Lecture 7: Training Neural Networks, Part II

Ranjay Krishna, Sarah Pratt

Administrative: Assignment 2

Lecture 7 - 2

January 25, 2024

Has been released

Due 1/30 11:59pm

- Multi-layer Neural Networks,
- Image Features,
- Optimizers

Administrative: Assignment 3

Lecture 7 - 3

January 25, 2024

Will be released next week

Due 1/30 11:59pm

- Multi-layer Neural Networks,
- Image Features,
- Optimizers

Administrative: Fridays

This Friday

How to design a good course project

Lecture 7 - 4

January 25, 2024

Presenter: Sarah Pratt

Administrative: Course Project

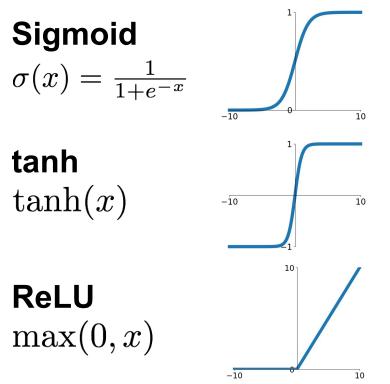
Lecture 7 - 5

January 25, 2024

Project proposal due 2/06 11:59pm

Come to office hours to talk about your ideas

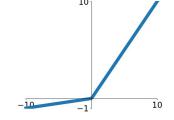
Last time: Activation Functions



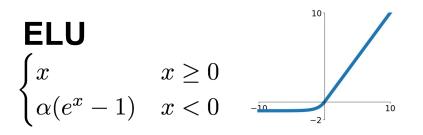
Ranjay Krishna, Sarah Pratt

Leaky ReLU $\max(0.1x, x)$

Lecture 7 - 6

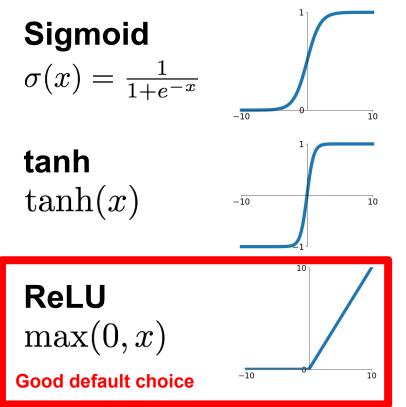


 $\begin{array}{l} \textbf{Maxout} \\ \max(w_1^T x + b_1, w_2^T x + b_2) \end{array}$



⁶January 25, 2024

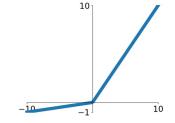
Last time: Activation Functions



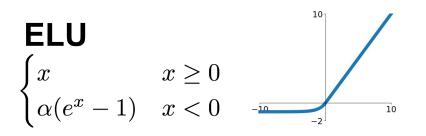
Ranjay Krishna, Sarah Pratt

Leaky ReLU $\max(0.1x, x)$

Lecture 7 - 7

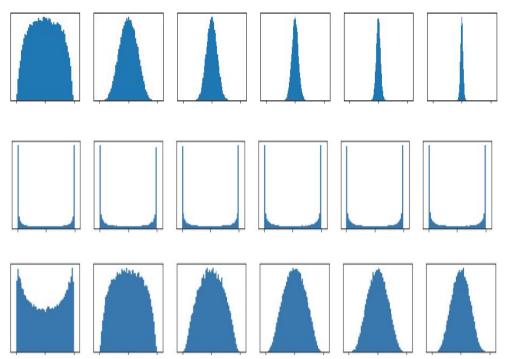


 $\begin{array}{l} \textbf{Maxout} \\ \max(w_1^T x + b_1, w_2^T x + b_2) \end{array}$



⁷January 25, 2024

Last time: Weight Initialization



Initialization too small: Activations go to zero, gradients also zero, No learning =(

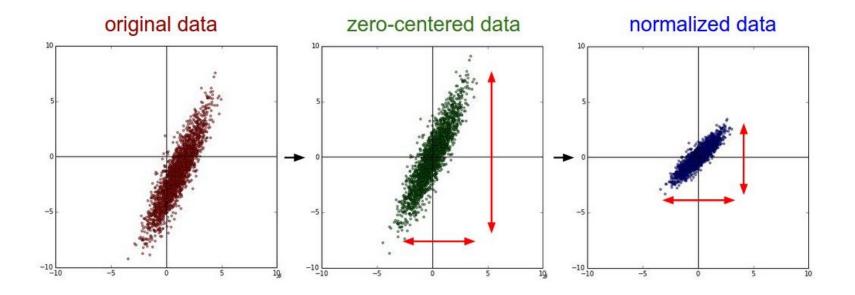
Initialization too big: Activations saturate (for tanh), Gradients zero, no learning =(

Initialization just right: Nice distribution of activations at all layers, Learning proceeds nicely =)

⁸January 25, 2024

Ranjay Krishna, Sarah Pratt

Last time: Data Preprocessing



Ranjay Krishna, Sarah Pratt

Lecture 7 - 9

⁹January 25, 2024

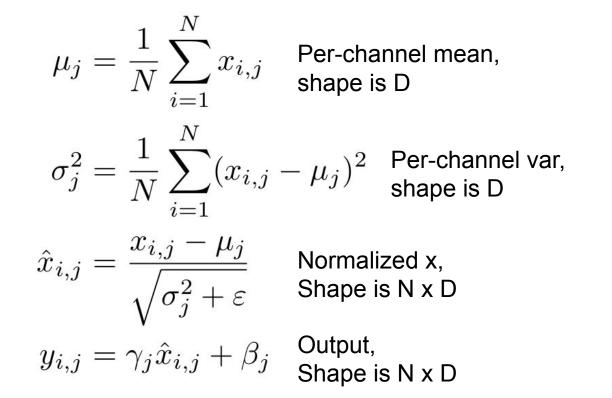
Last Time: Batch Normalization

Input: $x: N \times D$

Learnable scale and shift parameters:

 $\gamma, \beta: D$

Learning $\gamma = \sigma$, $\beta = \mu$ will recover the identity function!



Ranjay Krishna, Sarah Pratt

Lecture 7 - 10

¹⁰January 25, 2024

[loffe and Szegedy, 2015]

Batch Normalization: Test-Time

Input: $x: N \times D$

$$\mu_j = \stackrel{({
m Running}) \, {
m average of}}{{
m values \, seen \, during \, training}}$$

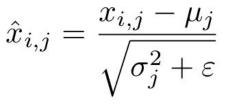
Per-channel mean, shape is D

Learnable scale and shift parameters:

 $\gamma, \beta: D$

During testing batchnorm becomes a linear operator! Can be fused with the previous fully-connected or conv layer $\sigma_j^2 = \ _{
m values\ seen\ during\ training}^2$

Per-channel var, shape is D



$$y_{i,j} = \gamma_j \hat{x}_{i,j} + \beta_j$$

Normalized x, Shape is N x D

Output, Shape is N x D

Ranjay Krishna, Sarah Pratt

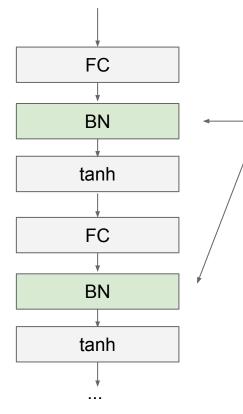
Lecture 7 - 11

¹¹ January 25, 2024

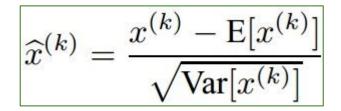
Batch Normalization

[loffe and Szegedy, 2015]

¹²January 25, 2024



Usually inserted after Fully Connected or Convolutional layers, and before nonlinearity.



Ranjay Krishna, Sarah Pratt

Batch Normalization

FC BN tanh FC BN tanh

Ranjay Krishna, Sarah Pratt

- Makes deep networks **much** easier to train!

- Improves gradient flow
- Allows higher learning rates, faster convergence

[loffe and Szegedy, 2015]

¹³January 25, 2024

- Networks become more robust to initialization
- Acts as regularization during training
- Zero overhead at test-time: can be fused with conv!
- Behaves differently during training and testing: this is a very common source of bugs!

Batch Normalization for ConvNets

Batch Normalization for **fully-connected** networks

Batch Normalization for **convolutional** networks (Spatial Batchnorm, BatchNorm2D)

x: N × Dx: N×C×H×WNormalize \checkmark Normalize μ, σ : 1 × D μ, σ : 1×C×1×1 χ, β : 1 × D χ, β : 1×C×1×1 $\chi = \chi(x-\mu)/\sigma+\beta$ $\chi = \chi(x-\mu)/\sigma+\beta$

Ranjay Krishna, Sarah Pratt

Lecture 7 - 14

14 January 25, 2024

Layer Normalization

Batch Normalization for fully-connected networks

x: N × Dx: N × DNormalize \checkmark $\mu, \sigma: 1 \times D$ Normalize $\gamma, \beta: 1 \times D$ $\gamma, \beta: 1 \times D$ $\gamma = \gamma(x-\mu)/\sigma+\beta$ $\gamma = \gamma(x-\mu)/\sigma+\beta$

Lecture 7 - 15

Ba, Kiros, and Hinton, "Layer Normalization", arXiv 2016

Ranjay Krishna, Sarah Pratt

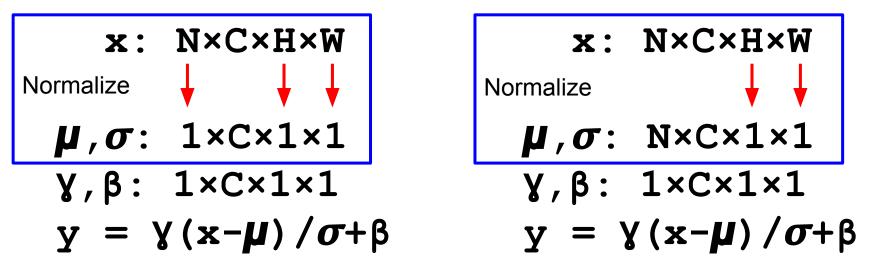
Layer Normalization for

fully-connected networks Same behavior at train and test! Can be used in recurrent networks

¹⁵January 25, 2024

Instance Normalization

Batch Normalization for convolutional networks



Ulyanov et al, Improved Texture Networks: Maximizing Quality and Diversity in Feed-forward Stylization and Texture Synthesis, CVPR 2017

Ranjay Krishna, Sarah Pratt

Lecture 7 - 16

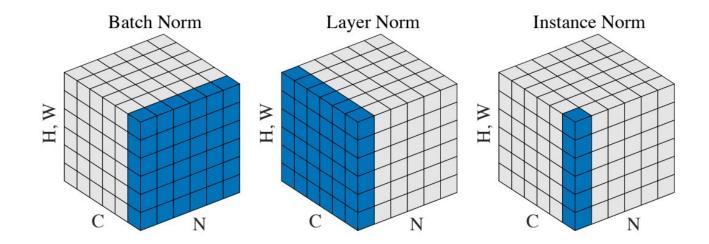
Instance Normalization for

Same behavior at train / test!

