Lecture 18:

Generative Al Part 1
Autoregressive & VAEs
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Administrative

A5 is out. It is the last assignment.

A5 deadline June 9th 11:59pm

Final report due June 9th

Poster session is on June 9th in Allen Atrium 10:30am-12:20pm

e Almost done with the course :(
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Last time: Foundation Models

Language Classification LM + Vision And More! Chaining
ELMo CLIP Flamingo Segment Anything LMs + CLIP
BERT CoCa GPT-4V Whisper Visual Programming
GPT Gemini Dall-E
T5 Stable Diffusion
Imagen
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Next 2 lectures:

Language Classification LM + Vision And More! Chaining
ELMo CLIP Flamingo Segment Anything LMs + CLIP
BERT CoCa GPT-4V Whisper Visual Programming
GPT Gemini Dall-E
TS5 Stable Diffusion
Imagen
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Supervised vs Unsupervised Learning

Supervised Learning

Data: (x, y)
X is data, y is label

Goal: Learn a function to map x ->y

Examples: Classification,
regression, object detection,
semantic segmentation, image
captioning, etc.
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Supervised vs Unsupervised Learning

Supervised Learning

Data: (x, y)

X is data, y is label
— Cat

Goal: Learn a function to map x ->y

Examples: Classification,

regression, object detection, Classification
semantic segmentation, image

captioning, etc.

This image is CCO public domain
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https://pixabay.com/en/kitten-cute-feline-kitty-domestic-1246693/
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Supervised vs Unsupervised Learning

Supervised Learning

Data: (x, y)
X is data, y is label

Goal: Learn a function to map x ->y
Examples: CIaSSification, A cat sitting on a suitcase on the floor
regression, object detection,
semantic segmentation, image
captioning, etc.

Image captioning

neuraltalk2
Image is_CCO Public domain
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https://github.com/karpathy/neuraltalk2
https://pixabay.com/en/luggage-antique-cat-1643010/
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Supervised vs Unsupervised Learning

Supervised Learning

Data: (x, y)
X is data, y is label

Goal: Learn a function to map x ->y W,

=) f
Examples: Classification, DOG. DOG. CAT
regression, object detection,
semantic segmentation, image Object Detection

captioning, etc.

This image is CCO public domain
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https://pixabay.com/en/pets-christmas-dogs-cat-962215/
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Supervised vs Unsupervised Learning

Supervised Learning

Data: (x, y)
X is data, y is label

Goal: Learn a function to map x ->y

GRASS, ,

Examples: Classification, TREE, SKY

regression, object detection,
semantic segmentation, image Semantic Segmentation
captioning, etc.
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Self-Supervised Learning

Data: (x, y)
X is data, y is a proxy label

Goal: Learn a function to map x ->y

Examples: Inpainting, colorization,
contrastive learning.
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Supervised vs Unsupervised Learning

Unsupervised Learning

Data: x
Just data, no labels!

Goal: Learn some underlying
hidden structure of the data

Examples: Clustering,
dimensionality reduction, feature
learning, density estimation, etc.

Ranjay Krishna Lecture 18 - 11 June 3, 2025




Supervised vs Unsupervised Learning

Unsupervised Learning ] o

Data: x
Just data, no labels!

Goal: Learn some underlying
hidden structure of the data

Examples: Clustering,
dimensionality reduction, feature
learning, density estimation, etc.

K-means clustering

This image is CCO public domain
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https://commons.wikimedia.org/wiki/File:ClusterAnalysis_Mouse.svg
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Supervised vs Unsupervised Learning

Unsupervised Learning

original data space

component space

Data: x = X
Just data, no labels! Eci==ronscs
Goal: Learn some underlying
hidden structure of the data 2.4
E.xamplles: Qlustering, Principal Component Analysis
dimensionality reduction, feature (Dimensionality reduction)

learning, density estimation, etc.

This image
CCO public domain
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http://phdthesis-bioinformatics-maxplanckinstitute-molecularplantphys.matthias-scholz.de/fig_pca_illu3d.png
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Supervised vs Unsupervised Learning

Unsupervised Learning

R ’/T\
Data: x

Just data, no labels! 1-d density estimation

Goal: Learn some underlying
hidden structure of the data

Examples: Clustering, RS
dimensionality reduction, density 2-d density estimation

estimation, etc. Modeling p(x) I

CCO public domain
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https://commons.wikimedia.org/wiki/File:Bivariate_example.png
https://www.flickr.com/photos/omegatron/8533520357
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Supervised vs Unsupervised Learning

Supervised Learning Unsupervised Learning
Data: (x, y) Data: x
X is data, y is label Just data, no labels!

Goal: Learn a functionto map x->y  Goal: Learn some underlying

hidden structure of the data
Examples: Classification,

regression, object detection, Examples: Clustering,
semantic segmentation, image dimensionality reduction, density
captioning, etc. estimation, etc.
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A probabilistic interpretation of modeling

Data: x, Label: y

cat

Density Function p(x) assigns a
positive number to each possible x;
higher numbers mean x is more

likely. j D()dx = 1
X

Probabilities across all values of x
sum up to 1
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A probabilistic interpretation of modeling

Data: x, Label: y Discriminative Model: Learn a

probability distribution p(y|x)
P(cat| i)

Density Function p(x) assigns a
positive number to each possible x;
higher numbers mean x is more

likely. j D()dx = 1
X

Probabilities across all values of x
sum up to 1

P(dog | )

3 P(dog | )
ol n )
324 P(cat|[FH)

Sum of p(y | x) = 1 across C classes
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A probabilistic interpretation of modeling

Data: x, Label: y Discriminative Model: Learn a

probability distribution p(y|x)
P(cat| i)

Density Function p(x) assigns a
positive number to each possible x;
higher numbers mean x is more

likely. j D()dx = 1
X

Probabilities across all values of x
sum up to 1

o P(dog | i)

< P(dog | )
324 P(cat|[FH)

Sum of p(y | x) = 1 across C classes
Bias term of last linear layer learns p(y)
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A probabilistic interpretation of modeling

Data: x, Label: y Discriminative Model: Learn a

probability distribution p(y|x)

