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Lecture 10:
RNNs, LSTMs
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Due 5/11 11:59pm
- Normalization Layers,
- Dropout, 
- CNNs

Administrative: Assignment 3

22
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Administrative: Fridays

This Friday 

Who's Who of Deep Learning
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Administrative: Project
Please fill out the Google Form posted on Ed

We will use this to assign TAs to projects
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https://forms.gle/ifdRUmV3LLAH727a9
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Vanilla Neural Networks

“Vanilla” Neural Network
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Recurrent Neural Networks: Process Sequences

e.g. Image Captioning
image -> sequence of words
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Recurrent Neural Networks: Process Sequences

e.g. action prediction, sentiment 
classification
sequence of video frames -> action class

7



Ranjay Krishna Lecture 10 - May 01, 20258

Recurrent Neural Networks: Process Sequences

E.g. Video Captioning
Sequence of video frames -> 
caption
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Recurrent Neural Networks: Process Sequences

e.g. Video classification on frame level
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So far: Representing words as discrete symbols

In traditional NLP, we regard words as discrete symbols:
hotel, conference, motel – each has its own symbol.

This is a localist representation

Such symbols for words can be represented by one-hot vectors:
motel = [0 0 0 0 0 0 0 0 0 0 1 0 0 0 0]
hotel  = [0 0 0 0 0 0 0 1 0 0 0 0 0 0 0]

Vector dimension = number of words in vocabulary (e.g., 500,000+)
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So far: Representing words as dense vectors

We will build a dense vector for each word, 
- chosen so that it is similar to vectors of words that appear in similar 

contexts: e.g. jacket / coat / sweater.
- measuring similarity as the vector dot (scalar) product.
- Word vectors are also called (word) embeddings or (neural) word 

representations
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Outputs are 
classification (softmax) 
over V-dimensions

Now let’s talk about how we can model 
language 

1212

Neural network with variable sized inputs/outputs

<start> brownthe cow jumped …

brownthe cow jumped …

Word representations 
can be V-dimensional 
one-hot vectors
Or d-dimensional 
dense vectors

<end>
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Now let’s talk about how we can model 
language 
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Recurrent Neural Network

x

RNN

y
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Recurrent Neural Network

x

RNN

y
Key idea: RNNs have an 
“internal state” that is 
updated as a sequence is 
processed

15



Ranjay Krishna Lecture 10 - May 01, 202516

Unrolled RNN

x1

RNN

y1

x2

RNN

y2

x3

RNN

y3

...

xt

RNN

yt
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RNN hidden state update

x

RNN

y
We can process a sequence of vectors x by 
applying a recurrence formula at every time step:

new state old state input vector at 
some time step

some function
with parameters W

17
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RNN output generation

x

RNN

y
We can process a sequence of vectors x by 
applying a recurrence formula at every time step:

new state

another function
with parameters Wo

output
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Recurrent Neural Network

x1

RNN

y1

x2

RNN

y2

x3

RNN

y3

...

xt

RNN

yt

h1 h2 h3
h0

19
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Recurrent Neural Network

x

RNN

y
We can process a sequence of vectors x by 
applying a recurrence formula at every time step:

Notice: the same function and the same set 
of parameters are used at every time step.

20
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(Simple) Recurrent Neural Network

x

RNN

y

The state consists of a single “hidden” vector h:

Sometimes called a “Vanilla RNN” or an 
“Elman RNN” after Prof. Jeffrey Elman

21
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h0 fW h1

x1

RNN: Computational Graph
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h0 fW h1 fW h2

x2x1

RNN: Computational Graph
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h0 fW h1 fW h2 fW h3

x3

… 

x2x1

RNN: Computational Graph

hT
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h0 fW h1 fW h2 fW h3

x3

… 

x2x1W

RNN: Computational Graph

Re-use the same weight matrix at every time-step

hT
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h0 fW h1 fW h2 fW h3

x3

yT

… 

x2x1W

RNN: Computational Graph: Many to Many

hT

y3y2y1
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h0 fW h1 fW h2 fW h3

x3

yT

… 

x2x1W

RNN: Computational Graph: Many to Many

hT

y3y2y1 L1
L2 L3 LT

27



Ranjay Krishna Lecture 10 - May 01, 202528

h0 fW h1 fW h2 fW h3

x3

yT

… 

x2x1W

RNN: Computational Graph: Many to Many

hT

y3y2y1 L1
L2 L3 LT

L

28



Ranjay Krishna Lecture 10 - May 01, 202529

h0 fW h1 fW h2 fW h3

x3

y

… 

x2x1W

RNN: Computational Graph: Many to One

hT

29
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h0 fW h1 fW h2 fW h3

x3

y

… 

x2x1W

RNN: Computational Graph: Many to One

hT

30
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h0 fW h1 fW h2 fW h3

yT

… 

x
W

RNN: Computational Graph: One to Many

hT

y3y2y1

31
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h0 fW h1 fW h2 fW h3

yT

… 

x
W

RNN: Computational Graph: One to Many

hT

y3y2y1

? ? ?

32
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h0 fW h1 fW h2 fW h3

yT

… 

x
W

RNN: Computational Graph: One to Many

hT

y3y2y1

0 0 0

33
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yT-1

34

h0 fW h1 fW h2 fW h3

yT

… 

x
W

RNN: Computational Graph: One to Many

hT

y3y2y1

y1 y2

34
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Sequence to Sequence: Many-to-one + 
one-to-many

h0 fW h1 fW h2 fW h3

x3

… 

x2x1
W1

hT

Many to one: Encode input 
sequence in a single vector

Sutskever et al, “Sequence to Sequence Learning with Neural Networks”, NIPS 2014

35
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Sequence to Sequence: Many-to-one + 
one-to-many

y1 y2

… 

Many to one: Encode input 
sequence in a single vector

One to many: Produce output 
sequence from single input vector

fW h1 fW h2 fW

W2

Sutskever et al, “Sequence to Sequence Learning with Neural Networks”, NIPS 2014

h0 fW h1 fW h2 fW h3

x3

… 

x2x1
W1

hT

36
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Example: 
Character-level
Language Model

Vocabulary:
[h,e,l,o]

Example training
sequence:
“hello”

37
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Example: 
Character-level
Language Model

Vocabulary:
[h,e,l,o]

Example training
sequence:
“hello”
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Example: 
Character-level
Language Model

Vocabulary:
[h,e,l,o]

Example training
sequence:
“hello”
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Example: 
Character-level
Language Model

Vocabulary:
[h,e,l,o]

Example training
sequence:
“hello”

High SVM loss 

40
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Example: 
Character-level
Language Model

So far: encode inputs as 
one-hot-vector

41

High SVM loss 

[w11 w12 w13 w14] [1]     [w11] 
[w21 w22 w23 w14] [0] =  [w21] 
[w31 w32 w33 w14] [0] [w31] 

[0]

Matrix multiply with a one-hot 
vector just extracts a column 
from the weight matrix. Now a 
days, we extract this into a 
separate embedding layer

41
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Example: 
Character-level
Language Model
Sampling

Vocabulary:
[h,e,l,o]

At test-time sample 
characters one at a time, 
feed back to model

.03

.84

.00

.13

.25

.20

.05

.50

.11

.17

.68

.03

.11

.02

.08

.79
Softmax

“e” “l” “l” “o”
Sample

42
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.03

.84

.00

.13

.25

.20

.05

.50

.11

.17

.68

.03

.11

.02

.08

.79
Softmax

“e” “l” “l” “o”
SampleExample: 

Character-level
Language Model
Sampling

Vocabulary:
[h,e,l,o]

At test-time sample 
characters one at a time, 
feed back to model
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.03

