Lecture 9: Introduction to Language (new Gen Z friendly lecture)

Administrative

- Assignment 2 was due on Tuesday
- Assignment 1 grades will be released this week
- Assignment 3 will be released this week
- Quiz 2 this friday

"Vanilla" Neural Network

one to one

Vanilla Neural Networks

Recurrent Neural Networks: Process Sequences

e.g. Image Captioning
image -> sequence of words

Recurrent Neural Networks: Process Sequences

one to many

many to one

e.g. action prediction, sentiment classification
sequence of video frames -> action class

Recurrent Neural Networks: Process Sequences

one to many

many to one
many to many

E.g. Video Captioning Sequence of video frames -> caption

Recurrent Neural Networks: Process Sequences

many to one

many to many

many to many

e.g. Video classification on frame level Fill in the blanks with words

Sequential Processing of Non-Sequence Data

Classify images by taking a series of "glimpses"

Sequential Processing of Non-Sequence Data

Generate images one piece at a time!

		0		\bigcirc						
$\underline{\square}$	3	3	0	\bigcirc	-	3	3	0		3
1	$\underline{\square}$	3	\square	1		3	1	\bigcirc		3 B
T	3	\square	-	0	10	,	0	,		313
0	\square	0	3	13	10	3	\bigcirc	3		31
1	0	0		3		3		3		3
13	\square	3		\square				3		3
3		3	0	0		3	3	3		31

Why existing neural networks are insufficient?

Variable sequence length inputs and outputs!

Example task: video captioning
Input video can have variable number of frames

Output captions can be variable length.

Input Video

Output Captions
......

A lady joins the man and sings along to the music.
......

Krishna, et al. Dense captioning Events in Videos. ICCV 2019
Figure copyright Ranjay Krishna, Kenji Hata, Frederic Ren, Li Fei-Fei, and Juan Carlos Niebles, 2019. Reproduced with permission.

Today: Introduction to language

Language models are revolutionizing search

User: when did Kendrick lamar's first album come

 out?GPT: July 2, 2011

Ranjay Krishna, Sarah Pratt

W wikipedia.org
https://en.wikipedia.org > wiki > Kendrick_Lamar_dis... !

Kendrick Lamar discography - Wikipedia

Lamar's debut studio album Section.80, was released on July 2, 2011, and issued on independent record label Top Dawg Entertainment (TDE). It peaked at number ..
Albums • Singles • Other charted and certified songs • Other guest appearances

W wikipedia.org
https://en.wikipedia.org > wiki > Kendrick_Lamar :
Kendrick Lamar - Wikipedia
Following the success of his alternative rap debut album Section. 80 (2011), Lamar secured a joint contract with Aftermath Entertainment and Interscope Records.
Discography • Damn (Kendrick Lamar album) • Kendrick Lamar (EP) • Baby Keem
(1) genius.com
https://genius.com > artists , Kendrick-lamar > first-al... :
When did Kendrick Lamar's first album release? - Genius
Kendrick Lamar's first album Y.H.N.I.C. (Hub City Threat: Minor of the Year) released in 2004.

A
allmusic.com
https://www.allmusic.com > artist > kendrick-lamar-m... :
Kendrick Lamar Songs, Albums, Reviews, Bio \& More | AllMusic
Lamar's major-label debut, good kid, m.A.A.d city, was released in October 2012 and entered the Billboard 200 at number two. Three of its singles -- "Swimming ..

Language models can learn to follow examples

S: I broke the window.
Q: What did I break?
S: I gracefully saved the day.
Q: What did I gracefully save?
S: I gave John flowers.

What will GPT generate?

Language models can learn to follow examples

S: I broke the window.
Q: What did I break?
S: I gracefully saved the day.
Q: What did I gracefully save?
S: I gave John flowers.
Q: Who did I give flowers to?

Language models can learn to follow examples

S: I broke the window.
Q: What did I break?
S: I gracefully saved the day.
Q: What did I gracefully save?
S: I gave John flowers.
Q: Who did I give flowers to?
S: I gave her a rose and a guitar.

What will GPT generate?

Language models can learn to follow examples

S: I broke the window.
Q: What did I break?
S: I gracefully saved the day.
Q: What did I gracefully save?
S: I gave John flowers.
Q: Who did I give flowers to?
S: I gave her a rose and a guitar.
Q: Who did I give a rose and a guitar to?

Language models can even write code / sql

How many users have signed up since the start of 2020 ? SELECT count(id) FROM users WHERE created_at > '2020-01-01'

What is the average number of influencers each user is subscribed to?
SELECT avg(count) FROM (SELECT user_id, count(*) FROM subscribers GROUP BY user_id) AS
avg_subscriptions_per_user

Compared to Vision (ImageNet, MNIST), language benchmarks reach super-human fast!

Kiela et al. Dynabench: Rethinking Benchmarking in NLP NAACL 2021

An example that you all will resonate with:

GPT-4 capabilities today

You
Please write up a polite letter to my professor, Ranjay Krishna, explaining why I need two more late days to submit my assignment 3. Make up a good excuse. I live in seattle. θ

ChatGPT

Subject: Request for Extension on Assignment 3 Submission

Dear Professor Ranjay Krishna,
I hope this message finds you well. I am writing to respectfully request an extension for the submission of Assignment 3.

Unfortunately, I have encountered an unforeseen and challenging situation that has significantly hindered my ability to complete the assignment on time. The recent severe weather conditions in Seattle, coupled with unexpected power outages in my area, have greatly impacted my ability to work effectively. The power outages have not only disrupted my internet access, which is crucial for research and accessing course materials, but have also made it challenging to maintain a conducive environment for studying.

I have been making every effort to keep up with the coursework and had planned my schedule to complete the assignment on time. However, these circumstances have been beyond my control and have unexpectedly set back my progress.

In light of this, I kindly request a two-day extension for the submission of Assignment 3. This additional time would be immensely helpful in allowing me to complete the
assignment to the best of my ability, despite the challenges posed by the current situation.

Make it more deferential!

ChatGPT

Subject: Respectful Request for Extension on Assignment 3 Submission

Dear Professor Ranjay Krishna,
I hope this message finds you in good health and spirits. I am writing to humbly request your consideration for an extension on the submission of Assignment 3. I deeply respect the high academic standards of your course and it is with great reluctance that I find myself in a position to ask for this concession.

Make it MORE DEFERENTIAL!!