, cat
] | ] _ i P(cat|##N)
Density Function p(x) assigns a E— P(dog | #8¥)
positive number to each possible x; l_l
higher numbers mean x is more )
P(dog | 55)

likely. j D()dx = 1
X

Probabilities across all values of x
sum up to 1

If the images contain classes not part
of the vocabulary, outputs are
uninterpretable.
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A probabilistic interpretation of modeling

Data: x, Label: y Generative Model: Learn a probability

distribution p(x)
PR

P(m)
Density Function p(x) assigns a
positive number to each possible x;
higher numbers mean x is more

likely. j D()dx = 1
X

Probabilities across all values of x All possible images compete with each
sum up to 1 other for probability mass
Is a dog more likely to sit or stand? How
about 3-legged dog vs 3-armed monkey?

i A

7Y
N R G =4 b
ik . = il
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A probabilistic interpretation of modeling

Data: x, Label: y Conditional Generative Model: Learn

p(xly)
cat

Density Function p(x) assigns a p _ P(y | x) p
positive number to each possible x; (x | }7) _ P(y) (x)
higher numbers mean x is more

likely. J D()dx = 1
X

Probabilities across all values of x Recall Bayes’ Rule:
sum up to 1
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A probabilistic interpretation of modeling

Data: x, Label: y Conditional Generative Model: Learn

p(x]y)
cat
' : (Unconditional)
Generative Model
Density Function p(x) assigns a _ P(y | x)
positive number to each possible x; P(x | Y)|= Jp(y) —1P(x)
higher numbers mean x is more Conditional I —
||ke|y Generative Model Prior over labels
' J p(x)dx =1
X . " :
Probabilities across all values of x We can build a conditional generative
sum up to 1 model from other components!
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Putting them together:

Data: x, Label: y

cat

Density Function p(x) assigns a
positive number to each possible x;
higher numbers mean x is more

likely. J B = 1
X

Probabilities across all values of x
sum up to 1

Discriminative Model:
Learn a probability
distribution p(y|x)

Generative Model: Learn a
probability distribution p(x)

Conditional Generative
Model: Learn p(x|y)
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Applications for Generative Models

1. Assign labels to data — Discriminative Model:
2. Feature learning (with labels) Learn a probability
distribution p(y|x)

Generative Model: Learn a
probability distribution p(x)

Conditional Generative
Model: Learn p(x|y)
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Applications for Generative Models

1. Assign labels to data Discriminative Model:

2. Feature learning (with labels) Learn a probability
distribution p(y|x)

1. Detect outliers

2. Feature learning (without labels) Generative Model: Learn a

3. Sample to generate new data probability distribution p(x)

Conditional Generative
Model: Learn p(x|y)
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Applications for Generative Models

1. Assign labels to data Discriminative Model:
2. Feature learning (with labels) Learn a probability
distribution p(y|x)
1. Detect outliers
2. Feature learning (without labels) Generative Model: Learn a
3. Sample to generate new data probability distribution p(x)
1. Assign labels, rejecting outliers! Conditional Generative
2. Generate new data conditioned on Model: Learn p(x|y)
input labels
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Why Generatlve Models’?

- Reallstlc samples for artwork, super-resolution, colorization, etc.

- Learn useful features for downstream tasks such as classification.

- Getting insights from high-dimensional data (physics, medical imaging, etc.)

- Modeling physical world for simulation and planning (robotics and
reinforcement learning applications)

- Many more ...

Alec Radford et al. 2016 Phillip Isola et al. 2017 BAIR Blog
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https://arxiv.org/abs/1511.06434
https://phillipi.github.io/pix2pix/
https://bair.berkeley.edu/blog/2018/11/30/visual-rl/

The two objectives of generative models

| ——

Training data ~ p,,.(X)

Objectives:
1. Learnp__,,(X) that approximates p . (X)
2. Sampling new x fromp_ . (X)
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Generative Modeling
Given training data, generate new samples from same distribution

S s (s R »

| -
Training data ~ pdata(x)

model(x

Formulate as density estimation problems:
- Explicit density estimation: explicitly define and solve forp_ . (x)
- Implicit density estimation: learn model that can sample from p_ . (x) without
explicitly defining it.
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Taxonomy of Generative Models

Generative models Model does not compute p(x)

Model can compute p(x) But can sample from p(x)

Explicit density Implicit density

p(x) measures the
likelihood of an image

Figure copyright and adapted from lan Goodfellow, Tutorial on Generative Adversarial Networks, 2017.
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Taxonomy of Generative Models

Generative models

Explicit density Implicit density

Model exactl
xacty Model approximates p(x)

calculates p(x)

Tractable density Approximate density

Fully Visible Belief Nets
- Autoregressive
- NADE

- MADE
- NICE / RealNVP

-  Glow
FijI’d Figure copyright and adapted from lan Goodfellow, Tutorial on Generative Adversarial Networks, 2017.
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Taxonomy of Generative Models

Generative models

Explicit density Implicit density

Tractable density

Fully Visible Belief Nets

- Autoregressive . )
- NADE Variational Markov Chain

Approximate density

- MADE . .
Variational Autoencoder Boltzmann Machine
- NICE / RealNVP
-  Glow . . _ _ .
_ FijI’d Figure copyright and adapted from lan Goodfellow, Tutorial on Generative Adversarial Networks, 2017.
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Taxonomy of Generative Models

GAN

Generative models

Explicit density Implicit density

Tractable density Approximate density Markov Chain

Fully Visible Belief Nets (D;.?fN’.
- Autoregressive e ] Iffusion
- NADE Variational Markov Chain

- MADE . .
Variational Autoencoder Boltzmann Machine
- NICE / RealNVP
-  Glow . . _ _ .
_ FijI’d Figure copyright and adapted from lan Goodfellow, Tutorial on Generative Adversarial Networks, 2017.
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Q: Where would you place GPT47?

GAN

Generative models

Explicit density Implicit density

Markov Chain
GSN,

Tractable density
Fully Visible Belief Nets

Approximate density

- Autoregressive - . Diffusion

- NADE Variational Markov Chain

- MADE . .

- NICE / RealNVP Variational Autoencoder Boltzmann Machine

-  Glow | | | | |

_ FijI’d Figure copyright and adapted from lan Goodfellow, Tutorial on Generative Adversarial Networks, 2017.
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Taxonomy of Generative Models

Today: discuss 2 types of GAN

generative models today Generative models
More next lecture!

