Lecture 10: RNNs, LSTMs

Ranjay Krishna

Lecture 10 - 1

Administrative: Assignment 3

Lecture 10 - 2

May 01, 2025

Due 5/11 11:59pm

- Normalization Layers,
- Dropout,
- CNNs

Ranjay Krishna

Administrative: Fridays

Lecture 10 - 3

May 01, 2025

This Friday

Who's Who of Deep Learning

Administrative: Project

Please fill out the <u>Google Form</u> posted on Ed

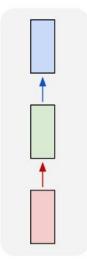
We will use this to assign TAs to projects

Ranjay Krishna

Lecture 10 - 4

"Vanilla" Neural Network

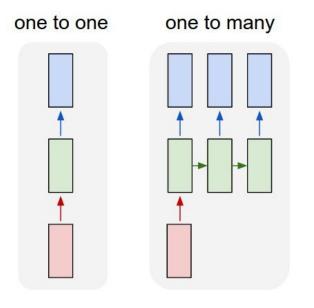
one to one



Vanilla Neural Networks

Ranjay Krishna

Lecture 10 - 5

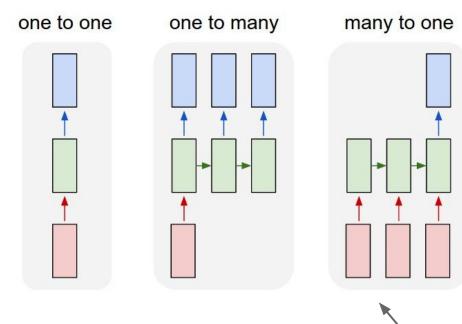


e.g. Image Captioning image -> sequence of words

Ranjay Krishna

Lecture 10 - 6

6



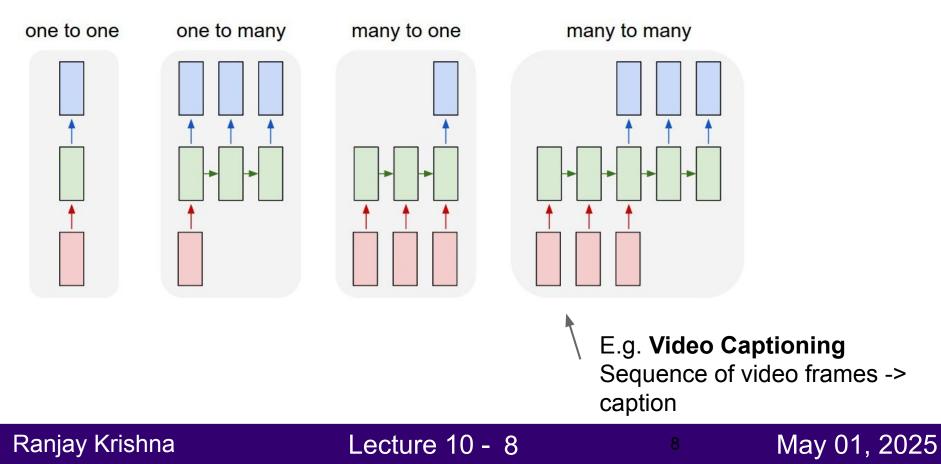
e.g. action prediction, sentiment classification

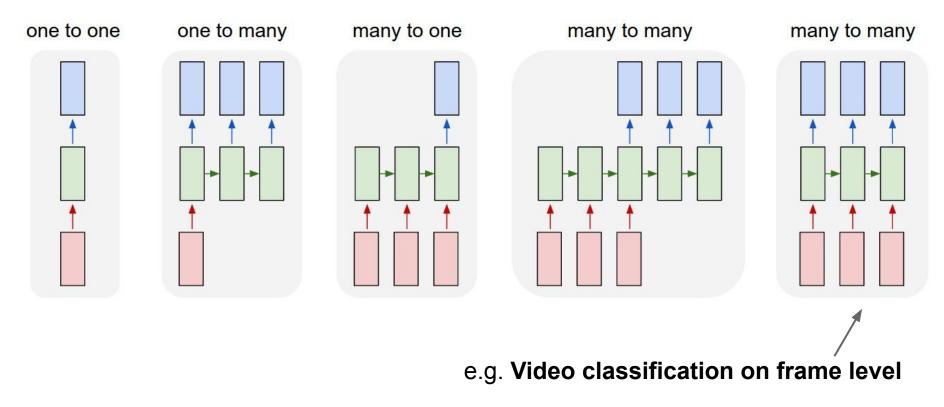
sequence of video frames -> action class

Ranjay Krishna

Lecture 10 - 7

7





Ranjay Krishna

Lecture 10 - 9

So far: Representing words as discrete symbols

In traditional NLP, we regard words as discrete symbols: *hotel, conference, motel* – each has its own symbol. This is a localist representation

Vector dimension = number of words in vocabulary (e.g., 500,000+)

Ranjay Krishna

Lecture 10 - 10

So far: Representing words as dense vectors

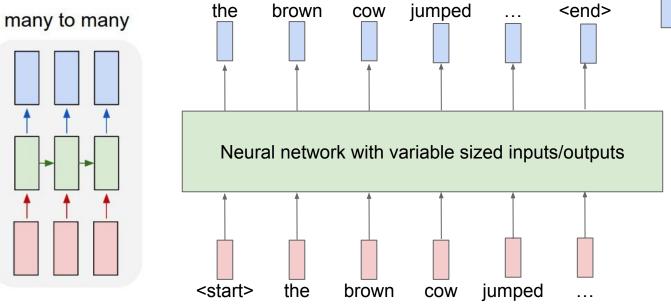
We will build a dense vector for each word,

- chosen so that it is similar to vectors of words that appear in similar contexts: e.g. jacket / coat / sweater.
- measuring similarity as the vector dot (scalar) product.
- Word vectors are also called (word) embeddings or (neural) word

Ranjay Krishna

Lecture 10 - 11

Now let's talk about how we can model language



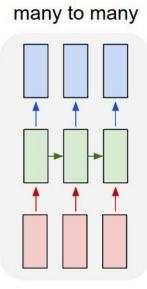
Word representations can be V-dimensional one-hot vectors Or d-dimensional dense vectors

Outputs are classification (softmax) over V-dimensions

Ranjay Krishna

Lecture 10 - 12

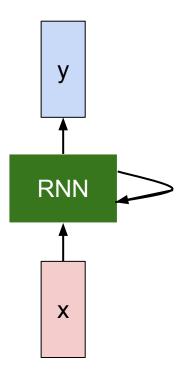
Now let's talk about how we can model language



Ranjay Krishna

Lecture 10 - 13

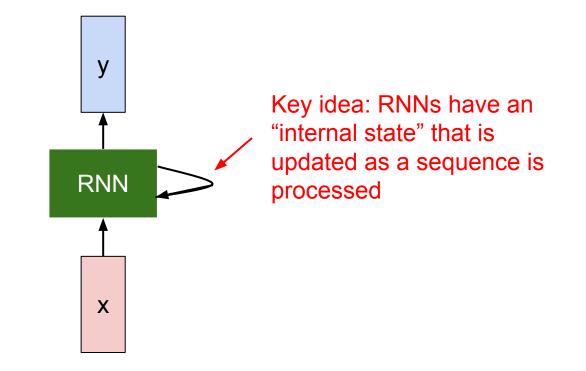
Recurrent Neural Network



Ranjay Krishna

Lecture 10 - 14

Recurrent Neural Network

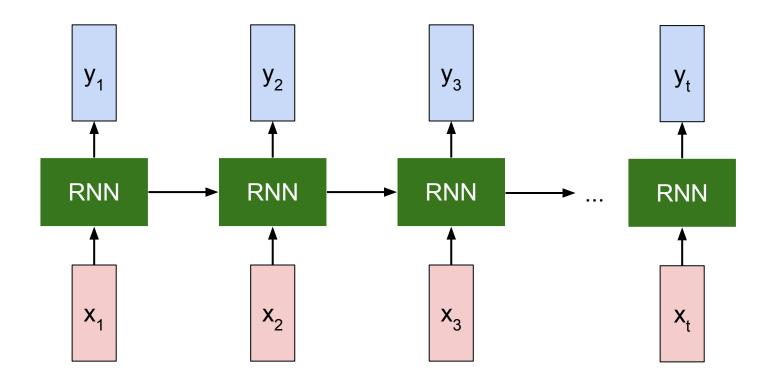


Ranjay Krishna

Lecture 10 - 15

15

Unrolled RNN



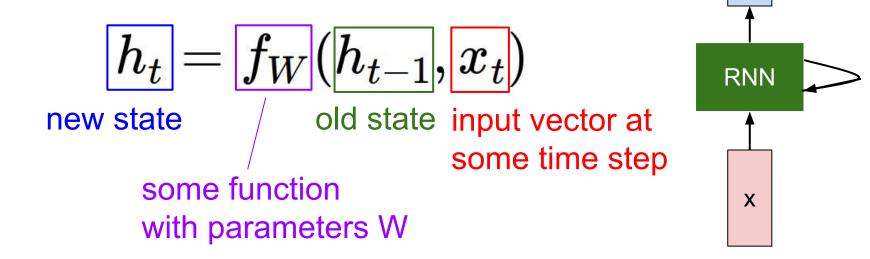
Ranjay Krishna

Lecture 10 - 16

16

RNN hidden state update

We can process a sequence of vectors **x** by applying a **recurrence formula** at every time step:



Ranjay Krishna

Lecture 10 - 17

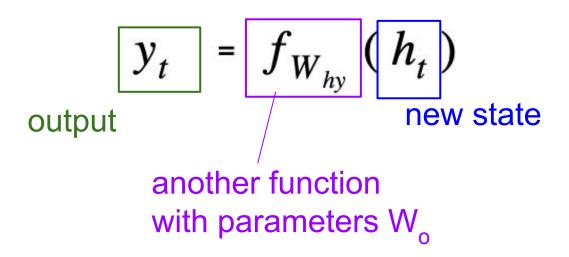
17

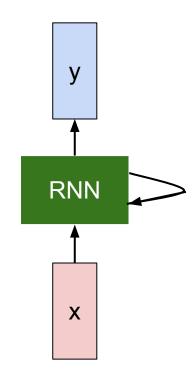
V

<u>May 01, 2025</u>

RNN output generation

We can process a sequence of vectors **x** by applying a **recurrence formula** at every time step:





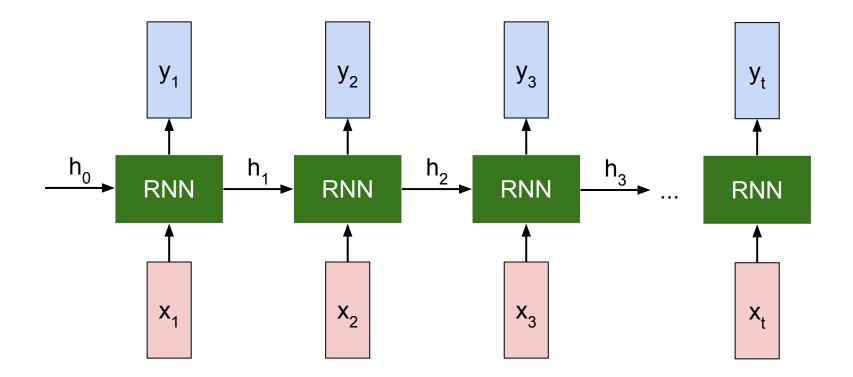
May 01, 2025

Ranjay Krishna

Lecture 10 - 18

18

Recurrent Neural Network



Ranjay Krishna

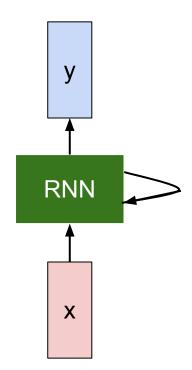
Lecture 10 - 19

Recurrent Neural Network

We can process a sequence of vectors **x** by applying a **recurrence formula** at every time step:

$$h_t = f_W(h_{t-1}, x_t)$$

Notice: the same function and the same set of parameters are used at every time step.



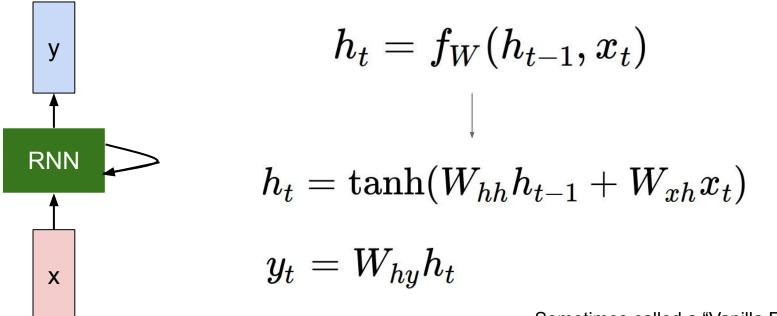
<u>May 01, 2025</u>

Ranjay Krishna

Lecture 10 - 20

(Simple) Recurrent Neural Network

The state consists of a single *"hidden"* vector **h**:

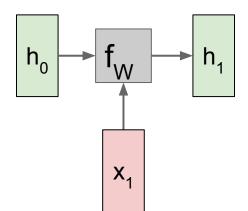


Sometimes called a "Vanilla RNN" or an "Elman RNN" after Prof. Jeffrey Elman

<u>May 01, 2025</u>

Ranjay Krishna

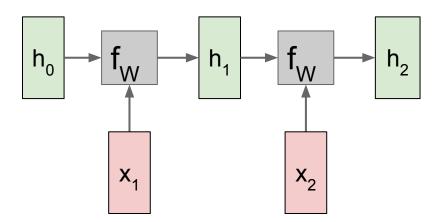
Lecture 10 - 21



Ranjay Krishna

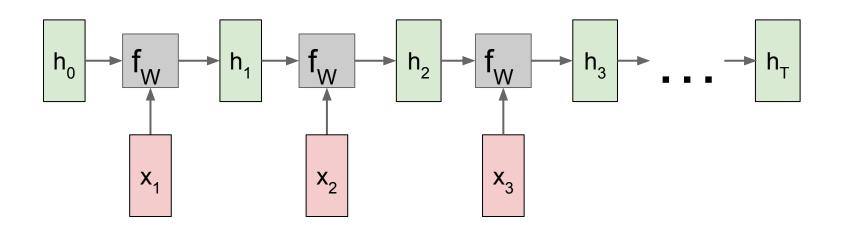
Lecture 10 - 22

22



Lecture 10 - 23

Ranjay Krishna



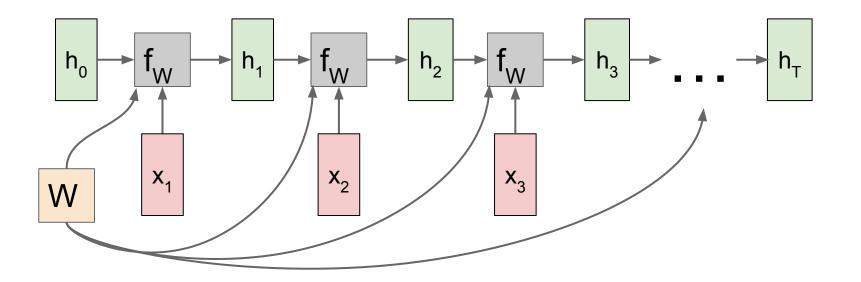
Ranjay Krishna

Lecture 10 - 24

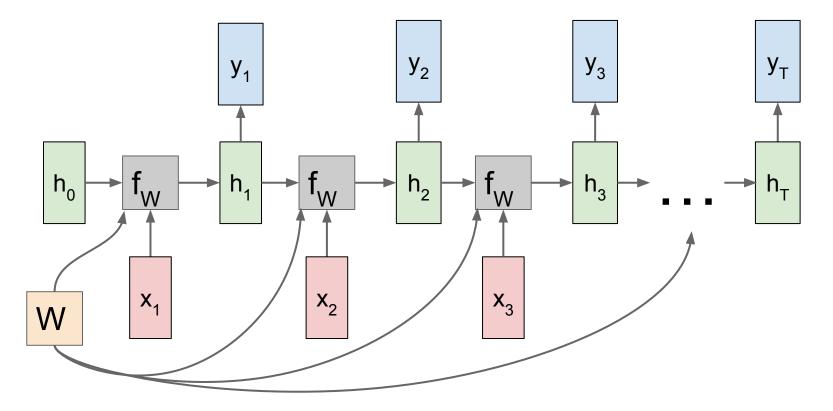
24

Ranjay Krishna

Re-use the same weight matrix at every time-step



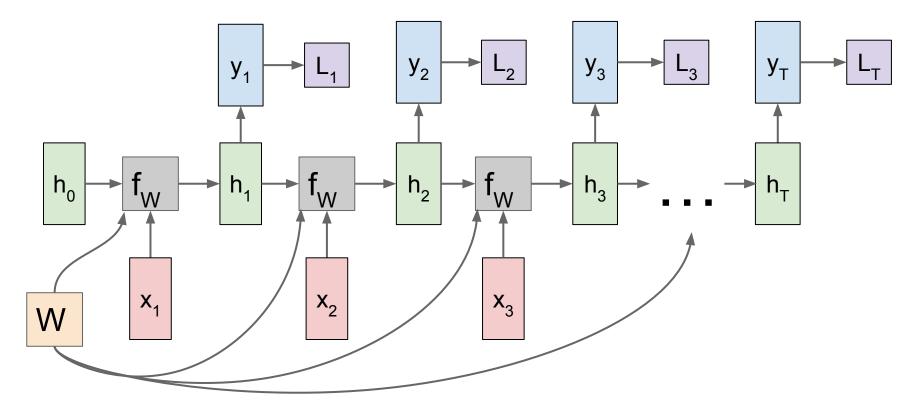
Lecture 10 - 25



Lecture 10 - 26

Ranjay Krishna

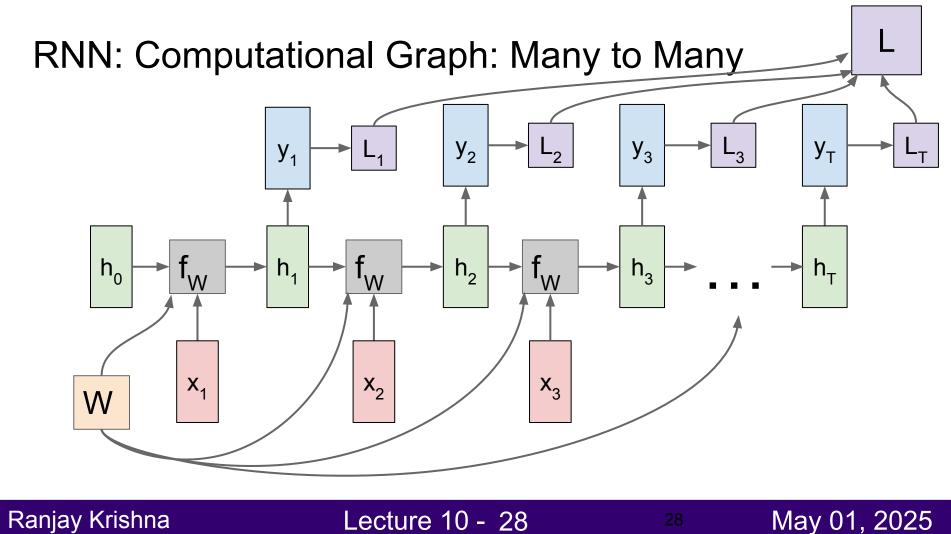
26



Lecture 10 - 27

Ranjay Krishna

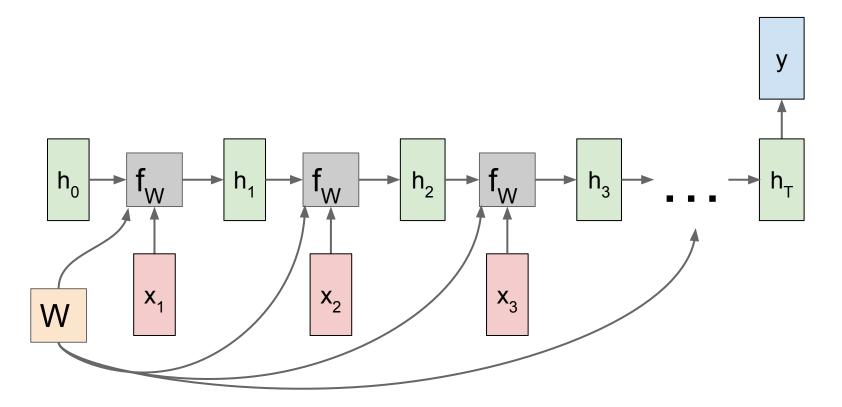
27



Lecture 10 - 28

Ranjay Krishna

RNN: Computational Graph: Many to One

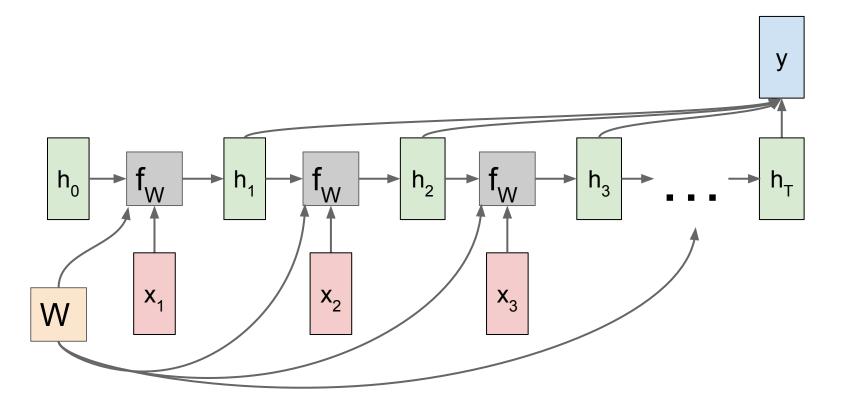


Lecture 10 - 29

Ranjay Krishna

29

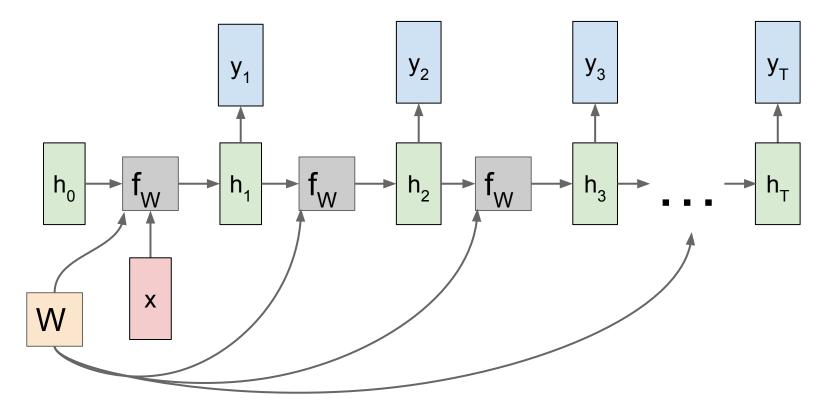
RNN: Computational Graph: Many to One



Lecture 10 - 30

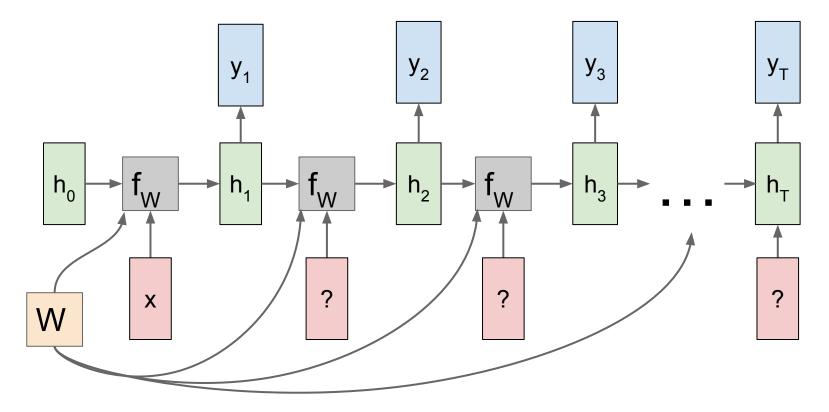
Ranjay Krishna

30



Ranjay Krishna

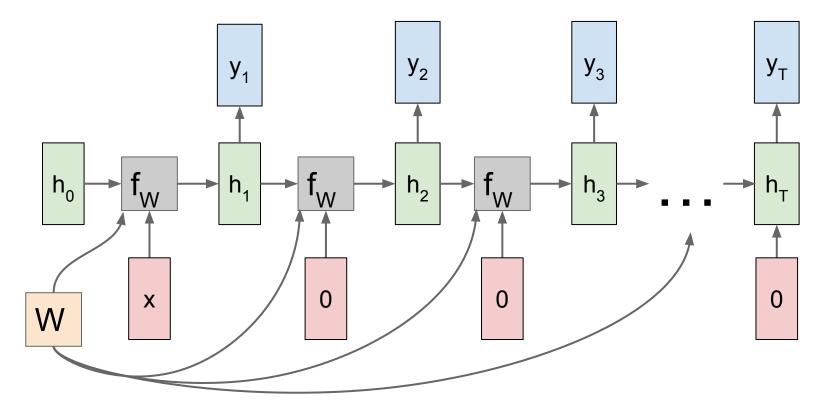
Lecture 10 - 31



Lecture 10 - 32

Ranjay Krishna

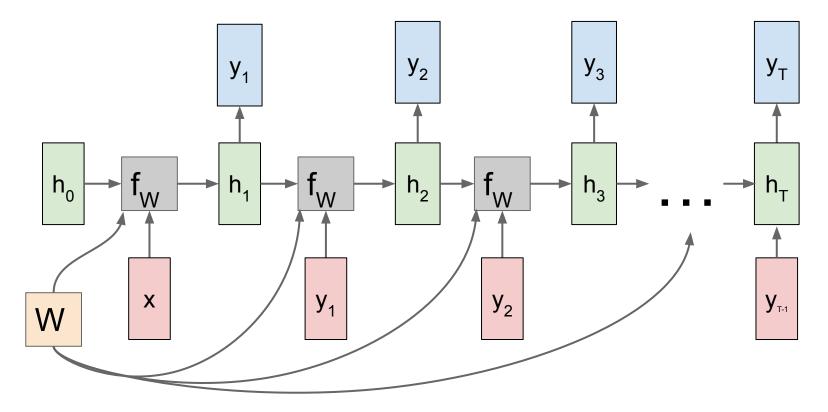
32



Lecture 10 - 33

Ranjay Krishna

33

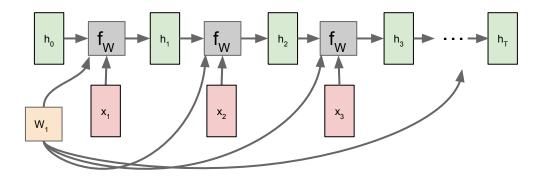


Lecture 10 - 34

Ranjay Krishna

Sequence to Sequence: Many-to-one + one-to-many

Many to one: Encode input sequence in a single vector



Sutskever et al, "Sequence to Sequence Learning with Neural Networks", NIPS 2014

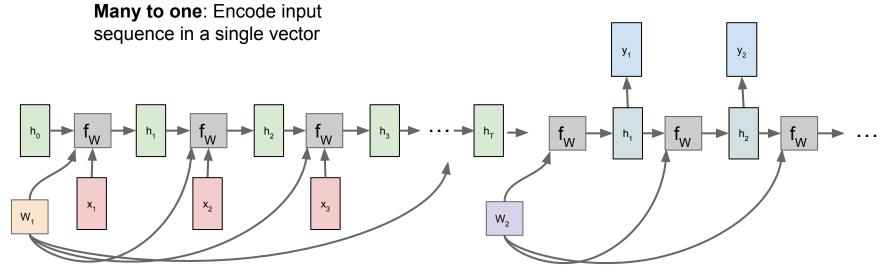
Ranjay Krishna

Lecture 10 - 35

35

Sequence to Sequence: Many-to-one + one-to-many

One to many: Produce output sequence from single input vector



Sutskever et al, "Sequence to Sequence Learning with Neural Networks", NIPS 2014

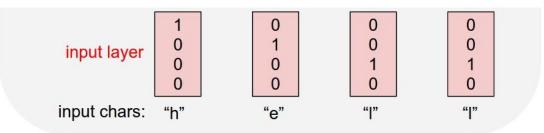
Ranjay Krishna

Lecture 10 - 36

36

Vocabulary: [h,e,l,o]

Example training sequence: **"hello"**



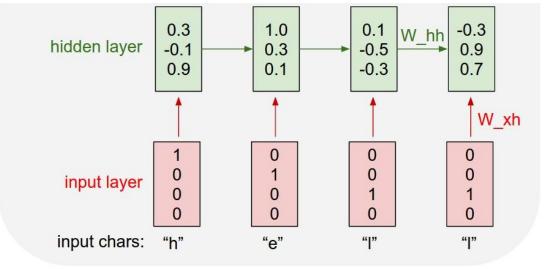
Ranjay Krishna

Lecture 10 - 37

37

Example training sequence: **"hello"**

$$h_t = anh(W_{hh}h_{t-1} + W_{xh}x_t)$$



May 01, 2025

Ranjay Krishna

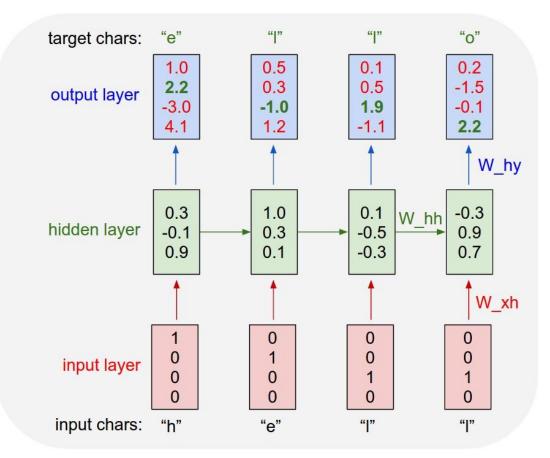
Lecture 10 - 38

38

Vocabulary: [h,e,l,o]

Ranjay Krishna

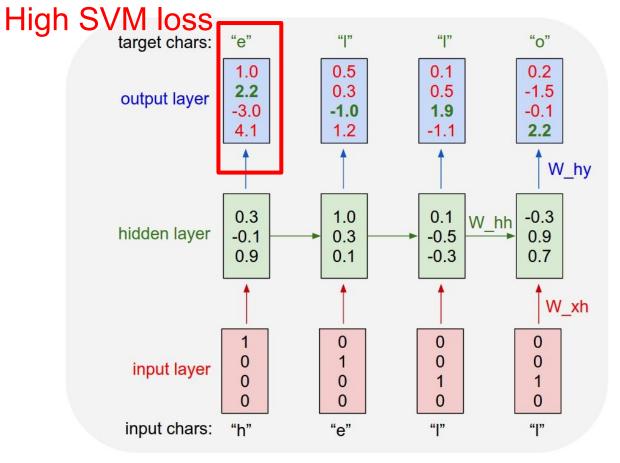
Example training sequence: **"hello"**



Lecture 10 - 39

Vocabulary: [h,e,l,o]

Example training sequence: **"hello"**

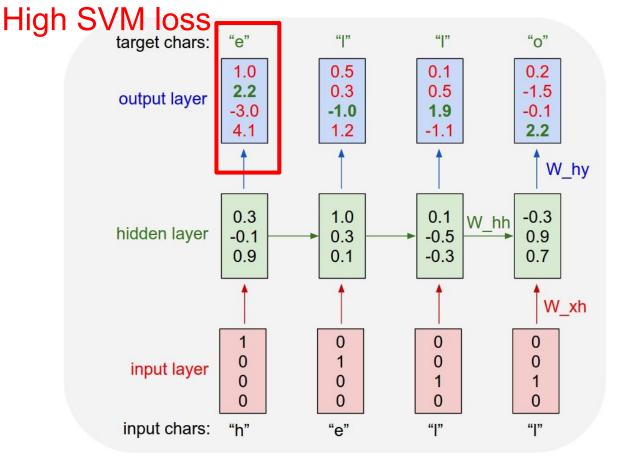


Ranjay Krishna

So far: encode inputs as one-hot-vector

 $\begin{bmatrix} w_{11} & w_{12} & w_{13} & w_{14} \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} w_{11} \\ 1 \end{bmatrix} \begin{bmatrix} w_{21} & w_{22} & w_{23} & w_{14} \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} w_{21} \\ 1 \end{bmatrix} \begin{bmatrix} w_{21}$

Matrix multiply with a one-hot vector just extracts a column from the weight matrix. Now a days, we extract this into a separate embedding layer