.84

.00

.13

.25

.20

.50

.05

.11

.17

.68

.03

.11

.02

.08

.79
Softmax

“e” “l” “l” “o”
SampleExample: 

Character-level
Language Model
Sampling

Vocabulary:
[h,e,l,o]

At test-time sample 
characters one at a time, 
feed back to model
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.03

.84

.00

.13

.25

.20

.50

.05

.11

.17

.68

.03

.11

.02

.08

.79
Softmax

“e” “l” “l” “o”
SampleExample: 

Character-level
Language Model
Sampling

Vocabulary:
[h,e,l,o]

At test-time sample 
characters one at a time, 
feed back to model
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Backpropagation through time
Loss

Forward through entire sequence to 
compute loss, then backward through 
entire sequence to compute gradient

46
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Truncated Backpropagation through time
Loss

Run forward and backward 
through chunks of the 
sequence instead of whole 
sequence

47
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Truncated Backpropagation through time
Loss

Carry hidden states 
forward in time forever, 
but only backpropagate 
for some smaller 
number of steps

48
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Truncated Backpropagation through time
Loss

49
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min-char-rnn.py gist: 112 lines of Python

Simple python implementation

50

https://gist.github.com/karpathy/d4dee566867f8291f086
https://gist.github.com/karpathy/d4dee566867f8291f086
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x

RNN

y

51
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train more

train more

train more

at first:

52
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The Stacks Project: open source algebraic geometry textbook

Latex source http://stacks.math.columbia.edu/
The stacks project is licensed under the GNU Free Documentation License

54

http://stacks.math.columbia.edu/
https://github.com/stacks/stacks-project/blob/master/COPYING
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Generated 
C code
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OpenAI GPT-2 generated text

61

Input: In a shocking finding, scientist discovered a herd of unicorns living in a remote, 
previously unexplored valley, in the Andes Mountains. Even more surprising to the 
researchers was the fact that the unicorns spoke perfect English.

Output: The scientist named the population, after their distinctive horn, Ovid’s Unicorn. 
These four-horned, silver-white unicorns were previously unknown to science.

Now, after almost two centuries, the mystery of what sparked this odd phenomenon is 
finally solved.

Dr. Jorge Pérez, an evolutionary biologist from the University of La Paz, and several 
companions, were exploring the Andes Mountains when they found a small valley, with no 
other animals or humans. Pérez noticed that the valley had what appeared to be a natural 
fountain, surrounded by two peaks of rock and silver snow.

source

61

https://openai.com/blog/better-language-models/
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GPT-4

Bubek et al. Sparks of 
AGI. ArXiv 2023

6262
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Language modeling 
leads to reasoning 
capabilities for 
GPT-4

Bubek et al. Sparks of 
AGI. ArXiv 2023

6363
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RNN tradeoffs

RNN Advantages:
- Can process any length input
- Computation for step t can (in theory) use information from many steps 

back 
- Model size doesn’t increase for longer input 
- Same weights applied on every timestep, so there is symmetry in how 

inputs are processed. 
RNN Disadvantages: 

- Recurrent computation is slow 
- In practice, difficult to access information from many steps back 

6464
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Explain Images with Multimodal Recurrent Neural Networks, Mao et al.
Deep Visual-Semantic Alignments for Generating Image Descriptions, Karpathy and Fei-Fei
Show and Tell: A Neural Image Caption Generator, Vinyals et al.
Long-term Recurrent Convolutional Networks for Visual Recognition and Description, Donahue et al.
Learning a Recurrent Visual Representation for Image Caption Generation, Chen and Zitnick

Image Captioning

Figure from Karpathy et a, “Deep 
Visual-Semantic Alignments for Generating 
Image Descriptions”, CVPR 2015; figure 
copyright IEEE, 2015.
Reproduced for educational purposes.
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Convolutional Neural Network