Explicit density Implicit density

Markov Chain
GSN,

Tractable density
Fully Visible Belief Nets

Approximate density

- | Autoregressive - . Diffusion

. NADE Variational Markov Chain

- MADE T .

- NICE / RealNVP Variational Autoencoder Boltzmann Machine

-  Glow | | | | |

_ FijI’d Figure copyright and adapted from lan Goodfellow, Tutorial on Generative Adversarial Networks, 2017.
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Explicit density models
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Explicit Density Estimation

Goal: Write down an explicit function for p(x) = f(x, W)
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Explicit Density Estimation

Goal: Write down an explicit function for p(x) = f(x, W)

Given dataset x(, x@, . x| train the model by solving:

¥ = ‘ ‘ (i) Maximize probability of training data
w arg mV\a]X i p(x ) (Maximum likelihood estimation)
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Explicit Density Estimation

Goal: Write down an explicit function for p(x) = f(x, W)

Given dataset x(, x@, . x| train the model by solving:
. J— (l) Maximize probability of training data
w arg mv\a,X ‘ ‘ i p(x ) (Maximum likelihood estimation)

Log trick to exchange product for sum

arg max Y. logp(x®)
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Explicit Density Estimation

Goal: Write down an explicit function for p(x) = f(x, W)

Given dataset x(, x@, . x| train the model by solving:

. J— (l) Maximize probability of training data
w arg mv\a/X ‘ ‘ i p(x ) (Maximum likelihood estimation)
= arg mwg}x Zi ]Og D (X (l)) Log trick to exchange product for sum

dIrg max Zi log f(x (i), W) This will be our loss function!
w Train with gradient descent (backprop)
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Autorgressive models

(PixelRNN and PixelCNN)
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Explicit density: autoregressive models

Goal: Write down an explicit function for p(x) = f(x, W)

Assume that x is made up of multiple parts: X = (x1, X2,X3, i, XT )

For example, images are made up of pixels, language is made up of
words/characters/tokens
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Explicit density: autoregressive models

Goal: Write down an explicit function for p(x) = f(x, W)

Assume that x is made up of multiple parts: X = (x1, X2,X3, i, XT )

For example, images are made up of pixels, language is made up of
words/characters/tokens

p(x) = p(xq1, %3, X3, .., X7 )

T T

Likelihood of Joint likelihood of each
image X part in the data
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Explicit density: autoregressive models

Goal: Write down an explicit function for p(x) = f(x, W)

Assume that x is made up of multiple parts: X = (x1, X2,X3, i, XT )

For example, images are made up of pixels, language is made up of
words/characters/tokens

p(x) — p(x1)x2)x31 ---;xT ) -
= p(x)p(xz | x1)p(x3 |x1, %3) ... S;?nagktﬂzviﬂeﬂffﬂzmty
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Explicit density: autoregressive models

Goal: Write down an explicit function for p(x) = f(x, W)

Assume that x is made up of multiple parts: X = (xl, X2,X3, i, XT )

For example, images are made up of pixels, language is made up of
words/characters/tokens

p(x) = p(xq1, x5, X3, .., X7 )
Break down probability

— p(xl)p(xz | xl)p(x?) |X1, xZ) using the chain rule

= [Ti=apCee | 24, e, 20-1)

Probability of the next subpart given all the previous subparts
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Explicit density: autoregressive models

Goal: Write down an explicit function for p(x) = f(x, W)

Assume that x is made up of multiple parts: X = (xl, X2,X3, i, XT )

For example, images are made up of pixels, language is made up of
words/characters/tokens

p(x;) p(x2) plx3) plx,)
p(x) = p(xq, X2, X3, e, X1 ) bttt

— p(;fl)p(xz | x1)p(x3 x4, %5) ... th —* hTZ —* hT3 — hT4

=1 P(xe | X1, o) Xp—q) Xo  Xg Xy X
Language modeling with RNNs is an autoregressive model
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We assume hidden state encodes all prior

information Xgs -1 Xy 4

p(zi|T1, .y Tiz1)
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PixelRNN - autoregressive image generation

Generate image pixels starting from corner

Dependency on previous pixels modeled
using an RNN (LSTM)

© 0 O O @
© 0 O O O
© 0 O O O
© 0 O O O
© 0 O O O

[van der Oord et al. 2016]
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PixelRNN - autoregressive image generation

Generate image pixels starting from corner i—@ © O© O
Dependency on previous pixels modeled © 6 o0 ©
using an RNN (LSTM) O © 0 O O
© 0 0 0 O
© 06 0 0 O

[van der Oord et al. 2016]
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PixelRNN - autoregressive image generation

Generate image pixels starting from corner

Dependency on previous pixels modeled
using an RNN (LSTM)

o O

© O O

© 0 O O
© 0 O O O
© 0 O O O

[van der Oord et al. 2016]

Ranjay Krishna Lecture 18 - 50 June 3, 2025




PixelRNN - autoregressive image generation

Generate image pixels starting from corner

Dependency on previous pixels modeled
using an RNN (LSTM)

Hidden state for each pixel is conditioned
on the hidden states and RGB values from

the left and from above
h f(hx 1,y xy 1)

© 0 O O
© 0 O O O

© O
© O

.
")

[van der Oord et al. 2016]

Ranjay Krishna Lecture 18 - 51 June 3, 2025




PixelRNN - autoregressive image generation

Generate image pixels starting from corner

Dependency on previous pixels modeled
using an RNN (LSTM)

on the hidden states and RGB values from
the left and from above
h f(hx 1,y xy 1
At each pixel, predict red, then blue, then
green: softmax over [0, 1, ..., 255] [van der Oord et al. 2016]

© 0 O O
© 0 O O O

Hidden state for each pixel is conditioned é) © O
© O O
w)
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PixelRNN - autoregressive image generation

Generate image pixels starting from corner @
e ® O
Dependency on previous pixels modeled
using an RNN (LSTM) ®—© )
| ©O O O
Drawback: sequential generation is slow
in both training and inference! @ 0 06 0 O

Each pixel depends implicity on all pixels

above and to the left.
[van der Oord et al. 2016]
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PixelRNN - autoregressive image generation

Generate image pixels starting from corner

Dependency on previous pixels modeled
using an RNN (LSTM)

Drawback: sequential generation is slow
in both training and inference!