Please write up a polite letter to my professor, Ranjay Krishna, explaining why I need two more late days to submit my assignment 3 . Make up a good excuse. I live in seattle. θ

ChatGPT

C..hinat. Danunnt fan Eatannian on Assignment 3 Submission

ChatGPT

Subjer

ChatGPT

Subject: Humble Request for Extension on Assignment 3 Submission Due to Jectfully request an extension for
Dear F Unforeseen Circumstances

I hope
Dear Esteemed Professor Ranjay Krishna,
your C
resper
I find r

I hope this message reaches you in the best of health and spirits. I am writing to you with a deep sense of respect and humility, to request an extension for the submission of Assignment 3 . It is with a heavy heart that I find myself in a position where I must seek your understanding and compassion due to unforeseen circumstances beyond my control.
challenging situation that has ynment on time. The recent expected power outages in my rely. The power outages have not research and accessing course in a conducive environment for
uursework and had planned my er, these circumstances have ack my progress.

Ranjay Krishna, Sarah Pratt

Make it MORE DEFERENTIAL!!!!!

Please write up a polite letter to my professor, Ranjay Krishna, explaining why I need two more late days to submit my assignment 3 . Make up a good excuse. I live in seattle. θChatGPT
C.hhinat. Danunat fan Eartannian on Assignment 3 Submission

ChatGPT

Subjec	ChatGPT Subject: H। Dear F I hope your cı respec
I find n	I hoperesee Estee with a deer of Assignn
	seek your I my control

ChatGPT

Subject: Most Respectful Request for Extension on Assignment 3 Due to Extenuating Circumstances

Honorable Professor Ranjay Krishna, I hope this message finds you in the best of health and circumstances. It is with the utmost respect and a deep sense of humility that I find myself compelled to write to you, seeking your compassionate understanding and consideration. I am fully aware of the gravity of my request and approach you with great reverence, hoping for your empathy in a matter that significantly affects my academic responsibilities.
Ranjay Krishna, Sarah Pratt

How do we represent the meaning of a word?

Definition: meaning (Webster dictionary)

- the idea that is represented by a word, phrase, etc.
- the idea that a person wants to express by using words, signs, etc.
- the idea that is expressed in a work of writing, art, etc.

Commonest linguistic way of thinking of meaning:

$$
\text { signifier (symbol) } \Leftrightarrow \text { signified (idea or thing) }
$$

tree $\Leftrightarrow\{$ 啳, 素, $T, \ldots\}$

How do we have usable meaning in a computer?
 e.g., synonym sets containing "good":

Previous solution by Linguists: Use a thesaurus (e.g., WordNet) containing lists of synonym sets and hypernyms ("is a" relationships).

```
from nltk.corpus import wordnet as wn
poses = { 'n':'noun', 'v':'verb', 's':'adj (s)', 'a':'adj', 'r':'adv'}
for synset in wn.synsets("good"):
    print("{}: {}".format(poses[synset.pos()],
    , ".join([l.name() for l in synset.lemmas()])))
```

```
noun: good
noun: good, goodness
noun: good, goodness
noun: commodity, trade_good, good
adj: good
adj (sat): full, good
adj: good
adj (sat): estimable, good, honorable, respectable
adj (sat): beneficial, good
adj (sat): good
adj (sat): good, just, upright
adverb: well, good
adverb: thoroughly, soundly, good
```


How do we have usable meaning in a

 computer?Previous solution by Linguists: Use a thesaurus (e.g., WordNet) containing lists of synonym sets and hypernyms ("is a" relationships).

e.g., hypernyms of "panda":

from nltk.corpus import wordnet as wn panda = wn.synset("panda.n.01")
hyper = lambda s: s.hypernyms()
list(panda.closure(hyper))

```
[Synset('procyonid.n.01'),
Synset('carnivore.n.01'),
Synset('placental.n.01'),
Synset('mammal.n.01'),
Synset('vertebrate.n.01'),
Synset('chordate.n.01'),
Synset('animal.n.01'),
Synset('organism.n.01'),
Synset('living_thing.n.01'),
Synset('whole.n.02'),
Synset('object.n.01'),
Synset('physical_entity.n.01'),
Synset('entity.n.01')]
```


IMAGENET classes were derived from WordNet

22K categories and 14M images

- Animals
- Bird
- Fish
- Mammal
- Invertebrate
- Plants
- Tree
- Flower
- Food
- Materials
- Structures
- Artifact
- Tools
- Appliances
- Structures
- Person
- Scenes
- Indoor
- Geological Formations
- Sport Activities

Problems with resources like WordNet

A useful resource but missing nuance:

- e.g., "proficient" is listed as a synonym for "good" This is only correct in some contexts
- Also, WordNet lists offensive synonyms without any coverage of the connotations or appropriateness of words

Missing new meanings of words:

- e.g., sus, cap, glow up, fam, drip, vibe, G.O.A.T.
- Impossible to keep up-to-date with Gen Z!

Subjective

- Requires human labor to create and adapt
- Can't capture similarity between words

Representing words as discrete symbols

In traditional NLP, we regard words as discrete symbols: hotel, conference, motel - each has its own symbol.
This is a localist representation
Such symbols for words can be represented by one-hot vectors:

$$
\begin{aligned}
& \text { motel }=\left[\begin{array}{llllllllll}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 10000
\end{array}\right] \\
& \text { hotel }=\left[\begin{array}{llllllllllll}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0
\end{array} 00000\right]
\end{aligned}
$$

Vector dimension $=$ number of words in vocabulary (e.g., 500,000+)

Problem with words as discrete symbols

Example: in web search, if a user searches for "Seattle motel", we would like to match documents containing "Seattle hotel"
But:

$$
\begin{aligned}
& \text { motel }=\left[\begin{array}{llllllllllllll}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0
\end{array}\right] \\
& \text { hotel }=\left[\begin{array}{lllllllllllll}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

These two vectors are orthogonal
There is no natural notion of similarity for one-hot vectors!

Can we use WodNet-like taxonomies?

Could try to rely on WordNet's list of synonyms to get similarity?

- But it is well-known to fail badly: incompleteness, etc.

New idea: learn better word representations that encode similarity in the vectors themselves

- Similar to deep learning representations for images!
- Can we learn representations for words?

Just as Neural networks extract linearly separate image features, can we learn word features?

10 numbers giving scores for classes

10 numbers giving
scores for classes

Representing words by their context

Distributional semantics: A word's meaning is given by the words that
 frequently appear close-by
"You shall know a word by the company it keeps" (J. R. Firth 1957: 11)

One of the most successful ideas of modern statistical language modeling!
High level idea: a word w in text is a function of its contextual words.

Let's try it: Fill in the blanks.

It's cold today! Don't forget to wear a \qquad .

The \qquad is a popular tourist attraction in Seattle.

I missed \qquad bus.

I had 3 pencils and lost one so now I have \qquad pencils.

Let's try it: Fill in the blanks.

It's cold today! Don't forget to wear a jacket / coat / sweater.
The \qquad is a popular tourist attraction in Seattle.

I missed \qquad bus.

I had 3 pencils and lost one so now I have \qquad pencils.