Recurrent Neural Network

66
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test image

This image is CC0 public domain

67

https://pixabay.com/en/straw-hat-man-sea-sunlight-sunset-70696/
https://creativecommons.org/publicdomain/zero/1.0/deed.en
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test image

68
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test image

X 69
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test image

x0
<START>

70



Ranjay Krishna Lecture 10 - May 01, 2025

h0

y0

test image

before:
h = tanh(Wxh * x + Whh * h)

now:
h = tanh(Wxh * x + Whh * h + Wih * v)

v

Wih

x0
<START>

71
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h0

y0

test image

straw

sample!

x0
<START>
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h0

y0

test image

straw

h1

y1

x0
<START>
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h0

y0

test image

straw

h1

y1

hat

sample!

x0
<START>
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h0

y0

test image

straw

h1

y1

hat

h2

y2

x0
<START>
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h0

y0

test image

straw

h1

y1

hat

h2

y2

sample
<END> token
=> finish.

x0
<START>

76
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A cat sitting on a 
suitcase on the floor

A cat is sitting on a tree 
branch

A dog is running in the 
grass with a frisbee

A white teddy bear sitting in 
the grass

Two people walking on 
the beach with surfboards

Two giraffes standing in a 
grassy field

A man riding a dirt bike on 
a dirt track

Image Captioning: Example Results

A tennis player in action 
on the court

Captions generated using neuraltalk2
All images are CC0 Public domain: 
cat suitcase, cat tree, dog, bear, 
surfers, tennis, giraffe, motorcycle

77

https://github.com/karpathy/neuraltalk2
https://creativecommons.org/publicdomain/zero/1.0/deed.en
https://pixabay.com/en/luggage-antique-cat-1643010/
https://pixabay.com/en/cat-kitten-tree-green-summer-1647775/
https://pixabay.com/en/adorable-animal-canine-cute-dog-1849992/
https://pixabay.com/en/teddy-plush-bears-cute-teddy-bear-1623436/
https://pixabay.com/en/beach-beach-sports-blur-blurry-1853903/
https://pixabay.com/en/tennis-head-ramos-vinolas-clay-934841/
https://pixabay.com/en/giraffe-animals-wildlife-africa-2064520/
https://pixabay.com/en/moto-cross-motorbike-sports-jump-214928/


Ranjay Krishna Lecture 10 - May 01, 202578

Image Captioning: Failure Cases

A woman is holding a cat 
in her hand

A woman standing on a 
beach holding a surfboard

A person holding a 
computer mouse on a desk

A bird is perched on 
a tree branch

A man in a 
baseball uniform 
throwing a ball

Captions generated using neuraltalk2
All images are CC0 Public domain: fur 
coat, handstand, spider web, baseball

78

https://github.com/karpathy/neuraltalk2
https://creativecommons.org/publicdomain/zero/1.0/deed.en
https://pixabay.com/en/woman-female-model-portrait-adult-983967/
https://pixabay.com/en/woman-female-model-portrait-adult-983967/
https://pixabay.com/en/handstand-lake-meditation-496008/
https://pixabay.com/en/spider-web-tree-branches-pattern-617769/
https://pixabay.com/en/baseball-player-shortstop-infield-1045263/
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Visual Question Answering (VQA)

Agrawal et al, “VQA: Visual Question Answering”, ICCV 2015
Zhu et al, “Visual 7W: Grounded Question Answering in Images”, CVPR 2016
Figure from Zhu et al, copyright IEEE 2016. Reproduced for educational purposes.

79
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Agrawal et al, “Visual 7W: Grounded Question Answering in Images”, CVPR 2015
Figures from Agrawal et al, copyright IEEE 2015. Reproduced for educational purposes.

Visual Question Answering: RNNs with Attention

80
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Das et al, “Visual Dialog”, CVPR 2017
Figures from Das et al, copyright IEEE 2017. Reproduced with permission.