© O 6090

© O 6090
©O O O O ©

0w

Each pixel depends implicity on all pixels

above and to the left.
[van der Oord et al. 2016]
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PixelRNN - autoregressive image generation

Generate image pixels starting from corner D i o—0
Dependency on previous pixels modeled o T o©
using an RNN (LSTM) ®

l ©O O O
tostings N x N image requires 2N-1 6 © o ©

sequential steps!

[van der Oord et al. 2016]
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Q: Can we somehow speed up training? Even if
we can not speed up generation?
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PixelCNN - improvements to training time

Observation: Each pixel depends on its
neighboring pixels but not as much on the
pixels in the top corner of the image.

Can we predict a pixel's values from just its / / / /

neighbors?

Figure copyright van der Oord et al., 2016. Reproduced with permis

[van der Oord et al. 2016]
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P IX9|C N N [van der Oord et al. 2016]

Softmax loss over pixel
values at every location

Learn a convolution layer to predict its pixel i .‘
as a function of its neighborhood : ? .
AT~
Training is faster than PixelRNN / / /
(can parallelize convolutions since context region ’

values known from training images)

Generation is still slow:
For a 32x32 image, we need to do forward passes of
the network 1024 times for a single image

Figure copyright van der Oord et al., 2016. Reproduced with permission.
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Generation Samples
ﬂl&!ﬁ.lﬂlﬁ
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32x32 ImageNet

Figures copyright Aaron van der Oord et al., 2016. Reproduced with permission.
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PixelRNN and PixelCNN

Improving PixelCNN performance

Pros: - Gated convolutional layers
- Can explicitly compute likelihood - Short-cut connections
pP(X) - Discretized logistic loss
- Easy to optimize - Multi-scale
- Good samples - Training tricks
- Etc...
Con:
- Sequential generation => slow See

- Van der Oord et al. NIPS 2016
- Salimans et al. 2017
(PixelCNN++)
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Taxonomy of Generative Models

GAN

Generative models

Explicit density Implicit density

Tractable density Approximate density Markov Chain

Fully Visible Belief Nets GSN
- Autoregressive - :
- NADE Variational Markov Chain

- MADE T .
Variational Autoencoder Boltzmann Machine
- NICE / RealNVP
-  Glow . . _ _ .
_ FijI’d Figure copyright and adapted from lan Goodfellow, Tutorial on Generative Adversarial Networks, 2017.
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So far...

PixelRNN/CNNs define tractable density function, optimize likelihood of training data:

p@(x) = Hpo(a:da:l, - xz’—l)
1=1
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So far...

PixeIRNN/CNNs define tractable density function, optimize likelihood of training data:

n
p@(x) = Hpe(a:dxl, ...,Q’Ji_l)
1=1

Variational Autoencoders (VAEs) define an intractable density function with latent z:

po(z) = / po(2)po(z)2)dz

No dependencies among pixels, can generate all pixels at the same time!

We cannot estimate z directly. Instead, we derive and optimize the lower
bound of the likelihood above
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So far...

PixelCNNs define tractable density function, optimize likelihood of training data:

n
p@(x) = Hpe(a:dxl, ...,Q’Ji_l)
1=1

Variational Autoencoders (VAEs) define intractable density function with latent z:

po(z) = / po(2)po(z)2)dz

No dependencies among pixels, can generate all pixels at the same time!

We cannot estimate z directly. Instead, we derive and optimize the lower bound of the
likelihood above

Why latent z?
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Autoencoders (\VAE)
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Some background first: Autoencoders

Unsupervised approach for learning a lower-dimensional feature representation

from unlabeled training data
Z should extract useful
information (maybe object
identities, properties, scene type,
etc) that we can use for
downstream tasks

Features z ! Nt
Encoder
Input data I .g‘agw
P & w7l < 62
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Some background first: Autoencoders

Unsupervised approach for learning a lower-dimensional feature representation
from unlabeled training data

z usually smaller than x
(dimensionality reduction)

Q: Why
dimensionality
reduction?

Features YA
I Encoder
Input data T
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Some background first: Autoencoders

Unsupervised approach for learning a lower-dimensional feature representation
from unlabeled training data

z usually smaller than x
(dimensionality reduction)

Q: Why
dimensionality

reduction?

Features A
A: Want features Encoder
to capture
meaningful |nput data T
factors of

variation in data
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Some background first: Autoencoders

Unsupervised approach for learning a lower-dimensional feature representation
from unlabeled training data

Q. How do we learn this
z?

A. Reconstruct original \
input data:
“‘Autoencoding”
Features Z ! P - |
I Encoder "f"g@
ol oL RS S
a7l « [N

Input data T
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Some background first: Autoencoders

Unsupervised approach for learning a lower-dimensional feature representation

from unlabeled training data
Learning objective: reconstruct

9 2
Q. How do we learn this ”x . x”2 the image and use 12 loss.
? s
i\. Reconstruct original L No labels are necessary!!
input data:
“Autoencoding” T Decoder
Features 2z iﬁ— x
s
Encoder .’ uﬁ.@
Input data J; asgg
sl < S
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Some background first: Autoencoders _Reconstructed data
e i = T3

Images reconstructed ., ﬁ.@

are blurry because z mn!sqn

is smaller and doesn’t Reconstructed -EH ~ .E
save pixel-perfect input data ) =
information ) Encoder: 4-layer conv

Decoder: 4-layer upconv

Input data

T

b
Features A uiﬁ_ e
b

Encoder .’ ﬁ.

S
sl < B
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Some background first: Autoencoders

Similar to the self-supervised feature learning + transfer to downstream tasks

Reconstructed
input data

5y
Features YA \ After training,
b

throw away decoder
Encoder

Input data
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Some background first: Autoencoders

Transfer from large, unlabeled

dataset to small, labeled dataset.

Loss function
(Softmax, etc)

AN

Predicted Label | ¥
T Classifier
Encoder can be
used to initialize a Features z
supervised model
T Encoder
Input data T
Ranjay Krishna Lecture 18 -

bird plane
dog deer truck

!