¹⁶January 25, 2024

convolutional networks

Comparison of Normalization Layers

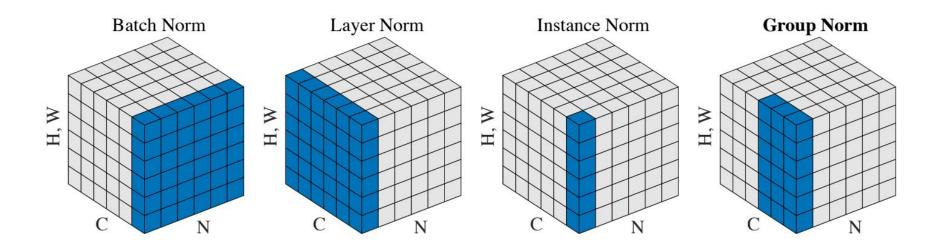


Wu and He, "Group Normalization", ECCV 2018

Ranjay Krishna, Sarah Pratt

Lecture 7 - 17 ¹⁷ January 25, 2024

Group Normalization



Wu and He, "Group Normalization", ECCV 2018

Ranjay Krishna, Sarah Pratt

Lecture 7 - <u>18</u>

¹⁸January 25, 2024

Today

- Improve your training error:
 - (Fancier) Optimizers
 - Learning rate schedules
- Improve your test error:
 - Regularization
 - Choosing Hyperparameters

Lecture 7 - 19

¹⁹January 25, 2024

(Fancier) Optimizers

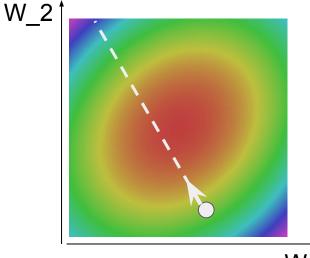
Ranjay Krishna, Sarah Pratt

Lecture 7 - 20 20 January 25, 2024

Optimization

Vanilla Gradient Descent

while True: weights_grad = evaluate_gradient(loss_fun, data, weights) weights += - step_size * weights_grad # perform parameter update



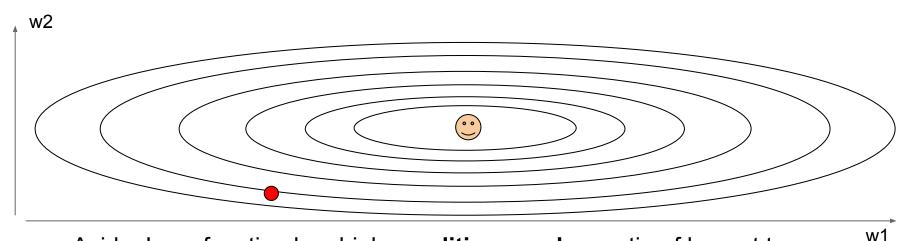
Lecture 7 - 21

W_1

²¹January 25, 2024

Optimization: Problem #1 with SGD

What if loss changes quickly in one direction and slowly in another? What does gradient descent do?



Aside: Loss function has high **condition number**: ratio of largest to smallest singular value of the Hessian matrix is large

Ranjay Krishna, Sarah Pratt

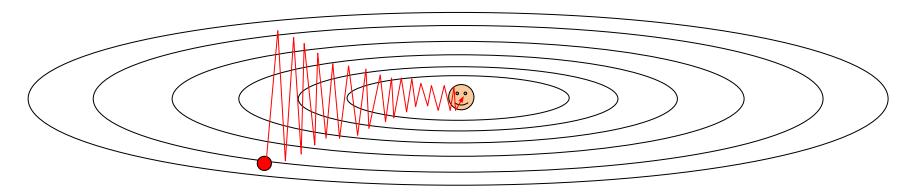
Lecture 7 - 22

²²January 25, 2024

Optimization: Problem #1 with SGD

What if loss changes quickly in one direction and slowly in another? What does gradient descent do?

Very slow progress along shallow dimension, jitter along steep direction



Loss function has high **condition number**: ratio of largest to smallest singular value of the Hessian matrix is large

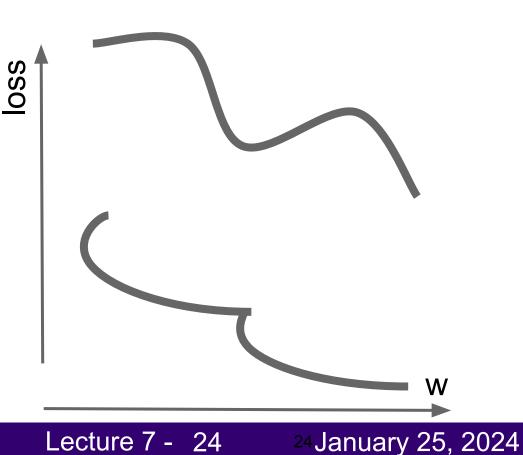
Ranjay Krishna, Sarah Pratt

Lecture 7 - 23

²³January 25, 2024

Optimization: Problem #2 with SGD

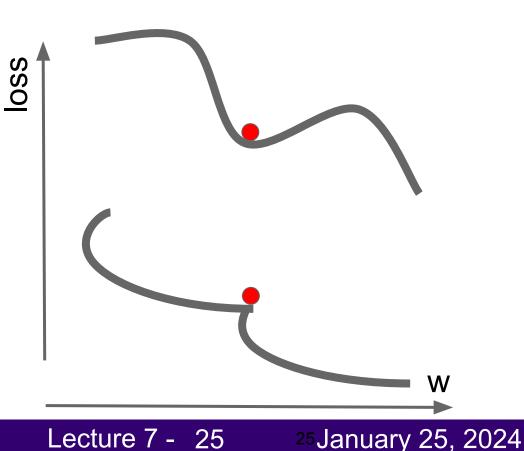
What if the loss function has a **local minima** or **saddle point**?



Optimization: Problem #2 with SGD

What if the loss function has a **local minima** or **saddle point**?

Zero gradient, gradient descent gets stuck

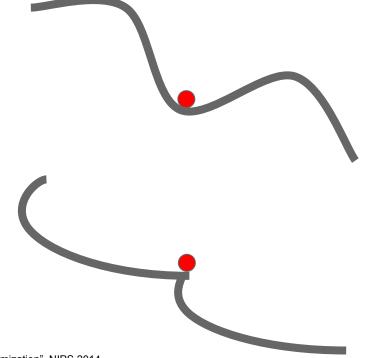


Optimization: Problem #2 with SGD

What if the loss function has a **local minima** or **saddle point**?

Saddle points much more common in high dimension

Dauphin et al, "Identifying and attacking the saddle point problem in high-dimensional non-convex optimization", NIPS 2014



²⁶January 25, 2024

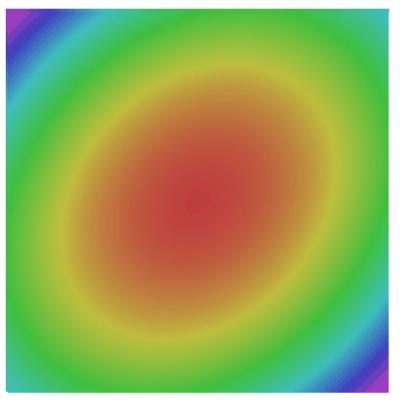
Lecture 7 - 26

Optimization: Problem #3 with SGD

Our gradients come from minibatches so they can be noisy!

$$L(W) = \frac{1}{N} \sum_{i=1}^{N} L_i(x_i, y_i, W)$$

$$\nabla_W L(W) = \frac{1}{N} \sum_{i=1}^N \nabla_W L_i(x_i, y_i, W)$$



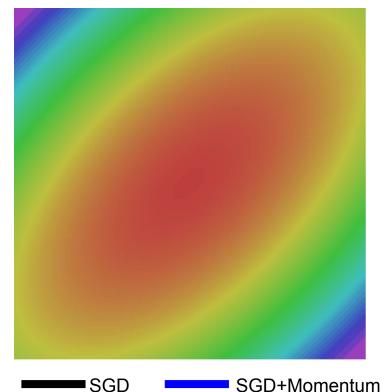
²⁷January 25, 2024

Ranjay Krishna, Sarah Pratt

SGD + Momentum

Local Minima Saddle points Poor Conditioning

Gradient Noise



Ranjay Krishna, Sarah Pratt

Lecture 7 - 28

²⁸January 25, 2024

SGD: the simple two line update code

SGD

$$x_{t+1} = x_t - \alpha \nabla f(x_t)$$

while True: dx = compute_gradient(x) x -= learning_rate * dx

Ranjay Krishna, Sarah Pratt

SGD + Momentum: continue moving in the general direction as the previous iterations SGD SGD+Momentum

$$= x_t - \alpha \nabla f(x_t)$$

 $v_{t+1} = \rho v_t + \nabla f(x_t)$ $x_{t+1} = x_t - \alpha v_{t+1}$

³⁰January 25, 2024

while True:

 x_{t+1}

dx = compute_gradient(x)
x -= learning_rate * dx

- Build up "velocity" as a running mean of gradients
- Rho gives "friction"; typically rho=0.9 or 0.99

Sutskever et al, "On the importance of initialization and momentum in deep learning", ICML 2013

Ranjay Krishna, Sarah Pratt

SGD + Momentum: continue moving in the general direction as the previous iterations SGD SGD+Momentum

$$x_{t+1} = x_t - \alpha \nabla f(x_t)$$

while True: dx = compute_gradient(x) x -= learning_rate * dx $v_{t+1} = \rho v_t + \nabla f(x_t)$ $x_{t+1} = x_t - \alpha v_{t+1}$ vx = 0
while True:
dx = compute_gradient(x)
vx = rho * vx + dx
x -= learning_rate * vx

³¹January 25, 2024

- Build up "velocity" as a running mean of gradients

Lecture 7 - 31

- Rho gives "friction"; typically rho=0.9 or 0.99

Sutskever et al, "On the importance of initialization and momentum in deep learning", ICML 2013

SGD + Momentum: alternative equivalent formulation

SGD+Momentum

 $v_{t+1} = \rho v_t - \alpha \nabla f(x_t)$ $x_{t+1} = x_t + v_{t+1}$

vx = 0
while True:
 dx = compute_gradient(x)
 vx = rho * vx - learning_rate * dx
 x += vx

SGD+Momentum

$$v_{t+1} = \rho v_t + \nabla f(x_t)$$
$$x_{t+1} = x_t - \alpha v_{t+1}$$

vx = 0
while True:
 dx = compute_gradient(x)
 vx = rho * vx + dx
 x -= learning_rate * vx

³²January 25, 2024

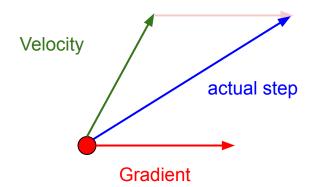
You may see SGD+Momentum formulated different ways, but they are equivalent - give same sequence of x

Lecture 7 - 32

Sutskever et al, "On the importance of initialization and momentum in deep learning", ICML 2013

SGD+Momentum

Momentum update:



Combine gradient at current point with velocity to get step used to update weights

Nesterov, "A method of solving a convex programming problem with convergence rate O(1/k^2)", 1983 Nesterov, "Introductory lectures on convex optimization: a basic course", 2004 Sutskever et al, "On the importance of initialization and momentum in deep learning", ICML 2013

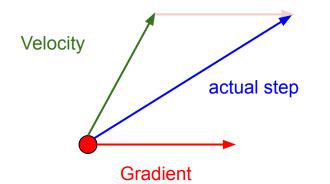
Ranjay Krishna, Sarah Pratt

Lecture 7 - 33

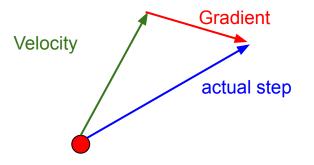
³³January 25, 2024

Nesterov Momentum

Momentum update:



Nesterov Momentum



Combine gradient at current point with velocity to get step used to update weights

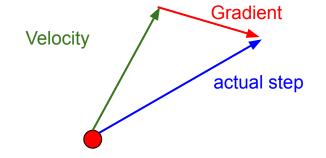
Nesterov, "A method of solving a convex programming problem with convergence rate O(1/k^2)", 1983 Nesterov, "Introductory lectures on convex optimization: a basic course", 2004 Sutskever et al, "On the importance of initialization and momentum in deep learning", ICML 2013 "Look ahead" to the point where updating using velocity would take us; compute gradient there and mix it with velocity to get actual update direction

