Backprop (2/2) CNNs

CSE 493G1, Section 4

January 26, 2024

Materials prepared by Tanush Yadav

Course Logistics

Assignment 2 due **Tuesday, 1/30**.

Next week's section: Quiz 2 and Project Design Tips.

Remember to be ideating for course projects! Come to office hours for feedback.

A note on terminology.

- filter
- neuron's receptive field

Shift horizontally and vertically is the same.

Let's focus on studying one.

What could a good equation be?

W = 5F = 3

W - F + 1

$$W = 5$$

 $F = 3$

$$\frac{W - F}{1} + 1$$

Let's now consider stride.

> F = 3 S = 2

W = 5

$$\frac{W - F}{1} + 1$$

W = 5 F = 3 S = 2

$$\frac{W - F}{1} + 1$$

The math ain't mathing.

This equation gives us 3.

But we just saw that our output will have width 2!

Input: 5x5x1 Filter: 3x3x1

W = 5

F = 3

S = 2

Here's one way to make the math work.

$$W = 5$$

$$F = 3$$

$$S = 2$$

$$\frac{5-3}{2} + 1 = 1 + 1 = 2$$

What changed?

$$W = 5$$

$$F = 3$$

$$S = 2$$

$$\frac{5-3}{1} + 1 = 2 + 1 = 3$$

$$\frac{5-3}{2} + 1 = 1 + 1 = 2$$

What changed?

$$W = 5$$

$$F = 3$$

$$S = 2$$

$$\frac{5-3}{2}+1$$

$$\frac{W - F}{2} + 1$$

2 is our stride!! Let's adjust our equation.

$$\frac{W - F}{2} + 1$$

2 is our stride!! Let's adjust our equation

$$\frac{W - F}{S} + 1$$

Alright great, now what about padding?

Alright great, now what about padding?

Let P represent our padding.

If set P = 1, then we're adding a zero value on the left and right of our image.

In other words ... we're increasing the width of our image by 2.

Alright great, now what about padding?

Let P represent our padding.

If set P = 1, then we're adding a zero value on the left and right of our image.

In other words ... we're increasing the width of our image by 2.

Adding 2*P to our value for W should do the trick!

Taking padding into account...

$$\frac{W-F}{S}+1$$

Taking padding into account...

$$\frac{W-F}{S}+1$$

$$\frac{W+2P-F}{S}+1$$

Almost there!

$$\frac{W+2P-F}{S}+1$$

Our final equation \bigcirc

$$\frac{W-F+2P}{S}+1$$

Remember that conv layers operate along the entire depth.

Our final equation $\stackrel{\square}{\circ}$

$$\frac{W-F+2P}{S}+1$$

"The connections are local in 2D space (along width and height), but always full along the entire depth of the input volume" ~ cs231n notes