Train for final task

Fine-tune _ .
encoder (sometimes with
jointly with small data)
classifier T

ol R
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Some background first: Autoencoders

Reconstructed 7
input data
I Decoder
Features z
T Encoder
Input data T
Ranjay Krishna Lecture 18 -

Autoencoders can reconstruct
data, and can learn features to
initialize a supervised model

Features capture factors of
variation in training data.

But we can’t generate new
images from an autoencoder
because we don’t know the
space of z.

How do we make autoencoder a
generative model?
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Variational Autoencoders

Probabilistic spin on autoencoders - will let us sample from the model to generate data!
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Variational Autoencoders

Probabilistic spin on autoencoders - will let us sample from the model to generate data!

Assume training data {x(i)}fll is generated from the distribution of unobserved (latent)
representation z

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014
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Variational Autoencoders

Probabilistic spin on autoencoders - will let us sample from the model to generate data!

Assume training data {z(V}_ is generated from the distribution of unobserved (latent)
representation z

Sample from
true conditional £T

po-(x | %)

Sample from
true prior >

20 ~ P (2)

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014
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Variational Autoencoders

Probabilistic spin on autoencoders - will let us sample from the model to generate data!

Assume training data {z(V}_ is generated from the distribution of unobserved (latent)
representation z

Intuition (remember from autoencoders!):
X is an image, z is latent factors used to
generate x, such as attributes,
orientation, etc.

Sample from
true conditional £T

po-(x | %)

Sample from
true prior >

20 ~ P (2)

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014
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Variational Autoencoders

We want to estimate the parameters g*
given training real data x.

Sample from
true conditional £T

po-(x | %)

Sample from
true prior >

2D ~ pp (2)

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Ranjay Krishna Lecture 18 - 79 June 3, 2025




Variational Autoencoders

We want to estimate the parameters g*
given training real data x.

Sample from
true conditional £T

po-(x | %)

How should we represent this model?

Sample from
true prior >

2D ~ pp (2)

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014
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Variational Autoencoders

We want to estimate the parameters g*
given training real data x.

Sample from
true conditional £T

po-(x | %)

How should we represent this model?

Choose prior p(z) to be simple, e.g.
Gaussian. Reasonable for latent attributes,

Sample from e.g. pose, how much smile.

true prior >

2D ~ pp (2)

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014
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Variational Autoencoders

"'”""‘."""‘:":”:""hb We want to estimate the parameters g*
P Y YrYyryYyryYyryYyys given training real data x.

Sample from
true conditional £T

po-(x | %)

How should we represent this model?

Decoder Choose prior p(z) to be simple, e.g.
network Gaussian. Reasonable for latent attributes,
Sample from e.g. pose, how much smile.
true prior >
()~ g . :
z Py (2) Conditional p(x|z) is complex (generates

/\ image) => represent with neural network

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014
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Variational Autoencoders

Decoder must be probabilistic:
Decoder inputs z, outputs mean My and We want to estimate the parameters 9*
(diagonal) covariance ) given training real data x.

X|z

Sample from
true conditional Hy 2 £E|Z ~ N(u’xlza Z:1:|Z)
P~ (z | 2) T T
Decoder
Sample from network
true prior P A
20 ~ py* (2)

AN

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014
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Variational Autoencoders

We want to estimate the parameters g*
given training real data x.

Sample from
true conditional £T

po-(x | %)

How to train the model?

Decoder
network
Sample from

true prior >

2D ~ pp (2)

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014
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Variational Autoencoders

We want to estimate the parameters g*
given training real data x.

Sample fr.o_m How to train the model?
true conditional X
po- (T | Z(Z)) Learn model parameters to maximize likelihood
Decoder of training data
network
Sample from
trge prior P = [ po(2)pe(z|2)dz
29 ~ py (2)

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014
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Variational Autoencoders

Sample from
true conditional £T

po-(x | %)

Decoder
network
Sample from

true prior >
2D ~ pp (2)

We want to estimate the parameters g*
given training real data x.

How to train the model?

Learn model parameters to maximize likelihood
of training data

= [ po(2)po(z|2)dz
Q: What is the problem with this?

Intractable! Impossible to iterate over all z

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014
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Variational Autoencoders: Intractability

Data likelihood: pe(z) = [ pe(2)pe(z|2)dz

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014
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Variational Autoencoders: Intractability

v
Data likelihood: pe(z) = [ pe(2)pe(z|2)dz

f

Simple Gaussian prior

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014
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Variational Autoencoders: Intractability

v v
Data likelihood: pe(z) = [ pe(2)pe(z|2)dz

\

Decoder neural network

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014
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Variational Autoencoders: Intractability

vV VvV
Data likelihood: pe(z) = [ pe(2)pe(z|2)dz

f

Intractable to compute p(x|z) for every z!

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014
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Variational Autoencoders: Intractability

t/ t/
Data likelihood: pe(z) = [ pe(z z)dz

f

Intractable to compute p(x|z) for every z!

log p(z) =~ log % S p(x]2®), where 2 ~ p(z)

Monte Carlo estimation is too high variance

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014
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Variational Autoencoders: Intractability

vV VvV
Data likelihood: pe(z) = [ pe(2)pe(z|2)dz

x|z Z
Another idea: po(x) = Polx | 2)po (2) - Use Bayes rule
po(z | x)

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014
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Variational Autoencoders: Intractability

vV VvV
Data likelihood: pe(z) = [ pe(2)pe(z|2)dz

L po(x | z)py(2)
Another idea:  pg(¥) = pe(z | x) We know how to calculate these

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014
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Variational Autoencoders: Intractability

Data likelihood: pe(z) = [ pe(2)pe(z|2)dz

po(x | 2)pe(2)
po(z | x) «— But how do you calculate this?

Solution: In addition to modeling p,(x|z),
Learn q ¢(z|x) that approximates the true posterior p,(z|x).