³⁴January 25, 2024

Ranjay Krishna, Sarah Pratt

Nesterov Momentum

$$v_{t+1} = \rho v_t - \alpha \nabla f(x_t + \rho v_t)$$
$$x_{t+1} = x_t + v_{t+1}$$



"Look ahead" to the point where updating using velocity would take us; compute gradient there and mix it with velocity to get actual update direction

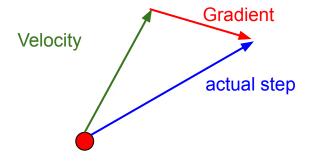
³⁵January 25, 2024

Ranjay Krishna, Sarah Pratt

Nesterov Momentum

$$v_{t+1} = \rho v_t - \alpha \nabla f(x_t + \rho v_t)$$
$$x_{t+1} = x_t + v_{t+1}$$

Annoying, usually we want update in terms of $x_t, \nabla f(x_t)$



"Look ahead" to the point where updating using velocity would take us; compute gradient there and mix it with velocity to get actual update direction

³⁶January 25, 2024

Ranjay Krishna, Sarah Pratt

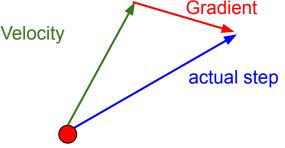
Nesterov Momentum

Change of variables $\tilde{x}_t = x_t + \rho v_t$

$$\begin{aligned} v_{t+1} &= \rho v_t - \alpha \nabla f(x_t + \rho v_t) \\ x_{t+1} &= x_t + v_{t+1} \end{aligned}$$
 Annoying update in

and

Annoying, usually we want update in terms of $x_t,
abla f(x_t)$



"Look ahead" to the point where updating using velocity would take us; compute gradient there and mix it with velocity to get actual update direction

³⁷January 25, 2024

Ranjay Krishna, Sarah Pratt

rearrange:

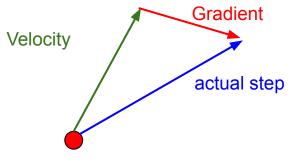
Nesterov Momentum

$$v_{t+1} = \rho v_t - \alpha \nabla f(x_t + \rho v_t)$$
$$x_{t+1} = x_t + v_{t+1}$$

Change of variables $\tilde{x}_t = x_t + \rho v_t$ and rearrange:

$$v_{t+1} = \rho v_t - \alpha \nabla f(\tilde{x}_t) \tilde{x}_{t+1} = \tilde{x}_t - \rho v_t + (1+\rho)v_{t+1} = \tilde{x}_t + v_{t+1} + \rho(v_{t+1} - v_t)$$

Annoying, usually we want update in terms of $x_t, \nabla f(x_t)$

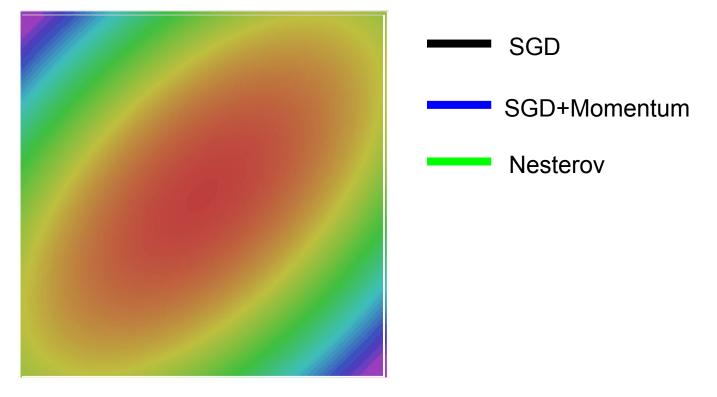


"Look ahead" to the point where updating using velocity would take us; compute gradient there and mix it with velocity to get actual update direction

³⁸January 25, 2024

Ranjay Krishna, Sarah Pratt

Nesterov Momentum



Ranjay Krishna, Sarah Pratt

grad_squared = 0
while True:
 dx = compute_gradient(x)
 grad_squared += dx * dx
 x -= learning_rate * dx / (np.sqrt(grad_squared) + 1e-7)

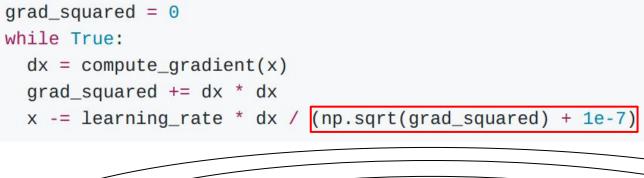
Added element-wise scaling of the gradient based on the historical sum of squares in each dimension

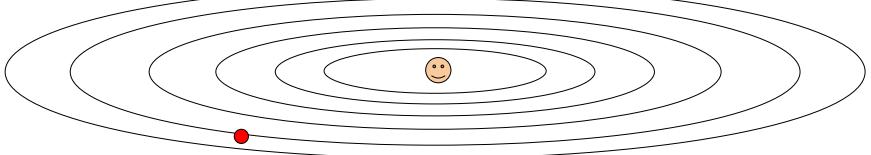
Lecture 7 - 40

⁴⁰January 25, 2024

"Per-parameter learning rates" or "adaptive learning rates"

Duchi et al, "Adaptive subgradient methods for online learning and stochastic optimization", JMLR 2011

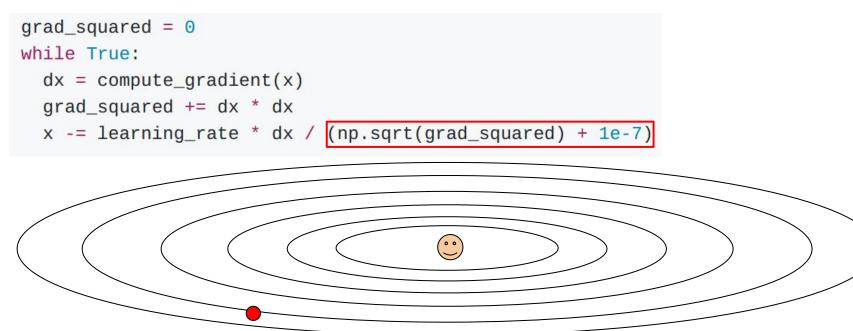




Lecture 7 - 41

41 January 25, 2024

Q: What happens with AdaGrad?

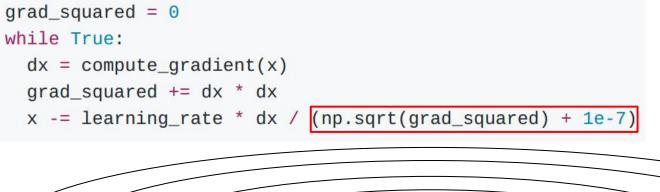


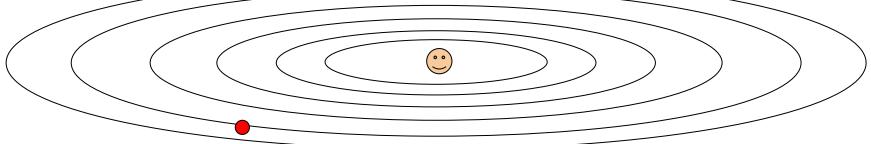
Q: What happens with AdaGrad? Progress

Progress along "steep" directions is damped; progress along "flat" directions is accelerated

⁴²January 25, 2024

Ranjay Krishna, Sarah Pratt



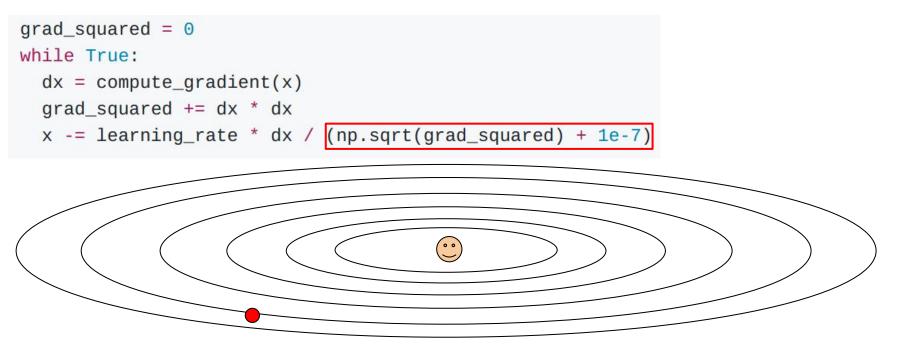


Q2: What happens to the step size over long time?

Ranjay Krishna, Sarah Pratt

Lecture 7 - 43

⁴³January 25, 2024



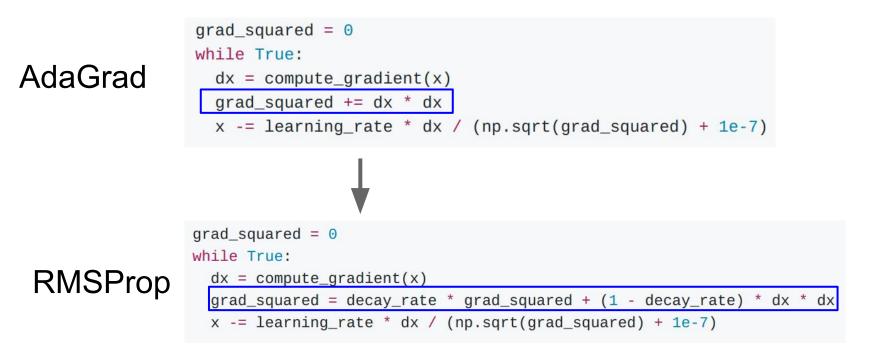
Q2: What happens to the step size over long time? Decays to zero

Ranjay Krishna, Sarah Pratt

Lecture 7 - 44

44 January 25, 2024

RMSProp: "Leaky AdaGrad"

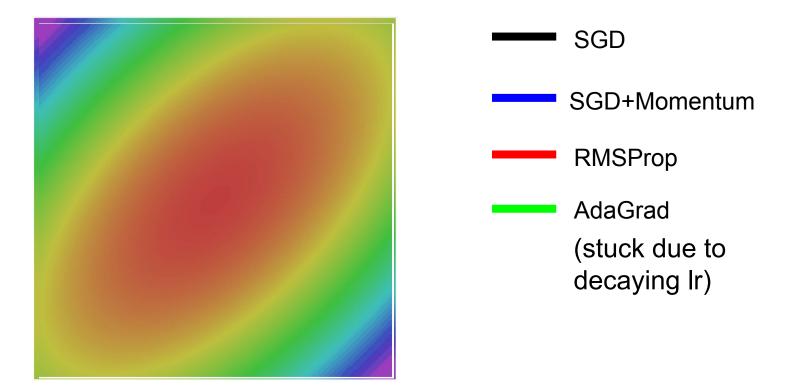


Lecture 7 - 45

⁴⁵January 25, 2024

Tieleman and Hinton, 2012

RMSProp



Ranjay Krishna, Sarah Pratt

Lecture 7 - 46

46 January 25, 2024

Adam (almost)

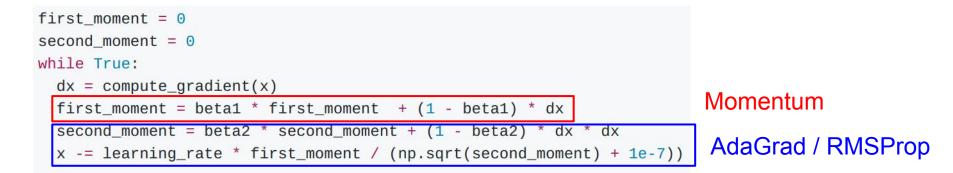
```
first_moment = 0
second_moment = 0
while True:
    dx = compute_gradient(x)
    first_moment = beta1 * first_moment + (1 - beta1) * dx
    second_moment = beta2 * second_moment + (1 - beta2) * dx * dx
    x -= learning_rate * first_moment / (np.sqrt(second_moment) + 1e-7))
```

Lecture 7 - 47

47 January 25, 2024

Kingma and Ba, "Adam: A method for stochastic optimization", ICLR 2015

Adam (almost)



Lecture 7 - 48

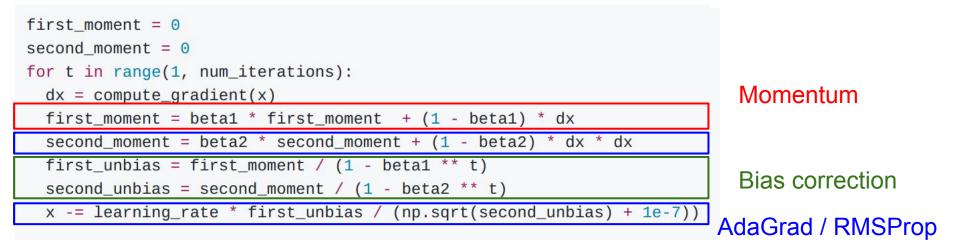
⁴⁸January 25, 2024

Sort of like RMSProp with momentum

Q: What happens at first timestep?