Let's try it: Fill in the blanks.

It's cold today! Don't forget to wear a jacket / coat / sweater.
The \qquad is a popular tourist attraction in Seattle.

I missed \qquad bus.

I had 3 pencils and lost one so now I have \qquad pencils.

Let's try it: Fill in the blanks.

It's cold today! Don't forget to wear a jacket / coat / sweater.
The Space Needle is a popular tourist attraction in Seattle.
I missed \qquad bus.

I had 3 pencils and lost one so now I have \qquad pencils.

Let's try it: Fill in the blanks.

It's cold today! Don't forget to wear a jacket / coat / sweater.
The Space Needle is a popular tourist attraction in Seattle.
$\Rightarrow 1$ missed \qquad bus.

I had 3 pencils and lost one so now I have \qquad pencils.

Let's try it: Fill in the blanks.

It's cold today! Don't forget to wear a jacket / coat / sweater.
The Space Needle is a popular tourist attraction in Seattle.
$\Rightarrow I$ missed the bus.
I had 3 pencils and lost one so now I have \qquad pencils.

Let's try it: Fill in the blanks.

It's cold today! Don't forget to wear a jacket / coat / sweater.
The Space Needle is a popular tourist attraction in Seattle.
I missed the bus.
\Rightarrow I had 3 pencils and lost one so now I have \qquad pencils.

Let's try it: Fill in the blanks.

It's cold today! Don't forget to wear a jacket / coat / sweater.
The Space Needle is a popular tourist attraction in Seattle.
I missed the bus.
\Rightarrow I had 3 pencils and lost one so now I have $\underline{2 / \text { two pencils. }}$

What we want in the end: word vectors

We will build a dense vector for each word,

- chosen so that it is similar to vectors of words that appear in similar contexts: e.g. jacket / coat / sweater.
- measuring similarity as the vector dot (scalar) product.
- Word vectors are also called (word) embeddings or (neural) word representations \quad Jacket $=\left[\begin{array}{r}0.286 \\ 0.792 \\ -0.177 \\ -0.107 \\ 0.109 \\ -0.542 \\ 0.349 \\ 0.271\end{array}\right]$

Remember the Geometric Viewpoint

Visualizing word vectors in 2D (trained on wine reviews)

How do we train these word vectors: Word2vec

Jeff Dean's tweet

They won test of time award in
December 2023!

Original paper was rejected and never published (has 40K citations!) Mikolov et al. Efficient Estimation of Word Representations in Vector Space" 2013

Next paper by same authors is what won the award and was published in NeurIPS 2013 (also 40K citations!) Mikolov, Tomas, et al. "Distributed representations of words and phrases and their compositionality." Advances in neural information processing systems 26 (2013).

Word2vec is a framework for learning word vectors

Idea:

1. Collect a large corpus ("body") of text: a long list of words from the internet
2. Establish a fixed vocabulary of size V .
a. Usually most frequent V words are used.
b. All other words are mapped to an <unknown> or <unk> word.
3. Initialize every word by a random vector
4. Go through each position t in the text,
a. Let the word in that position be c

Using a context size of 2 !

Example windows and process for computing $P\left(w_{t+j} \mid w_{t}\right)$

Move to the next word

Example windows and process for computing $P\left(w_{t+j} \mid w_{t}\right)$

The learning objective is to maximize the probabilities

For each position $t=1, \ldots, T$, predict context words within a window of fixed size m, given center word w_{t}. Data likelihood:

$$
\begin{aligned}
& \text { Likelihood }=L(\theta)=\prod_{t=1}^{T} \prod_{\substack{m \leq j \leq m \\
j \neq 0}} P\left(w_{t+j} \mid w_{t} ; \theta\right)^{\left.v_{t} ; \theta\right)} \\
& \begin{array}{l}
\theta \text { is all variables } \\
\text { to be optimized }
\end{array}
\end{aligned}
$$

The loss function

For each position $t=1, \ldots, T$, predict context words within a window of fixed size m, given center word w_{t} !. Data likelihood:
Likelihood $=L(\theta)=\prod_{t=1}^{T} \prod_{\substack{m \leq j \leq m \\
j \neq 0}} P\left(w_{t+j} \mid w_{t} ; \theta\right)$

θ is all variables
to be optimized

The loss function $L(\theta)$ is the (average) negative log likelihood:

$$
L(\theta)=-\frac{1}{T} \log L(\theta)=-\frac{1}{T} \sum_{t=1}^{T} \sum_{\substack{-m \leq j \leq m \\ j \neq 0}} \log P\left(w_{t+j} \mid w_{t} ; \theta\right)
$$

Minimizing loss function \Leftrightarrow Maximizing predictive accuracy

How do we calculate this probability?

We want to minimize the objective function:

$$
L(\theta)=-\frac{1}{T} \sum_{t=1}^{T} \sum_{\substack{m \leq j \leq m \\ j \neq 0}} \log P\left(w_{t+j} \mid w_{t} ; \theta\right)
$$

Question: How to calculate $P\left(w_{t+j} \mid w_{t} ; \theta\right)$

How do we calculate this probability?

We want to minimize the objective function:

$$
L(\theta)=-\frac{1}{T} \sum_{t=1}^{T} \sum_{\substack{m \leq j \leq m \\ j \neq 0}} \log P\left(w_{t+j} \mid w_{t} ; \theta\right)
$$

Question: How to calculate $P\left(w_{t+j} \mid w_{t} ; \theta\right)$
The best idea \#1: Use a neural network whenever you need to model a function

How did Word2Vec design $f_{j}()$?

We will use two vectors per word w:

- $\quad v_{w}$ when w is a center word
- $\quad u_{w}$ when w is a context word

Let $f_{1}\left(w_{t}, w_{t+1}\right)=w_{t}^{T} w_{t+1}$ be a simple dot product

- so now learnable parameters except the word vectors.

Then for a center word c and a context word o :

$$
P(o \mid c)=\frac{\exp \left(u_{o}^{T} v_{c}\right)}{\sum_{w \in V} \exp \left(u_{w}^{T} v_{c}\right)}
$$

Remember the Softmax (cross-entropy) Classifier

Want to interpret raw classifier scores as probabilities

$$
s=f\left(x_{i} ; W\right) \quad P\left(Y=k \mid X=x_{i}\right)=\frac{e^{s_{k}}}{\sum_{j} e^{s_{j}}}
$$

Probabilities
must be >= 0

Unnormalized log-probabilities / logits
unnormalized probabilities

24.5		0.13	\rightarrow compare	1.00
164.0	normaize	0.87	Cross Entropy	0.00
0.18		0.00	$H(\underline{P}, \underline{Q})=$	0.00

Probabilities must sum to 1

$$
L_{i}=-\log P\left(Y=y_{i} \mid X=x_{i}\right)
$$

1.00
0.00
0.00

Correct probs

Understanding the calculation

(2) Exponentiation makes anything positive
$P(o \mid c)=\begin{array}{ll}\frac{\downarrow}{\exp \left(u_{o}^{T} v_{c}\right)} & \begin{array}{l}\text { (1) Dot product compares similarity of } o \text { and } c . \\ \sum_{w \in V} \exp \left(u_{w}^{T} v_{c}\right) \\ \text { Larger dot product }=\text { larger probability }\end{array} \\ \begin{array}{l}\text { (3) Normalize over entire vocabulary } \\ \text { to give probability distribution }\end{array}\end{array}$

To train the model: Optimize word vectors of all words to minimize loss using backprop

Recall: θ represents all the model parameters, in one long vector

- d-dimensional vectors
- V - many words,
- every word has two vectors

Why did this algorithm use two vectors?