Anotheridea: p,(x) =

Encoder Network Decoder Network
d¢ (z|x)= N(ﬂz|x: Z:zlx) pe(x|2z) = N(ﬂx|z: z:x|z)
Hz|x sz Lolz Zm]z
T A

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014
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Variational Autoencoders: Intractability

Data likelihood: pe(z) = [pe(2)pe(z|2)dz  x: 28x28 image = 784-dim vector

z: 20-dim vector
Another idea: p,(x) = Po (x | 2)pe (2)

po(z | x)
Encoder Network Decoder Network
d¢ (Z | x) = N(ﬂzlx: 2:z|x) Peo (x | Z) = N(.“x|z: z:x|z)
My k- 20 2o 20 Ky 768 24| 768
Linear(400->20) Linear(400->20) Linear(400->768) Linear(400->768)
f I f I
Linear(784->400) Linear(20->400)
1 1
x: 784 z:20

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014
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Variational Autoencoders
(skipping during lecture)

log po(zV) = E. g, (zlz) {logpg(m(i))} (pe (') Does not depend on z)

Using this approximation, we can derive a lower bound on the data likelihood
p(x), making it tractable, therefore, possible to optimize.
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Variational Autoencoders

log po(zV) = E. g, (zlz) {logpg(m(i))} (pe (') Does not depend on z)

/

Taking expectation wrt. z
(using encoder network) will
come in handy later
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Variational Autoencoders

log po(zV) = E. g, (zlz) {logpg(m(i))} (pe (') Does not depend on z)

po(z | 2)py(2)
po(z | (D)

=B, llog ] (Bayes’ Rule)
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Variational Autoencoders

log g (zV) = E. q,(zlz) {logpg(m(i))} (pe(z'?) Does not depend on z)

po(z® | z)ps(2)
po(z | z®)

po(z® | 2)po(z) gg(z | V)
po(z | 2®)  gg(z | z®)

=E, |log ] (Bayes’ Rule)

= E. |log ] (Multiply by constant)
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Variational Autoencoders

log po(zV) = E. g, (zlz) {logpg(m(i))} (pe(z'?) Does not depend on z)
po(z"”) | 2)po(2)
po(z | =)
po (x| 2)po(2) gs(2 | 27)

=E, |log ] (Bayes’ Rule)

=E, |lo . . Multiply by constant
o T ) (il by constant)
- . (4) (4)
=E. |logpg(z | z)} —E, [log 4 | )] +E, llog M] (Logarithms)
_ po(z) po(z | )
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Variational Autoencoders

log po(zV) = E.q,(zlz) {logpg(x(i))} (pe(z'?) Does not depend on z)

[ (4)
= E, |log po(z™ | Z)pg(Z)] (Bayes’ Rule)
I po(z | ()
(2 | 2)pe(2) g4 (2 | CL’("))] .
=E, |lo . . Multiply by constant
8 e [a0)  go(e [am)| MDY by constant

= —0 2@ | 2)| = 0 M o) M ogarithms
E, :1 gpo(z™ | )} E, [1 — ]+Ez [1 gp@(zw(i))] (Logarithms)
= E. [log (2 | 2)] = Dicr(go(z | #9) l|po(2)) + Dicr (as(= | 29) | po(z | 2))
\ /

The expectation wrt. z (using
encoder network) let us write
nice KL terms
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Variational Autoencoders

log po(zV) = E.q,(zlz) {logpg(x(i))} (pe(z'?) Does not depend on z)

[ (4)
= E, |log po(z™ | Z)pg(Z)] (Bayes’ Rule)
po(z | 2®)

po (x| 2)po(2) gs(2 | 27)
po(z | 2)  qe(z | 2®)

= E. |log ] (Multiply by constant)

r : (4) (4)

=E, |logpe(z | z)} - E, [log M] +E, llog 4p(z | ) . )] (Logarithms)
: po(2) po(z | (@)

_E. [logpo(e® | 2)] - Dics(go(= | 29) | po(2)) + Dicr(as(z | o) ll po(z | o))

*

Decoder network gives p,(x|z), can
compute estimate of this term through
sampling (need some trick to
differentiate through sampling).
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Variational Autoencoders

log pg(2V) = E. q,(zlz) {logpg(x(i))} (pe(z'?) Does not depend on z)

po(z® | z)ps(2)
po(z | x®)

po(z™ | 2)pa(z) gg(z | V)
po(z | 2®)  gg(z | 2®)

=E, |log ] (Bayes’ Rule)

= E. |log ] (Multiply by constant)

r : (4) (2)
=E. |logpg(z | z)} —E, [log M] +E, llog M] (Logarithms)
_ po(z) po(z | z()
= E. [logpo(e | 2)| — Drcr(gs(= | 2®) || po(2)) + Dcr(g6(= | 2) || po(z | 7))
Decoder network gives pe(xlz), can This KL term (between
compute estimate of this term through Gaussians for encoder and z
sampling (need some trick to prior) has nice closed-form
differentiate through sampling). solution!
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Variational Autoencoders

log pg(2V) = E. q,(zlz) {logpg(x(i))} (pe(z'?) Does not depend on z)

[ (4)

=E, |log po(z™ | Z)pg(Z)] (Bayes’ Rule)

po(z | 2®)

po (x| 2)pe(2) go (2 | V)
po(z [2))  qy(z | =)

_ | (i
— E, |logpg(z® | Z)} _E, [1OgM

= E. |log ] (Multiply by constant)

(4)
] +E, llog M] (Logarithms)

po(2) po(z | (@)
— E. [logpo(e® | 2)] = Dics(go(= | 2) l|po(=) + Dicr(go(= | 2 | polz | 29)
Decoder network gives py(x|z), can This KL term (between pe(;|x) intractable (saw _
compute estimate of this term through Gaussians for encoder and z  €arlier), can’t compute this KL
sampling (need some trick to prior) has nice closed-form term :( But we know KL
differentiate through sampling). solution! divergence always >=0.
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Variational Autoencoders

log po(zV) = E.q,(zlz) {logpg(x(i))} (pe(z'?) Does not depend on z)

/

=K,
We want to
maximize the _E
data -z
likelihood

=E.

=E.

Decoder network gives p,(x|z), can
compute estimate of this term through

sampling.

