

Training Tricks

Outline

- Training a Neural Network (Review)
- Training Tricks
 - Data processing
 - Parameter tuning
 - Regularization
- Good practices

Data Processing

- Deep learning usually needs a lot of data to be properly trained.

- Deep learning usually needs a lot of data to be properly trained.
- One easy way to get more data is to transform existing ones using data augmentation techniques.

Original	Flip	Rotation	Random crop
 Image without any modification 	 Flipped with respect to an axis for which the meaning of the image is preserved 	 Rotation with a slight angle Simulates incorrect horizon calibration 	 Random focus on one part of the image Several random crops can be done in a row

Original	Flip	Rotation	Random crop
Image without any modification	• Flipped with respect to an axis for which the meaning of the image is preserved	 Rotation with a slight angle Simulates incorrect horizon calibration 	 Random focus on one part of the image Several random crops can be done in a row
Color shift	Noise addition	Information loss	Contrast change
Color shift	Noise addition	Information loss	Contrast change

Data Processing — How to Do It?

1

Data Processing — How to Do It?

This is what a typical transform pipeline could look like:

```
from torchvision.transforms import v2
transforms = v2.Compose([
    v2.ToImage(), # Convert to tensor, only needed if you had a PIL image
    v2.ToDtype(torch.uint8, scale=True), # optional, most input are already uint8 at this
point
    # ...
    v2.RandomResizedCrop(size=(224, 224), antialias=True), # Or Resize(antialias=True)
    # ...
    v2.ToDtype(torch.float32, scale=True), # Normalize expects float input
    v2.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
])
```

	Zero	Random	Xavier
Pro			
Con			

	Zero	Random	Xavier
Pro	Simple to implement		
Con	Symmetry problem: Neurons in each layer will learn the same features during training Prevents the network from learning complex patterns.		

	Zero	Random	Xavier
Pro	Simple to implement	Breaks symmetry Can potentially lead to faster convergence if the scale of initialization is set appropriately.	
Con	Symmetry problem: Neurons in each layer will learn the same features during training Prevents the network from learning complex patterns.	Risk of exploding or vanishing gradients . Finding the right distribution and scale can be tricky and might need experimentation .	

	Zero	Random	Xavier
Pro	Simple to implement	Breaks symmetry. Can potentially lead to faster convergence if the scale of initialization is set appropriately.	Controls the variance of the outputs and gradients. By maintaining variance, it helps avoid the vanishing and exploding gradients problem.
Con	Symmetry problem: Neurons in each layer will learn the same features during training Prevents the network from learning complex patterns.	Risk of exploding or vanishing gradients . Finding the right distribution and scale can be tricky and might need experimentation .	Assumes linear activations. May not be suitable for very deep networks.

- It is important to choose the appropriate learning rate during training.

- It is important to choose the appropriate learning rate during training.
- Letting the learning rate vary when training a model can reduce the training time and improve the numerical optimal solution.

Method	Explanation	Update of w	Update of b
Momentum	 Dampens oscillations Improvement to SGD 2 parameters to tune 	$w-lpha v_{dw}$	$b-lpha v_{db}$

Method	Explanation	Update of w	Update of b
Momentum	 Dampens oscillations Improvement to SGD 2 parameters to tune 	$w-lpha v_{dw}$	$b-lpha v_{db}$
RMSprop	 Root Mean Square propagation Speeds up learning algorithm by controlling oscillations 	$w-lpha rac{dw}{\sqrt{s_{dw}}}$	$b \longleftarrow b - lpha rac{db}{\sqrt{s_{db}}}$

Method	Explanation	Update of w	Update of b
Momentum	 Dampens oscillations Improvement to SGD 2 parameters to tune 	$w-lpha v_{dw}$	$b-lpha v_{db}$
RMSprop	 Root Mean Square propagation Speeds up learning algorithm by controlling oscillations 	$w-lpha rac{dw}{\sqrt{s_{dw}}}$	$b \longleftarrow b - lpha rac{db}{\sqrt{s_{db}}}$
Adam	 Adaptive Moment estimation Most popular method 4 parameters to tune 	$w-lpha rac{v_{dw}}{\sqrt{s_{dw}}+\epsilon}$	$b \longleftarrow b - lpha rac{v_{db}}{\sqrt{s_{db}} + \epsilon}$

