Training Tricks

Outline

- Training a Neural Network (Review)
- Training Tricks
Data processing
Parameter tuning
Regularization
- Good practices

Training a Neural Network

Training a Neural Network

Training a Neural Network

> B

J

Y
Data Processing

Training a Neural Network

Training a Neural Network

Forward Propagation

-

Training a Neural Network

Forward Propagation

Data Processing <

—

Backward Propagation

£,
; ZE‘

/

2 N e
Weight
update

Training a Neural Network

Forward Propagation

h Iterative process until

loss function is

V minimized

Data Processing <

—

Backward Propagation

L
O

s z:f
t

/

Weigh
update

Training a Neural Network

Forward Propagation

[20 40 60 80 100

v Predictions (y)
Data Processing W

—

Backward Propagation

Training a Neural Network

@ Loss
3.0

Forward Propagation

Predictions (y') True Values (y)

Nz \ /
< Loss Score Loss Function

® A —

Backward Propagation

Data Processing

Data Processing — Data Augmentation

Data Processing — Data Augmentation

- Deep learning usually needs a lot of data to be properly trained.

Data Processing — Data Augmentation

- Deep learning usually needs a lot of data to be properly trained.
- One easy way to get more data is to transform existing ones using data
augmentation techniques.

Data Processing — Data Augmentation

Original Flip Rotation Random crop

- Image without any - Flipped with respect to - Rotation with a slight - Random focus on one
modification an axis for which the angle part of the image
meaning of the image is - Simulates incorrect - Several random crops

preserved horizon calibration can be done in a row

Data Processing — Data Augmentation

Original

Flip

Rotation

Random crop

- Image without any
modification

Color shift

« Nuances of RGB is
slightly changed

- Captures noise that
can occur with light
exposure

- Flipped with respect to
an axis for which the
meaning of the image is
preserved

Noise addition

- Addition of noise
- More tolerance to
quality variation of
inputs

- Rotation with a slight
angle

- Simulates incorrect
horizon calibration

Information loss

« Parts of image ignored
» Mimics potential loss
of parts of image

- Random focus on one
part of the image

- Several random crops
can be done in a row

Contrast change

P

- Luminosity changes

- Controls difference in
exposition due to time of
day

Data Processing — How to Do It?

Data Processing — How to Do It?

This is what a typical transform pipeline could look like:

from torchvision.transforms import v2
transforms = v2.Compose ([
v2.ToImage(), # Convert to tensor, only needed if you had a PIL image
v2.ToDtype(toxrch.uint8, scale=True), # optional, most input are already uint8 at this
point
...
v2.RandomResizedCrop(size=(224, 224), antialias=True), +# Or Resize(antialias=True)
...
v2.ToDtype(torch.float32, scale=True), # Normalize expects float input
v2.Noxrmalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),

D

Parameter Tuning — Initialization

Zero Random Xavier

Pro

Con

Parameter Tuning — Initialization

Pro

Con

Zero Random

Simple to implement

Symmetry problem:
Neurons in each layer
will learn the same
features during training

Prevents the network
from learning complex
patterns.

Xavier

Parameter Tuning — Initialization

Pro

Con

Zero

Simple to implement

Symmetry problem:
Neurons in each layer
will learn the same
features during training

Prevents the network
from learning complex
patterns.

Random

Breaks symmetry

Can potentially lead to
faster convergence if
the scale of
initialization is set
appropriately.

Risk of exploding or
vanishing gradients.

Finding the right
distribution and scale
can be tricky and might
need experimentation.

Xavier

Parameter Tuning — Initialization

Pro

Con

Zero

Simple to implement

Symmetry problem:
Neurons in each layer
will learn the same
features during training

Prevents the network
from learning complex
patterns.

Random

Breaks symmetry.

Can potentially lead to
faster convergence if
the scale of
initialization is set
appropriately.

Risk of exploding or
vanishing gradients.

Finding the right
distribution and scale
can be tricky and might
need experimentation.

Xavier

Controls the variance
of the outputs and
gradients.