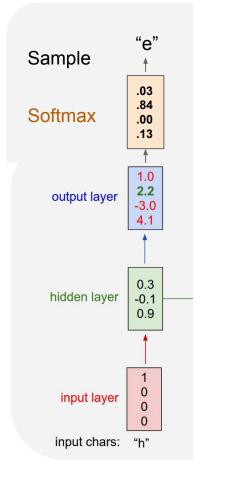
Ranjay Krishna

Lecture 10 - 41

41

Vocabulary: [h,e,l,o]

At test-time sample characters one at a time, feed back to model

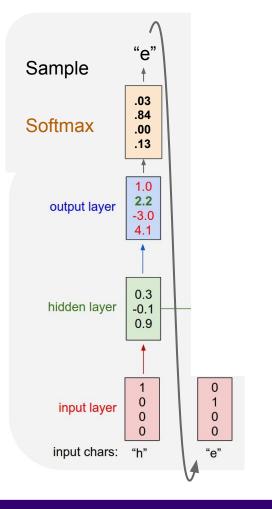


Ranjay Krishna

Lecture 10 - 42

Vocabulary: [h,e,l,o]

At test-time sample characters one at a time, feed back to model

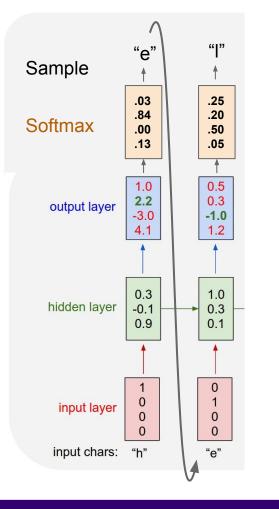


Ranjay Krishna

Lecture 10 - 43

Vocabulary: [h,e,l,o]

At test-time sample characters one at a time, feed back to model

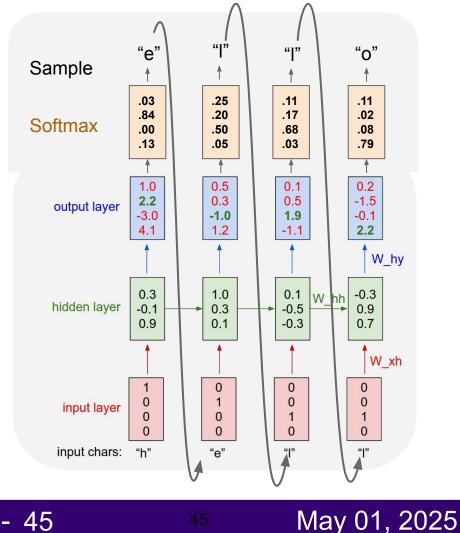


Ranjay Krishna

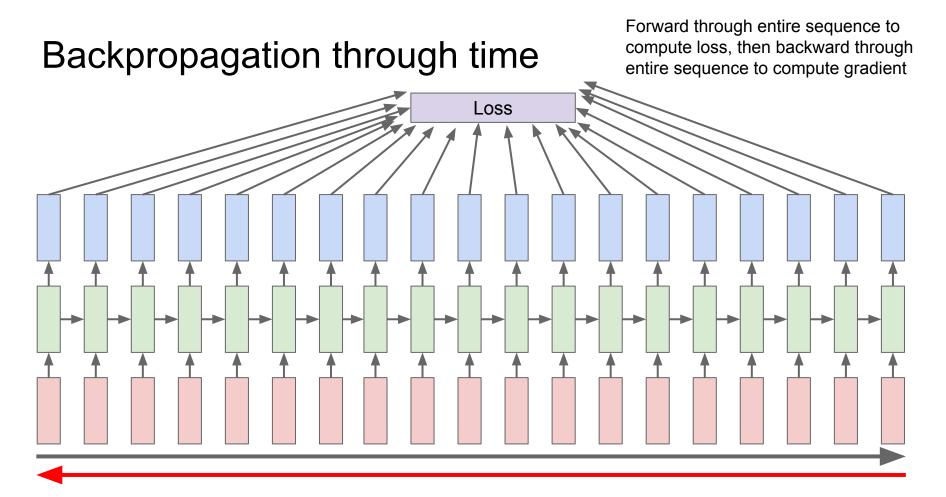
Lecture 10 - 44

Vocabulary: [h,e,l,o]

At test-time sample characters one at a time, feed back to model



Ranjay Krishna

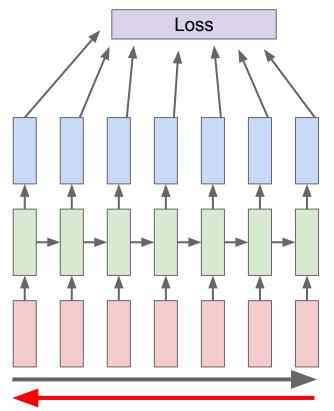


Lecture 10 - 46

Ranjay Krishna

46

Truncated Backpropagation through time

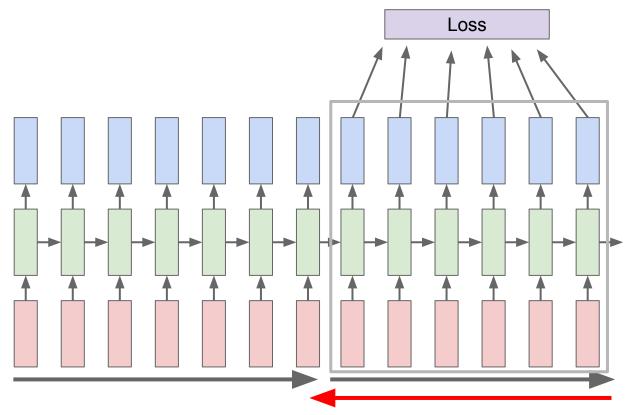


Run forward and backward through chunks of the sequence instead of whole sequence

Ranjay Krishna

Lecture 10 - 47

Truncated Backpropagation through time

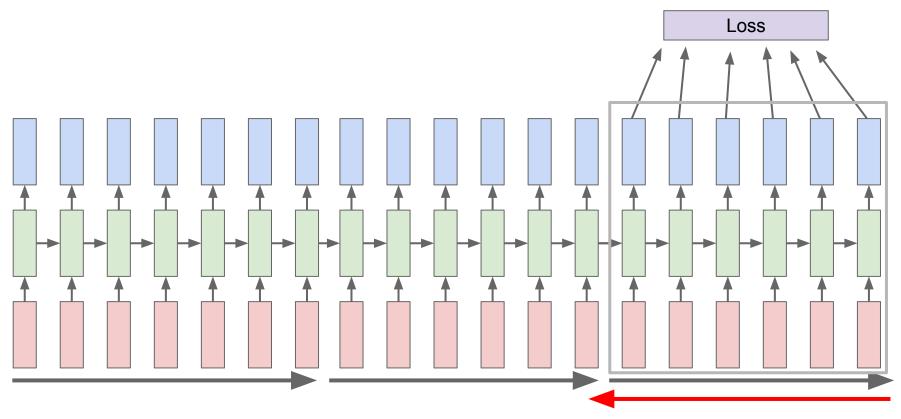


Carry hidden states forward in time forever, but only backpropagate for some smaller number of steps

May 01, 2025

Ranjay Krishna

Truncated Backpropagation through time



Ranjay Krishna

Lecture 10 - 49

min-char-rnn.py gist: 112 lines of Python

```
Minimal character-level Vanilla RNN model. Written by Andrej Karpathy (@karpathy)
 3 BSD License
 4 .....
 5 import numpy as np
7 # data I/0
 8 data = open('input.txt', 'r').read() # should be simple plain text file
 g chars = list(set(data))
18 data_size, vocab_size = len(data), len(chars)
print 'data has %d characters, %d unique.' % (data_size, vocab_size)
12 char_to_ix = { ch:i for i, ch in enumerate(chars) }
ix_to_char = { i:ch for i, ch in enumerate(chars) }
15 # hyperparameters
16 hidden_size = 100 # size of hidden layer of neurons
17 seq_length = 25 # number of steps to unroll the RNN for
18 learning rate = 1e-1
21 Wxh = np.random.randn(hidden_size, vocab_size)*0.01 # input to hidden
22 Whh = np.random.randn(hidden_size, hidden_size)*0.01 # hidden to hidden
23 Why = np.random.randn(vocab_size, hidden_size)*0.01 # hidden to output
24 bh = np.zeros((hidden_size, 1)) # hidden bias
25 by = np.zeros((vocab_size, 1)) # output bias
27 def lossFun(inputs, targets, hprev):
     .....
      inputs, targets are both list of integers.
      hprev is Hx1 array of initial hidden state
      returns the loss, gradients on model parameters, and last hidden state
      .....
     xs, hs, ys, ps = {}, {}, {}, {}
      hs[-1] = np.copy(hprev)
35 loss = 0
      for t in xrange(len(inputs)):
        xs[t] = np.zeros((vocab_size.1)) # encode in 1-of-k representation
        xs[t][inputs[t]] = 1
        hs[t] = np.tanh(np.dot(Wxh, xs[t]) + np.dot(Whh, hs[t-1]) + bh) # hidden state
        ys[t] = np.dot(why, hs[t]) + by # unnormalized log probabilities for next chars
        ps[t] = np.exp(ys[t]) / np.sum(np.exp(ys[t])) # probabilities for next chars
        loss += -np.log(ps[t][targets[t],0]) # softmax (cross-entropy loss)
44 # backward pass: compute gradients going backwards
45 dwxh, dwhh, dwhy = np.zeros_like(wxh), np.zeros_like(whh), np.zeros_like(why)
46 dbh, dby = np.zeros_like(bh), np.zeros_like(by)
      dhnext = np.zeros_like(hs[0])
       for t in reversed(xrange(len(inputs))):
        dy = np.copy(ps[t])
        dy[targets[t]] -= 1 # backprop into y
        dWhy += np.dot(dy, hs[t].T)
52 dby += dy
53 dh = np.dot(Why.T, dy) + dhnext # backprop into h
54 dhraw = (1 - hs[t] * hs[t]) * dh # backprop through tanh nonlinearity
       dbb += dbraw
        dwxh += np.dot(dhraw, xs[t].T)
        dwhh += np.dot(dhraw, hs[t-1].T)
        dhnext = np.dot(Whh.T, dhraw)
```

for dparam in [dWxh, dWhh, dWhy, dbh, dby]:

np.clip(dparam, -5, 5, out=dparam) # clip to mitigate exploding gradients
return loss, dwxh, dwhh, dwhy, dbh, dby, hs[len(inputs)-1]

```
63 def sample(h, seed_ix, n):
 64 .....
       sample a sequence of integers from the model
 66 h is memory state, seed_ix is seed letter for first time step
 67 .....
 68 x = np.zeros((vocab_size, 1))
 69 x[seed_ix] = 1
 70 ixes = []
 71 for t in xrange(n):
        h = np.tanh(np.dot(Wxh, x) + np.dot(Whh, h) + bh)
         y = np.dot(Why, h) + by
         p = np.exp(y) / np.sum(np.exp(y))
        ix = np.random.choice(range(vocab_size), p=p.ravel())
        x = np.zeros((vocab_size, 1))
          x[ix] = 1
          ixes.append(ix)
       return ixes
81 n, p = 0, 0
 82 mWxh, mWhh, mWhy = np.zeros like(Wxh), np.zeros like(Whh), np.zeros like(Why)
 as mbh, mby = np.zeros like(bh), np.zeros like(by) # memory variables for Adagrad
 84 smooth_loss = -np.log(1.0/vocab_size)*seq_length # loss at iteration 0
 85 while True:
 86 # prepare inputs (we're sweeping from left to right in steps seq_length long)
       if n+seq length+1 >= len(data) or n == 0:
        hprev = np.zeros((hidden_size,1)) # reset RNN memory
        p = 0 # go from start of data
        inputs = [char_to_ix[ch] for ch in data[p:p+seq_length]]
       targets = [char_to_ix[ch] for ch in data[p+1:p+seq_length+1]]
93 # sample from the model now and then
 94 if n % 100 == 0:
         sample_ix = sample(hprev, inputs[0], 200)
 95
 96
          txt = ''.join(ix_to_char[ix] for ix in sample_ix)
         print '---- \n %s \n----' % (txt, )
       # forward seg length characters through the net and fetch gradient
       loss, dWxh, dWhh, dWhy, dbh, dby, hprey = lossFun(inputs, targets, hprey)
        smooth loss = smooth loss * 0,999 + loss * 0,001
       if n % 100 == 0; print 'iter %d, loss; %f' % (n, smooth loss) # print progress
104 # perform parameter update with Adagrad
        for param, dparam, mem in zip([Wxh, Whh, Why, bh, by],
                                   [dWxh, dWhh, dWhy, dbh, dby],
                                   [mWxh, mWhh, mWhy, mbh, mby]):
          mem += dparam * dparam
          param += -learning_rate * dparam / np.sqrt(mem + 1e-8) # adagrad update
111 p += seg length # move data pointer
```

112 n += 1 # iteration counter

Simple python implementation

Ranjay Krishna

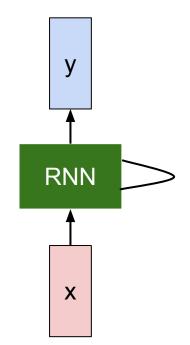
Lecture 10 - 50

THE SONNETS

by William Shakespeare

From fairest creatures we desire increase, That thereby beauty's rose might never die, But as the riper should by time decease, His tender heir might bear his memory: But thou, contracted to thine own bright eyes, Feed'st thy light's flame with self-substantial fuel, Making a famine where abundance lies, Thyself thy foe, to thy sweet self too cruel: Thou that art now the world's fresh ormament, And only herald to the gaudy spring, Within thine own bud buriest thy content, And tender churl mak'st waste in niggarding: Pity the world's due, by the grave and thee.

When forty winters shall besiege thy brow, And dig deep trenches in thy beauty's field, Thy youth's proud livery so gazed on now, Will be a tatter'd weed of small worth held: Then being asked, where all thy beauty lies, Where all the treasure of thy lusty days; To say, within thine own deep sunken eyes, Were an all-eating shame, and thriftless praise. How much more praise deserv'd thy beauty's use, If thou couldst answer 'This fair child of mine Shall sum my count, and make my old excuse,' Proving his beauty by succession thine! This were to be new made when thou at old, And see thy blood warm when thou feel'st it cold.



Ranjay Krishna

Lecture 10 - 51

51

at first:

tyntd-iafhatawiaoihrdemot lytdws e ,tfti, astai f ogoh eoase rrranbyne 'nhthnee e plia tklrgd t o idoe ns,smtt h ne etie h,hregtrs nigtike,aoaenns lng

train more

"Tmont thithey" fomesscerliund Keushey. Thom here sheulke, anmerenith ol sivh I lalterthend Bleipile shuwy fil on aseterlome coaniogennc Phe lism thond hon at. MeiDimorotion in ther thize."

train more

Aftair fall unsuch that the hall for Prince Velzonski's that me of her hearly, and behs to so arwage fiving were to it beloge, pavu say falling misfort how, and Gogition is so overelical and ofter.

train more

"Why do what that day," replied Natasha, and wishing to himself the fact the princess, Princess Mary was easier, fed in had oftened him. Pierre aking his soul came to the packs and drove up his father-in-law women.

Ranjay Krishna

Lecture 10 - 52

<u>May 01, 2025</u>

PANDARUS:

Alas, I think he shall be come approached and the day When little srain would be attain'd into being never fed, And who is but a chain and subjects of his death, I should not sleep.

Second Senator:

They are away this miseries, produced upon my soul, Breaking and strongly should be buried, when I perish The earth and thoughts of many states.

DUKE VINCENTIO:

Well, your wit is in the care of side and that.

Second Lord:

They would be ruled after this chamber, and my fair nues begun out of the fact, to be conveyed, Whose noble souls I'll have the heart of the wars.

Clown:

Come, sir, I will make did behold your worship.

VIOLA: I'll drink it.

VIOLA:

Why, Salisbury must find his flesh and thought That which I am not aps, not a man and in fire, To show the reining of the raven and the wars To grace my hand reproach within, and not a fair are hand, That Caesar and my goodly father's world; When I was heaven of presence and our fleets, We spare with hours, but cut thy council I am great, Murdered and by thy master's ready there My power to give thee but so much as hell: Some service in the noble bondman here, Would show him to her wine.

KING LEAR:

O, if you were a feeble sight, the courtesy of your law, Your sight and several breath, will wear the gods With his heads, and my hands are wonder'd at the deeds, So drop upon your lordship's head, and your opinion Shall be against your honour.