We will use two vectors per word w:

- v_{w} when w is a center word
- $\quad u_{w}$ when w is a context word

$$
P(o \mid c)=\frac{\exp \left(u_{o}^{T} v_{c}\right)}{\sum_{w \in V} \exp \left(u_{w}^{T} v_{c}\right)}
$$

Hint: this paper came out in 2013, 1 year after AlexNet.

Why did this algorithm use two vectors?

We will use two vectors per word w:

- v_{w} when w is a center word
- $\quad u_{w}$ when w is a context word

$$
P(o \mid c)=\frac{\exp \left(u_{o}^{T} v_{c}\right)}{\sum_{w \in V} \exp \left(u_{w}^{T} v_{c}\right)}
$$

Hint: this paper came out in 2013, 1 year after AlexNet.
Do you think the results would be better if they used 1 instead of 2 vectors?

What are the final word vectors?

It is the average of the two vectors:
$1 / 2\left(v_{w}+u_{w}\right)$

Variant of algorithm: The skip-gram model

Predict all context ("outside") words (position independent) given center word Instead of $f_{j}()$

Learn one function $f()$ for all positions
$w_{t+j} \rightarrow$ Network: f()\rightarrow score
$w_{t} \rightarrow$

What's another issue with this calculation?

$$
P(o \mid c)=\frac{\exp \left(u_{o}^{T} v_{c}\right)}{\Sigma_{w \in V} \exp \left(u_{w}^{T} v_{c}\right)}
$$

Solution: negative sampling

$$
\log P(o \mid c)=-\log \sigma\left(\boldsymbol{u}_{o}^{T} \boldsymbol{v}_{c}\right)-\sum_{k \in\{K \text { sampled indices }\}} \log \sigma\left(-\boldsymbol{u}_{k}^{T} \boldsymbol{v}_{c}\right)
$$

Replace denominator with randomly sampled k vocabulary instances.
New hyperparameter: k
How should we sample?

- Rare words (aardvark) are unlikely to be helpful.
- You can sample a word w based on its probability of occurrence:
- $p(w)=U(w) / Z$
- where Z is total number of words
- $\quad U(w)$ is number of times word U appears.

Solution: negative sampling

$$
\log P(o \mid c)=-\log \sigma\left(\boldsymbol{u}_{o}^{T} \boldsymbol{v}_{c}\right)-\sum_{k \in\{K \text { sampled indices }\}} \log \sigma\left(-\boldsymbol{u}_{k}^{T} \boldsymbol{v}_{c}\right)
$$

Replace denominator with randomly sampled k vocabulary instances.
New hyperparameter: k
How should we sample?

- Rare words (aardvark) are unlikely to be helpful.
- You can sample a word w based on its probability of occurrence:
- $p(w)=U(w) / Z$
- where Z is total number of words

$$
\text { In practice, } \mathrm{p}(\mathrm{w})=\mathrm{U}(\mathrm{w})^{3 / 4} / \mathrm{Z}
$$

- $\quad U(w)$ is number of times word U appears.

Problem of sparse gradients

We iteratively take gradients at each m window for SGD

- In each window, we only have at most $2 m+1$ words
- plus $2 k m$ negative words with negative sampling
- so the gradient for each update is sparse for V of size 500 K

Implementation detail

Most DL packages represent word vectors using a special embedding layer
hn[$\left.\begin{array}{llll}1 & \vdots & \vdots & \vdots \\ \vdots & \vdots\end{array}\right]$
d

Rows represent words

- even though we usually talk about words as column vectors
- In implementations, they are row vectors.
- It is a hash table with look up and write functions to avoid writing to the entire $V \times d$ matrix.

Indirectly, skim-gram is trying to calculate co-occurance of words

It does this using backprop and by iterating through the entire corpus of text data multiple times.

Can we do better?

Can we building a co-occurrence matrix directly?

- Calculate co-occurence of words within a window.
- captures some syntactic and semantic information ("word space")
- If window is too large (size of entire articles or documents):
- Co-occurrence matrix will represent general topics
- Example, all sports words will have similar entries

Example co-occurrence matrix

- Let's try an example with window length 1 (it is more common to use 5-10)
- Symmetric (irrelevant whether left or right context)

Example corpus:

- I like deep
learning
- I like UW
- I enjoy class

counts	I like	enjoy	deep	learning	UW	class	.	
I like	0	2	1	0	0	0	0	0
enjoy	1	0	0	1	0	1	0	0
deep	0	1	0	0	0	1	0	0
learning	0	0	0	0	0	0	0	0
UW	0	0	0	0	0	0	0	1
class	0	0	0	0	0	0	0	1
P	0	0	0	0	1	0		

Co-occurrence vectors

Problem with simple count co-occurrence vectors

- Vectors increase in size with vocabulary
- Very high dimensional: require a lot of storage (though sparse)

Idea: Low-dimensional vectors

- Idea: store "most" of the important information in a fixed, small number of dimensions: a dense vector
- Usually 25-1000 dimensions, similar to word2vec
- But how should we reduce the dimensionality from 500 K to <1000 ?

Classic Method: Dimensionality Reduction

From linear algebra: Singular Value Decomposition of co-occurrence matrix X

U and V are orthogonal matrices
Σ is a diagonal matrix of singular values.

Classic Method: Dimensionality Reduction

From linear algebra: Singular Value Decomposition of co-occurrence matrix X

We can discard all except the largest d singular values and their corresponding multiplicative values in U and V
New d-dimensional word vector representations are: top-d(U) * top-d(Σ)

Making co-occurrence counts work

Running an SVD on raw counts doesn't work well.