Visual Dialog: Conversations about images

81
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Agent encodes instructions in 
language and uses an RNN to 
generate a series of movements as 
the visual input changes after each 
move.

82

Wang et al, “Reinforced Cross-Modal Matching and Self-Supervised 
Imitation Learning for Vision-Language Navigation”, CVPR 2018
Figures from Wang et al, copyright IEEE 2017. Reproduced with permission.

Visual Language Navigation: Go to the living room

82
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Jabri et al. “Revisiting Visual Question Answering Baselines” ECCV 2016

83

Visual Question Answering: Dataset Bias
All images are CC0 Public domain: 
dog,

What is the dog 
playing with?

Frisbee

Image

Question

Answer

Model Yes or No

83

https://creativecommons.org/publicdomain/zero/1.0/deed.en
https://pixabay.com/en/adorable-animal-canine-cute-dog-1849992/
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time

depth

Multilayer RNNs

Each layer has a different set 
of weights

Outputs from one layer 
become inputs to the layer 
above.

84
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Now, let’s talk about why RNNs are not as popular 
anymore.
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ht-1

xt

W

stack

tanh

ht

Vanilla RNN Gradient Flow Bengio et al, “Learning long-term dependencies with gradient descent 
is difficult”, IEEE Transactions on Neural Networks, 1994
Pascanu et al, “On the difficulty of training recurrent neural networks”, 
ICML 2013

yt
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ht-1

xt

W

stack

tanh

ht

Vanilla RNN Gradient Flow
Backpropagation from ht 
to ht-1 multiplies by W 
(actually Whh

T)

Bengio et al, “Learning long-term dependencies with gradient descent 
is difficult”, IEEE Transactions on Neural Networks, 1994
Pascanu et al, “On the difficulty of training recurrent neural networks”, 
ICML 2013

yt
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ht-1

xt

W

stack

tanh

ht

Vanilla RNN Gradient Flow
Backpropagation from ht 
to ht-1 multiplies by W 
(actually Whh

T)

Bengio et al, “Learning long-term dependencies with gradient descent 
is difficult”, IEEE Transactions on Neural Networks, 1994
Pascanu et al, “On the difficulty of training recurrent neural networks”, 
ICML 2013

yt
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ht-1

xt

W

stack

tanh

ht

Vanilla RNN Gradient Flow
Backpropagation from ht 
to ht-1 multiplies by W 
(actually Whh

T)

Bengio et al, “Learning long-term dependencies with gradient descent 
is difficult”, IEEE Transactions on Neural Networks, 1994
Pascanu et al, “On the difficulty of training recurrent neural networks”, 
ICML 2013

yt
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Vanilla RNN Gradient Flow

h0 h1 h2 h3 h4

x1 x2 x3 x4

Bengio et al, “Learning long-term dependencies with gradient descent 
is difficult”, IEEE Transactions on Neural Networks, 1994
Pascanu et al, “On the difficulty of training recurrent neural networks”, 
ICML 2013

y1 y2 y3 y4

90
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Vanilla RNN Gradient Flow
Gradients over multiple time steps:

h0 h1 h2 h3 h4

x1 x2 x3 x4

Bengio et al, “Learning long-term dependencies with gradient descent 
is difficult”, IEEE Transactions on Neural Networks, 1994
Pascanu et al, “On the difficulty of training recurrent neural networks”, 
ICML 2013

y1 y2 y3 y4

91
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Vanilla RNN Gradient Flow
Gradients over multiple time steps:

h0 h1 h2 h3 h4

x1 x2 x3 x4

Bengio et al, “Learning long-term dependencies with gradient descent 
is difficult”, IEEE Transactions on Neural Networks, 1994
Pascanu et al, “On the difficulty of training recurrent neural networks”, 
ICML 2013

y1 y2 y3 y4

92
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Vanilla RNN Gradient Flow
Gradients over multiple time steps:

h0 h1 h2 h3 h4

x1 x2 x3 x4

Bengio et al, “Learning long-term dependencies with gradient descent 
is difficult”, IEEE Transactions on Neural Networks, 1994
Pascanu et al, “On the difficulty of training recurrent neural networks”, 
ICML 2013

y1 y2 y3 y4

93
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Vanilla RNN Gradient Flow
Gradients over multiple time steps:

h0 h1 h2 h3 h4

x1 x2 x3 x4

Bengio et al, “Learning long-term dependencies with gradient descent 
is difficult”, IEEE Transactions on Neural Networks, 1994
Pascanu et al, “On the difficulty of training recurrent neural networks”, 
ICML 2013

y1 y2 y3 y4

Almost always < 1
Vanishing gradients

94
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Vanilla RNN Gradient Flow
Gradients over multiple time steps:

h0 h1 h2 h3 h4

x1 x2 x3 x4

Bengio et al, “Learning long-term dependencies with gradient descent 
is difficult”, IEEE Transactions on Neural Networks, 1994
Pascanu et al, “On the difficulty of training recurrent neural networks”, 
ICML 2013

y1 y2 y3 y4

Almost always < 1
Vanishing gradients

What if we assumed no non-linearity?

95
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Vanilla RNN Gradient Flow
Gradients over multiple time steps:

h0 h1 h2 h3 h4

x1 x2 x3 x4

Bengio et al, “Learning long-term dependencies with gradient descent 
is difficult”, IEEE Transactions on Neural Networks, 1994
Pascanu et al, “On the difficulty of training recurrent neural networks”, 
ICML 2013

y1 y2 y3 y4

What if we assumed no non-linearity?

Largest singular value > 1: 
Exploding gradients

Largest singular value < 1:
Vanishing gradients
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Vanilla RNN Gradient Flow
Gradients over multiple time steps:

h0 h1 h2 h3 h4

x1 x2 x3 x4

Bengio et al, “Learning long-term dependencies with gradient descent 
is difficult”, IEEE Transactions on Neural Networks, 1994
Pascanu et al, “On the difficulty of training recurrent neural networks”, 
ICML 2013

y1 y2 y3 y4

What if we assumed no non-linearity?

Largest singular value > 1: 
Exploding gradients

Largest singular value < 1:
Vanishing gradients

Gradient clipping: 
Scale gradient if its 
norm is too big
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Vanilla RNN Gradient Flow
Gradients over multiple time steps:

h0 h1 h2 h3 h4

x1 x2 x3 x4

Bengio et al, “Learning long-term dependencies with gradient descent 
is difficult”, IEEE Transactions on Neural Networks, 1994
Pascanu et al, “On the difficulty of training recurrent neural networks”, 
ICML 2013

y1 y2 y3 y4

What if we assumed no non-linearity?

Largest singular value > 1: 
Exploding gradients

Largest singular value < 1:
Vanishing gradients

Change RNN 
architecture
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Long Short Term Memory (LSTM)

Hochreiter and Schmidhuber, “Long Short Term Memory”, Neural Computation 1997

Vanilla RNN LSTM
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RNNs have a single hidden state (ht)
LSTMs have two: cell memory ct and hidden state ht

Hochreiter and Schmidhuber, “Long Short Term Memory”, Neural Computation 1997

Vanilla RNN LSTM
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Long Short Term Memory (LSTM)
[Hochreiter et al., 1997]

x

h

vector from 
before (h)

W

i

f

o

g

vector from 
below (x)

sigmoid

sigmoid

tanh

sigmoid

4h x 2h 4h 4*h
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i: Input gate, whether to write to cell
f: Forget gate, Whether to erase cell
o: Output gate, How much to reveal cell
g: Info gate, How much to write to cell

102

Long Short Term Memory (LSTM)
[Hochreiter et al., 1997]

x

h

vector from 
before (h)