Ranjay Krishna

Lecture 10 - 53

53

The Stacks Project: open source algebraic geometry textbook

5 .	ne sta	icks Project								
nome	about	tags explained	tag lookup	browse	search	bibliography	recent comm	ents blog add slogans		
Browse	e chapte	ers						Parts		
Part		Chapter				TeX source	view pdf	1. <u>Preliminaries</u> 2. Schemes		
Prelin	minaries						-	3. <u>Topics in Scheme Theory</u>		
		1. Introduction			online	texO	pdf >>	4. <u>Algebraic Spaces</u>		
		 Conventions Set Theory Categories Topology Sheaves on Spaces 			online	texO	pdf >>	5. <u>Topics in Geometry</u> 6. <u>Deformation Theory</u>		
					online	tex	pdf >>	7. Algebraic Stacks		
					online	texO	pdf >>	8. Miscellany		
					online	texO	pdf >>	Statistics		
					online	tex	pdf >			
	7. Sites and Sheaves			online	texO	pdf >>	The Stacks project now consists of			
		8. Stacks			online	e tex 🗘 pdf ≽		 455910 lines of code 		
	9. Fields				online	texO	pdf >	 14221 tags (56 inactive tags) 		
		10. Commutative Algebra			online	texO	pdf >>	 2366 sections 		

Latex source

http://stacks.math.columbia.edu/

The stacks project is licensed under the GNU Free Documentation License

May 01, 2025

Ranjay Krishna

Lecture 10 - 54

54

For $\bigoplus_{n=1,...,m}$ where $\mathcal{L}_{m_{\bullet}} = 0$, hence we can find a closed subset \mathcal{H} in \mathcal{H} and any sets \mathcal{F} on X, U is a closed immersion of S, then $U \to T$ is a separated algebraic space.

Proof. Proof of (1). It also start we get

 $S = \operatorname{Spec}(R) = U \times_X U \times_X U$

and the comparicoly in the fibre product covering we have to prove the lemma generated by $\coprod Z \times_U U \to V$. Consider the maps M along the set of points Sch_{fppf} and $U \to U$ is the fibre category of S in U in Section, ?? and the fact that any U affine, see Morphisms, Lemma ??. Hence we obtain a scheme S and any open subset $W \subset U$ in Sh(G) such that $Spec(R') \to S$ is smooth or an

 $U = \bigcup U_i \times_{S_i} U_i$

which has a nonzero morphism we may assume that f_i is of finite presentation over S. We claim that $\mathcal{O}_{X,x}$ is a scheme where $x, x', s'' \in S'$ such that $\mathcal{O}_{X,x'} \to \mathcal{O}'_{X',x'}$ is separated. By Algebra, Lemma ?? we can define a map of complexes $\operatorname{GL}_{S'}(x'/S'')$ and we win.

To prove study we see that $\mathcal{F}|_U$ is a covering of \mathcal{X}' , and \mathcal{T}_i is an object of $\mathcal{F}_{X/S}$ for i > 0 and \mathcal{F}_p exists and let \mathcal{F}_i be a presheaf of \mathcal{O}_X -modules on \mathcal{C} as a \mathcal{F} -module. In particular $\mathcal{F} = U/\mathcal{F}$ we have to show that

$$\widetilde{M}^{\bullet} = \mathcal{I}^{\bullet} \otimes_{\mathrm{Spec}(k)} \mathcal{O}_{S,s} - i_X^{-1} \mathcal{F})$$

is a unique morphism of algebraic stacks. Note that

Arrows = $(Sch/S)_{fppf}^{opp}, (Sch/S)_{fppf}$

and

 $V = \Gamma(S, \mathcal{O}) \longmapsto (U, \operatorname{Spec}(A))$

is an open subset of X. Thus U is affine. This is a continuous map of X is the inverse, the groupoid scheme S.

Proof. See discussion of sheaves of sets.

The result for prove any open covering follows from the less of Example ??. It may replace S by $X_{spaces,\acute{e}tale}$ which gives an open subspace of X and T equal to S_{Zar} , see Descent, Lemma ??. Namely, by Lemma ?? we see that R is geometrically regular over S.

Lemma 0.1. Assume (3) and (3) by the construction in the description.

Suppose $X = \lim |X|$ (by the formal open covering X and a single map $\underline{\operatorname{Proj}}_X(\mathcal{A}) = \operatorname{Spec}(B)$ over U compatible with the complex

 $Set(\mathcal{A}) = \Gamma(X, \mathcal{O}_{X, \mathcal{O}_X}).$

When in this case of to show that $\mathcal{Q} \to C_{Z/X}$ is stable under the following result in the second conditions of (1), and (3). This finishes the proof. By Definition ?? (without element is when the closed subschemes are catenary. If T is surjective we may assume that T is connected with residue fields of S. Moreover there exists a closed subspace $Z \subset X$ of X where U in X' is proper (some defining as a closed subset of the uniqueness it suffices to check the fact that the following theorem

(1) f is locally of finite type. Since S = Spec(R) and Y = Spec(R).

Proof. This is form all sheaves of sheaves on X. But given a scheme U and a surjective étale morphism $U \to X$. Let $U \cap U = \coprod_{i=1,...,n} U_i$ be the scheme X over S at the schemes $X_i \to X$ and $U = \lim_i X_i$.

The following lemma surjective restrocomposes of this implies that $\mathcal{F}_{x_0} = \mathcal{F}_{x_0} = \mathcal{F}_{\mathcal{X},\dots,0}$.

Lemma 0.2. Let X be a locally Noetherian scheme over S, $E = \mathcal{F}_{X/S}$. Set $\mathcal{I} = \mathcal{J}_1 \subset \mathcal{I}'_n$. Since $\mathcal{I}^n \subset \mathcal{I}^n$ are nonzero over $i_0 \leq \mathfrak{p}$ is a subset of $\mathcal{J}_{n,0} \circ \overline{A}_2$ works.

Lemma 0.3. In Situation ??. Hence we may assume q' = 0.

Proof. We will use the property we see that \mathfrak{p} is the mext functor (??). On the other hand, by Lemma ?? we see that

 $D(\mathcal{O}_{X'}) = \mathcal{O}_X(D)$

where K is an F-algebra where δ_{n+1} is a scheme over S.

May 01, 2025

Ranjay Krishna

Lecture 10 - 55

Proof. Omitted.

Lemma 0.1. Let C be a set of the construction.

Let C be a gerber covering. Let F be a quasi-coherent sheaves of O-modules. We have to show that

$$\mathcal{O}_{\mathcal{O}_X} = \mathcal{O}_X(\mathcal{L})$$

Proof. This is an algebraic space with the composition of sheaves \mathcal{F} on $X_{\acute{e}tale}$ we have

$$\mathcal{O}_X(\mathcal{F}) = \{morph_1 \times_{\mathcal{O}_X} (\mathcal{G}, \mathcal{F})\}$$

where \mathcal{G} defines an isomorphism $\mathcal{F} \to \mathcal{F}$ of \mathcal{O} -modules.

Lemma 0.2. This is an integer Z is injective.

Proof. See Spaces, Lemma ??.

Lemma 0.3. Let S be a scheme. Let X be a scheme and X is an affine open covering. Let $\mathcal{U} \subset \mathcal{X}$ be a canonical and locally of finite type. Let X be a scheme. Let X be a scheme which is equal to the formal complex.

The following to the construction of the lemma follows.

Let X be a scheme. Let X be a scheme covering. Let

 $b: X \to Y' \to Y \to Y \to Y' \times_X Y \to X.$

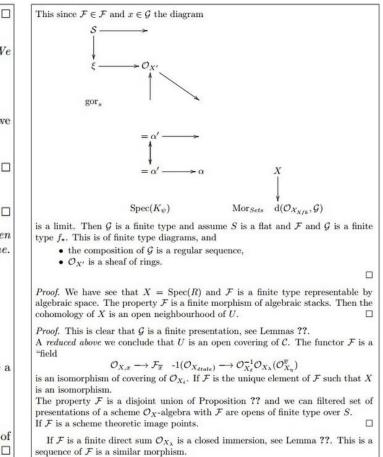
be a morphism of algebraic spaces over S and Y.

Proof. Let X be a nonzero scheme of X. Let X be an algebraic space. Let \mathcal{F} be a quasi-coherent sheaf of \mathcal{O}_X -modules. The following are equivalent

(1) \mathcal{F} is an algebraic space over S.

(2) If X is an affine open covering.

Consider a common structure on X and X the functor $\mathcal{O}_X(U)$ which is locally of finite type. \Box



Ranjay Krishna

Lecture 10 - 56

<u>May 01, 2025</u>

torvalds / linux			@ Watch -	3,711	★ Star	23,054	¥ Fork	9,141		
inux kernel source tree	9									
@ 520,037 commits	₽ 1 branch	420 releases	6 5,039	oontribut	ors	<> Code				
ប P branch: master -	linux / +				:=	î1 Pull re	quests	74		
Merge branch 'drm-fixes' of	f git://people.freedesktop.org/~airlied	d/linux								
🚺 torvalds authored 9 hours ago 🛛 latest commit 4b1706927d 🕃							4~ Pulse			
Documentation	mentation Merge git://git.kernel.org/pub/scm/linux/kernel/git/nab/target-pending 6 days ago						- Fuido			
arch	arch Merge branch 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/l					Graphs				
block	block: discard bdi_unregister() in favour of bdi_destroy() 9 days ago						Graphia			
Crypto	Merge git://git.kernel.org/pub/scm/linux/kernel/git/herbert/crypto-2.6 10 days ago							HTTPS clone URL		
drivers	Merge branch 'drm-fixes' of git://people.freedesktop.org/~airlied/linux 9 hours ago						://github.	(B		
firmware	firmware/ihex2fw.c: restore missing	t	2 months ago			You can clone with HTTPS				
🖿 fs	vfs: read file_handle only once in handle_to_path 4 days ago						SSH, or Subversion. 3			
include	Merge branch 'perf-urgent-for-linu	cm/	E	a day ago	Clone in Desktop					
🖿 init	init init: fix regression by supporting devices with major:minor:offset fo a month ago							C Download ZIP		
ing.	Mana beach for linuet of alt-Unit	komol om/nubleom/linux/ko	nol		anth ana					

Ranjay Krishna

Lecture 10 - 57

57

```
static void do command(struct seg file *m, void *v)
{
 int column = 32 << (cmd[2] & 0x80);</pre>
 if (state)
    cmd = (int)(int state ^ (in 8(&ch->ch flags) & Cmd) ? 2 : 1);
 else
    seq = 1;
 for (i = 0; i < 16; i++) {
    if (k & (1 << 1))
      pipe = (in use & UMXTHREAD UNCCA) +
        ((count & 0x0000000fffffff8) & 0x000000f) << 8;
    if (count == 0)
      sub(pid, ppc md.kexec handle, 0x2000000);
    pipe set bytes(i, 0);
  /* Free our user pages pointer to place camera if all dash */
  subsystem info = &of changes[PAGE SIZE];
 rek controls(offset, idx, &soffset);
  /* Now we want to deliberately put it to device */
 control check polarity(&context, val, 0);
  for (i = 0; i < COUNTER; i++)</pre>
    seq puts(s, "policy ");
```

Generated C code

Ranjay Krishna

}

Lecture 10 - 58

```
14
   Copyright (c) 2006-2010, Intel Mobile Communications. All rights reserved.
    This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 as published by
 * the Free Software Foundation.
          This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
     MERCHANTABILITY OF FITNESS FOR A PARTICULAR PURPOSE. See the
   GNU General Public License for more details.
    You should have received a copy of the GNU General Public License
 10
     along with this program; if not, write to the Free Software Foundation,
 10
* Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#include <linux/kexec.h>
#include <linux/errno.h>
#include <linux/io.h>
#include <linux/platform device.h>
#include <linux/multi.h>
#include <linux/ckevent.h>
#include <asm/io.h>
#include <asm/prom.h>
#include <asm/e820.h>
#include <asm/system info.h>
#include <asm/setew.h>
#include <asm/pgproto.h>
```

Ranjay Krishna

Lecture 10 - 59

```
#include <asm/io.h>
#include <asm/prom.h>
#include <asm/e820.h>
#include <asm/system info.h>
#include <asm/setew.h>
#include <asm/pgproto.h>
#define REG PG vesa slot addr pack
#define PFM NOCOMP AFSR(0, load)
#define STACK DDR(type) (func)
#define SWAP ALLOCATE(nr)
                           (e)
#define emulate sigs() arch get unaligned child()
#define access rw(TST) asm volatile("movd %%esp, %0, %3" :: "r" (0)); \
 if ( type & DO READ)
static void stat PC SEC read mostly offsetof(struct seq argsqueue, \
         pC>[1]);
static void
os_prefix(unsigned long sys)
{
#ifdef CONFIG PREEMPT
 PUT_PARAM_RAID(2, sel) = get_state_state();
  set pid sum((unsigned long)state, current_state_str(),
           (unsigned long)-1->lr full; low;
}
```

Ranjay Krishna

Lecture 10 - 60

OpenAI GPT-2 generated text

May 01, 2025

Input: In a shocking finding, scientist discovered a herd of unicorns living in a remote, previously unexplored valley, in the Andes Mountains. Even more surprising to the researchers was the fact that the unicorns spoke perfect English.

Output: The scientist named the population, after their distinctive horn, Ovid's Unicorn. These four-horned, silver-white unicorns were previously unknown to science.

Now, after almost two centuries, the mystery of what sparked this odd phenomenon is finally solved.

Dr. Jorge Pérez, an evolutionary biologist from the University of La Paz, and several companions, were exploring the Andes Mountains when they found a small valley, with no other animals or humans. Pérez noticed that the valley had what appeared to be a natural fountain, surrounded by two peaks of rock and silver snow.

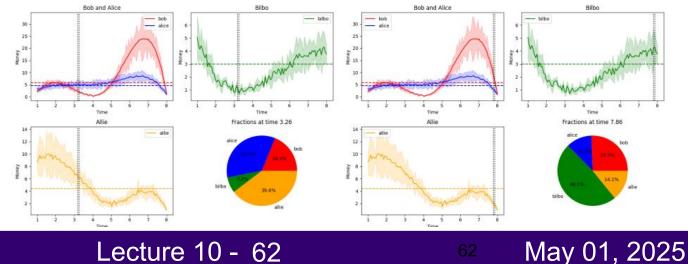
Ranjay Krishna

GPT-4

Prompt: Can you generate a pyplot for the following data: $x = [1, 3, 5, 6, 8], y_1 = [2, 3, 5, 18, 1], y_2 = [3, 5, 6, 8, 1], y_3 = [3, 5, 6, 8, 1], y_4 = [3, 5, 6, 8], y_4 = [3, 5, 6], y_4 = [3, 5, 6$ [5, 1, 2, 3, 4], y4 = [9, 7, 2, 3, 1]. I want y1, y2 to be in the same plot, but y3 is in another plot next to that plot, y4 is in below. I want the legend of y1 to be "bob", y2 to be "alice", y3 to be "bilbo", y4 to be "allie". I want the x-axis to be labeled with "time" and y axis to be labeled with "money". I want to add a 10 %-40% random error bar to each curve, through all times (including non-integers). I want smoothed curves to show the plot, and smoothed error bar. Do not use linear interpolation, use smooth interpolation! I want to also add some small zig-zag to the smoothed curve to make it look more real. I want to put a baseline as the mean of each line. I want to put a pie chart below indicating the fraction of the four people in each time step. I also want an animation to show how the fractions are changing in the pie chart in **continuous time**. Interpolate the missing fractions! I also want vertical line animation in other three plots to match the pie chart. I want the fanciest plot. Please add as many fancy things as possible.

Here is a possible code to generate a pyplot for the following data, with some comments to explain the steps:

GPT-4: [We give two snapshots from the animation resulting from the produced code]



Bubek et al. Sparks of AGI. ArXiv 2023

Ranjay Krishna

Language modeling leads to reasoning capabilities for GPT-4

Bubek et al. Sparks of AGI. ArXiv 2023

GPT-4 vs ChatGPT

Prompt: Here we have a book, 9 eggs, a laptop, a bottle and a nail. Please tell me how to stack them onto each other in a stable manner.

GPT-4:

One possible way to stack the objects onto each other in a stable manner is:

- Place the book flat on a level surface, such as a table or a floor. The book will serve as the base of the stack and provide a large and sturdy support.

- Arrange the 9 eggs in a 3 by 3 square on top of the book, leaving some space between them. The eggs will

form a second layer and distribute the weight evenly. Make sure the eggs are not cracked or broken, and handle them gently to avoid dropping them.

- Place the laptop on top of the eggs, with the screen facing down and the keyboard facing up. The laptop will fit snugly within the boundaries of the book and the eggs, and its flat and rigid surface will provide a stable platform for the next layer. Make sure the laptop is closed and turned off, and do not press any keys or buttons.

