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Data Processing — Data Augmentation 

- Deep learning usually needs a lot of data to be properly trained. 
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Data Processing — Data Augmentation 

- Deep learning usually needs a lot of data to be properly trained. 
- One easy way to get more data is to transform existing ones using data 

augmentation techniques. 
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Data Processing — Data Augmentation 

[1] https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-deep-learning-tips-and-tricks
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[1] https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-deep-learning-tips-and-tricks
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Pro Simple to implement

Con Symmetry problem: 
Neurons in each layer 
will learn the same 
features during training

Prevents the network 
from learning complex 
patterns.
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2

Zero Random Xavier

Pro Simple to implement Breaks symmetry.

Can potentially lead to 
faster convergence if 
the scale of 
initialization is set 
appropriately.

Controls the variance 
of the outputs and 
gradients.

By maintaining 
variance, it helps avoid 
the vanishing and 
exploding gradients 
problem.

Con Symmetry problem: 
Neurons in each layer 
will learn the same 
features during training

Prevents the network 
from learning complex 
patterns.

Risk of exploding or 
vanishing gradients.

Finding the right 
distribution and scale 
can be tricky and might 
need experimentation.

Assumes linear 
activations.

May not be suitable for 
very deep networks.
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Parameter Tuning — Adaptive Learning Rate

- It is important to choose the appropriate learning rate during training.
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Parameter Tuning — Adaptive Learning Rate

- It is important to choose the appropriate learning rate during training.
- Letting the learning rate vary when training a model can reduce the training 

time and improve the numerical optimal solution.

2



Parameter Tuning — Adaptive Learning Rate
2



Parameter Tuning — Adaptive Learning Rate
2



Parameter Tuning — Adaptive Learning Rate
2



Parameter Tuning — Adaptive Learning Rate
2



Regularization — Weight Regularization
3



Regularization — Weight Regularization

- Overfitting is a common problem during training.
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Regularization — Weight Regularization

- Overfitting is a common problem during training.
- In order to make sure that the weights are not too large and that the model is 

not overfitting the training set, regularization techniques are usually performed 
on the model weights.
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Regularization — Dropout 

- Dropout is a technique used in neural networks to prevent overfitting the 
training data by dropping out neurons with probability 1 - p > 0, where p is the 
probability to keep the neuron. (Note: be careful about the definition of p.)
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Regularization — Dropout 

- Dropout is a technique used in neural networks to prevent overfitting the 
training data by dropping out neurons with probability 1 - p > 0, where p is the 
probability to keep the neuron. (Note: be careful about the definition of p.)

- It forces the model to avoid relying too much on particular sets of features.
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Regularization — Early Stop

- This regularization technique stops the training process as soon as the 
validation loss reaches a plateau or starts to increase.
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Good Practices — Overfitting Small Batch

- When debugging a model, it is often useful to make quick tests to see if there 
is any major issue with the architecture of the model itself. 
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- In particular, in order to make sure that the model can be properly trained, a 
mini-batch is passed inside the network to see if it can overfit on it. 



Good Practices — Overfitting Small Batch

- When debugging a model, it is often useful to make quick tests to see if there 
is any major issue with the architecture of the model itself. 

- In particular, in order to make sure that the model can be properly trained, a 
mini-batch is passed inside the network to see if it can overfit on it. 

- If it cannot, it means that the model is either too complex or not complex 
enough (most likely) to even overfit on a small batch, let alone a normal-sized 
training set.
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Good Practices — Weights & Biases 

- The main use of the wandb library is to track and visualize the different 
machine learning experiments, the training process, the hyperparameters 
and the models. 
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Good Practices — Weights & Biases 

for epoch in range(10):
   running_loss = 0.0
   for i, data in enumerate(trainloader, 0):

   inputs, labels = data[0].to(device), data[1].to(device)
       optimizer.zero_grad()
       outputs = net(inputs)
       loss = criterion(outputs, labels)
       loss.backward()
       optimizer.step()
       running_loss += loss.item()

       if i % 2000 == 1999:    # print every 2000 mini-batches
           print('[%d, %5d] loss: %.3f' %
                 (epoch + 1, i + 1, running_loss / 2000))

           running_loss = 0.0

https://wandb.ai/site
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       running_loss += loss.item()

       if i % 2000 == 1999:    # print every 2000 mini-batches
           print('[%d, %5d] loss: %.3f' %
                 (epoch + 1, i + 1, running_loss / 2000))
           wandb.log({'epoch': epoch+1, 'loss': 
running_loss/2000})
           running_loss = 0.0
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