Kingma and Ba, "Adam: A method for stochastic optimization", ICLR 2015

Adam (full form)



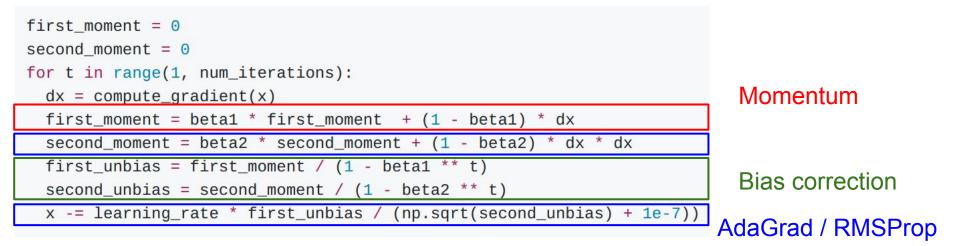
Lecture 7 - 49

⁴⁹January 25, 2024

Bias correction for the fact that first and second moment estimates start at zero

Kingma and Ba, "Adam: A method for stochastic optimization", ICLR 2015

Adam (full form)



Bias correction for the fact that first and second moment estimates start at zero

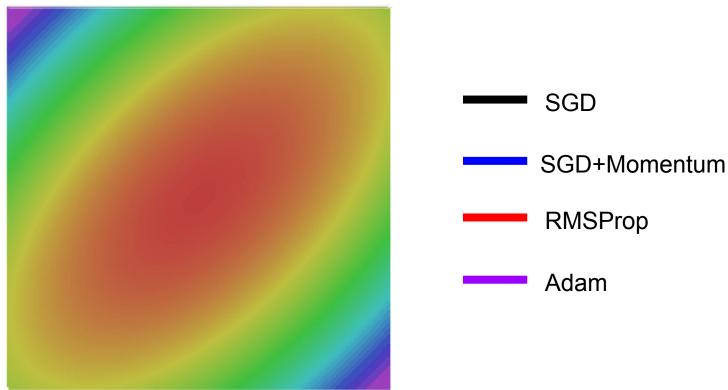
Adam with beta1 = 0.9, beta2 = 0.999, and learning_rate = 1e-3 or 5e-4 is a great starting point for many models!

⁵⁰January 25, 2024

Kingma and Ba, "Adam: A method for stochastic optimization", ICLR 2015

Ranjay Krishna, Sarah Pratt

Adam



Ranjay Krishna, Sarah Pratt

Lecture 7 - 51

⁵¹January 25, 2024

L2 Regularization vs Weight DecayOptimization AlgorithmL2 Regularization $L(w) = L_{data}(w) + L_{reg}(w)$ $L(w) = L_{data}(w) + \lambda |w|^2$ $g_t = \nabla L(w_t)$ $L(w) = L_{data}(w) + \lambda |w|^2$ $g_t = \nabla L(w_t)$ $g_t = \nabla L(w_t) = \nabla L_{data}(w_t) + 2\lambda w_t$ $s_t = optimizer(g_t)$ $s_t = optimizer(g_t)$ $w_{t+1} = w_t - \alpha s_t$ $w_{t+1} = w_t - \alpha s_t$

Lecture 7 - 52

January 25, 2024

L2 Regularization vs Weight Decay **Optimization Algorithm** $L(w) = L_{data}(w) + L_{reg}(w)$ $g_t = \nabla L(w_t)$ $s_t = optimizer(q_t)$ $w_{t+1} = w_t - \alpha s_t$

L2 Regularization and Weight Decay are equivalent for SGD, SGD+Momentum so people often use the terms interchangeably!

L2 Regularization $L(w) = L_{data}(w) + \lambda |w|^2$ $g_t = \nabla L(w_t) = \nabla L_{data}(w_t) + 2\lambda w_t$ $s_t = optimizer(q_t)$

$$w_{t+1} = w_t - \alpha s_t$$

Weight Decay $L(w) = L_{data}(w)$ $g_t = \nabla L_{data}(w_t)$ $s_t = optimizer(q_t) + 2\lambda w_t$ $W_{t+1} = W_t - \alpha S_t$

Ranjay Krishna, Sarah Pratt

Lecture 7 - 53 January 25, 2024

L2 Regularization vs Weight Decay **Optimization Algorithm** $L(w) = L_{data}(w) + L_{reg}(w)$ $g_t = \nabla L(w_t)$ $s_t = optimizer(q_t)$ $w_{t+1} = w_t - \alpha s_t$

L2 Regularization and Weight Decay are equivalent for SGD, SGD+Momentum so people often use the terms interchangeably!

But they are not the same for adaptive methods (AdaGrad, RMSProp, Adam, etc)

L2 Regularization $L(w) = L_{data}(w) + \lambda |w|^2$

$$g_{t} = \nabla L(w_{t}) = \nabla L_{data}(w_{t}) + 2\lambda w_{t}$$

$$s_{t} = optimizer(g_{t})$$

$$w_{t+1} = w_{t} - \alpha s_{t}$$

Weight Decay $L(w) = L_{data}(w)$ $g_t = \nabla L_{data}(w_t)$ $s_t = optimizer(q_t) + 2\lambda w_t$ $w_{t+1} = w_t - \alpha s_t$

Ranjay Krishna, Sarah Pratt

Lecture 7 - 54 January 25, 2024

AdamW: Decoupled Weight Decay

Algorithm 2 Adam with L₂ regularization and Adam with decoupled weight decay (AdamW)

- 1: given $\alpha = 0.001, \beta_1 = 0.9, \beta_2 = 0.999, \epsilon = 10^{-8}, \lambda \in \mathbb{R}$
- 2: initialize time step $t \leftarrow 0$, parameter vector $\boldsymbol{\theta}_{t=0} \in \mathbb{R}^n$, first moment vector $\boldsymbol{m}_{t=0} \leftarrow \boldsymbol{\theta}$, second moment vector $\boldsymbol{v}_{t=0} \leftarrow \boldsymbol{\theta}$, schedule multiplier $\eta_{t=0} \in \mathbb{R}$
- 3: repeat
- 4: $t \leftarrow t+1$
- 5: $\nabla f_t(\boldsymbol{\theta}_{t-1}) \leftarrow \text{SelectBatch}(\boldsymbol{\theta}_{t-1})$
- 6: $\boldsymbol{g}_t \leftarrow \nabla f_t(\boldsymbol{\theta}_{t-1}) + \lambda \boldsymbol{\theta}_{t-1}$
- 7: $\boldsymbol{m}_t \leftarrow \beta_1 \boldsymbol{m}_{t-1} + (1-\beta_1) \boldsymbol{g}_t$
- 8: $\mathbf{v}_t \leftarrow \beta_2 \mathbf{v}_{t-1} + (1 \beta_2) \mathbf{g}_t^2$ 9: $\hat{\mathbf{m}}_t \leftarrow \mathbf{m}_t / (1 - \beta_1^t)$
- 9: $m_t \leftarrow m_t/(1-\beta_1)$
- 10: $\hat{\mathbf{v}}_t \leftarrow \mathbf{v}_t / (1 \beta_2^t)$
- 11: $\eta_t \leftarrow \text{SetScheduleMultiplier}(t)$
- 12: $\boldsymbol{\theta}_t \leftarrow \boldsymbol{\theta}_{t-1} \eta_t \left(\alpha \hat{\boldsymbol{w}}_t / (\sqrt{\hat{\boldsymbol{v}}_t} + \epsilon) + \lambda \boldsymbol{\theta}_{t-1} \right)$
- 13: **until** stopping criterion is met
- 14: return optimized parameters θ_t

▷ select batch and return the corresponding gradient

▷ here and below all operations are element-wise

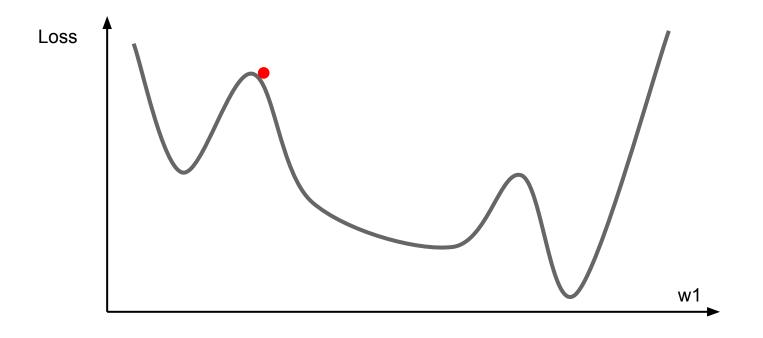
 $\triangleright \beta_1$ is taken to the power of t

 $\triangleright \beta_2$ is taken to the power of t

▷ can be fixed, decay, or also be used for warm restarts

Lecture 7 - 55 55 January 25, 2024

First-Order Optimization

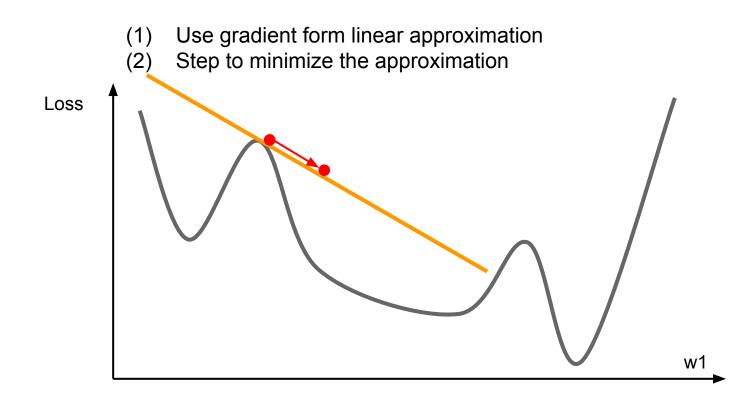


Ranjay Krishna, Sarah Pratt

Lecture 7 - 56

⁵⁶January 25, 2024

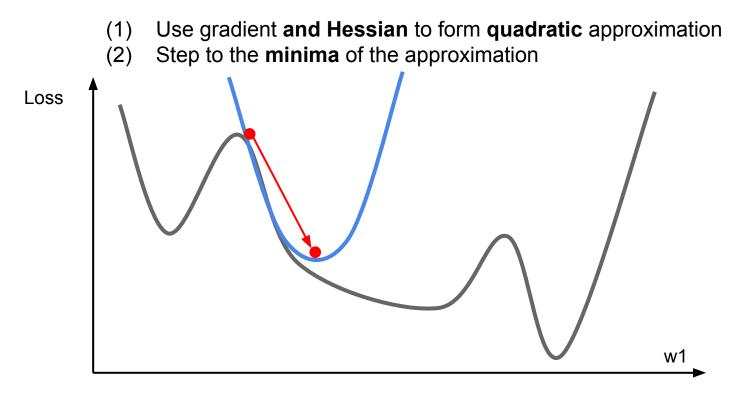
First-Order Optimization



Ranjay Krishna, Sarah Pratt

Lecture 7 - 57

⁵⁷January 25, 2024



Ranjay Krishna, Sarah Pratt

Lecture 7 - 58

⁵⁸January 25, 2024

second-order Taylor expansion:

$$L(\theta) \approx L(\theta_0) + (\theta - \theta_0)^T \nabla_{\theta} L(\theta_0) + \frac{1}{2} (\theta - \theta_0)^T H(\theta - \theta_0)$$

Solving for the critical point we obtain the Newton parameter update:

$$\theta^* = \theta_0 - H^{-1} \nabla_\theta L(\theta_0)$$

Q: Why is this bad for deep learning?