By maintaining
variance, it helps avoid
the vanishing and
exploding gradients
problem.

Assumes linear
activations.

May not be suitable for
very deep networks.

Parameter Tuning — Adaptive Learning Rate

Parameter Tuning — Adaptive Learning Rate

- Itis important to choose the appropriate learning rate during training.

Parameter Tuning — Adaptive Learning Rate

- Itis important to choose the appropriate learning rate during training.
- Letting the learning rate vary when training a model can reduce the training
time and improve the numerical optimal solution.

Parameter Tuning — Adaptive Learning Rate

Method Explanation Update of w Update of b

- Dampens oscillations
Momentum « Improvement to SGD W — AVgy b— avyg
+ 2 parameters to tune

Parameter Tuning — Adaptive Learning Rate

Method Explanation Update of w Update of b

- Dampens oscillations
Momentum « Improvement to SGD W — AVgy b— avyg
+ 2 parameters to tune

- Root Mean Square

ropagation dw db
RMSprop S , , W — b+——b—«
- Speeds up learning algorithm Sduw A/Sdb

by controlling oscillations

Parameter Tuning — Adaptive Learning Rate

Method Explanation

- Dampens oscillations
Momentum « Improvement to SGD
+ 2 parameters to tune

« Root Mean Square
propagation

- Speeds up learning algorithm
by controlling oscillations

RMSprop

- Adaptive Moment estimation
Adam « Most popular method
« 4 parameters to tune

Update of w

W — AUy

Update of b

b— AVgp

db
\/Sdb

b+<—b—«

VUdb

\/8db T €

b+<—b—«

Parameter Tuning — Adaptive Learning Rate

Method Explanation Update of w Update of b

- Dampens oscillations
Momentum « Improvement to SGD W — AVgy b— avyg
+ 2 parameters to tune

- Root Mean Square

ropagation dw db
RMSprop S , . w— b+——b—«
- Speeds up learning algorithm Sdw \/ Sdb

by controlling oscillations

- Adaptive Moment estimation v v
dw b b db
Adam - Most popular method w—o—— +—b—a

\/Sdw T € \/8db T €

« 4 parameters to tune

Regularization — Weight Regularization

Regularization — Weight Regularization

- Overfitting is a common problem during training.

Regularization — Weight Regularization

- Overfitting is a common problem during training.

- In order to make sure that the weights are not too large and that the model is
not overfitting the training set, regularization techniques are usually performed
on the model weights.

Regularization — Weight Regularization

LASSO Ridge Elastic Net
- Shrinks coefficients to 0 . Tradeoff between variable selection
. . Makes coefficients smaller .
- Good for variable selection and small coefficients
r N A A
S — ‘ 3 ,,//y/ 5 ™ " 7‘ X
e A il) A il) / o 4 g) I
/ / / /,, g /’, / 4 o / // : //
O D ((i N eer ™
> o § " 4 > \L = >
S == = = L et P

110]]1 <1 \/ 110l]2 < 1 (1—a)||0]]1 + a||8]|? < 1

e+ A[16]2 e+ N6112 o+ A= @) ll6l]s + ol 6]3]
AER AeR AeR,a e 0,1]

v

Regularization — Dropout

Regularization — Dropout

- Dropout is a technique used in neural networks to prevent overfitting the
training data by dropping out neurons with probability 1 - p > 0, where p is the
probability to keep the neuron. (Note: be careful about the definition of p.)

Regularization — Dropout

- Dropout is a technique used in neural networks to prevent overfitting the
training data by dropping out neurons with probability 1 - p > 0, where p is the
probability to keep the neuron. (Note: be careful about the definition of p.)

- It forces the model to avoid relying too much on particular sets of features.

Regularization — Early Stop

- This regularization technique stops the training process as soon as the
validation loss reaches a plateau or starts to increase.

Error

Validation

Training

. >
early stopping Epochs

Good Practices — Overfitting Small Batch

- When debugging a model, it is often useful to make quick tests to see if there
is any major issue with the architecture of the model itself.