Problem: function words (the, he, has) are too frequent à syntax has too much impact.
Some fixes:

- Use log the frequencies instead
- Limit the maximum values: $\min (\mathrm{X}, \mathrm{t})$, with $\mathrm{t} \approx 100$
- Ignore the function words
- Ramped windows that count closer words more than further away words

Interesting semantic patterns emerge

COALS model from Rohde et al. ms., 2005. An Improved Model of Semantic Similarity Based on Lexical Co-Occurrence

Comparing the two methods:

Co-occurrence vectors

- Fast training
- Single iteration over data
- SVD is fast as long as
vocabulary is reasonable.
- Good for capturing word similarities
- Needs hacks to work
- Not good for anything beyond similarities
- SVD is very slow for large vocabularies

Skip-gram algorithm

- Scales well with increasing vocabulary size
- Good for many other tasks
- Now as good for word similarities
- Needs multiple iterations across the dataset as backprop is slow

Can we combine the strengths of both methods?

Log bilinear model:

- Let every word be a d-dimensional vector
- Remember from skip-gram that dot product is the probability of one word given its context

$$
w_{i} \cdot w_{j}=\log P(i \mid j)
$$

GloVe [Pennington, Socher, and Manning, EMNLP 2014]: Encoding meaning components in vector differences

Can we combine the strengths of both methods?

Log bilinear model:

- Let every word be a d-dimensional vector
- Remember from skip-gram that dot product is the probability of one word given its context

$$
w_{i} \cdot w_{j}=\log P(i \mid j)
$$

Main idea: Similarity between two words should be proportional to their co-occurrence count.

- Log of count used as a hack

$$
L(\theta)=\sum_{i, j=1}^{V} f\left(X_{i j}\right)\left(w_{i}^{T} \tilde{w}_{j}+b_{i}+\tilde{b}_{j}-\log X_{i j}\right)^{2}
$$

GloVe [Pennington, Socher, and Manning, EMNLP 2014]: Encoding meaning components in vector differences

Can we combine the strengths of both methods?

Log bilinear model:

- Let every word be a d-dimensional vector
- Remember from skip-gram that dot product is the probability of one word given its context

$$
w_{i} \cdot w_{j}=\log P(i \mid j)
$$

Main idea: Similarity between two words should be proportional to their co-occurrence count.

- Log of count used as a hack

$$
L(\theta)=\sum_{i, j=1}^{V} f\left(X_{i j}\right)\left(w_{i}^{T} \tilde{w}_{j}+b_{i}+\tilde{b}_{j}-\log X_{i j}\right)^{2}
$$

GloVe [Pennington, Socher, and Manning, EMNLP 2014]: Encoding meaning components in vector differences

Can we combine the strengths of both methods?

Log bilinear model:

- Let every word be a d-dimensional vector
- Remember from skip-gram that dot product is the probability of one word given its context

$$
w_{i} \cdot w_{j}=\log P(i \mid j)
$$

Main idea: Similarity between two words should be proportional to their co-occurrence count.

- Log of count used as a hack

$$
L(\theta)=\sum_{i, j=1}^{V} f\left(X_{i j}\right)\left(w_{i}^{T} \tilde{w}_{j}+b_{i}+\tilde{b}_{j}-\log X_{i j}\right)^{2}
$$

GloVe [Pennington, Socher, and Manning, EMNLP 2014]: Encoding meaning components in vector differences

Can we combine the strengths of both methods?

Log bilinear model:

- Let every word be a d-dimensional vector
- Remember from skip-gram that dot product is the probability of one word given its context

$$
w_{i} \cdot w_{j}=\log P(i \mid j)
$$

Main idea: Similarity between two words should be proportional to their co-occurrence count.

- Log of count used as a hack
- $f()$ is a threshold for large values

$$
L(\theta)=\sum_{i, j=1}^{V} f\left(X_{i j}\right)\left(w_{i}^{T} \tilde{w}_{j}+b_{i}+\tilde{b}_{j}-\log X_{i j}\right)^{2}
$$

GloVe [Pennington, Socher, and Manning, EMNLP 2014]: Encoding meaning components in vector differences

Glove vectors are very good at analogies

a:b :: c:?
man:woman :: king:?

Glove vectors are very good at analogies

$$
\text { a:b :: c:? } \quad \longrightarrow \quad d=\arg \max _{i} \frac{\left(x_{b}-x_{a}+x_{c}\right)^{T} x_{i}}{\left\|x_{b}-x_{a}+x_{c}\right\|}
$$

man:woman :: king:?

$$
(m a n-\text { woman }+ \text { king })^{*} w_{i}
$$

Glove vectors are very good at analogies

Glove vectors correlate with human judgement

Linguists have created a dataset of word similarity judgements

- Word vector distances and their correlation with human judgments
- Example dataset: WordSim353

| Word 1 | Word 2 | Human (mean) |
| :--- | :--- | :--- | :--- |
| tiger | cat | 7.35 |
| tiger | tiger | 10 |
| book | paper | 7.46 |
| computer | internet | 7.58 |
| plane | car | 5.77 |
| professor | doctor | 6.62 |
| stock | phone | 1.62 |
| stock | CD | 1.31 |
| stock | jaguar | 0.92 |

Problem of polysemy

Word senses and word sense ambiguity
Cap

- Using to only be similar to Hat
- But now, thanks to gen z, should also be closer to Lying

Can one vector capture all these meanings? Probably not!

Researchers have tried to segregate words into multiple vectors, each with its own meaning

But it doesn't work well. A word's usage in a sentence defines its meaning. Words should be a function of not just its context but its position in the sentence -> Next lecture

So far: vectors are associated with words

Our vocabulary was comprised of all of the words in a language Problems:

- 500,000 words Webster's English Dictionary (3rd edition)
- Language is changing all of the time
- 690 words were added to Merriam Webster's in September 2023 ("rizz", "goated", "mid")
- Long tail of infrequent words.
- Zipf's law: word frequency is inversely proportional to word rank
- Some words may not appear in a training set of documents
- No modeled relationship between words - e.g., "run", "ran", "runs", "runner" are all separate entries despite being linked

Zipf's Law: Word Rank vs. Word
Frequency for Several Languages in meaning

Character level vectors instead?

What about assigning a vector to every character instead?
(Maybe add capital letters, punctuation, spaces, ...)

Pros:

- Small vocabulary size (for English)
- Complete coverage (unseen words are represented by letters)

Cons:

- Encoding a single sentence becomes very long!
- \# chars instead of \# words
- Characters mean very different things in different words!
- Even worse for representing multiple meanings

Subword tokenization!

How can we combine

1. the high coverage of character-level representations
2. with the efficiency of word-level representation?