Ranjay Krishna, Sarah Pratt

Lecture 7 - 59

⁵⁹January 25, 2024

second-order Taylor expansion:

$$L(\theta) \approx L(\theta_0) + (\theta - \theta_0)^T \nabla_{\theta} L(\theta_0) + \frac{1}{2} (\theta - \theta_0)^T H(\theta - \theta_0)$$

Solving for the critical point we obtain the Newton parameter update:

$$\theta^* = \theta_0 - H^{-1} \nabla_\theta L(\theta_0)$$

Hessian has O(N²) elements Inverting takes O(N³) N = (Tens or Hundreds of) Millions

⁶⁰January 25, 2024

Q: Why is this bad for deep learning?

Ranjay Krishna, Sarah Pratt

$$\theta^* = \theta_0 - H^{-1} \nabla_\theta L(\theta_0)$$

⁶¹January 25, 2024

 Quasi-Newton methods (BGFS most popular): instead of inverting the Hessian (O(n^3)), approximate inverse Hessian with rank 1 updates over time (O(n^2) each).

Lecture 7 - 61

- L-BFGS (Limited memory BFGS): Does not form/store the full inverse Hessian.

L-BFGS

- Usually works very well in full batch, deterministic mode i.e. if you have a single, deterministic f(x) then L-BFGS will probably work very nicely
- Does not transfer very well to mini-batch setting. Gives bad results. Adapting second-order methods to large-scale, stochastic setting is an active area of research.

Lecture 7 - 62

⁶²January 25, 2024

Le et al, "On optimization methods for deep learning, ICML 2011" Ba et al, "Distributed second-order optimization using Kronecker-factored approximations", ICLR 2017

In practice:

- AdamW should probably be your "default" optimizer for new problems
- Adam is a good second choice in many cases; it often works ok even with constant learning rate
- SGD+Momentum can outperform Adam but may require more tuning of LR and schedule
 - Try cosine schedule, very few hyperparameters!

Lecture 7 - 63

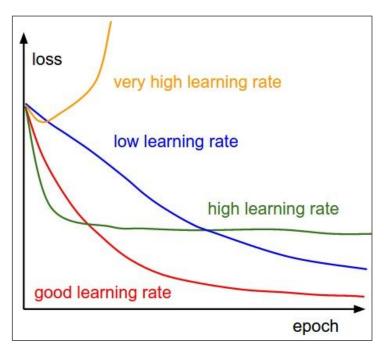
⁶³January 25, 2024

Learning rate schedules

January 25, 2024

Lecture 7 - 64 64

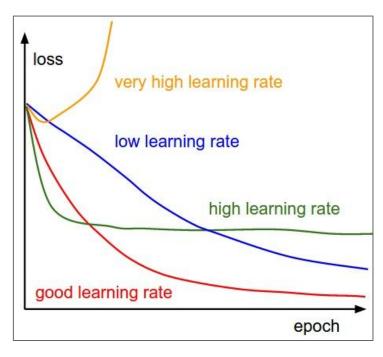
SGD, SGD+Momentum, Adagrad, RMSProp, Adam all have **learning rate** as a hyperparameter.



Q: Which one of these learning rates is best to use?

Ranjay Krishna, Sarah Pratt

SGD, SGD+Momentum, Adagrad, RMSProp, Adam all have **learning rate** as a hyperparameter.

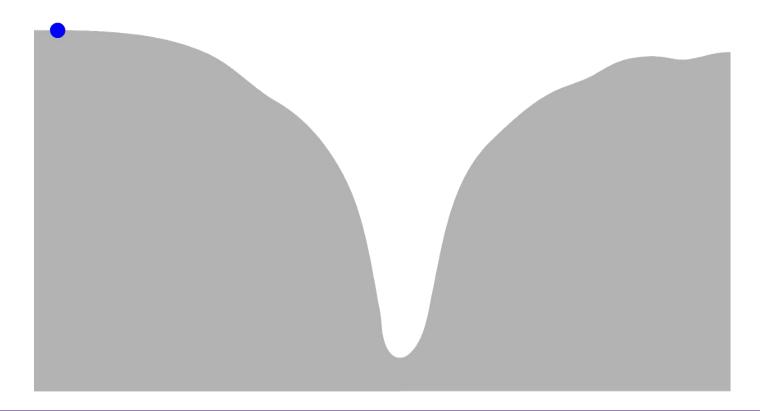


Q: Which one of these learning rates is best to use?

A: In reality, all of these are good learning rates.

