
Training Tricks

Outline

- Training a Neural Network (Review)
- Training Tricks

- Data processing
- Parameter tuning
- Regularization

- Good practices

Training a Neural Network

Training a Neural Network

Training a Neural Network

Data Processing

Training a Neural Network

Data Processing

Training a Neural Network

Data Processing

Training a Neural Network

Data Processing

Training a Neural Network

Data Processing

Training a Neural Network

Data Processing

Training a Neural Network

1

2

3

2

Data Processing

Data Processing — Data Augmentation
1

Data Processing — Data Augmentation

- Deep learning usually needs a lot of data to be properly trained.

1

Data Processing — Data Augmentation

- Deep learning usually needs a lot of data to be properly trained.
- One easy way to get more data is to transform existing ones using data

augmentation techniques.

1

Data Processing — Data Augmentation

[1] https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-deep-learning-tips-and-tricks

1

Data Processing — Data Augmentation

[1] https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-deep-learning-tips-and-tricks

1

Data Processing — How to Do It?
1

Data Processing — How to Do It?
1

Parameter Tuning — Initialization
2

Zero Random Xavier

Pro

Con

Parameter Tuning — Initialization
2

Zero Random Xavier

Pro Simple to implement

Con Symmetry problem:
Neurons in each layer
will learn the same
features during training

Prevents the network
from learning complex
patterns.

Parameter Tuning — Initialization
2

Zero Random Xavier

Pro Simple to implement Breaks symmetry

Can potentially lead to
faster convergence if
the scale of
initialization is set
appropriately.

Con Symmetry problem:
Neurons in each layer
will learn the same
features during training

Prevents the network
from learning complex
patterns.

Risk of exploding or
vanishing gradients.

Finding the right
distribution and scale
can be tricky and might
need experimentation.

Parameter Tuning — Initialization
2

Zero Random Xavier

Pro Simple to implement Breaks symmetry.

Can potentially lead to
faster convergence if
the scale of
initialization is set
appropriately.

Controls the variance
of the outputs and
gradients.

By maintaining
variance, it helps avoid
the vanishing and
exploding gradients
problem.

Con Symmetry problem:
Neurons in each layer
will learn the same
features during training

Prevents the network
from learning complex
patterns.

Risk of exploding or
vanishing gradients.

Finding the right
distribution and scale
can be tricky and might
need experimentation.

Assumes linear
activations.

May not be suitable for
very deep networks.

Parameter Tuning — Adaptive Learning Rate
2

Parameter Tuning — Adaptive Learning Rate

- It is important to choose the appropriate learning rate during training.

2

Parameter Tuning — Adaptive Learning Rate

- It is important to choose the appropriate learning rate during training.
- Letting the learning rate vary when training a model can reduce the training

time and improve the numerical optimal solution.

2

Parameter Tuning — Adaptive Learning Rate
2

Parameter Tuning — Adaptive Learning Rate
2

Parameter Tuning — Adaptive Learning Rate
2

Parameter Tuning — Adaptive Learning Rate
2

Regularization — Weight Regularization
3

Regularization — Weight Regularization

- Overfitting is a common problem during training.

3

Regularization — Weight Regularization

- Overfitting is a common problem during training.
- In order to make sure that the weights are not too large and that the model is

not overfitting the training set, regularization techniques are usually performed
on the model weights.

3

Regularization — Weight Regularization
3

Regularization — Dropout
3

Regularization — Dropout

- Dropout is a technique used in neural networks to prevent overfitting the
training data by dropping out neurons with probability 1 - p > 0, where p is the
probability to keep the neuron. (Note: be careful about the definition of p.)

3

Regularization — Dropout

- Dropout is a technique used in neural networks to prevent overfitting the
training data by dropping out neurons with probability 1 - p > 0, where p is the
probability to keep the neuron. (Note: be careful about the definition of p.)

- It forces the model to avoid relying too much on particular sets of features.

3

Regularization — Early Stop

- This regularization technique stops the training process as soon as the
validation loss reaches a plateau or starts to increase.

3

Good Practices — Overfitting Small Batch

- When debugging a model, it is often useful to make quick tests to see if there
is any major issue with the architecture of the model itself.

Good Practices — Overfitting Small Batch

- When debugging a model, it is often useful to make quick tests to see if there
is any major issue with the architecture of the model itself.

- In particular, in order to make sure that the model can be properly trained, a
mini-batch is passed inside the network to see if it can overfit on it.

Good Practices — Overfitting Small Batch

- When debugging a model, it is often useful to make quick tests to see if there
is any major issue with the architecture of the model itself.

- In particular, in order to make sure that the model can be properly trained, a
mini-batch is passed inside the network to see if it can overfit on it.

- If it cannot, it means that the model is either too complex or not complex
enough (most likely) to even overfit on a small batch, let alone a normal-sized
training set.

Good Practices — Weights & Biases

https://wandb.ai/site

Good Practices — Weights & Biases

- The main use of the wandb library is to track and visualize the different
machine learning experiments, the training process, the hyperparameters
and the models.

https://wandb.ai/site

Good Practices — Weights & Biases

- The main use of the wandb library is to track and visualize the different
machine learning experiments, the training process, the hyperparameters
and the models.

https://wandb.ai/site

Good Practices — Weights & Biases

for epoch in range(10):
 running_loss = 0.0
 for i, data in enumerate(trainloader, 0):

 inputs, labels = data[0].to(device), data[1].to(device)
 optimizer.zero_grad()
 outputs = net(inputs)
 loss = criterion(outputs, labels)
 loss.backward()
 optimizer.step()
 running_loss += loss.item()

 if i % 2000 == 1999: # print every 2000 mini-batches
 print('[%d, %5d] loss: %.3f' %
 (epoch + 1, i + 1, running_loss / 2000))

 running_loss = 0.0

https://wandb.ai/site

Good Practices — Weights & Biases

for epoch in range(10):
 running_loss = 0.0
 for i, data in enumerate(trainloader, 0):

 inputs, labels = data[0].to(device), data[1].to(device)
 optimizer.zero_grad()
 outputs = net(inputs)
 loss = criterion(outputs, labels)
 loss.backward()
 optimizer.step()
 running_loss += loss.item()

 if i % 2000 == 1999: # print every 2000 mini-batches
 print('[%d, %5d] loss: %.3f' %
 (epoch + 1, i + 1, running_loss / 2000))
 wandb.log({'epoch': epoch+1, 'loss':
running_loss/2000})
 running_loss = 0.0

https://wandb.ai/site

Good Practices — Weights & Biases

for epoch in range(10):
 running_loss = 0.0
 for i, data in enumerate(trainloader, 0):

 inputs, labels = data[0].to(device), data[1].to(device)
 optimizer.zero_grad()
 outputs = net(inputs)
 loss = criterion(outputs, labels)
 loss.backward()
 optimizer.step()
 running_loss += loss.item()

 if i % 2000 == 1999: # print every 2000 mini-batches
 print('[%d, %5d] loss: %.3f' %
 (epoch + 1, i + 1, running_loss / 2000))
 wandb.log({'epoch': epoch+1, 'loss':
running_loss/2000})
 running_loss = 0.0

https://wandb.ai/site