W

i

f

o

g

vector from 
below (x)

sigmoid

sigmoid

tanh

sigmoid

4h x 2h 4h 4*h
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i: Input gate, whether to write to cell
f: Forget gate, Whether to erase cell
o: Output gate, How much to reveal cell
g: Info gate, How much to write to cell
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Long Short Term Memory (LSTM)
[Hochreiter et al., 1997]

x

h

vector from 
before (h)

W

i

f

o

g

vector from 
below (x)

sigmoid

sigmoid

tanh

sigmoid

4h x 2h 4h 4*h
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Long Short Term Memory (LSTM)
[Hochreiter et al., 1997]

x

h

vector from 
before (h)

W

i

f

o

g

vector from 
below (x)

sigmoid

sigmoid

tanh

sigmoid

4h x 2h 4h 4*h

i: Input gate, whether to write to cell
f: Forget gate, Whether to erase cell
o: Output gate, How much to reveal cell
g: Info gate, How much to write to cell
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Long Short Term Memory (LSTM)
[Hochreiter et al., 1997]

x

h

vector from 
before (h)

W

i

f

o

g

vector from 
below (x)

sigmoid

sigmoid

tanh

sigmoid

4h x 2h 4h 4*h

i: Input gate, whether to write to cell
f: Forget gate, Whether to erase cell
o: Output gate, How much to reveal cell
g: Info gate, How much to write to cell
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☉

106

ct-1

ht-1

xt

f
i
g

o

W ☉

+ ct

tanh

☉ ht

Long Short Term Memory (LSTM)
[Hochreiter et al., 1997]

stack
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☉
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ct-1

ht-1

xt

f
i
g

o

W ☉

+ ct

tanh

☉ ht

Long Short Term Memory (LSTM)
[Hochreiter et al., 1997]

stack
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☉
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ct-1

ht-1

xt

f
i
g

o

W ☉

+ ct

tanh

☉ ht

Long Short Term Memory (LSTM)
[Hochreiter et al., 1997]

stack
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☉
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ct-1

ht-1

xt

f
i
g

o

W ☉

+ ct

tanh

☉ ht

Long Short Term Memory (LSTM)
[Hochreiter et al., 1997]

stack
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☉
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ct-1

ht-1

xt

f
i
g

o

W ☉

+ ct

tanh

☉ ht

Long Short Term Memory (LSTM)
[Hochreiter et al., 1997]

stack
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☉
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ct-1

ht-1

xt

f
i
g

o

W ☉

+ ct

tanh

☉ ht

Long Short Term Memory (LSTM): Gradient Flow
[Hochreiter et al., 1997]

stack

Backpropagation from ct to 
ct-1 only elementwise 
multiplication by f, no matrix 
multiply by W
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Long Short Term Memory (LSTM): Gradient Flow
[Hochreiter et al., 1997]

c0 c1 c2 c3

Uninterrupted gradient flow!

Notice that the gradient contains the f gate’s vector of activations
- allows better control of gradients values, using suitable parameter updates of the 

forget gate.
Also notice that are added through the f, i, g, and o gates

- better balancing of gradient values
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Do LSTMs solve the vanishing gradient 
problem?

The LSTM architecture makes it easier for the RNN to preserve information 
over many timesteps

- e.g. if the f = 1 and the i = 0, then the information of that cell is preserved 
indefinitely.

- By contrast, it’s harder for vanilla RNN to learn a recurrent weight matrix 
Wh that preserves info in hidden state

LSTM doesn’t guarantee that there is no vanishing/exploding gradient, but it 
does provide an easier way for the model to learn long-distance dependencies
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Long Short Term Memory (LSTM): Gradient Flow
[Hochreiter et al., 1997]

c0 c1 c2 c3

Uninterrupted gradient flow!