- Place the bottle on top of the laptop, with the cap facing up and the bottom facing down. The bottle will add some height and balance to the stack, and its cylindrical shape will reduce the contact area with the laptop. Make sure the bottle is empty and closed, and do not shake or tilt it.

- Place the nail on top of the bottle cap, with the pointy end facing up and the flat end facing down. The nail will be the final and smallest object in the stack, and its sharp tip will prevent it from rolling or sliding off the bottle. Make sure the nail is clean and straight, and do not touch or move it.

ChatGPT:

It would be difficult to stack all of these objects on top of each other in a stable manner without using any extra objects. The book and laptop are likely too large and heavy to stack on top of the eggs without damaging them. The bottle and nail may be too small to provide a stable base for the other objects.

Here is one possible way to stack the objects:

- Place the bottle on a flat surface.
- Carefully balance the nail on top of the bottle.
- Place the eggs on top of the nail, making sure they are balanced and not tilting to one side.
- Place the laptop on top of the eggs, again making sure it is balanced and not tilting to one side.
- Finally, place the book on top of the laptop.

This stack may not be very stable, so it is important to be careful when handling it. Alternatively, you could try stacking the objects in a different order or using some of the objects as supports for others to create a more stable stack.

Ranjay Krishna

RNN tradeoffs

RNN Advantages:

- Can process any length input
- Computation for step t can (in theory) use information from many steps back
- Model size doesn't increase for longer input
- Same weights applied on every timestep, so there is symmetry in how inputs are processed.

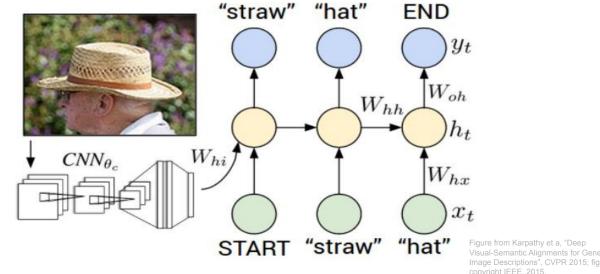
RNN Disadvantages:

- Recurrent computation is slow
- In practice, difficult to access information from many steps back

Ranjay Krishna

<u>May 01, 2025</u>

Image Captioning



May 01, 2025

Explain Images with Multimodal Recurrent Neural Networks, Mao et al.

Deep Visual-Semantic Alignments for Generating Image Descriptions, Karpathy and Fei-Fei

Show and Tell: A Neural Image Caption Generator, Vinyals et al.

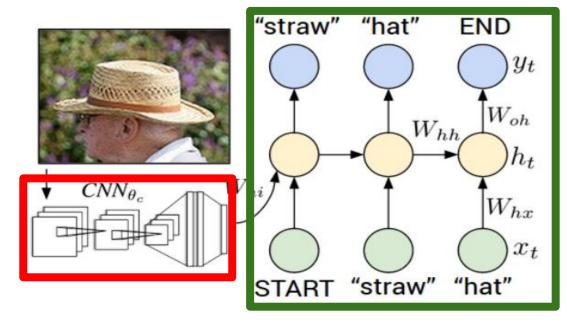
Long-term Recurrent Convolutional Networks for Visual Recognition and Description, Donahue et al.

Lecture 10 - 65

Learning a Recurrent Visual Representation for Image Caption Generation, Chen and Zitnick

Ranjay Krishna

Recurrent Neural Network



Convolutional Neural Network

Lecture 10 - 66

<u>May 01, 2025</u>

This image is CC0 public domain

Ranjay Krishna

Lecture 10 - 67

maxpool

conv-512

conv-512

maxpool

FC-4096

FC-4096 FC-1000

softmax

nna

Ra



conv-512

conv-512

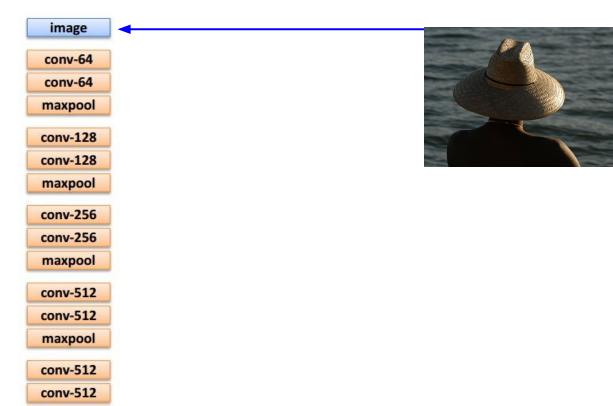
maxpool

FC-4096

softmax

nna

Ra



x0 <START>

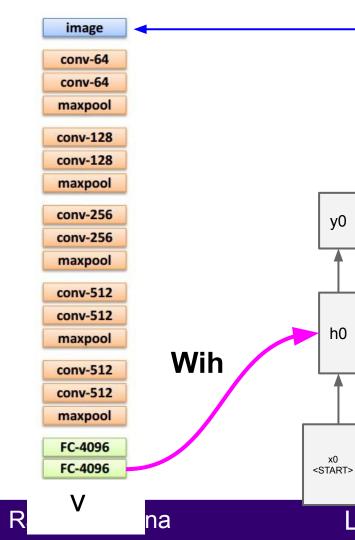
maxpool

R

FC-4096 FC-4096

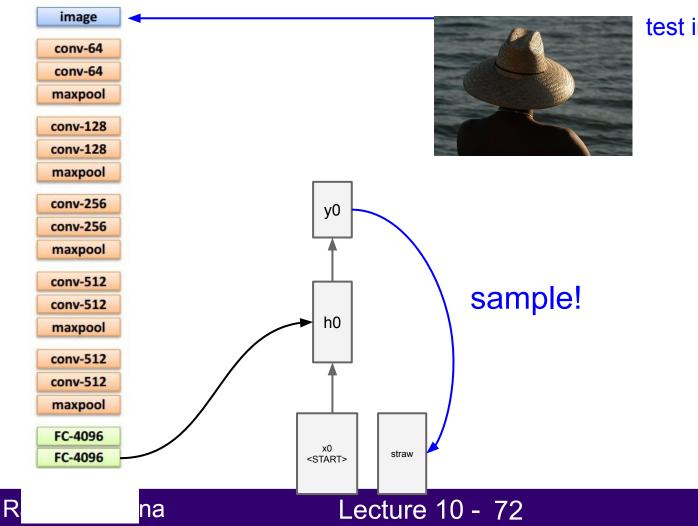
na

Lecture 10 - 70



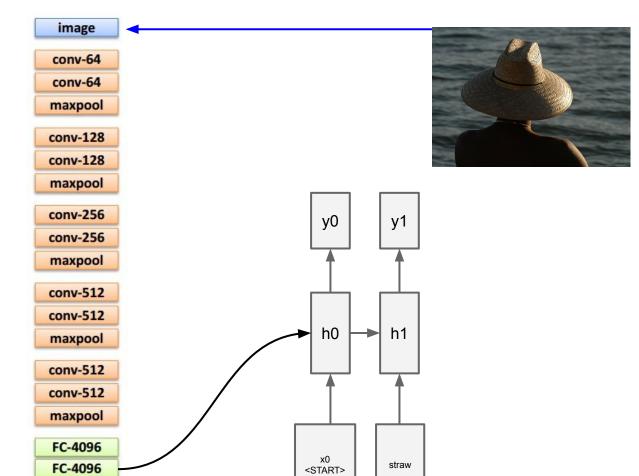
before: $h = tanh(W_{xh} * x + W_{hh} * h)$ now: $h = tanh(W_{xh} * x + W_{hh} * h + W_{ih} * v)$

May 01, 2025



May 01, 2025

test image



May 01, 2025

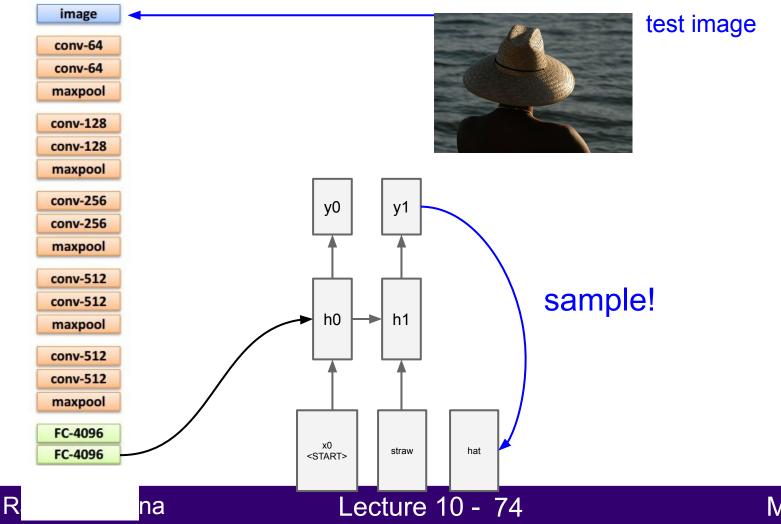
na

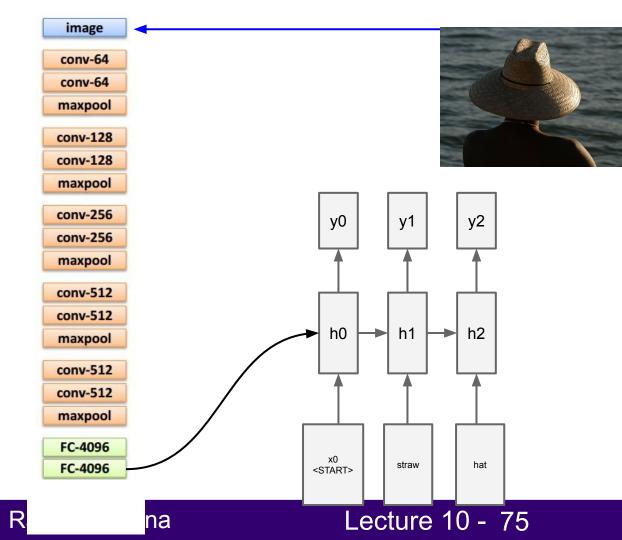
FC-4096

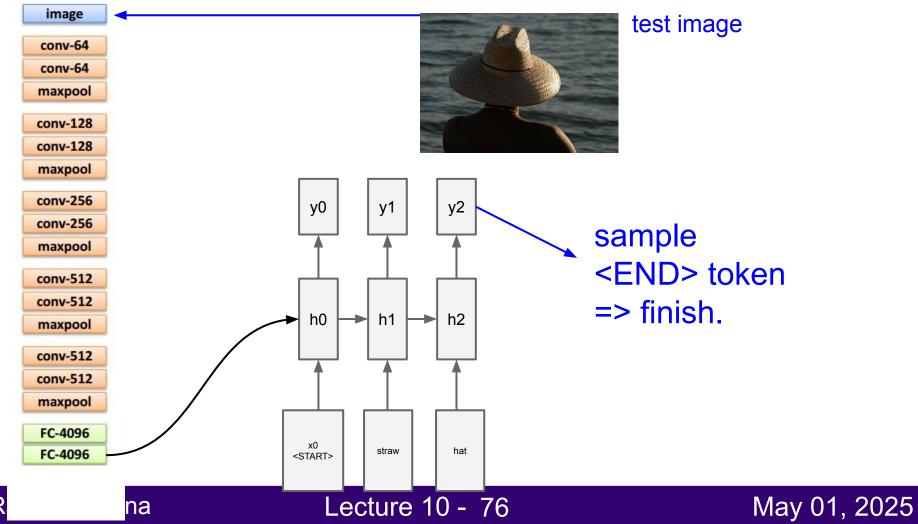
R

Lecture 10 - 73

straw







R

Image Captioning: Example Results

Captions generated using <u>neuraltalk2</u> All images are <u>CC0 Public domain</u>: <u>cat suitcase</u>, <u>cat tree</u>, <u>dog</u>, <u>bear</u>, <u>surfers</u>, <u>tennis</u>, <u>giraffe</u>, <u>motorcycle</u>

A cat sitting on a suitcase on the floor

A cat is sitting on a tree branch

A dog is running in the grass with a frisbee

A white teddy bear sitting in the grass

Two people walking on the beach with surfboards

A tennis player in action on the court

Two giraffes standing in a grassy field

A man riding a dirt bike on a dirt track

May 01, 2025

Ranjay Krishna

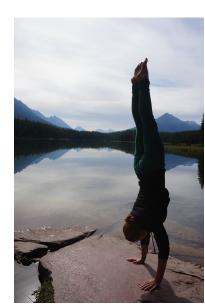
Lecture 10 - 77

77

Image Captioning: Failure Cases

A woman is holding a cat in her hand

A person holding a computer mouse on a desk



A woman standing on a beach holding a surfboard

A bird is perched on a tree branch

A man in a baseball uniform throwing a ball

<u>May 01, 2025</u>

Ranjay Krishna

Lecture 10 - 78

78

Visual Question Answering (VQA)

- Q: What endangered animal is featured on the truck?
- A: A bald eagle.
- A: A sparrow.
- A: A humming bird.
- A: A raven.

- Q: Where will the driver go if turning right?
- A: Onto 24 ³/₄ Rd. A: Onto 25 ³/₄ Rd.
- A: Onto 23 ¼ Rd.
- A. Onto 23 74 Ru
- A: Onto Main Street.

- Q: When was the picture taken?
- A: During a wedding.
- A: During a bar mitzvah.
- A: During a funeral.
- A: During a Sunday church

- Q: Who is under the umbrella?
- A: Two women.
- A: A child.
- A: An old man.
- A: A husband and a wife.

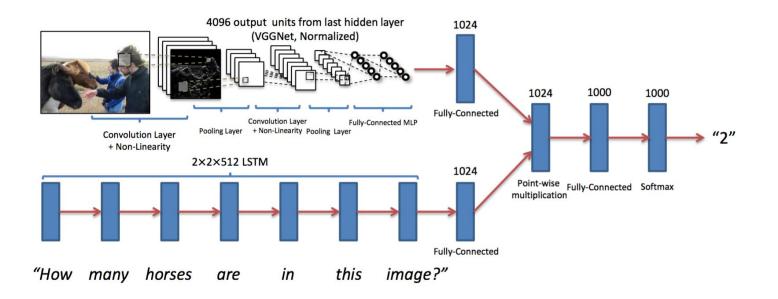
May 01, 2025

Agrawal et al, "VQA: Visual Question Answering", ICCV 2015 Zhu et al, "Visual 7W: Grounded Question Answering in Images", CVPR 2016 Figure from Zhu et al, copyright IEEE 2016. Reproduced for educational purposes.

Ranjay Krishna

Lecture 10 - 79

Visual Question Answering: RNNs with Attention



Agrawal et al, "Visual 7W: Grounded Question Answering in Images", CVPR 2015 Figures from Agrawal et al, copyright IEEE 2015. Reproduced for educational purposes.

Ranjay Krishna

Lecture 10 - 80

Visual Dialog: Conversations about images

Lecture 10 - 81

Visual Dialog A cat drinking water out of a coffee mug. What color is the mug? White and red Are there any pictures on it? No, something is there can't tell what it is Is the mug and cat on a table? Yes, they are Are there other items on the table? Yes, magazines, books, toaster and basket, and a plate C ľο] >

Das et al, "Visual Dialog", CVPR 2017 Figures from Das et al, copyright IEEE 2017. Reproduced with permission.

Ranjay Krishna

81

Visual Language Navigation: Go to the living room

Agent encodes instructions in language and uses an RNN to generate a series of movements as the visual input changes after each move.

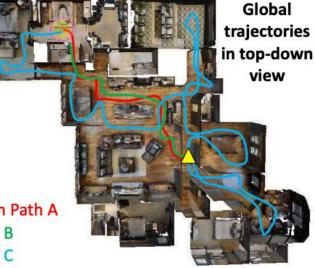
Wang et al, "Reinforced Cross-Modal Matching and Self-Supervised Imitation Learning for Vision-Language Navigation", CVPR 2018 Figures from Wang et al, copyright IEEE 2017. Reproduced with permission.

Instruction

Turn right and head towards the kitchen. Then turn left, pass a table and enter the hallway. Walk down the hallway and turn into the entry way to your right without doors. Stop in front of the toilet.