⁶⁶January 25, 2024

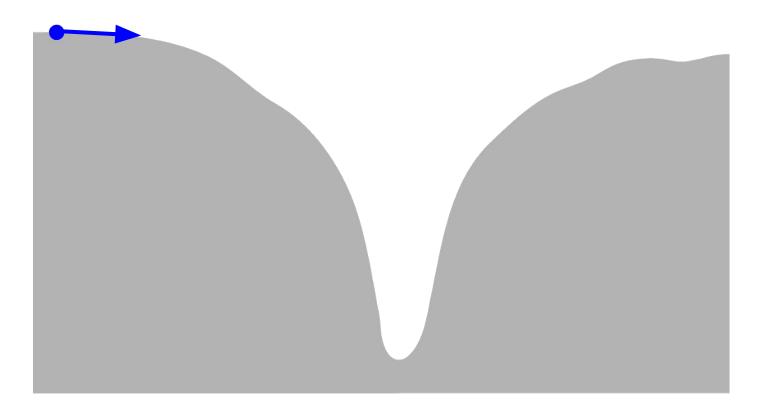
Ranjay Krishna, Sarah Pratt



Ranjay Krishna, Sarah Pratt

Lecture 7 - 67

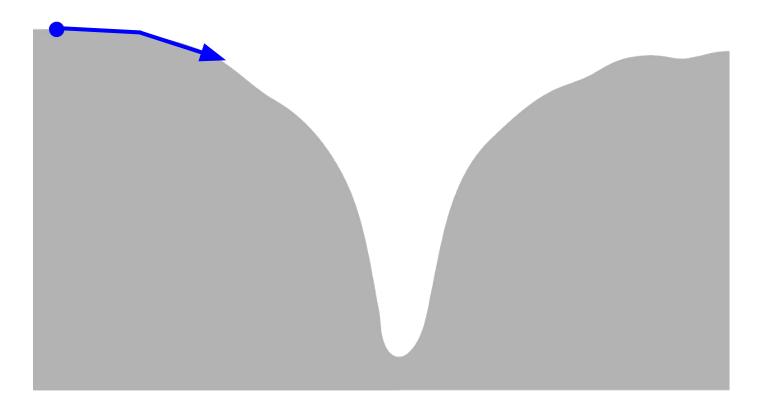
⁶⁷January 25, 2024



Ranjay Krishna, Sarah Pratt

Lecture 7 - 68

⁶⁸January 25, 2024



Ranjay Krishna, Sarah Pratt

Lecture 7 - 69

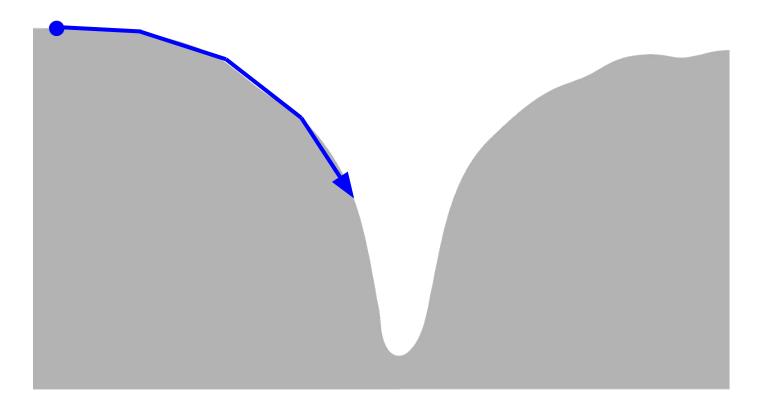
⁶⁹January 25, 2024



Ranjay Krishna, Sarah Pratt

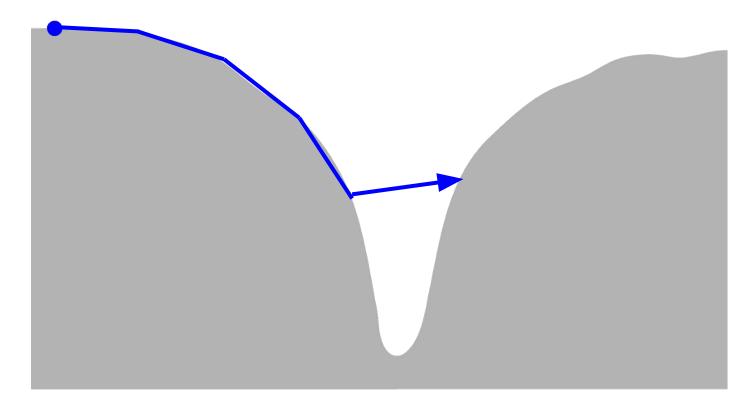
Lecture 7 - 70

⁷⁰January 25, 2024



Ranjay Krishna, Sarah Pratt

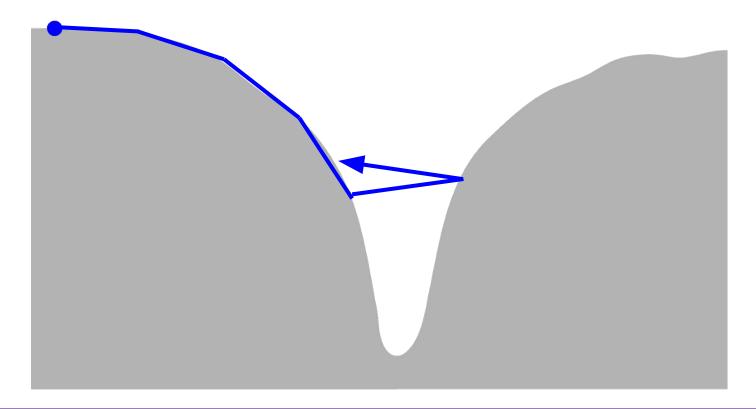
Lecture 7 - 71 71 January 25, 2024



Ranjay Krishna, Sarah Pratt

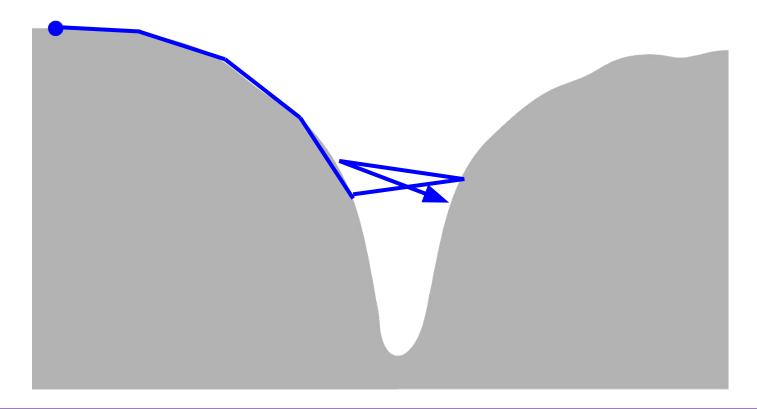
Lecture 7 - 72

72 January 25, 2024



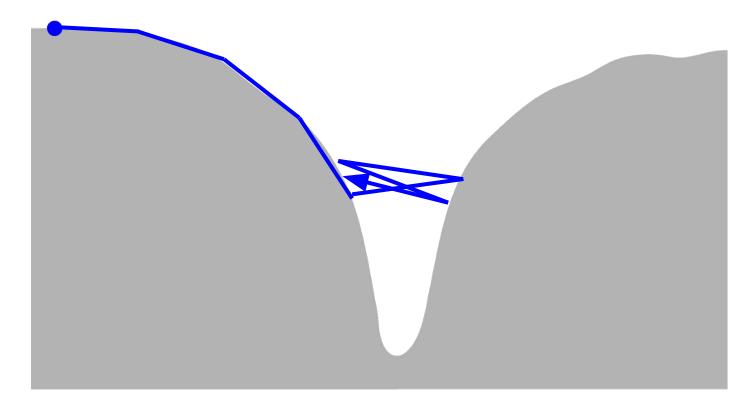
Ranjay Krishna, Sarah Pratt

Lecture 7 - 73



Ranjay Krishna, Sarah Pratt

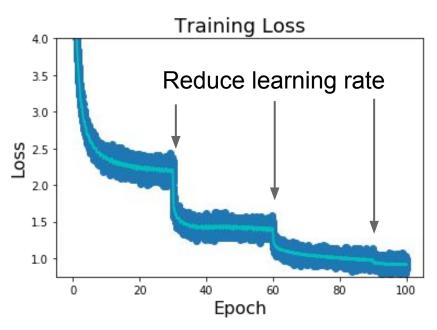
Lecture 7 - 74



Ranjay Krishna, Sarah Pratt

Lecture 7 - 75

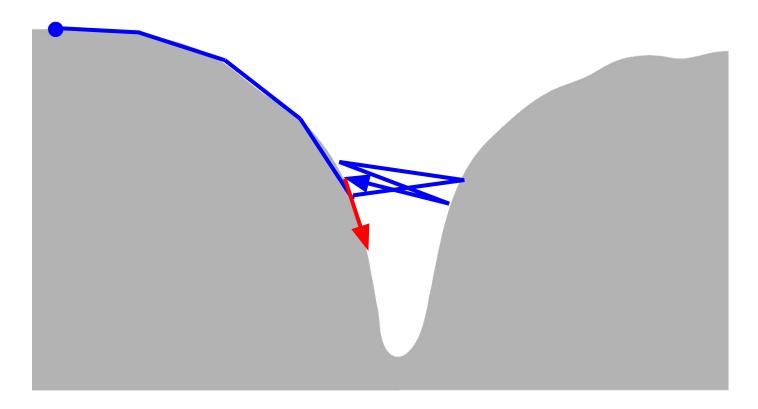
Learning rate decays over time



Step: Reduce learning rate at a few fixed points. E.g. for ResNets, multiply LR by 0.1 after epochs 30, 60, and 90.

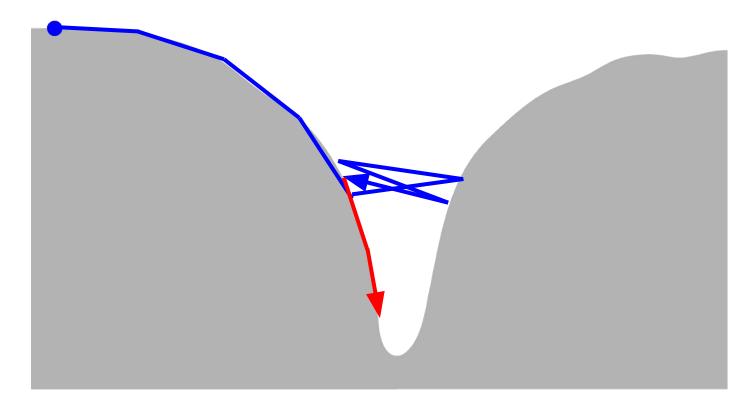
Ranjay Krishna, Sarah Pratt

Lecture 7 - 76



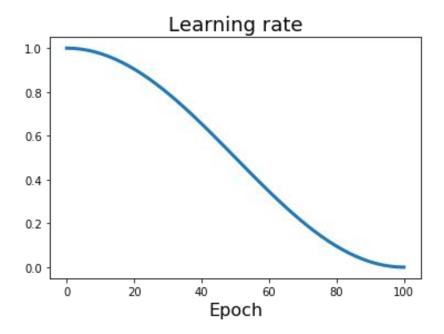
Ranjay Krishna, Sarah Pratt

Lecture 7 - 77 77 January 25, 2024



Ranjay Krishna, Sarah Pratt

Lecture 7 - 78



Loshchilov and Hutter, "SGDR: Stochastic Gradient Descent with Warm Restarts", ICLR 2017 Radford et al, "Improving Language Understanding by Generative Pre-Training", 2018 Feichtenhofer et al, "SlowFast Networks for Video Recognition", arXiv 2018 Child at al, "Generating Long Sequences with Sparse Transformers", arXiv 2019

Step: Reduce learning rate at a few fixed points. E.g. for ResNets, multiply LR by 0.1 after epochs 30, 60, and 90.

Cosine:
$$\alpha_t = \frac{1}{2} \alpha_0 \left(1 + \cos(t\pi/T) \right)$$

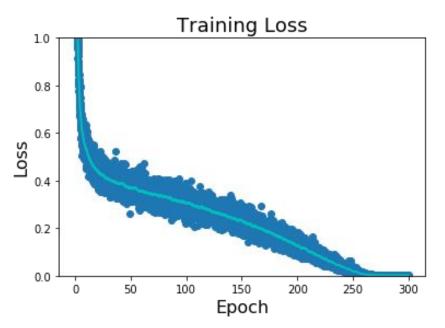
 α_0 : Initial learning rate

- $lpha_t$: Learning rate at epoch t
 - T: Total number of epochs

Ranjay Krishna, Sarah Pratt

Lecture 7 - 79

⁷⁹January 25, 2024



Loshchilov and Hutter, "SGDR: Stochastic Gradient Descent with Warm Restarts", ICLR 2017 Radford et al, "Improving Language Understanding by Generative Pre-Training", 2018 Feichtenhofer et al, "SlowFast Networks for Video Recognition", arXiv 2018 Child at al, "Generating Long Sequences with Sparse Transformers", arXiv 2019

Step: Reduce learning rate at a few fixed points. E.g. for ResNets, multiply LR by 0.1 after epochs 30, 60, and 90.

Cosine:
$$\alpha_t = \frac{1}{2} \alpha_0 \left(1 + \cos(t\pi/T) \right)$$

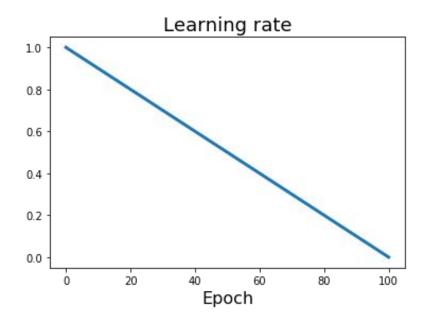
 α_0 : Initial learning rate

- $lpha_t$: Learning rate at epoch t
 - T: Total number of epochs

Ranjay Krishna, Sarah Pratt

Lecture 7 - 80

⁸⁰January 25, 2024



Devlin et al, "BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding", 2018

Step: Reduce learning rate at a few fixed points. E.g. for ResNets, multiply LR by 0.1 after epochs 30, 60, and 90.

Cosine:
$$\alpha_t = \frac{1}{2}\alpha_0 \left(1 + \cos(t\pi/T)\right)$$

inear:
$$\alpha_t = \alpha_0(1 - t/T)$$

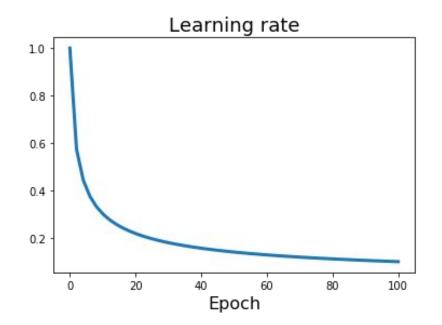
 $lpha_0$: Initial learning rate

- $lpha_t$: Learning rate at epoch t
- T: Total number of epochs

Ranjay Krishna, Sarah Pratt

Lecture 7 - 8<u>1</u>

⁸¹January 25, 2024



Step: Reduce learning rate at a few fixed points. E.g. for ResNets, multiply LR by 0.1 after epochs 30, 60, and 90.

Cosine:
$$\alpha_t = \frac{1}{2} \alpha_0 \left(1 + \cos(t\pi/T)\right)$$

Linear: $\alpha_t = \alpha_0 (1 - t/T)$

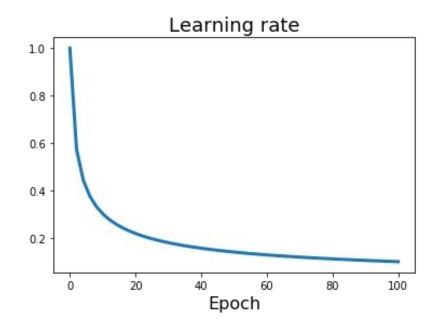
Inverse sqrt:
$$\alpha_t = \alpha_0/\sqrt{t}$$

 $lpha_0$: Initial learning rate $lpha_t$: Learning rate at epoch t T : Total number of epochs

Vaswani et al, "Attention is all you need", NIPS 2017

Ranjay Krishna, Sarah Pratt

Lecture 7 - 82



Step: Reduce learning rate at a few fixed points. E.g. for ResNets, multiply LR by 0.1 after epochs 30, 60, and 90.