Subword tokenization! (e.g., Byte-Pair Encoding)

- Start with character-level representations
- Build up representations from there

Original BPE Paper (Sennrich et al., 2016)

Example of how Byte-pair encoding works

Let's say our entire dataset contains only these 3 sentences:
$\mathcal{D}=\{$ "i hug pugs", "hugging pugs is fun", "i make puns" $\}$

Example of how Byte-pair encoding works

Let's say our entire dataset contains only these 3 sentences:
$\mathcal{D}=\{$ "i hug pugs", "hugging pugs is fun", "i make puns" $\}$

Initialize the vocabulary as all the individual characters. Current Vocab:

$$
\begin{aligned}
& \mathcal{V}=\left\{{ }^{\prime},{ }^{\prime}, \mathrm{a}^{\prime},{ }^{\prime} \mathrm{e}^{\prime},{ }^{\prime} \mathrm{f}\right. \text { ', 'g', 'h', 'i', 'k', 'm', } \\
& \text { 'n', 'p', 's', 'u'\}, }|\mathcal{V}|=13
\end{aligned}
$$

Example of how Byte-pair encoding works

Let's say our entire dataset contains only these 3 sentences:
$\mathcal{D}=\{$ "i hug pugs", "hugging pugs is fun", "i make puns" $\}$

Let's split it up into words by splitting right before the whitespace:

$$
\begin{aligned}
\mathcal{D}= & \{\text { "i", " hug", " pugs", "hugging", " pugs", } \\
& \text { "is", " fun", "i"," make"," puns" }\}
\end{aligned}
$$

Example of how Byte-pair encoding works

The vocabulary for reference:

$$
\begin{aligned}
& \mathcal{V}=\left\{{ }^{\prime},,{ }^{\prime} \mathrm{a}\right. \text { ', 'e', 'f', 'g', 'h', 'i', 'k', 'm', } \\
& \text { 'n', 'p', 's', 'u'\}, |V|=13 }
\end{aligned}
$$

Let's split it up into words by splitting right before the whitespace:

$$
\begin{aligned}
\mathcal{D}= & \{\text { "i", " hug", " pugs", "hugging", " pugs", } \\
& \text { "is", " fun", "i"," make", "puns" }\}
\end{aligned}
$$

Example of how Byte-pair encoding works

The vocabulary for reference:

$$
\begin{gathered}
\mathcal{V}=\left\{{ }^{\prime},,^{\prime} \mathrm{a}^{\prime},\right. \text { 'e', 'f', 'g', 'h', 'i', 'k', 'm', } \\
\text { 'n', 'p', 's', 'u'\}, |V } \mathcal{V} \mid=13
\end{gathered}
$$

Let's represent the dataset
with only vocabulary elements:

$$
\begin{aligned}
& \text { ['h', 'u', 'g', 'g', 'i', 'n', 'g'], [' ', 'p', 'u', 'g', 's'], }
\end{aligned}
$$

$$
\begin{aligned}
& \text { [' ', 'm', 'a', 'k', 'e'], [' ', 'p', 'u', 'n', 's']\} }
\end{aligned}
$$

Example of how Byte-pair encoding works

The vocabulary for reference:

$$
\begin{aligned}
& \mathcal{V}=\left\{{ }^{\prime},{ }^{\prime}, \mathrm{a}^{\prime},{ }^{\prime} \mathrm{e}^{\prime},{ }^{\prime} \mathrm{f}\right. \text { ', 'g', 'h', 'i', 'k', 'm', } \\
& \text { 'n', 'p', 's', 'u'\}, }|\mathcal{V}|=13
\end{aligned}
$$

Now, let's find the most common bi-gram

$$
\begin{aligned}
& \mathcal{D}=\left\{\left[\mathrm{ri}^{\prime}\right],\left[{ }^{\prime},{ }^{\prime},{ }^{\prime} \mathrm{h}\right. \text { ', ' 'u', 'g'] , [' ', 'p', 'u', 'g', 's'], }\right. \\
& \text { ['h', 'u', 'g', 'g', 'i', 'n', 'g'], [' ', 'p', 'u', 'g', 's'], } \\
& \text { [', ', 'i', 's'], [' ', 'f', 'u', 'n'], ['i'], } \\
& \text { [' ', 'm', 'a', 'k', 'e'], [' ', 'p', 'u', 'n', ‘s']\} }
\end{aligned}
$$

Example of how Byte-pair encoding works

The vocabulary for reference:

$$
\begin{aligned}
& \mathcal{V}=\left\{{ }^{\prime},{ }^{\prime}, a^{\prime},{ }^{\prime} \mathrm{e}^{\prime},{ }^{\prime} \mathrm{f}\right. \text { ', 'g', 'h', 'i', 'k', 'm', } \\
& \text { 'n', 'p', 's', 'u'\}, }|\mathcal{V}|=13
\end{aligned}
$$

Now, let's find the most common bi-gram

$$
\begin{aligned}
& \mathcal{D}=\left\{\left[\mathrm{ri}^{\prime}\right],\left[{ }^{\prime},{ }^{\prime},{ }^{\prime} \mathrm{h}\right. \text { ', ' 'u', 'g'] , [' ', 'p', 'u', 'g', 's'], }\right. \\
& \text { ['h', 'u', 'g', 'g', 'i', 'n', 'g'], [' ', 'p', 'u', 'g', 's'], } \\
& \text { [' ', 'i', 's'], [' ', 'f', 'u', 'n'], ['i'], } \\
& \text { [' ', 'm', ‘a', ‘k', 'e'], [' ', 'p', 'u', 'n', 's']\} }
\end{aligned}
$$

Create new vocab:
$v_{14}:=\operatorname{concat}\left({ }^{\prime} u\right.$ ', ' g ') $=$ 'ug'

Example of how Byte-pair encoding works

Update vocabulary with new vocab v_{14} :

$$
\begin{gathered}
\mathcal{V}=\left\{'^{\prime}, '^{\prime} \mathrm{a}^{\prime},\right. \text { 'e', 'f', 'g', 'h', 'i', 'k', 'm', } \\
\text { 'n', 'p', 's', 'u', 'ug' }\},|\mathcal{V}|=14
\end{gathered}
$$

Update dataset by replace bigram with new vocab v_{11} :

Create new vocab:

$$
\begin{aligned}
& \mathcal{D}=\left\{\left[\mathrm{ci}^{\prime}\right],\left[{ }^{\prime},,{ }^{\prime} \mathrm{h} \text { ', 'ug' }{ }^{\prime}\right],\left[{ }^{\prime},{ }^{\prime} \mathrm{p}\right. \text { ', 'ug', 's'], }\right. \\
& \text { ['h', 'ug', 'g', 'i', 'n', 'g'], [' ', 'p', 'ug', 's'], } \\
& \text { [' } \left.{ }^{\prime}, \text { 'i' }^{\prime}, \text { 's' }^{\prime}\right],\left[{ }^{\prime}, \text {, 'f', 'u', 'n'], [}{ }^{\prime} \mathrm{i}^{\prime}\right] \text {, }
\end{aligned}
$$