Initial Position **Target Position**

> Demonstration Path A **Executed Path B** Executed Path C

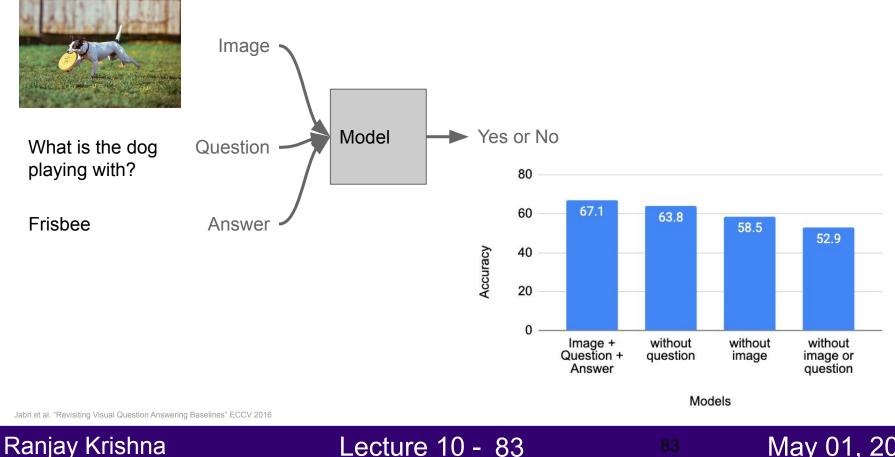


May 01, 2025

Ranjay Krishna

Lecture 10 - 82

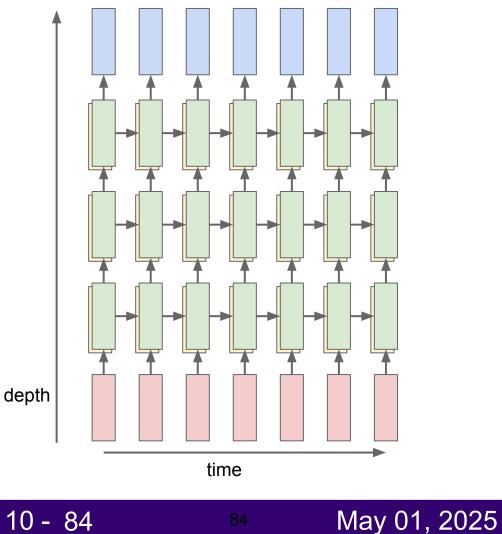
Visual Question Answering: Dataset Bias



Multilayer RNNs

Each layer has a different set of weights

Outputs from one layer become inputs to the layer above.

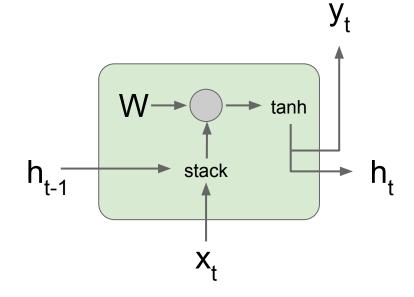


Ranjay Krishna

Lecture 10 - 84

Now, let's talk about why RNNs are not as popular anymore.

Bengio et al, "Learning long-term dependencies with gradient descent is difficult", IEEE Transactions on Neural Networks, 1994 Pascanu et al, "On the difficulty of training recurrent neural networks", ICML 2013



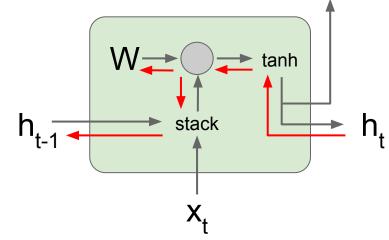
$$h_{t} = \tanh(W_{hh}h_{t-1} + W_{xh}x_{t})$$
$$= \tanh\left(\left(W_{hh} \quad W_{hx}\right) \begin{pmatrix}h_{t-1}\\x_{t}\end{pmatrix}\right)$$
$$= \tanh\left(W\begin{pmatrix}h_{t-1}\\x_{t}\end{pmatrix}\right)$$

Ranjay Krishna

Lecture 10 - 86

y_t

Backpropagation from h_t to h_{t-1} multiplies by W (actually W_{hh}^{T})



Bengio et al, "Learning long-term dependencies with gradient descent is difficult", IEEE Transactions on Neural Networks, 1994 Pascanu et al, "On the difficulty of training recurrent neural networks", ICML 2013

$$h_{t} = \tanh(W_{hh}h_{t-1} + W_{xh}x_{t})$$
$$= \tanh\left(\left(W_{hh} \quad W_{hx}\right) \begin{pmatrix}h_{t-1}\\x_{t}\end{pmatrix}\right)$$
$$= \tanh\left(W\begin{pmatrix}h_{t-1}\\x_{t}\end{pmatrix}\right)$$

Ranjay Krishna

Lecture 10 - 87

87

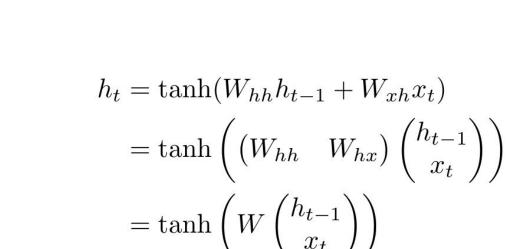
tanh

y_t

h₊

Backpropagation from h_t to h_{t-1} multiplies by W (actually W_{hh}^{T})

stack



ICML 2013

Bengio et al, "Learning long-term dependencies with gradient descent

Pascanu et al, "On the difficulty of training recurrent neural networks",

is difficult", IEEE Transactions on Neural Networks, 1994

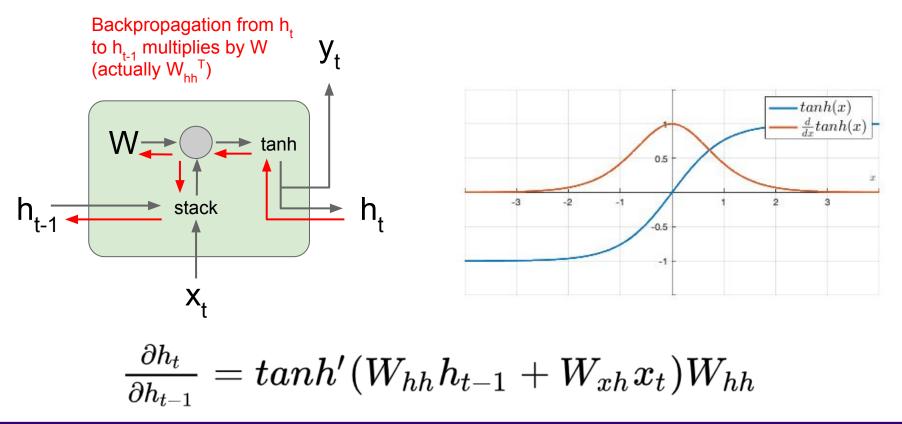
$$rac{\partial h_t}{\partial h_{t-1}} = tanh'(W_{hh}h_{t-1}+W_{xh}x_t)W_{hh}$$

Ranjay Krishna

h_{t-1}

Lecture 10 - 88

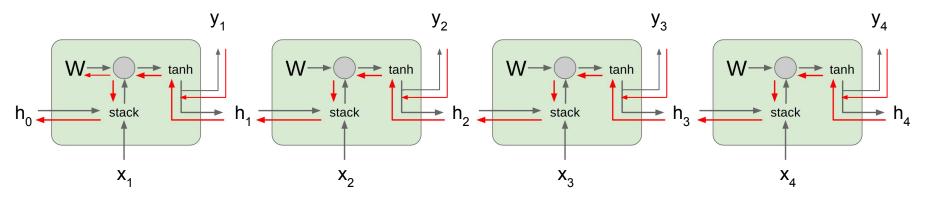
Bengio et al, "Learning long-term dependencies with gradient descent is difficult", IEEE Transactions on Neural Networks, 1994 Pascanu et al, "On the difficulty of training recurrent neural networks", ICML 2013



Ranjay Krishna

Lecture 10 - 89

Bengio et al, "Learning long-term dependencies with gradient descent is difficult", IEEE Transactions on Neural Networks, 1994 Pascanu et al, "On the difficulty of training recurrent neural networks", ICML 2013



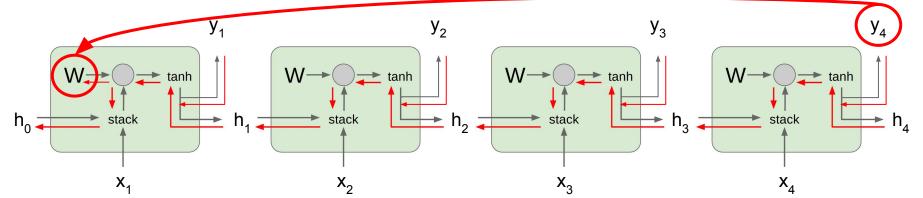
$$rac{\partial L}{\partial W} = \sum_{t=1}^T rac{\partial L_t}{\partial W}$$

Ranjay Krishna

Lecture 10 - 90

Bengio et al, "Learning long-term dependencies with gradient descent is difficult", IEEE Transactions on Neural Networks, 1994 Pascanu et al, "On the difficulty of training recurrent neural networks", ICML 2013

Gradients over multiple time steps:



$$\frac{\partial L}{\partial W} = \sum_{t=1}^{T} \frac{\partial L_t}{\partial W}$$
$$\frac{\partial L_T}{\partial W} = \frac{\partial L_T}{\partial h_T} \frac{\partial h_t}{\partial h_{t-1}} \dots \frac{\partial h_t}{\partial V}$$

Ranjay Krishna

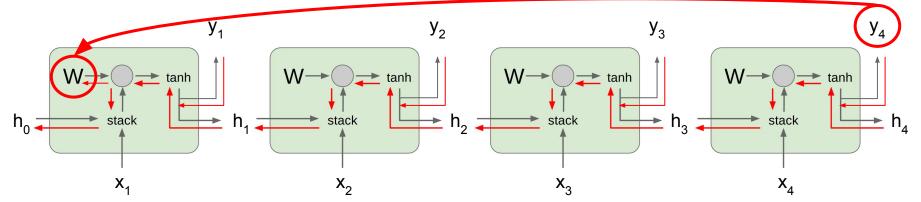
Lecture 10 - 91

91

<u>May 01, 2025</u>

Bengio et al, "Learning long-term dependencies with gradient descent is difficult", IEEE Transactions on Neural Networks, 1994 Pascanu et al, "On the difficulty of training recurrent neural networks", ICML 2013

Gradients over multiple time steps:



$$rac{\partial L}{\partial W} = \sum_{t=1}^T rac{\partial L_t}{\partial W}$$

$$rac{\partial L_T}{\partial W} = rac{\partial L_T}{\partial h_T} rac{\partial h_t}{\partial h_{t-1}} \dots rac{\partial h_1}{\partial W} = rac{\partial L_T}{\partial h_T} (\prod_{t=2}^T rac{\partial h_t}{\partial h_{t-1}}) rac{\partial h_1}{\partial W}$$

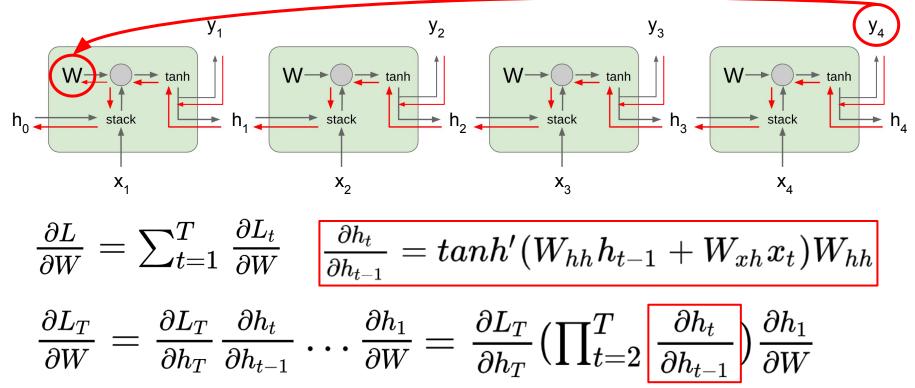
Ranjay Krishna

Lecture 10 - 92

<u>May 01, 2025</u>

Bengio et al, "Learning long-term dependencies with gradient descent is difficult", IEEE Transactions on Neural Networks, 1994 Pascanu et al, "On the difficulty of training recurrent neural networks", ICML 2013

Gradients over multiple time steps:



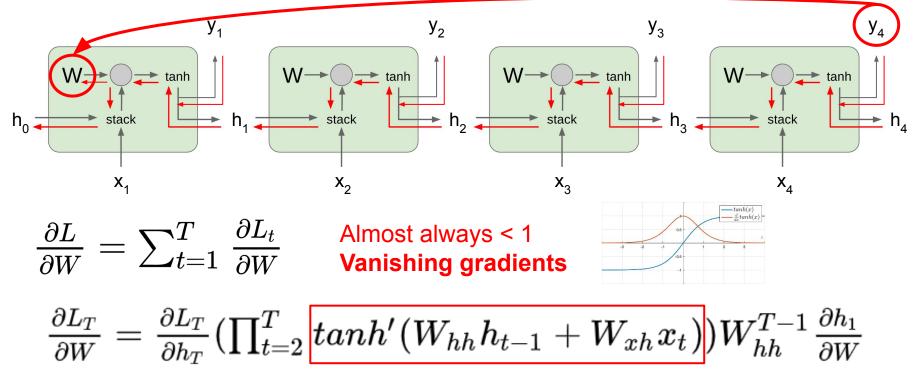
Ranjay Krishna

Lecture 10 - 93

93

Bengio et al, "Learning long-term dependencies with gradient descent is difficult", IEEE Transactions on Neural Networks, 1994 Pascanu et al, "On the difficulty of training recurrent neural networks", ICML 2013

Gradients over multiple time steps:



Lecture 10 - 94

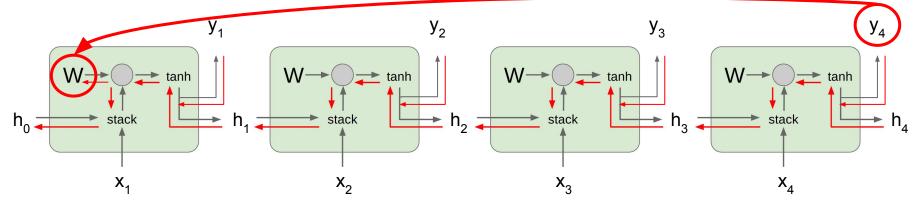
Ranjay Krishna

94

Bengio et al, "Learning long-term dependencies with gradient descent is difficult", IEEE Transactions on Neural Networks, 1994 Pascanu et al, "On the difficulty of training recurrent neural networks", ICML 2013

May 01, 2025

Gradients over multiple time steps:



 $rac{\partial L}{\partial W} = \sum_{t=1}^T rac{\partial L_t}{\partial W}$ What if we assumed no non-linearity?