⁸³January 25, 2024

Cosine:
$$\alpha_t = \frac{1}{2} \alpha_0 \left(1 + \cos(t\pi/T)\right)$$

Linear: $\alpha_t = \alpha_0 (1 - t/T)$
Inverse sqrt: $\alpha_t = \alpha_0 / \sqrt{t}$

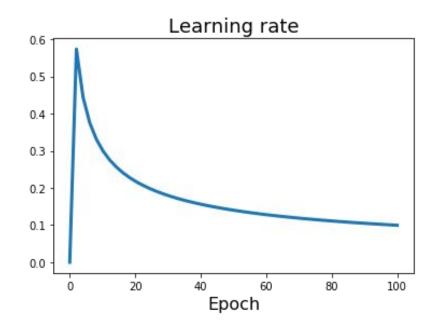
Constant: $\alpha_t = \alpha_0$

Vaswani et al, "Attention is all you need", NIPS 2017

Ranjay Krishna, Sarah Pratt

Lecture 7 - 83

Learning Rate Decay: Linear Warmup



High initial learning rates can make loss explode; linearly increasing learning rate from 0 over the first ~5000 iterations can prevent this

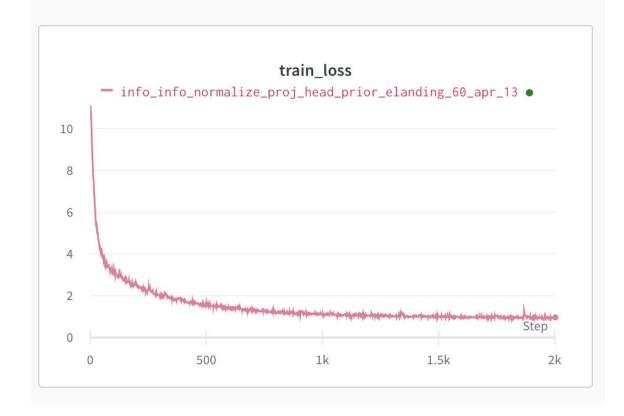
Empirical rule of thumb: If you increase the batch size by N, also scale the initial learning rate by N

⁸⁴January 25, 2024

Lecture 7 - 84

Goyal et al, "Accurate, Large Minibatch SGD: Training ImageNet in 1 Hour", arXiv 2017

with cosine and warmup



Ranjay Krishna, Sarah Pratt

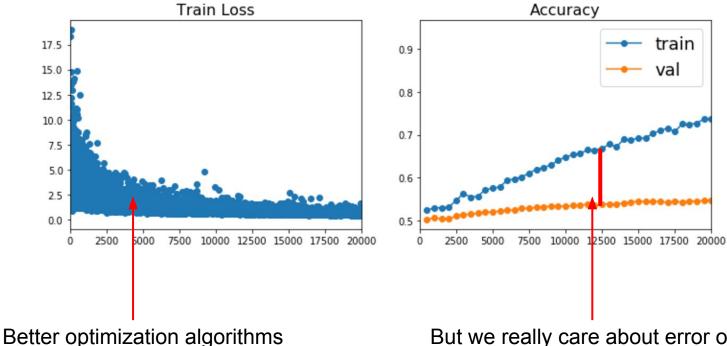
Lecture 7 - 85

Improve test error

January 25, 2024

Lecture 7 - 86

Beyond Training Error



help reduce training loss

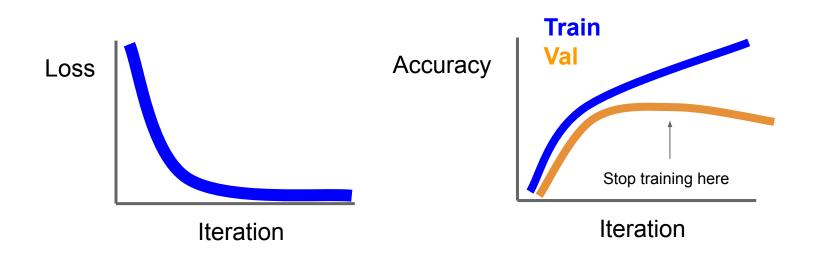
But we really care about error on new data - how to reduce the gap?

⁸⁷January 25, 2024

Ranjay Krishna, Sarah Pratt

Lecture 7 - 87

Early Stopping: Always do this



Stop training the model when accuracy on the validation set decreases Or train for a long time, but always keep track of the model snapshot that worked best on val

Ranjay Krishna, Sarah Pratt

Lecture 7 - 88

⁸⁸January 25, 2024

Model Ensembles

- 1. Train multiple independent models
- 2. At test time average their results

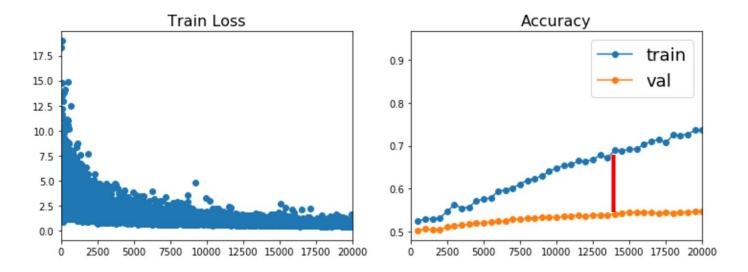
(Take average of predicted probability distributions, then choose argmax)

Lecture 7 - 89

⁸⁹January 25, 2024

Enjoy 2% extra performance

How to improve single-model performance?



Regularization

Ranjay Krishna, Sarah Pratt

Lecture 7 - 90

⁹⁰January 25, 2024

Regularization: Add term to loss

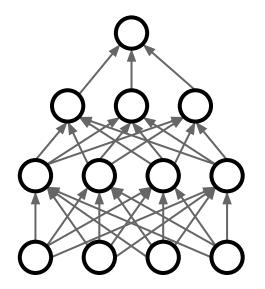
$$L = rac{1}{N} \sum_{i=1}^{N} \sum_{j
eq y_i} \max(0, f(x_i; W)_j - f(x_i; W)_{y_i} + 1) + \lambda R(W)$$

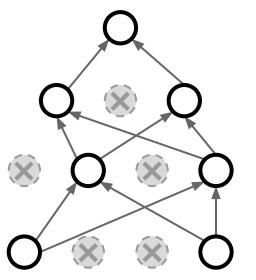
In common use:L2 regularization $R(W) = \sum_k \sum_l W_{k,l}^2$ (Weight decay)L1 regularization $R(W) = \sum_k \sum_l |W_{k,l}|$ Elastic net (L1 + L2) $R(W) = \sum_k \sum_l \beta W_{k,l}^2 + |W_{k,l}|$

Ranjay Krishna, Sarah Pratt

Lecture 7 - 91

In each forward pass, randomly set some neurons to zero Probability of dropping is a hyperparameter; 0.5 is common





⁹²January 25, 2024

Lecture 7 - 92

Srivastava et al, "Dropout: A simple way to prevent neural networks from overfitting", JMLR 2014

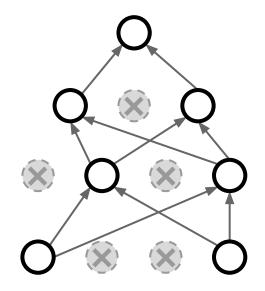
p = 0.5 # probability of keeping a unit active. higher = less dropout

```
def train_step(X):
    """ X contains the data """
```

```
# forward pass for example 3-layer neural network
H1 = np.maximum(0, np.dot(W1, X) + b1)
U1 = np.random.rand(*H1.shape)
```

backward pass: compute gradients... (not shown)
perform parameter update... (not shown)

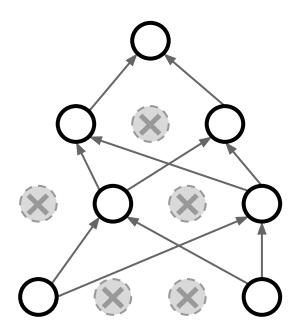
Example forward pass with a 3-layer network using dropout



Ranjay Krishna, Sarah Pratt

Lecture 7 - 93

How can this possibly be a good idea?



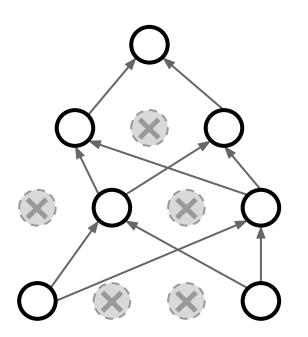
Forces the network to have a redundant representation; Prevents co-adaptation of features

94 January 25, 2024

Ranjay Krishna, Sarah Pratt

Lecture 7 - 94

How can this possibly be a good idea?



Another interpretation:

Dropout is training a large **ensemble** of models (that share parameters).

Each binary mask is one model

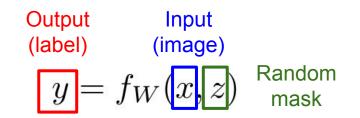
An FC layer with 4096 units has $2^{4096} \sim 10^{1233}$ possible masks! Only ~ 10^{82} atoms in the universe...

95 January 25, 2024

Ranjay Krishna, Sarah Pratt

Lecture 7 - 95

Dropout makes our output random!



96 January 25, 2024

Want to "average out" the randomness at test-time

$$y = f(x) = E_z \left[f(x, z) \right] = \int p(z) f(x, z) dz$$

Lecture 7 - 96

But this integral seems hard ...

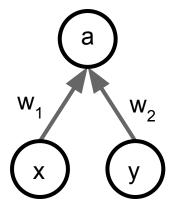
Want to approximate the integral

$$y = f(x) = E_z \left[f(x, z) \right] = \int p(z) f(x, z) dz$$

97 January 25, 2024

Lecture 7 - 97

Consider a single neuron.

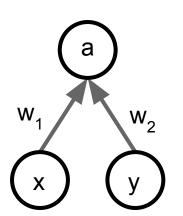


Want to approximate the integral

$$y = f(x) = E_z [f(x, z)] = \int p(z) f(x, z) dz$$

98 January 25, 2024

Consider a single neuron.



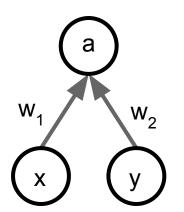
At test time we have:
$$E\left[a
ight]=w_{1}x+w_{2}y_{3}$$

Lecture 7 - 98

Want to approximate the integral

$$y = f(x) = E_z [f(x, z)] = \int p(z)f(x, z)dz$$

Consider a single neuron.



At test time we have: $E[a] = w_1 x + w_2 y$ During training we have: $E[a] = \frac{1}{4}(w_1 x + w_2 y) + \frac{1}{4}(w_1 x + w_2 0)$ $+ \frac{1}{4}(w_1 0 + w_2 0) + \frac{1}{4}(w_1 0 + w_2 y)$ $= \frac{1}{2}(w_1 x + w_2 y)$

⁹⁹January 25, 2024

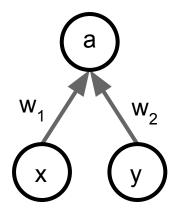
Ranjay Krishna, Sarah Pratt

Lecture 7 - 99

Want to approximate the integral

$$y = f(x) = E_z [f(x, z)] = \int p(z) f(x, z) dz$$

Consider a single neuron.



At test time we have: $E[a] = w_1 x + w_2 y$ During training we have: $E[a] = \frac{1}{4}(w_1 x + w_2 y) + \frac{1}{4}(w_1 x + w_2 0)$ $+ \frac{1}{4}(w_1 0 + w_2 0) + \frac{1}{4}(w_1 0 + w_2 y)$

At test time, **multiply** by dropout probability

$$= \frac{1}{2}(w_1x + w_2y)$$

Ranjay Krishna, Sarah Pratt

Lecture 7 - 100 ¹⁰⁰ January 25, 2024

```
def predict(X):
```

```
# ensembled forward pass
H1 = np.maximum(0, np.dot(W1, X) + b1) * p # NOTE: scale the activations
H2 = np.maximum(0, np.dot(W2, H1) + b2) * p # NOTE: scale the activations
out = np.dot(W3, H2) + b3
```

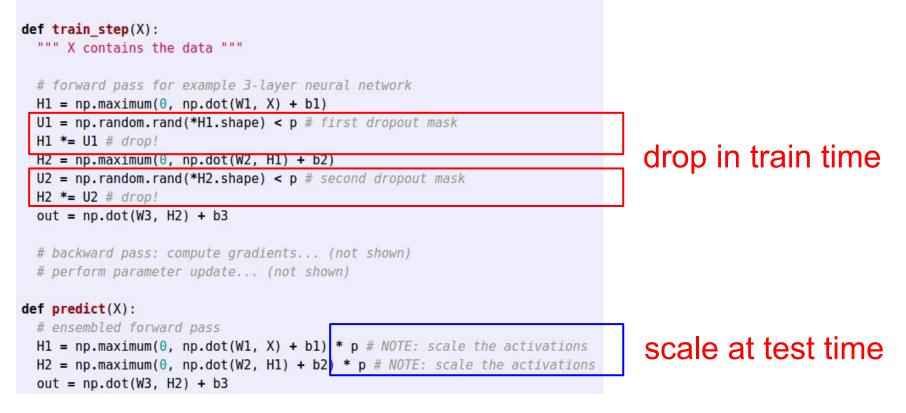
At test time all neurons are active always => We must scale the activations so that for each neuron: <u>output at test time</u> = <u>expected output at training time</u>