Ranjay Krishna

_lo po(z®) | 2)po(2)

] (Bayes’” Rule)

po(z | 2)
(4) (1)

log po(a™ | z)pg(z) 42| @ . )] (Multiply by constant)

po(z | @) gy(z | @)
— : (@) (z ]| ™)
lo D 2)| — E, [10 M] + E, [10 qu—] Logarithms
logpo(a | 2)] g 8 | (Logarithms)
log po (¢ | 2)] — Dcr(go(= | 2@) || po(2)) + Dcr(go(= | 2@) || po(z | 7))

i i ;

This KL term (between Pg(z[x) intractable (saw
Gaussians for encoder and z  €arlier), can’t compute this KL

prior) has nice closed-form term :( But we know KL
solution! divergence always >=0.
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Variational Autoencoders

log pg(zV) = E. q,(zlz) {logpg(x(i))} (pe(z'?) Does not depend on z)

[ (4)
/ = E. |log po(z™ | Z)(];)g(Z)] (Bayes’ Rule)
We want to L po(z | 2) o
(rjna][xmlzet - E. |log po(a™ | z)pg(z) 42| @ . ) (Multiply by constant)
ata po(z | 2@)  qy(z | 2®)
likelihood . (2| (7;)) | i ))
= E, |logpe(z@ | z)} —E, [log M] +E, [log 4p(z | ) ] (Logarithms)
L po(2) po(z | ()
=|E. |log po(z'" | Z)} — Dicr(gg(2 | 29) |Ipo(2))|+ Dicr(ap(2 | 2 )Hpe(z | 2))

L(z9),6, ¢) >0
Tractable lower bound which we can take

gradient of and optimize! (p,(x|z) differentiable,
KL term is differentiable)
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Variational Autoencoders

log pg(zV) = E. q,(zlz) {logpg(x(i))} (pe(z'?) Does not depend on z)

[ (i) |
=E, |lo Po(z |Z)(P)"<Z)] (Bayes’ Rule) Encoder:
Decoder: pe(z | =) make approximate
' B po (D | 2)po(2) g (z | @) . posterior distribution
reconstruct E, |log oz [2)  qu(z | 20) (Multiply by constant) close to prior

the input data

g po(z'? | 2)} —1, [log M] i

—[E- [log20(a? | )] ~ Dicwlaole | e Tpa(e )|+ Diclastz | 99) (e | 29)

£(".0.9) ="
Tractable lower bound which we can take

gradient of and optimize! (p,(x|z) differentiable,
KL term differentiable)

] (Logarithms)

Ranjay Krishna Lecture 18 - 107 June 3, 2025



Variational Autoencoders
(skipped till here)

Putting it all together: maximizing the
likelihood lower bound

E. [logps(e® | )| = Dicr(gs(= | 27) || po(2))

- -

£(z9,0,9)
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Variational Autoencoders

Putting it all together: maximizing the
likelihood lower bound

E. [logps(a | 2)] —]DKLm(z =) Hpe<z>2|

L(z?,0,9)

Let’s look at computing the KL
divergence between the estimated
posterior and the prior given some data

Input Data b
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Variational Autoencoders

Putting it all together: maximizing the
likelihood lower bound

E. [logpo(a | 2)] {Dicr(as(= | 2®) [ po(2)

-

L(z?,0,9)

/’I’ZI:B Ez |a;
Encoder network V\/
e (2|)
Input Data b
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Variational Autoencoders

Putting it all together: maximizing the
likelihood lower bound

E. [logps(a | 2)] —]DKLm(z =) Hpe<z>2|

L(z?,0,9)

Make approximate
posterior distribution
close to prior

Ranjay Krishna

Dkr, (N(/J‘zkca EZICC)HN(O?I))

Hz|z

Encoder network

9 (2|)
Input Data

Lecture 18 - 111

~_

This equation has an analytical solution

Zz|:c

b
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Variational Autoencoders

Putting it all together: maximizing the
likelihood lower bound

E. [logps(e® | )| [~ D (gs(= | 27) || po(2))

L(z?,0,9)

Make approximate
posterior distribution
close to prior

|

<

Not part of the computation graph!

Sample z from z|x ~ j\/’(,qu|w, Zz|:c)

/

Hz|z

Encoder network

9 (2|)
Input Data

Lecture 18 - 112

~_

Zz|:c

Ranjay Krishna
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Variational Autoencoders

Putting it all together: maximizing the
likelihood lower bound

E. [logps(e® | )| [~ D (gs(= | 27) || po(2))

-

L(z?,0,9)

Reparameterization trick to make
sampling differentiable:

Sample € ~ N(O, I)
2= |y T €0y

VA
Sample z from z|a7 ~ N(Mz|a;, Ez|:c)

/

/’I’ZI:B Ez |a;
Encoder network V\/
e (2|)
Input Data b
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Variational Autoencoders

Putting it all together: maximizing the
likelihood lower bound

E. [logps(e® | )| [~ D (gs(= | 27) || po(2))

L(z?,0,9)

/’l’ZI:B Zz |a;
Encoder network V\/
e (2|)
Input Data b

Reparameterization trick to make
sampling differentiable:

Sample € ~ N(O, I
2 =|Hzlx

Part of computation graph

Input to
the graph

VA
Sample z from z|a7 ~ N(Mz|a;, Zz|:c)

/
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Variational Autoencoders

Putting it all together: maximizing the
likelihood lower bound

E. |logpo(e” | 2)| |- Dicr(as(z | ) || po(2)) Ha|z

? 2a:lz
L(zD,0,¢) Decoder network \/
po(x|2)

VA
Sample z from z|a7 ~ N(Mz|a;, Zz|:c)

/

/’l’ZI:B Zz |a;
Encoder network V\/
q¢(2|z)
Input Data b
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Variational Autoencoders

Maximize likelihood of original
input being reconstructed

Putting it all together: maximizing the
likelihood lower bound

i
E. [logpa(a? | 2)| [+ Denlaolz | ) | p0(2) Kz Xiz)z

L(zD,0,¢) Decoder network \/
po(x|z)

VA
Sample z from z|a7 ~ N(Mz|a;, Zz|:c)

/

l‘l’ZI.’B Zz |a;
Encoder network V\/
e (2|)
Input Data b
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Variational Autoencoders

Putting it all together: maximizing the

likelihood lower bound / \

E. |logpo(2 | 2)| = Dics(as(z | ) Il po(2) K|z Yzl
L(z®,0,¢) Decoder network \/
po(x|2)
For every minibatch of input 2
data: compute this forward Sample z from Z|iB ~ N(,u'z|a:7 Zz|:z:)
pass, and then backprop! /
/’l’Zlili Zzlx
Encoder network V\/
99 (2|z)
Input Data b
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Variational Autoencoders: Generating Data!