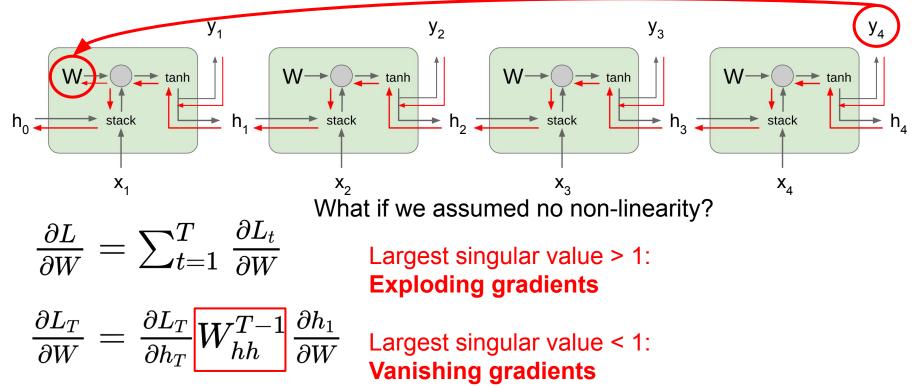
Lecture 10 - 95

Ranjay Krishna

9

Bengio et al, "Learning long-term dependencies with gradient descent is difficult", IEEE Transactions on Neural Networks, 1994 Pascanu et al, "On the difficulty of training recurrent neural networks", ICML 2013

Gradients over multiple time steps:

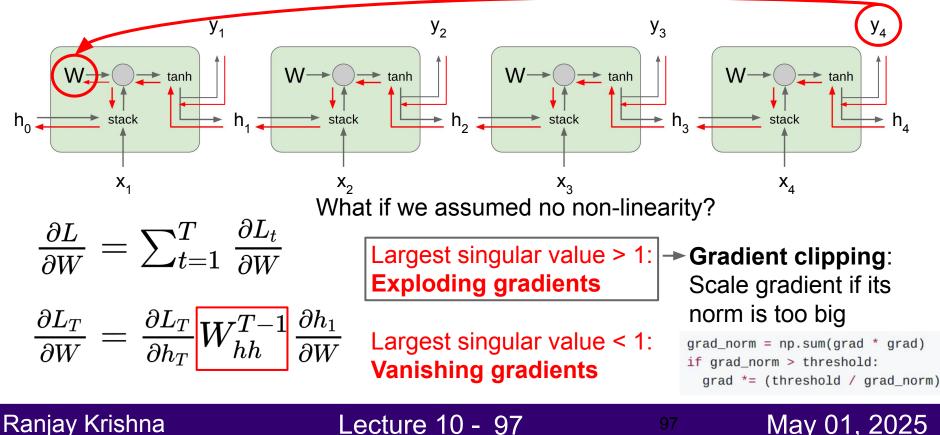


Ranjay Krishna

Lecture 10 - 96

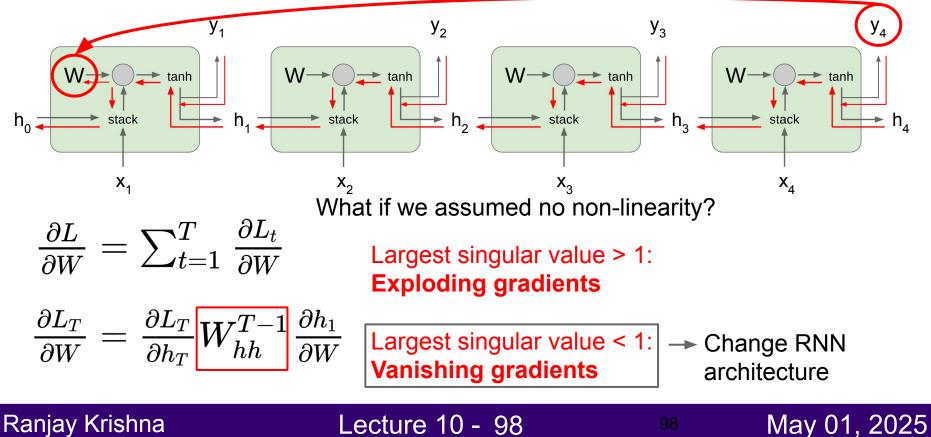
Bengio et al, "Learning long-term dependencies with gradient descent is difficult", IEEE Transactions on Neural Networks, 1994 Pascanu et al, "On the difficulty of training recurrent neural networks", ICML 2013

Gradients over multiple time steps:



Bengio et al, "Learning long-term dependencies with gradient descent is difficult", IEEE Transactions on Neural Networks, 1994 Pascanu et al, "On the difficulty of training recurrent neural networks", ICML 2013

Gradients over multiple time steps:



Long Short Term Memory (LSTM)

Vanilla RNN

LSTM

$$h_t = \tanh\left(W\begin{pmatrix}h_{t-1}\\x_t\end{pmatrix}\right)$$

$$\begin{pmatrix} i \\ f \\ o \\ g \end{pmatrix} = \begin{pmatrix} \sigma \\ \sigma \\ \tau \\ tanh \end{pmatrix} W \begin{pmatrix} h_{t-1} \\ x_t \end{pmatrix}$$
$$c_t = f \odot c_{t-1} + i \odot g$$
$$h_t = o \odot \tanh(c_t)$$

<u>May 01, 2025</u>

Hochreiter and Schmidhuber, "Long Short Term Memory", Neural Computation 1997

Lecture 10 - 99

Ranjay Krishna

RNNs have a single hidden state (h_t) LSTMs have two: cell memory c_t and hidden state h_t Vanilla RNN LSTM

Lecture 10 - 100

$$h_t = \tanh\left(W\begin{pmatrix}h_{t-1}\\x_t\end{pmatrix}\right)$$

$$\begin{pmatrix}
i \\
f \\
o \\
g
\end{pmatrix} = \begin{pmatrix}
\sigma \\
\sigma \\
\tau \\
tanh
\end{pmatrix} W \begin{pmatrix}
h_{t-1} \\
x_t
\end{pmatrix}$$

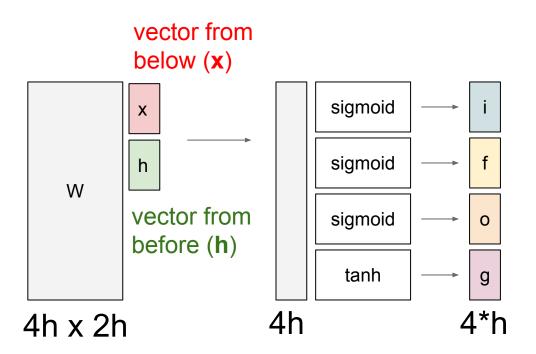
$$c_t = f \odot c_{t-1} + i \odot g$$

$$h_t = o \odot \tanh(c_t)$$

Hochreiter and Schmidhuber, "Long Short Term Memory", Neural Computation 1997

Ranjay Krishna

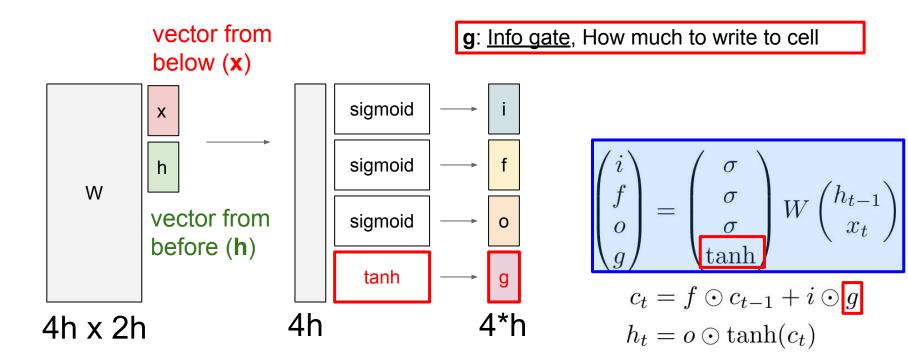
100



Ranjay Krishna

Lecture 10 - 101

101



Ranjay Krishna

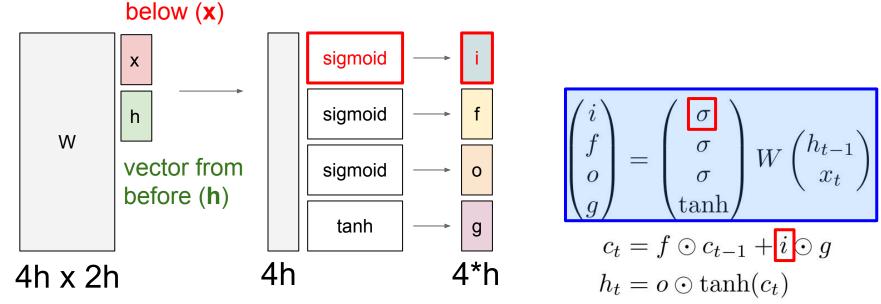
Lecture 10 - 102

102

vector from

i: Input gate, whether to write to cell

g: Info gate, How much to write to cell



Ranjay Krishna

Lecture 10 - 103

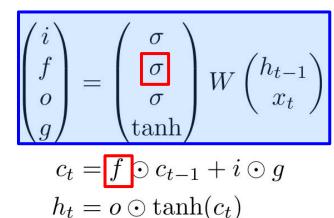
103

i: Input gate, whether to write to cell

f: Forget gate, Whether to erase cell

vector from below (x) sigmoid Х sigmoid h W vector from sigmoid 0 before (**h**) tanh g 4*h 4h 4h x 2h

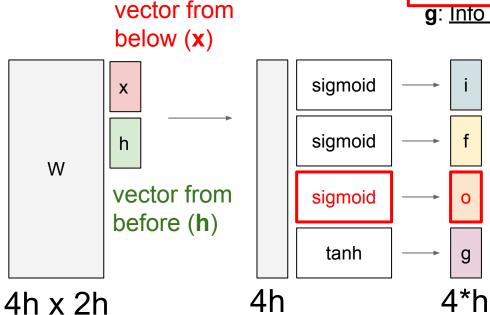
g: Info gate, How much to write to cell



May 01, 2025

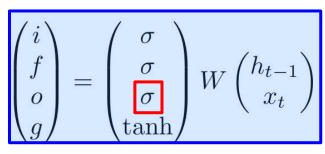
Ranjay Krishna

Lecture 10 - 104



- i: Input gate, whether to write to cell
- f: Forget gate. Whether to erase cell
- **o**: <u>Output gate</u>, How much to reveal cell

g: Info gate, How much to write to cell



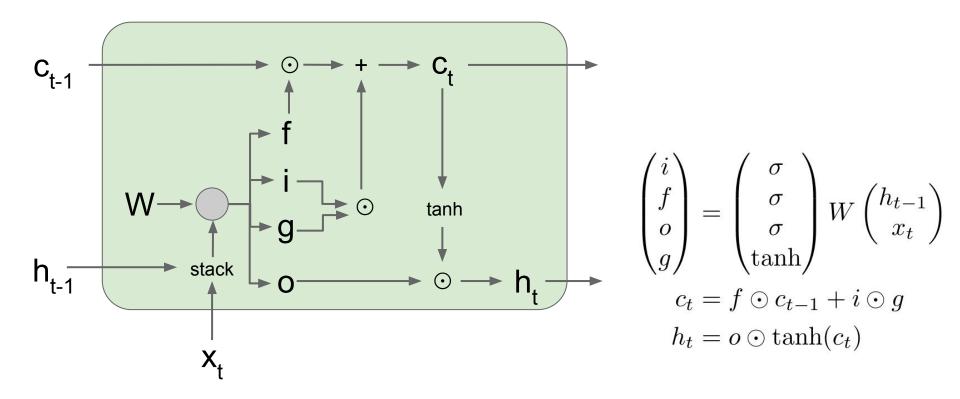
$$c_t = f \odot c_{t-1} + i \odot g$$
$$h_t = o \odot \tanh(c_t)$$

May 01, 2025

Ranjay Krishna

Lecture 10 - 105

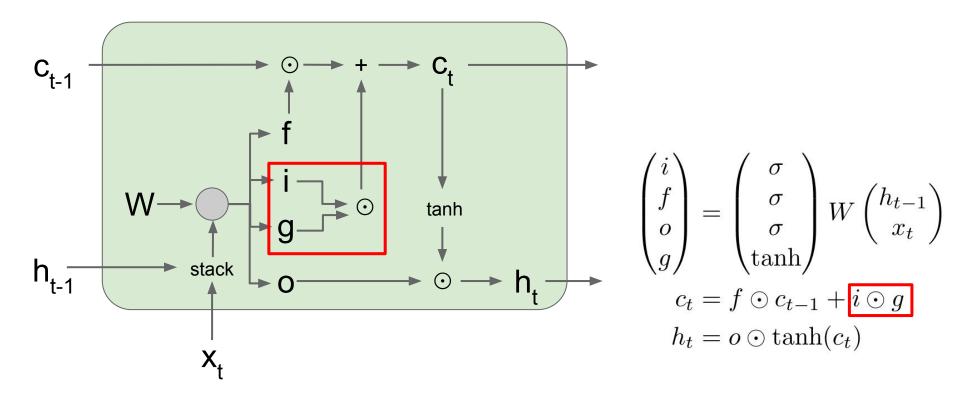
105



Ranjay Krishna

Lecture 10 - 106

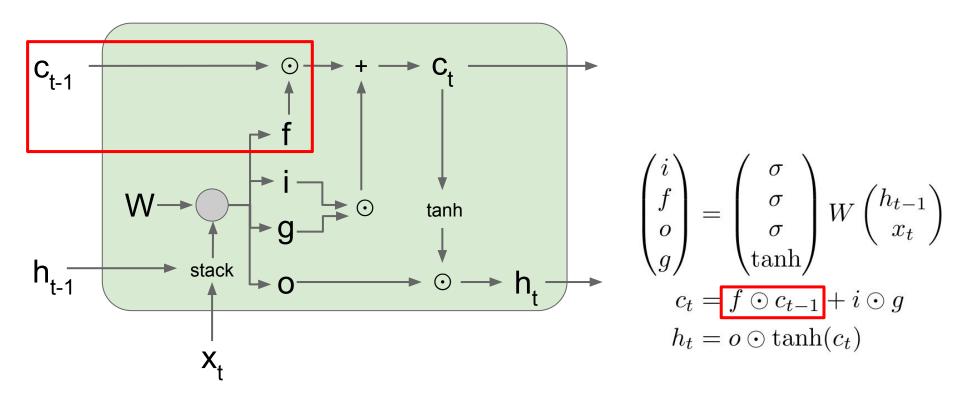
106



Ranjay Krishna

Lecture 10 - 107

107

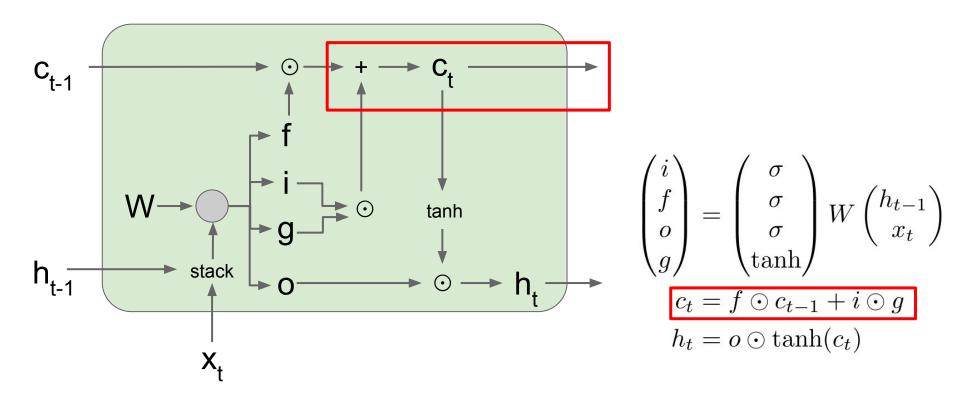


Ranjay Krishna

Lecture 10 - 108

108

Long Short Term Memory (LSTM) [Hochreiter et al., 1997]



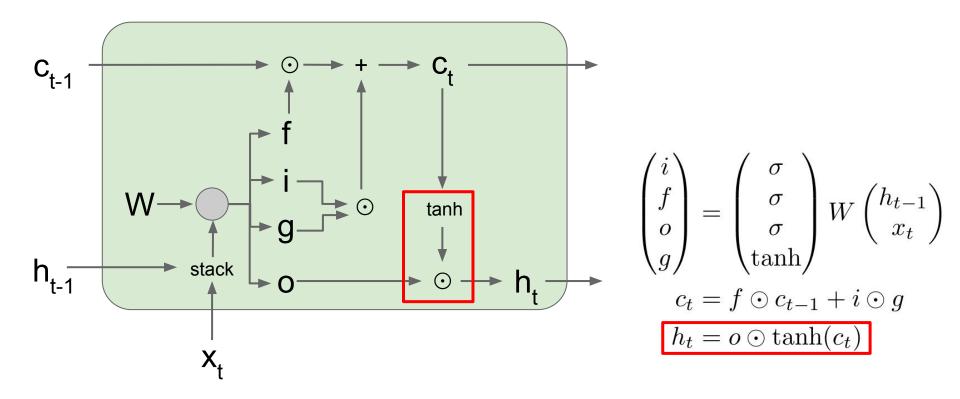
Ranjay Krishna

Lecture 10 - 109

109

<u>May 01, 2025</u>

Long Short Term Memory (LSTM) [Hochreiter et al., 1997]

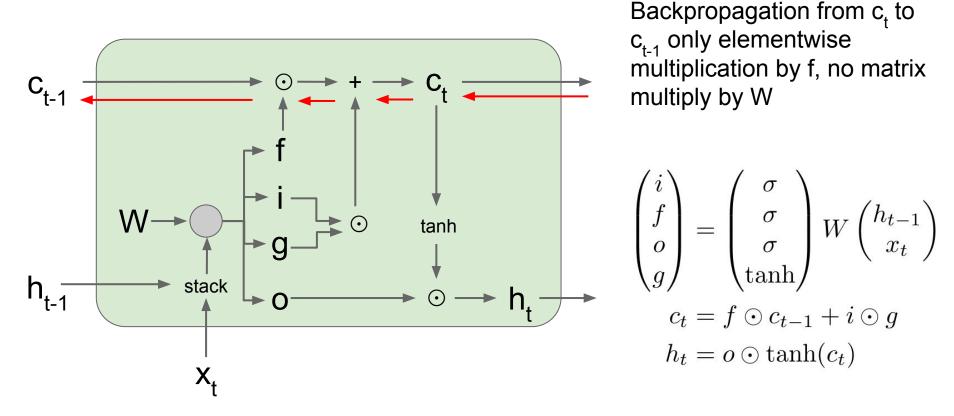


Ranjay Krishna

Lecture 10 - 110

110

Long Short Term Memory (LSTM): Gradient Flow [Hochreiter et al., 1997]



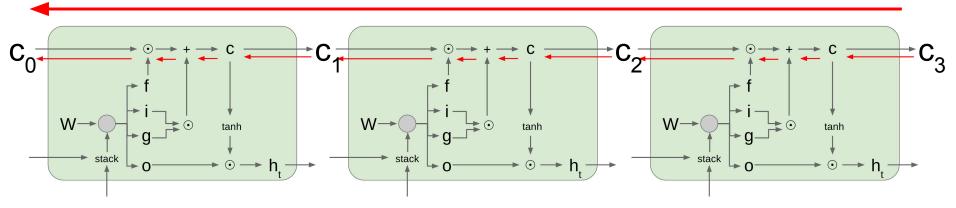
Ranjay Krishna

Lecture 10 - 111

111

Long Short Term Memory (LSTM): Gradient Flow [Hochreiter et al., 1997]

Uninterrupted gradient flow!