Good Practices — Overfitting Small Batch

When debugging a model, it is often useful to make quick tests to see if there
is any major issue with the architecture of the model itself.

In particular, in order to make sure that the model can be properly trained, a
mini-batch is passed inside the network to see if it can overfit on it.

Good Practices — Overfitting Small Batch

- When debugging a model, it is often useful to make quick tests to see if there
is any major issue with the architecture of the model itself.

- In particular, in order to make sure that the model can be properly trained, a
mini-batch is passed inside the network to see if it can overfit on it.

- If it cannot, it means that the model is either too complex or not complex
enough (most likely) to even overfit on a small batch, let alone a normal-sized
training set.

Good Practices — Weights & Biases

https://wandb.ai/site

Good Practices — Weights & Biases

- The main use of the wandb library is to track and visualize the different
machine learning experiments, the training process, the hyperparameters
and the models.

https://wandb.ai/site

Good Practices — Weights & Biases

- The main use of the wandb library is to track and visualize the different
machine learning experiments, the training process, the hyperparameters
and the models.

Runs (398) B
Q V*
Hyperparameter Optimization 2 1 Add Panel
= = 8

Parameter importance with respect to traffic_acc Vi
® Name acc
@® @ good-cosmos-425 0.4031 Q 3% Parameters % 110+ of 15 >
® @ logical-energy-420 0.626 Config parameter Importance @ ¥ Correlation

Runtime [| | ———
© @ laced-dust-419 0.5968

learning_rate @ &=
©®© @ whole-music-418 0.6139

......... - TEE—
® @ grateful-glitter-417 0.2367
® @ clear-night-415 0.5403 Model Predictions 3 + Add Panel
® @ glorious-night-414 0.7627

prediction camera view
® @ smart-sponge-413 0.6517 WMM?w tgicaleergy 420 o ’ . o .
® @ atomic-feather-412 0.6913 G B G P G P S :‘%- HHHHHH
laced-dust-419 laced-dust-419 i i . i i
® @ sunny-cloud-411 0.6291 _—_ - - ; . X - .
B e~ | [|]

® fragrant-bee-410 0.346 R = — e B

©® @ soft-eon-408 0.3354 | ey ol - . ¥ !_In a !
P % o I 2 4

https://wandb.ai/site

Good Practices — Weights & Biases

for epoch in range(10):

running_loss = 0.0

for i, data in enumerate(trainloader, 0):
inputs, labels = data[0].to(device), data[1].to(device)
optimizer.zero_grad()
outputs = net(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
running_loss += loss.item()

ifi % 2000 == 1999: # print every 2000 mini-batches
print('[%d, %5d] loss: %.3f %
(epoch + 1, i+ 1, running_loss / 2000))

running_loss = 0.0

https://wandb.ai/site

Good Practices — Weights & Biases

for epoch in range(10):

running_loss = 0.0

for i, data in enumerate(trainloader, 0):
inputs, labels = data[0].to(device), data[1].to(device)
optimizer.zero_grad()
outputs = net(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
running_loss += loss.item()

ifi % 2000 == 1999: # print every 2000 mini-batches
print('[%d, %5d] loss: %.3f %
(epoch + 1, i+ 1, running_loss / 2000))
wandb.log({'epoch': epoch+1, 'loss":
running_loss/2000})
running_loss = 0.0

https://wandb.ai/site

Good Practices — Weights & Biases

for epoch in range(10):

running_loss = 0.0

for i, data in enumerate(trainloader, 0):
inputs, labels = data[0].to(device), data[1].to(device)
optimizer.zero_grad()
outputs = net(inputs) n
loss = criterion(outputs, labels) N
loss.backward() A ‘
optimizer.step() \ a
running_loss += loss.item() o o

ifi % 2000 == 1999: # print every 2000 mini-batches - .
print([%d, %5d] loss: %.3f % '
(epoch + 1, i+ 1, running_loss / 2000))
wandb.log({'epoch': epoch+1, 'loss":
running_loss/2000})
running_loss = 0.0

https://wandb.ai/site

