2 DecoderTDecoder1

Markovian Hierarchical VAEs



Ranjay Krishna June 05, 2025Lecture 19 -

1. The latent dimension size is exactly equal to the 
data dimension

How are diffusion models different?

82
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1. The latent dimension size is exactly equal to the 
data dimension

2. The encoders are pre-defined and not learned.

How are diffusion models different?

83
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How are diffusion models different?

84

3. Encoders are designed as a linear Gaussian model 
conditioned on the time step: Add noise at every time step
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So, given xt-1 we can sample xt using:

where

How the forward step was designed:

85
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xt is now a Gaussian characterized by x0

where

Why was it designed like this?

86
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4. The Gaussian parameters vary over time in such a 
way that the distribution of the latent at final step T is a 
standard Gaussian

How are diffusion models different?

87
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Note: reverse or backward here doesn’t mean the same thing as backpropagation

Terminology: Forward and backward process

88
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The distribution perspective

Over time, as we add more noise sampled from a Gaussian distribution, it begins to look more like a 
unit normal

89
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Q. What do we have to learn to generate new samples from noise?

How do we define a loss objective?

90
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Q. What do we have to learn to generate new samples from noise?
A. We want to define a neural network to predict  

How do we define a loss objective?

91
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Q. How should we train ?

How do we define a loss objective?

92
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Q. How should we train ?
A. We can get it to match   !

How do we define a loss objective?

93
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Q. How should we train ?
A. We can get it to match   !

Q. But why and not: 

How do we define a loss objective?

94
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Ok so our loss function is:

95

Q. How should we train ?
A. We can get it to match   !

Minimize the distance between the two distributions:
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Ok so our loss function is:

96

Q. How should we train ?
A. We can get it to match   !

Minimize the distance between the two distributions:

Problem: How do we estimate     ?
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The distribution at step t is a Gaussian

The forward diffusion step

97
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The distribution at step t is a Gaussian

The mean defined by xt-1:

𝞪t is a predefined value for each step t

The forward diffusion step

98



Ranjay Krishna June 05, 2025Lecture 19 -

The distribution at step t is a Gaussian

The mean defined by xt-1:

𝞪t is a predefined value for each step t

The covariance is independent of xt-1 (an assumption)

The forward diffusion step

99
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The distribution at step t is a Gaussian

So, given xt-1 we can sample xt using:

where

How the forward step was designed:

100
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Why was it designed like this?

101
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Why was it designed like this?

102

Substituting xt-1
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Why was it designed like this?

103

Opening the parentheses

Substituting xt-1
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We can interpret this as a sample from 

We can interpret this as a sample from 

Why was it designed like this?

104

Opening the parentheses

Substituting xt-1
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We can interpret this as a sample from 

We can interpret this as a sample from 

Notice that    is the sum of two Gaussian samples

Why was it designed like this?

105

Opening the parentheses

Substituting xt-1
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We can interpret this as a sample from 

We can interpret this as a sample from 

Notice that    is the sum of two Gaussian samples

Using the property:  

Why was it designed like this?
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Opening the parentheses

Substituting xt-1
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We can interpret this as a sample from 

We can interpret this as a sample from 

Notice that    is the sum of two Gaussian samples

Using the property: 

We can rewrite as  

Why was it designed like this?

107

Opening the parentheses

Substituting xt-1
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Why was it designed like this?
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Sum of two Gaussians

Opening the parentheses

Substituting xt-1
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Why was it designed like this?
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Squaring the terms

Sum of two Gaussians

Opening the parentheses

Substituting xt-1
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Why was it designed like this?

110

Simplifying
Squaring the terms

Sum of two Gaussians

Opening the parentheses

Substituting xt-1
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Why was it designed like this?
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Substituting till x0

Simplifying
Squaring the terms

Sum of two Gaussians

Opening the parentheses

Substituting xt-1
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Why was it designed like this?
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Let 

Substituting till x0

Simplifying
Squaring the terms

Sum of two Gaussians

Opening the parentheses

Substituting xt-1
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Let 

Why was it designed like this?

113

xt is now a Gaussian characterized by x0

Substituting till x0

Simplifying
Squaring the terms

Sum of two Gaussians

Opening the parentheses

Substituting xt-1



Ranjay Krishna June 05, 2025Lecture 19 -

Takeaway from the previous slides:

We can instantly sample xt given any input data x0

114
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What about the reverse?
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What about the reverse?
Applying Bayes rule
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What about the reverse?

The first term is just a single forward diffusion process:
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What about the reverse?

The second term is also a Gaussian using the formula we just derived:
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What about the reverse?

The third term is also a Gaussian using the same formula:
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What about the reverse?

The product of these 3 Gaussian distributions simplify to a Gaussian as well!