Notice that the gradient contains the **f** gate's vector of activations

 allows better control of gradients values, using suitable parameter updates of the forget gate.

Also notice that are added through the f, i, g, and o gates

- better balancing of gradient values

Ranjay Krishna

Lecture 10 - 112

112

Do LSTMs solve the vanishing gradient problem?

The LSTM architecture makes it easier for the RNN to preserve information over many timesteps

- e.g. **if the f = 1 and the i = 0**, then the information of that cell is preserved indefinitely.
- By contrast, it's harder for vanilla RNN to learn a recurrent weight matrix Wh that preserves info in hidden state

LSTM **doesn't guarantee** that there is no vanishing/exploding gradient, but it does provide an easier way for the model to learn long-distance dependencies

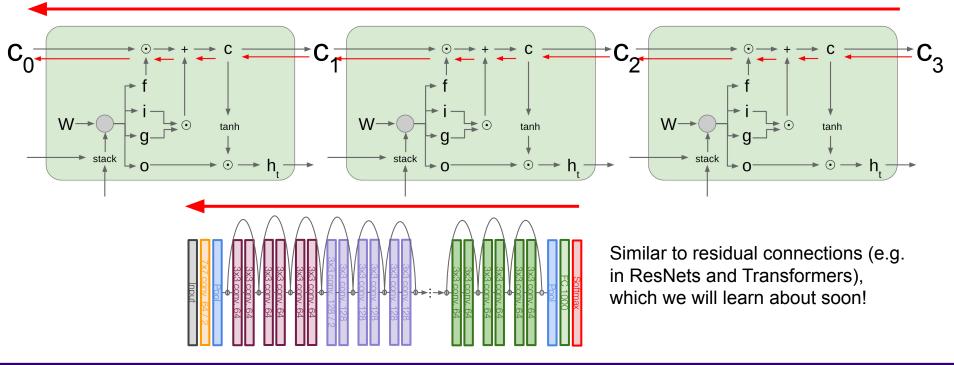
<u>May 01, 2025</u>

Lecture 10 - 113

Ranjay Krishna

Long Short Term Memory (LSTM): Gradient Flow [Hochreiter et al., 1997]

Uninterrupted gradient flow!



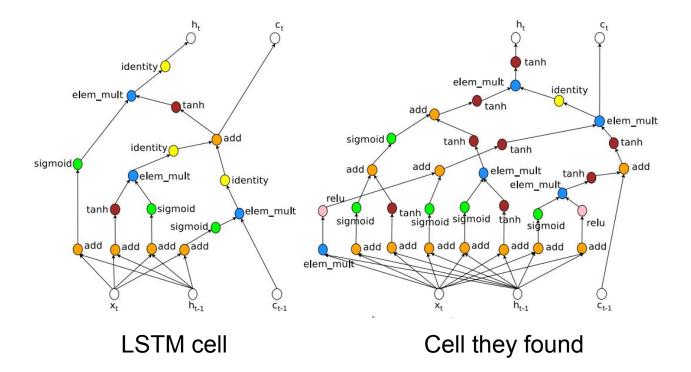
Ranjay Krishna

Lecture 10 - 114

114

<u>May 01, 2025</u>

Neural Architecture Search for RNN architectures



Zoph et Le, "Neural Architecture Search with Reinforcement Learning", ICLR 2017 Figures copyright Zoph et al, 2017. Reproduced with permission.

Ranjay Krishna

Lecture 10 - 115

115

Other RNN Variants

GRU [*Learning phrase representations using rnn encoder-decoder for statistical machine translation*, Cho et al. 2014]

$$r_t = \sigma(W_{xr}x_t + W_{hr}h_{t-1} + b_r)$$

$$z_t = \sigma(W_{xz}x_t + W_{hz}h_{t-1} + b_z)$$

$$\tilde{h}_t = \tanh(W_{xh}x_t + W_{hh}(r_t \odot h_{t-1}) + b_h)$$

$$h_t = z_t \odot h_{t-1} + (1 - z_t) \odot \tilde{h}_t$$

[*LSTM: A Search Space Odyssey*, Greff et al., 2015]

[An Empirical Exploration of Recurrent Network Architectures, Jozefowicz et al., 2015]

MUT1:

$$z = \operatorname{sigm}(W_{xx}x_t + b_x)$$

$$r = \operatorname{sigm}(W_{xr}x_t + W_{hr}h_t + b_r)$$

$$h_{t+1} = \operatorname{tanh}(W_{hh}(r \odot h_t) + \operatorname{tanh}(x_t) + b_h) \odot z$$

$$+ h_t \odot (1 - z)$$

MUT2:

 $\begin{array}{rcl} z &=& \mathrm{sigm}(W_{\mathrm{xx}}x_t+W_{\mathrm{hx}}h_t+b_{\mathrm{z}})\\ r &=& \mathrm{sigm}(x_t+W_{\mathrm{hr}}h_t+b_{\mathrm{r}})\\ h_{t+1} &=& \mathrm{tanh}(W_{\mathrm{hh}}(r\odot h_t)+W_{xh}x_t+b_{\mathrm{h}})\odot z\\ &+& h_t\odot(1-z) \end{array}$

MUT3:

$$z = \operatorname{sigm}(W_{xx}x_t + W_{hx}\tanh(h_t) + b_x)$$

$$r = \operatorname{sigm}(W_{xr}x_t + W_{hr}h_t + b_r)$$

$$h_{t+1} = \operatorname{tanh}(W_{hh}(r \odot h_t) + W_{xh}x_t + b_h) \odot z$$

$$+ h_t \odot (1 - z)$$

Ranjay Krishna

Lecture 10 - 116

116

Recurrence for Vision

- LSTM wer a good default choice until this year
- Use variants like GRU if you want faster compute and less parameters

Lecture 10 - 117

May 01, 2025

- Use transformers (next lecture) as they are dominating NLP and also vision models
 - almost everyday there is a new transformer model

Su et al. "VI-bert: Pre-training of generic visual-linguistic representations." ICLR 2020 Lu et al. "Vilbert: Pretraining task-agnostic visiolinguistic representations for vision-and-language tasks." NeurIPS 2019 Li et al. "Visualbert: A simple and performant baseline for vision and language." *arXiv* 2019

Ranjay Krishna

Summary

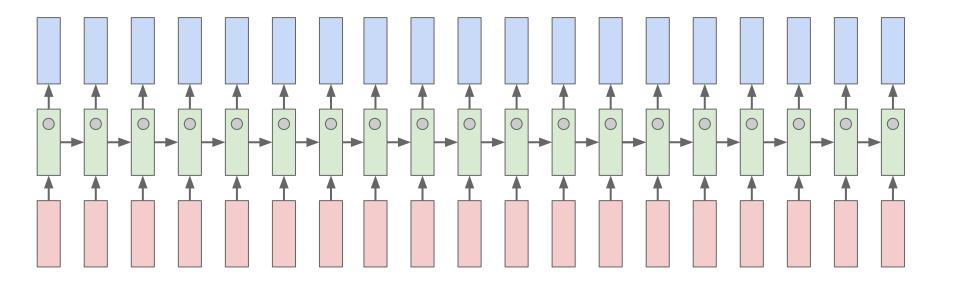
- RNNs allow a lot of flexibility in architecture design
- Vanilla RNNs are simple but don't work very well
- Common to use LSTM or GRU: their additive interactions improve gradient flow
- Backward flow of gradients in RNN can explode or vanish.
 Exploding is controlled with gradient clipping. Vanishing is controlled with additive interactions (LSTM)
- Better/simpler architectures are a hot topic of current research, as well as new paradigms for reasoning over sequences
- Better understanding (both theoretical and empirical) is needed.

Ranjay Krishna

Next time: Attention and transformers!

Lecture 10 - 119

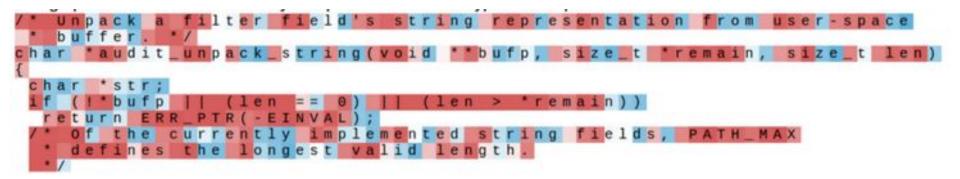
119



Ranjay Krishna

Lecture 10 - 120

120

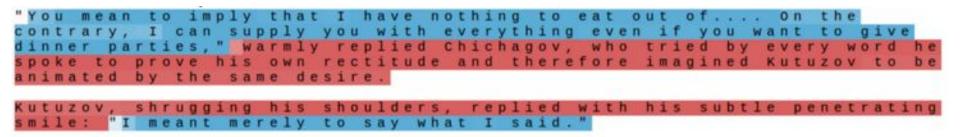


Karpathy, Johnson, and Fei-Fei: Visualizing and Understanding Recurrent Networks, ICLR Workshop 2016 Figures copyright Karpathy, Johnson, and Fei-Fei, 2015; reproduced with permission

Ranjay Krishna

Lecture 10 - 121

121



quote detection cell

Karpathy, Johnson, and Fei-Fei: Visualizing and Understanding Recurrent Networks, ICLR Workshop 2016 Figures copyright Karpathy, Johnson, and Fei-Fei, 2015; reproduced with permission

Ranjay Krishna

Lecture 10 - 122

122

Cell sensitive to position in line:

The sole importance of the crossing of the Bere zina that it plainly and indubitably proved the fallacy of all the plans for cutting off the enemy's retreat and the soundness of the only possible line of action--the one Kutuzov and the general mass of the army demanded -- namely, simply to follow the enemy up. The French crowd fled a continually increasing speed and all its energy was directed to reaching its goal. It fled like a wounded animal and it was impossible to block its path. This was shown not so much by the arrangements made for crossing as by what took place at the bridges. When the bridges broke down, unarmed soldiers, people from Moscow and women with children who were with the French transport, all--carried on by vis inertiae-pressed forward into boats and into the ice-covered water and did not. surrender.

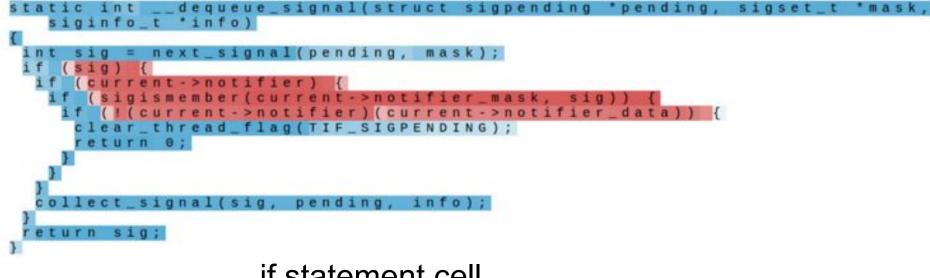
line length tracking cell

Lecture 10 - 123

Karpathy, Johnson, and Fei-Fei: Visualizing and Understanding Recurrent Networks, ICLR Workshop 2016 Figures copyright Karpathy, Johnson, and Fei-Fei, 2015; reproduced with permission

Ranjay Krishna

123



if statement cell

Karpathy, Johnson, and Fei-Fei: Visualizing and Understanding Recurrent Networks, ICLR Workshop 2016 Figures copyright Karpathy, Johnson, and Fei-Fei, 2015; reproduced with permission

Ranjay Krishna

Lecture 10 - 124

124

Cell that turns on inside comments and quotes:

	F	0		1 1	1	1	-	a	1	1	7		1			1								t 1						e														
		-	-				-	-	-	-	1					d -			d				1			£ .			d /				*			1.1		÷	4.4	0.1	d		d F	
		-	۰.								-			a	u			=		91		=	1		-			4	u (3		U.	C L	6	a u	u .		-	-	6 L	u			1
					5		r	U	C	t		aı	1 0	1	Ε.	_		e	1	a		5	т)																				
11	1 t		r	e t	Ľ,	=		0	;																																			
c t	1 a	r		• 1	L s	-	i	s	t	r	;																																	
1.	1	0	11		0	W	n		C	0	D	v	0	f		1.5	<u>с</u> п	100	S	E I			1																					
1 4			5	t i		1		k	s	t	r .	d I	I D	1	5	f.	. >	1	5	m	s	+	-	_	G	E I	0	K	FR	N	E I	.)												
	1	7			1			ï	v	7								Ĵ						·		-	-				-	1	S											
		1					-	-	ž	2				-	•			1																										
	e		5				-		0						-																													
		>	1	S I	n _	. s	C	r	1		122	2.1	5 m	-	S	C I	. 1			_	_		_	_			_		_	_	_	_												
1		0	u	r	0	3.	n		(r	e	F I	e	5	h	ec	1)		C		-		0	Γ.	1	51	_ ۱	T	ц 1	e		1						_					_	
r e	t		=	1	5 E	C	u	r	1	t	У.	_ 1	a u	d	1	t _	. T	u	1	е_	_ 1	n	1	t (d	f -	• >	t	уp	e.		d	f -	>	o p		d	f -	>]	L S	m _	S	t r	E,
								(V	0	1	d	1	*)	& C	i f	-	>	1 :	5 m		r :	u 1	e)																		
1.		ĸ	e	e ı	2	C	U	r	r	e	n	E.C	L y		1	n v	1 8	1	1	d	f	1	e	1 d	S	1	r	0	u n	d	1	n	C	8	s e	-	t h e	e y						
		b	e	C (п	1 6		v	a	1	i	d	a	f	t	e r		a		0 0	o 1	1	C	v	r	e	0	a	d.		. /	1												
1 1		1	r	e 1		1	=		-	E	T	N N	/ Δ	1	1								-																					
						1		-	-	a	1				1			0		1.1		M				e 1			1 5	2	1.0	L M	a 1	100	d \	n '	1000							
		Ŧ					-		-	-	î											2.4.5			10				* *			100.00												
						٠.	-	9			1	٢.,																																
	C				6																			4		,							4											
}	_	_		_	_	_	_	_												(21	11	\cap	†4	/ ב	C	\cap	n	n	m		n	Ť	C	e									
r e	1 E	u	r	n	T	C	T	-													ч '	U		5)		U						ι.	\mathbf{U}										

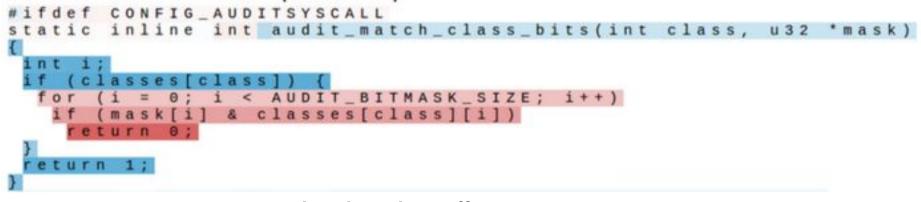
Lecture 10 - 125

Karpathy, Johnson, and Fei-Fei: Visualizing and Understanding Recurrent Networks, ICLR Workshop 2016

Figures copyright Karpathy, Johnson, and Fei-Fei, 2015; reproduced with permission

Ranjay Krishna

25



code depth cell

Karpathy, Johnson, and Fei-Fei: Visualizing and Understanding Recurrent Networks, ICLR Workshop 2016 Figures copyright Karpathy, Johnson, and Fei-Fei, 2015; reproduced with permission

Ranjay Krishna

Lecture 10 - 126

126