Our assumption about data generation
process

Sample from
true conditional £T

pe-(z | %)

Decoder
network
Sample from

true prior >

29 ~ py (2)

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014
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Variational Autoencoders: Generating Data!

Now given a trained VAE:
Our assumption about data generation use decoder network & sample z from prior!

process
Sample from L/
true conditipnal b Sample x|z from :clz ~ N(ux|z, 2x|z)
po-(z | 29)
Decoder / \
network Hz|z Z:Izlz
tsampl? from Decoder network \/
rue prior >
, po(x|2)
20~ pg (2) <

Sample z from z ~ N (0, I)
Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014
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ing Data!

Generat

| Autoencoders:

lona

t

Ia

Var

Use decoder network. Now sample z from prior!
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N

Sample x|z from :E|z ~ N(Mm|z, Em|z)
M|z

Decoder network
po(x|z)

<
Sample z from z ~ N (0, I)

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014
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ing Data!
Data manifold for 2-d z

Generati

| Autoencoders:

lona

t

Ia

Var
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QO0DHINININMHEBVIVVV®w w—— 4
QAQOQOMIMNMNMN N MDY IY D @ - ——
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OODMMMN MMM NM®DD DD e e —
OODOMW MMM NN DD e e e —
QOMMM M0N0 0000 n e oo = —
QA48 0802 0P 000000 00 n & 0~ 0~ P~ o~
N N Ko N N Nl ol U
&221111%“?9?999977774
Sl ogororrorrrrTaNN
Sdadadaddocrrrrr T TTIIIINN
SddddagororrrrrddTITITRIRINN
SAdddTTrrrrrrrrrFrT™2TR™IR™NN
% B g gl e e i<l el el ol ol ol O N NN N

< >

Vary z,

Za:lz

N

<
Sample z from z ~ N (0, I)

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Sample x|z from :E|z ~ N(Mm|z, Em|z)
M|z

Use decoder network. Now sample z from prior!
po(x|z)

Decoder network

Vary z,
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Variational Autoencoders: Generating Data!

lovavaslaslaslanlonlonlon s
Diagonal prior on z p‘ﬁ"ﬁﬁ :E
I=> Indepe.ndent Degree of smile | Pﬁ#“g '& ;I ‘
atent variables \ N ;q:ﬁ. # . q;. -
Different ¥ § ¥ g:g: ;

dimensions of z Vary z, rgg
encode r X
-

interpretable factors f.q.‘ " :l
o "

of variation ?l!'& i i i g

ddddddd

nnana %ﬂ

« -
Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014 Vary z, —

Head pose
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Variational Autoencoders: Generating Data!

Ela_gczjnal pr(ijor ct)n z 'i:;:i:;"‘&?ﬁb b
| independen Degree of smile | J‘J‘#‘k‘ |
atent variables \ R ;q:ﬁ. # . q;.
Different E’ %) qﬁ. l
dimensions of z Vary z, gg 3 a.a. I
encode gdr*‘ . . <l
int table fact : - - -~ -

it = A

\ 3 E
Also good feature representation that P“W 5 aaa 3

can be computed using q¢(z|x)! FEEFEFFFE %:i

« -
Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014 Vary z, —

Head pose

Ranjay Krishna Lecture 18 - 123 June 3, 2025



Variational Autoencoders: Generating Data!

Labeled Faces in the Wild
32x32 CIFAR-10

Figures copyright (L) Dirk Kingma et al. 2016; (R) Anders Larsen et al. 2017. Reproduced with permission.
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Editing images with VAEs

1. Run input data through
encoder to get a distribution
over latent codes

/’I’ZI:L‘ Ez |a;
Encoder network \/
e (2|)
Input Data b
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Editing images with VAEs

1. Run input data through
encoder to get a distribution
over latent codes

2. Sample code z from encoder
output A

Sample z from z|az ~ N(Mz|a;, Ez|:c)

/

/’I’ZI:L‘ Ez |a;
Encoder network \/
e (2|)
Input Data b
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Editing images with VAEs

1. Run input data through
encoder to get a distribution

over latent codes Z modified
2. Sample code z from encoder

output Z
3. Modify some dimensions of sample z from 2|z ~ N (Ly(4, Z2(2)

sampled code St

K|z 2zla
Encoder network
wel) S
Input Data b
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Editing images with VAEs

M|z

1. Run input data through Decoder network
encoder to get a distribution po(z|2)
over latent codes

2. Sample code z from encoder
output

3. Modify some dimensions of
sampled code

4. Run modified z through
decoder to get a distribution Encoder network
over data sample q¢(z|a:)

Input Data
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Z modified

2

Sample z from z|az ~ N(Mz|a;, Ez|:c)

/'

Hz|x

Zz|:c

~_

b
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Editing images with VAEs

/x\

M|z

2:Izlz

1. Run input data through Decoder network
encoder to get a distribution po(z|2)
over latent codes

2. Sample code z from encoder
output

3. Modify some dimensions of
sampled code

4. Run modified z through
decoder to get a distribution Encoder network
over data sample q¢(z|a:)

5. Sample new data from (4)

Input Data
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Z modified

2

Sample z from z|az ~ N(Mz|a;, Ez|:c)

/'

Hz|x

Zz|:c

~_

b
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Editing images with VAEs
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Variational Autoencoders

Probabilistic spin to traditional autoencoders => allows generating data
Defines an intractable density => derive and optimize a (variational) lower bound

Pros:
- Principled approach to generative models
- Interpretable latent space.
- Allows inference of q(z|x), can be useful feature representation for other tasks

Cons:
- Maximizes lower bound of likelihood: okay, but not as good generations as
PixelRNN/PixelCNN
- Samples blurrier and lower quality compared to state-of-the-art (GANs)

Active areas of research:
- More flexible approximations, e.g. richer approximate posterior instead of diagonal
Gaussian, e.g., Gaussian Mixture Models (GMMs), Categorical Distributions.
- Learning disentangled representations.
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Comparing the two methods so far

Aut : del Variational model
JIOregressive mode - Maximize lower bound on p(data)

- Directly maximize p(data) - Generated images often blurry
- High-quality generated images - Very fast to generate images

- Slow to generate images - Learn rich latent codes
- No explicit latent codes
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Next time: GANs and diffusion

Ranjay Krishna Lecture 18 - 133 June 3, 2025