Example of how Byte-pair encoding works

Current vocabulary:

$$
\begin{gathered}
\mathcal{V}=\left\{'^{\prime}, '^{\prime} \mathrm{a}^{\prime},\right. \text { 'e', 'f', 'g', 'h', 'i', 'k', 'm', } \\
\text { 'n', 'p', 's', 'u', 'ug'\}, |V } \mathcal{V} \mid=14
\end{gathered}
$$

Find the next common bigram:

$$
\begin{aligned}
& \mathcal{D}=\left\{\left[\mathrm{c}^{\prime}\right],\left[{ }^{\prime},,{ }^{\prime} \mathrm{h}\right. \text { ', 'ug'] , [' ', 'p', 'ug', 's'], }\right. \\
& \text { ['h', 'ug', 'g', 'i', 'n', 'g'], ['', 'p', 'ug', 's'], } \\
& \text { [' } \left.{ }^{\prime},{ }^{\prime} \mathrm{r}^{\prime},{ }^{\prime} \mathrm{s}^{\prime}\right],\left[{ }^{\prime}, \text {, 'f', 'u', 'n'], [} \mathrm{i}^{\prime}\right] \text {, } \\
& \text { [' ', 'm', 'a', 'k', 'e'], ['', 'p', 'u', 'n', 's']\} }
\end{aligned}
$$

Example of how Byte-pair encoding works

Current vocabulary:

$$
\begin{gathered}
\mathcal{V}=\left\{{ }^{\prime},,{ }^{\prime} \mathrm{a}^{\prime},\right. \text { 'e', 'f', 'g', 'h', 'i', 'k', 'm', } \\
\text { 'n', 'p', 's', 'u', 'ug'\}, |V } \mathcal{V} \mid=14
\end{gathered}
$$

Find the next common bigram:

$$
\begin{aligned}
& \mathcal{D}=\left\{\left[\mathrm{c}^{\prime}\right],\left[{ }^{\prime},,{ }^{\prime} \mathrm{h}\right. \text { ', 'ug'] , [' ', 'p', 'ug', 's'], }\right. \\
& \text { ['h', 'ug', 'g', 'i', 'n', 'g'], ['', 'p', 'ug', 's'], } \\
& \text { [' } \left.{ }^{\prime}, \text { 'i', ' 's' }^{\prime}\right],\left[{ }^{\prime}, \text {, 'f', 'u', 'n'], [} \mathrm{i}^{\prime}\right] \text {, } \\
& \text { [' ', 'm', 'a', 'k', 'e'], ['', 'p', 'u', 'n', 's']\} }
\end{aligned}
$$

Create new vocab:
$v_{15}:=\operatorname{concat}\left({ }^{\prime},{ }^{\prime} \mathrm{p}\right.$ ') $=$ ' p '

Example of how Byte-pair encoding works

Update vocabulary with new vocab v_{15} :

$$
\begin{array}{r}
\mathcal{V}=\{',, ' a ', ~ ' e ', ~ ' f ', ~ ' g ', ~ ' h ', ~ ' i ', ~ ' k ', ~ ' m ', ~ \\
\text { 'n', 'p', 's', 'u', 'ug','p\}, }|\mathcal{V}|=15
\end{array}
$$

Update dataset by replace bigram with new vocab v_{15} :

Create new vocab:

$$
\begin{aligned}
& \text { ['h', 'ug', 'g', 'i', 'n', 'g'], ['p', 'ug', 's'], } \\
& \text { [' } \left.{ }^{\prime}, \mathrm{r}^{\prime} \text { ', 's'], [' }{ }^{\prime}, \text { 'f', 'u', 'n'], [} \mathrm{i}^{\prime}\right] \text {, }
\end{aligned}
$$

Repeat until vocab size reaches the amount you want (20 for example)

Final vocabulary:

$$
\begin{aligned}
& \text { 'ug', 'p’, 'hug', ' pug', ' pugs', 'un', 'hug'\}, }
\end{aligned}
$$

Final dataset:

$$
\begin{aligned}
& \mathcal{D}=\left\{\left[{ }^{(6} \mathrm{i}\right],\left[{ }^{\prime} \text { hug'] },\left[{ }^{6} \text { pugs'] },\right.\right.\right. \\
& \text { ['hug', 'g', 'i', 'n', 'g'], ['pugs'], } \\
& \text { [' ', 'i', 's'], [' ', 'f', 'un'], ['i'], } \\
& \text { [' ', 'm', 'a', 'k', 'e'], ['p', 'un', 's']\} }
\end{aligned}
$$

With this vocabulary, can you represent (or, tokenize/encode):

Q: Can you encode "apple"?

$$
\begin{aligned}
& 8 \text { : 'k', } 9 \text { : ‘m', } 10 \text { : 'n', } 11 \text { : 'p', } 12 \text { : ‘s', } 13 \text { : ‘u', } \\
& 14 \text { : 'ug', } 15 \text { : ' } \mathrm{p} \text { ', } 16 \text { : 'hug', } 17 \text { : ' pug', } 18 \text { : ' pugs', } \\
& 19 \text { : 'un', } 20 \text { : ' hug'\} }
\end{aligned}
$$

With this vocabulary, can you represent (or, tokenize/encode):

Q: Can you encode "apple"?

- No, there is no 'l' in the vocabulary

$$
\begin{aligned}
& 8 \text { : 'k', } 9 \text { : ‘m', } 10 \text { : 'n', } 11 \text { : 'p', } 12 \text { : ‘s', } 13 \text { : ‘u', } \\
& 14 \text { : 'ug', } 15 \text { : ' } \mathrm{p} \text { ', } 16 \text { : 'hug', } 17 \text { : ' pug', } 18 \text { : ' pugs', } \\
& 19 \text { : ‘un', } 20 \text { : ‘hug'\} }
\end{aligned}
$$

With this vocabulary, can you represent (or, tokenize/encode):

Q: Can you encode "apple"?

- No, there is no 'l' in the vocabulary

Q: "map"?

$$
\begin{aligned}
& 8 \text { : 'k', } 9 \text { : ‘m', } 10 \text { : 'n', } 11 \text { : 'p', } 12 \text { : ‘s', } 13 \text { : ‘u', } \\
& 14 \text { : 'ug', } 15 \text { : ' } \mathrm{p} \text { ', } 16 \text { : 'hug', } 17 \text { : ' pug', } 18 \text { : ' pugs', } \\
& 19 \text { : ‘un’, } 20 \text { : ‘ hug'\} }
\end{aligned}
$$

With this vocabulary, can you represent (or, tokenize/encode):

Q: Can you encode "apple"?