Method	Explanation	Update of w	Update of b
Momentum	 Dampens oscillations Improvement to SGD 2 parameters to tune 	$w-lpha v_{dw}$	$b-lpha v_{db}$
RMSprop	 Root Mean Square propagation Speeds up learning algorithm by controlling oscillations 	$w-lpha rac{dw}{\sqrt{s_{dw}}}$	$b \longleftarrow b - lpha rac{db}{\sqrt{s_{db}}}$
Adam	 Adaptive Moment estimation Most popular method 4 parameters to tune 	$w-lpha rac{v_{dw}}{\sqrt{s_{dw}}+\epsilon}$	$b \longleftarrow b - lpha rac{v_{db}}{\sqrt{s_{db}} + \epsilon}$

- Overfitting is a common problem during training.

- Overfitting is a common problem during training.
- In order to make sure that the weights are not too large and that the model is not overfitting the training set, regularization techniques are usually performed on the model weights.

Regularization — Dropout

Regularization — Dropout

 Dropout is a technique used in neural networks to prevent overfitting the training data by dropping out neurons with probability 1 - p > 0, where p is the probability to keep the neuron. (Note: be careful about the definition of p.)

Regularization — Dropout

- Dropout is a technique used in neural networks to prevent overfitting the training data by dropping out neurons with probability 1 - p > 0, where p is the probability to keep the neuron. (Note: be careful about the definition of p.)
- It forces the model to avoid relying too much on particular sets of features.

Regularization — Early Stop

- This regularization technique stops the training process as soon as the validation loss reaches a plateau or starts to increase.

Good Practices — Overfitting Small Batch

- When debugging a model, it is often useful to make quick tests to see if there is any major issue with the architecture of the model itself.

Good Practices — Overfitting Small Batch

- When debugging a model, it is often useful to make quick tests to see if there is any major issue with the architecture of the model itself.
- In particular, in order to make sure that the model can be properly trained, a mini-batch is passed inside the network to see if it can overfit on it.

Good Practices — Overfitting Small Batch

- When debugging a model, it is often useful to make quick tests to see if there is any major issue with the architecture of the model itself.
- In particular, in order to make sure that the model can be properly trained, a mini-batch is passed inside the network to see if it can overfit on it.
- If it cannot, it means that the model is either too complex or not complex enough (most likely) to even overfit on a small batch, let alone a normal-sized training set.

- The main use of the wandb library is to **track and visualize the different machine learning experiments**, the training process, the hyperparameters and the models.

- The main use of the wandb library is to **track and visualize the different machine learning experiments**, the training process, the hyperparameters and the models.


```
for epoch in range(10):
      running loss = 0.0
      for i, data in enumerate(trainloader, 0):
        inputs, labels = data[0].to(device), data[1].to(device)
         optimizer.zero grad()
         outputs = net(inputs)
         loss = criterion(outputs, labels)
         loss.backward()
         optimizer.step()
         running loss += loss.item()
         if i % 2000 == 1999: # print every 2000 mini-batches
           print('[%d, %5d] loss: %.3f' %
               (epoch + 1, i + 1, running loss / 2000))
           running loss = 0.0
```

```
for epoch in range(10):
      running loss = 0.0
      for i, data in enumerate(trainloader, 0):
        inputs, labels = data[0].to(device), data[1].to(device)
         optimizer.zero grad()
         outputs = net(inputs)
         loss = criterion(outputs, labels)
         loss.backward()
         optimizer.step()
         running loss += loss.item()
         if i % 2000 == 1999: # print every 2000 mini-batches
           print('[%d, %5d] loss: %.3f' %
               (epoch + 1, i + 1, running loss / 2000))
           wandb.log({'epoch': epoch+1, 'loss':
    running_loss/2000})
           running loss = 0.0
```

```
for epoch in range(10):
      running loss = 0.0
      for i, data in enumerate(trainloader, 0):
        inputs, labels = data[0].to(device), data[1].to(device)
         optimizer.zero grad()
         outputs = net(inputs)
         loss = criterion(outputs, labels)
         loss.backward()
         optimizer.step()
         running loss += loss.item()
         if i % 2000 == 1999: # print every 2000 mini-batches
           print('[%d, %5d] loss: %.3f' %
               (epoch + 1, i + 1, running loss / 2000))
           wandb.log({'epoch': epoch+1, 'loss':
    running_loss/2000})
           running loss = 0.0
```