Input

S
oftm

ax

3x3 conv, 64

7x7 conv, 64 / 2

FC
 1000

Pool

3x3 conv, 64

3x3 conv, 64
3x3 conv, 64

3x3 conv, 64
3x3 conv, 64

3x3 conv, 128
3x3 conv, 128 / 2

3x3 conv, 128
3x3 conv, 128

3x3 conv, 128
3x3 conv, 128

...

3x3 conv, 64
3x3 conv, 64

3x3 conv, 64
3x3 conv, 64

3x3 conv, 64
3x3 conv, 64

Pool
Similar to residual connections (e.g. 
in ResNets and Transformers), 
which we will learn about soon!

114



Ranjay Krishna Lecture 10 - May 01, 2025

LSTM cell

115

Neural Architecture Search for RNN architectures

Zoph et Le, “Neural Architecture Search with Reinforcement Learning”, ICLR 2017
Figures copyright Zoph et al, 2017. Reproduced with permission.

Cell they found
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Other RNN Variants

[LSTM: A Search Space Odyssey, 
Greff et al., 2015]

[An Empirical Exploration of 
Recurrent Network Architectures, 
Jozefowicz et al., 2015]

GRU [Learning phrase representations using rnn 
encoder-decoder for statistical machine translation, 
Cho et al. 2014]
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Recurrence for Vision
- LSTM wer a good default choice until this year
- Use variants like GRU if you want faster compute and less 

parameters
- Use transformers (next lecture) as they are dominating NLP and 

also vision models
- almost everyday there is a new transformer model

Su et al. "Vl-bert: Pre-training of generic visual-linguistic representations." ICLR 2020
Lu et al. "Vilbert: Pretraining task-agnostic visiolinguistic representations for vision-and-language tasks." NeurIPS 2019
Li et al. "Visualbert: A simple and performant baseline for vision and language." arXiv 2019
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Summary
- RNNs allow a lot of flexibility in architecture design
- Vanilla RNNs are simple but don’t work very well
- Common to use LSTM or GRU: their additive interactions 

improve gradient flow
- Backward flow of gradients in RNN can explode or vanish. 

Exploding is controlled with gradient clipping. Vanishing is 
controlled with additive interactions (LSTM)

- Better/simpler architectures are a hot topic of current research, 
as well as new paradigms for reasoning over sequences

- Better understanding (both theoretical and empirical) is needed.
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Next time: Attention and transformers!
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Searching for  interpretable cells

120
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Searching for  interpretable cells

Karpathy, Johnson, and Fei-Fei: Visualizing and Understanding Recurrent Networks, ICLR Workshop 2016
Figures copyright Karpathy, Johnson, and Fei-Fei, 2015; reproduced with permission
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Searching for  interpretable cells

Karpathy, Johnson, and Fei-Fei: Visualizing and Understanding Recurrent Networks, ICLR Workshop 2016
Figures copyright Karpathy, Johnson, and Fei-Fei, 2015; reproduced with permission

quote detection cell
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Searching for  interpretable cells

line length tracking cell
Karpathy, Johnson, and Fei-Fei: Visualizing and Understanding Recurrent Networks, ICLR Workshop 2016
Figures copyright Karpathy, Johnson, and Fei-Fei, 2015; reproduced with permission
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Searching for  interpretable cells

if statement cell
Karpathy, Johnson, and Fei-Fei: Visualizing and Understanding Recurrent Networks, ICLR Workshop 2016
Figures copyright Karpathy, Johnson, and Fei-Fei, 2015; reproduced with permission
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Searching for  interpretable cells

Karpathy, Johnson, and Fei-Fei: Visualizing and Understanding Recurrent Networks, ICLR Workshop 2016
Figures copyright Karpathy, Johnson, and Fei-Fei, 2015; reproduced with permission

quote/comment cell
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Searching for  interpretable cells

code depth cell

Karpathy, Johnson, and Fei-Fei: Visualizing and Understanding Recurrent Networks, ICLR Workshop 2016
Figures copyright Karpathy, Johnson, and Fei-Fei, 2015; reproduced with permission
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