Let’s call its mean                  and variance 
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Proof (out of scope for the class)
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Proof (out of scope for the class)
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Let’s go back to the Markovian VAE 

We are ready to set up a simple intuitive loss function to train the decoder!
Given an image x0:

We want to generate       to match the Gaussian we just derived:
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You can show mathematically that:

  Is also a Gaussian: 
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You can show mathematically that:

  Is also a Gaussian: 

And that:
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The loss function tries to match distributions

126

The loss function
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We can model   as a Gaussian
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The loss function
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We can model   as a Gaussian
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The loss function
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Proof (out of scope for class)
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Ok we are close to the objective:

The loss we want to minimize is
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Ok we are close to the objective:

The loss we want to minimize is

From the previous slide, we got the mean from this:
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Ok we are close to the objective:

The loss we want to minimize is

From the previous slide, we got the mean from this:

So, we can write the mean to be:
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Ok we are close to the objective:

The loss we want to minimize is

From the previous slide, we got the mean from this:

So, we can write the mean to be:
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We can also set our predicted mean to be:

Why is this helpful?

Our neural network can predict noise instead!

134
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We can also set our predicted mean to be:

Why is this helpful? Because now our model needs to predict the noise that 
was injected, which turns out to be empirically more stable of an objective 
than predicting the image mean.

Our neural network can predict noise instead!
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The two loss objectives are equivalent

136

The loss function

Instead of predicting the mean image values
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The neural network can 
predict the added noise

The two loss objectives are equivalent
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The loss function

Instead of predicting the mean image values
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Proof: (out of scope)
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The denoising architecture

Time representation: sinusoidal positional embeddings.
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How do we sample a new image?
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Time representation: sinusoidal positional embeddings. 

Added in using: 

- h is the intermediate activations of the residual block following the first 
convolution in each layer, 

- y = [ys, yb] is obtained from a linear projection of the timestep

How is the time step inputted:
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Text-conditioned generation

A white cat with 
brown ears

142
CLIP text encoder

Simple idea: Train the model with text 
descriptions of the image
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Application: panorama generation
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Application: super-resolution

Learn a superresolution diffusion model conditioned on a low resolution image.
y is a low resolution input image, x is a high resolution output image

144

Saharia et al., Image Super-Resolution via Iterative Refinement, 2021
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Application: super resolution
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Saharia et al., Image Super-Resolution via Iterative Refinement, 2021
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Application: image editing

Meng et al., SDEdit: Guided Image Synthesis and Editing with Stochastic Differential Equations, ICLR 2022
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Latent diffusion models: perform diffusion 
over latent VAE encodings

147
Rombach et al. High-Resolution Image Synthesis with Latent Diffusion Models ArXiv 2022

Rom

Images are encoded with pretrained VAE.
So xt is now a d-dimensional VAE representation.
All diffusion steps occur in d-dimensional space 
Memory and compute efficient

VAE decoder

VAE encoder
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Stable diffusion - from Stability AI
● Open sourced diffusion model - main model used for research
● Produces 512x512 images
● UNet with 860M params
● ViT-L text encoder with 123M params
● Fits in 10GB VRAM - fits on most GPUs
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Rombach et al. High-Resolution Image Synthesis with Latent Diffusion Models ArXiv 2022

Rom
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Imagen - Google

Combines:
- Latent diffusion model
- text conditioning
- 2 super-resolution models

To produce high quality 1024x1024 
images

149

Saharia et al., “Photorealistic Text-to-Image 
Diffusion Models with Deep Language 
Understanding”, arXiv 2022.
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Imagen examples

150
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Last year: Sora video diffusion model

https://openai.com/sora

How did they do it?
- More data (unknown data source)
- Replaced U-Net architecture with transformers

151

https://openai.com/sora
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Comparing the different generative models

Q. Which ones are VAEs good at?

152

Autoregressive 
(VAEs)

GANs Diffusion

Mode coverage / 
diversity of 
generations

Fast sampling

High quality 
samples
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Comparing the different generative models

VAEs are bad at generating high quality samples

153

Autoregressive 
(VAEs)

GANs Diffusion

Mode coverage / 
diversity of 
generations

✅

Fast sampling ✅
High quality 
samples

❌
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Comparing the different generative models

Q. Which ones are GANs good at?

154

Autoregressive 
(VAEs)

GANs Diffusion

Mode coverage / 
diversity of 
generations

✅

Fast sampling ✅
High quality 
samples

❌
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Comparing the different generative models

GANs suffer from mode collapse

155

Autoregressive 
(VAEs)

GANs Diffusion

Mode coverage / 
diversity of 
generations

✅ ❌

Fast sampling ✅ ✅
High quality 
samples

❌ ✅
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Comparing the different generative models

Q. Which ones are Diffusion models good at?

156

Autoregressive 
(VAEs)

GANs Diffusion

Mode coverage / 
diversity of 
generations

✅ ❌

Fast sampling ✅ ✅
High quality 
samples

❌ ✅
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Comparing the different generative models

Diffusion models are bad at sampling fast. 

157

Autoregressive 
(VAEs)

GANs Diffusion

Mode coverage / 
diversity of 
generations

✅ ❌ ✅

Fast sampling ✅ ✅ ❌
High quality 
samples

❌ ✅ ✅
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End of course

What should you do next?
Pursue a career in deep learning
Start deep learning research
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