- No, there is no 'l' in the vocabulary

Q: "map"?
Yes - $[9,2,11]$

$$
14 \text { : 'ug', } 15 \text { : ‘ p’, } 16 \text { : 'hug', } 17 \text { : ' pug', } 18 \text { : ' pugs', }
$$

$$
19 \text { : ‘un', } 20 \text { : ‘ hug'\} }
$$

With this vocabulary, can you represent (or, tokenize/encode):

Q: Can you encode "apple"?

- No, there is no 'l' in the vocabulary

Q: "map"?
Yes - [9,2,11]
Q: "huge"?

$$
14 \text { : 'ug', } 15 \text { : ‘ p', } 16 \text { : ‘hug', } 17 \text { : ' pug', } 18 \text { : ' pugs', }
$$

$$
19 \text { : ‘un’, } 20 \text { : ‘ hug'\} }
$$

With this vocabulary, can you represent (or, tokenize/encode):

Q: Can you encode "apple"?

- No, there is no 'l' in the vocabulary

```
Q: "map"?
Yes-[9,2,11]
    19:`un',20 :`hug'}
Yes - [16, 4] or [7,14,4] or [7,13,6,4]
```


8 : ‘k', 9 : ‘m’, 10 : 'n', 11 : ' p ', 12 : ‘s', 13 : ‘ 'u',
14 : 'ug', 15 : ' p ', 16 : 'hug', 17 : ' ${ }^{\text {pug', }} 18$: ' pugs',

```
With this vocabulary, can you represent (or, tokenize/encode):
Q: Can you encode "apple"?
- No, there is no 'l' in the vocabulary
\[
\begin{aligned}
& \text { Q: "map"? } \\
& \text { Yes - }[9,2,11]
\end{aligned}
\]
```

```
\[
8 \text { : ‘k', } 9 \text { : ‘m’, } 10 \text { : ‘n', } 11 \text { : ‘p’, } 12 \text { : ‘s', } 13 \text { : ‘u', }
\]
\[
14 \text { : ‘ug', } 15 \text { : ‘ p’, } 16 \text { : 'hug, } 17 \text { : ' pug', } 18 \text { : ' pugs', }
\]
Q: "huge"? 19: ‘un', 20 : ‘hug'\}
Yes - [16, 4] or [7,14,4] or [7,13,6,4]
Q: " huge" with a space in the front?
```

```
With this vocabulary, can you represent (or, tokenize/encode):
Q: Can you encode "apple"?
- No, there is no 'l' in the vocabulary
```

Q: "map"?
Yes-[9,2,11]
Q: "huge"? 8: ‘k', 9 : ‘m', 10 : ‘n', 11 : 'p', 12 : ‘s', 13 : ‘u', 14 : 'ug', 15 : ' p ', 16 : 'hug, 17 : ' pug', 18 : ' pugs', 19: ‘un', 20 : ‘hug'\}

```
Yes - [16, 4] or [7,14,4] or [7,13,6,4]
Q: " huge" with a space in the front?
Yes - [18, 4]
```


Benefits of Byte-pair encoding

1. Efficient to run (greedy vs. global optimization)
2. Lossless compression
3. Potentially some shared representations
a. e.g., the token "hug" could be used both in "hug" and "hugging"

Byte-pair encoding - ChatGPT Example

> Call me Ishmael. Some years ago-never mind how long precisely-having little or no money in my purse, and nothing particular to interest me on shore, I thought I would sail about a little and see the watery part of the world. It is a way I have of driving off the spleen and regulating the circulation. Whenever I find myself growing grim about the mouth; whenever it is a damp, drizzly November in my soul; whenever I find myself involuntarily pausing before coffin warehouses, and bringing up the rear of every funeral I meet; and especially whenever my hypos get such an upper hand of me, that it requires a strong moral principle to prevent me from deliberately stepping into the street, and methodically knocking people's hats off-then, I account it high time tozz get to sea as soon as I can. This is my substitute for pistol and ball. With a philosophical flourish Cato throws himself upon his sword; I quietly take to the ship. There is nothing surprising in this. If they but knew it, almost all men in their degree, some time or other, cherish very nearly the same feelings towards the ocean with me.
[7368, 757, 57704, 1764, 301, 13, 4427, 1667, 4227, 2345, 37593, 4059, $1268,1317,24559,2345,69666,2697,477,912,3300,304,856,53101$ 11, 323, 4400, 4040, 311, 2802, 757, 389, 31284, 11, 358, 3463, 358, 1053, 30503, 922, 264, 2697, 323, 1518, 279, 30125, 727, 961, 315, 279, 1917, $13,1102,374,264,1648,358,617,315,10043,1022,279,87450$, $268,323,58499,279,35855,13,43633,358,1505,7182,7982,44517$ 922, 279, 11013, 26, 15716, 433, 374, 264, 41369, 11, 1377, 73825, 6841, 304, 856, 13836, 26, 15716, 358, 1505, 7182, 4457, 3935, 6751, 7251, 985, $1603,78766,83273,11,323,12967,709,279,14981,315,1475,32079$ $358,3449,26,323,5423,15716,856,6409,981,636,1778,459,8582$, 1450, 315, 757, 11, 430, 433, 7612, 264, 3831, 16033, 17966, 311, 5471, 757, 505, 36192, 36567, 1139, 279, 8761, 11, 323, 1749, 2740, 50244, $1274,753,45526,1022,2345,3473,11,358,2759,433,1579,892,311$, 10616, 636, 311, $9581,439,5246,439,358,649,13,1115,374,856$, 28779, 369, 40536, 323, 5041, 13, 3161, 264, 41903, 67784, 356, 4428, 3872, 5678, 5304, 813, 20827, 26, 358, 30666, 1935, 311, 279, 8448, 13, $2684,374,4400,15206,304,420,13,1442,814,719,7020,433,11$, $4661,682,3026,304,872,8547,11,1063,892,477,1023,11,87785$,

Weird properties of tokenizers

Token != word

- Spaces are part of token
- "run" is a different token than " run"
- Not invariant to case changes
- "Run" is a different token than "run"

Weird properties of tokenizers

Token != word

- Spaces are part of token
- "run" is a different token than " run"
- Not invariant to case changes
- "Run" is a different token than "run"
- Tokenization fits statistics of your data
- e.g., while these words are multiple tokens...
tokenization
NLP
don't
victory
lose

Weird properties of tokenizers

Token != word

- Spaces are part of token
- "run" is a different token than " run"
- Not invariant to case changes
- "Run" is a different token than "run"
- Tokenization fits statistics of your data
- e.g., while these words are multiple tokens...

These words are all 1 token in GPT-3's tokenizer! Does anyone know why?

attRot

EStreamFrame

SolidGoldMagikarp
PsyNetMessage
embedreportprint
Adinida
oreAndOnline
StreamerBot
GoldMagikarp
externalToEVA
TheNitrome
TheNitromeFan
RandomRedditorWithNo
InstoreAndOnline

Next time: RNNs \& LSTMs