Lecture 7 - 101

¹⁰¹January 25, 2024

""" Vanilla Dropout: Not recommended implementation (see notes below) """

p = 0.5 # probability of keeping a unit active. higher = less dropout



Ranjay Krishna, Sarah Pratt

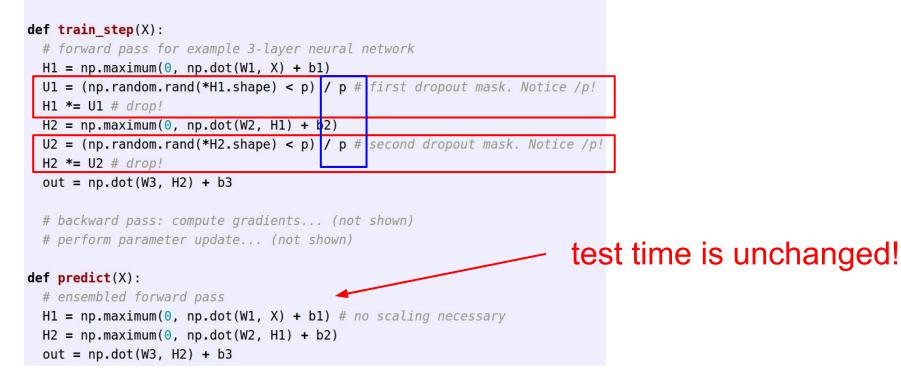
Lecture 7 - 102

Dropout Summary

¹⁰²January 25, 2024

More common: "Inverted dropout"

p = 0.5 # probability of keeping a unit active. higher = less dropout



Ranjay Krishna, Sarah Pratt

Lecture 7 - 103 ¹⁰³ January 25, 2024

Regularization: A common pattern

Training: Add some kind of randomness

$$y = f_W(x, z)$$

Testing: Average out randomness (sometimes approximate)

$$y = f(x) = E_z \left[f(x, z) \right] = \int p(z) f(x, z) dz$$

Lecture 7 - 104

104 January 25, 2024

Regularization: A common pattern

Training: Add some kind of randomness

$$y = f_W(x, z)$$

Testing: Average out randomness (sometimes approximate)

$$y = f(x) = E_z \left[f(x, z) \right] = \int p(z) f(x, z) dz$$

Example: Batch Normalization

Training:

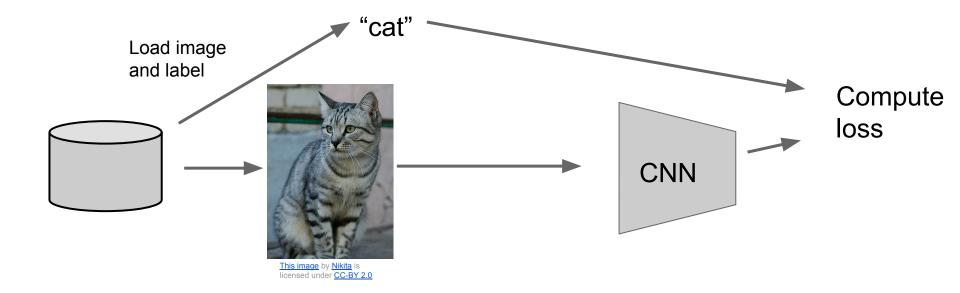
Normalize using stats from random minibatches

Testing: Use fixed stats to normalize

Ranjay Krishna, Sarah Pratt

Lecture 7 - 105 ¹⁰⁵ January 25, 2024

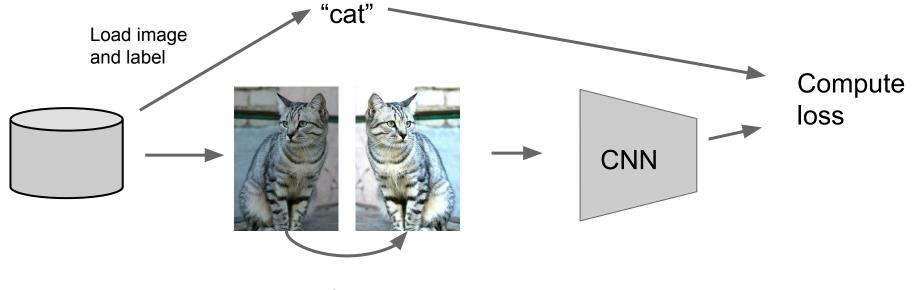
Regularization: Data Augmentation



Ranjay Krishna, Sarah Pratt

Lecture 7 - 106 ¹⁰⁶ January 25, 2024

Regularization: Data Augmentation



Transform image

Ranjay Krishna, Sarah Pratt

Lecture 7 - 107 ¹⁰⁷ January 25, 2024

Data Augmentation Horizontal Flips

Ranjay Krishna, Sarah Pratt

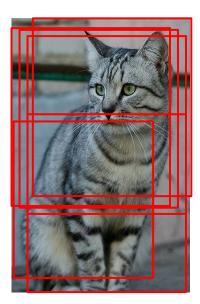
Lecture 7 - 108 ¹⁰⁸ January 25, 2024

Data Augmentation Random crops and scales

Training: sample random crops / scales ResNet:

Lecture 7 - 109

- 1. Pick random L in range [256, 480]
- 2. Resize training image, short side = L
- 3. Sample random 224 x 224 patch

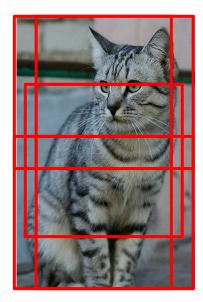


¹⁰⁹January 25, 2024

Data Augmentation Random crops and scales

Training: sample random crops / scales ResNet:

- 1. Pick random L in range [256, 480]
- 2. Resize training image, short side = L
- 3. Sample random 224 x 224 patch



¹¹⁰January 25, 2024

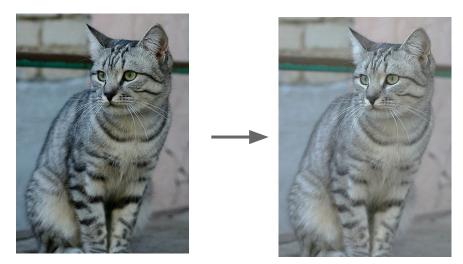
Testing: average a fixed set of crops ResNet:

- 1. Resize image at 5 scales: {224, 256, 384, 480, 640}
- 2. For each size, use 10 224 x 224 crops: 4 corners + center, + flips

Lecture 7 - 110

Data Augmentation Color Jitter

Simple: Randomize contrast and brightness

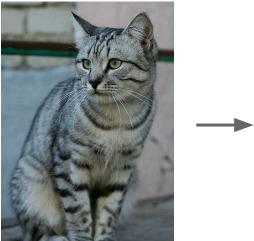


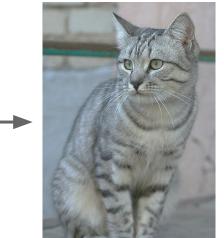
Ranjay Krishna, Sarah Pratt

Lecture 7 - 111 111 January 25, 2024

Data Augmentation Color Jitter

Simple: Randomize contrast and brightness





More Complex:

- 1. Apply PCA to all [R, G, B] pixels in training set
- 2. Sample a "color offset" along principal component directions
- 1. Add offset to all pixels of a training image

(As seen in [Krizhevsky et al. 2012], ResNet, etc)

Ranjay Krishna, Sarah Pratt

Lecture 7 - 112 ¹¹² January 25, 2024

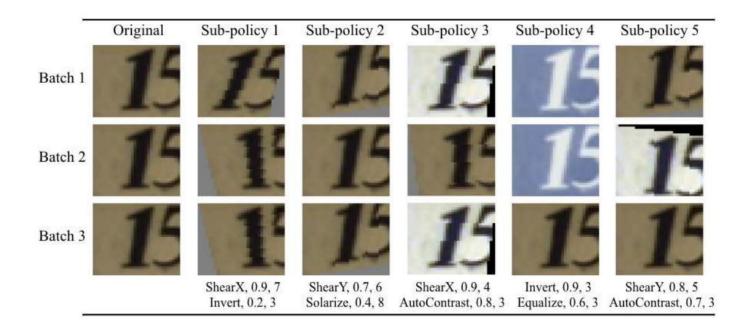
Data Augmentation

- Get creative for your problem!
 - Examples of data augmentations:
 - translation
 - rotation
 - stretching
 - shearing,
 - lens distortions, ... (go crazy)

Ranjay Krishna, Sarah Pratt

Lecture 7 - 113 ¹¹³ January 25, 2024

Automatic Data Augmentation



Lecture 7 - 114

114 January 25, 2024

Cubuk et al., "AutoAugment: Learning Augmentation Strategies from Data", CVPR 2019

Regularization: A common pattern

Lecture 7 - 115

¹¹⁵January 25, <u>2024</u>

Training: Add random noise **Testing**: Marginalize over the noise

Examples:

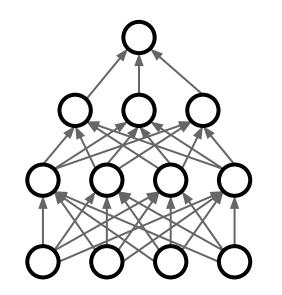
Dropout Batch Normalization Data Augmentation

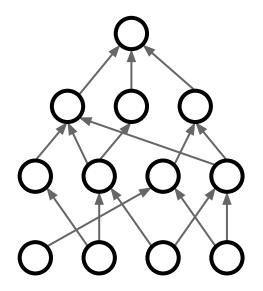
Regularization: DropConnect

Training: Drop connections between neurons (set weights to 0) **Testing**: Use all the connections

Examples:

Dropout Batch Normalization Data Augmentation DropConnect





Wan et al, "Regularization of Neural Networks using DropConnect", ICML 2013

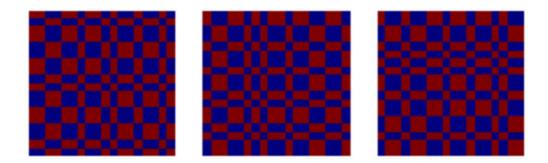
Ranjay Krishna, Sarah Pratt

Lecture 7 - 116 ¹¹⁶ January 25, 2024

Regularization: Fractional Pooling Training: Use randomized pooling regions Testing: Average predictions from several regions

Examples:

Dropout Batch Normalization Data Augmentation DropConnect Fractional Max Pooling



Graham, "Fractional Max Pooling", arXiv 2014

Ranjay Krishna, Sarah Pratt

Lecture 7 - 117 ¹¹⁷ January 25, 2024

Regularization: Stochastic Depth

Training: Skip some layers in the network **Testing**: Use all the layer

Examples:

Dropout Batch Normalization Data Augmentation DropConnect Fractional Max Pooling Stochastic Depth (will become more clear in next week's lecture)

Huang et al, "Deep Networks with Stochastic Depth", ECCV 2016

Ranjay Krishna, Sarah Pratt

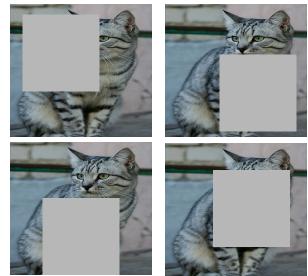
Lecture 7 - 118 ¹¹⁸ January 25, 2024

Regularization: Cutout Training: Set random image regions to zero Testing: Use full image

Examples:

Dropout Batch Normalization Data Augmentation DropConnect Fractional Max Pooling Stochastic Depth Cutout / Random Crop

DeVries and Taylor, "Improved Regularization of Convolutional Neural Networks with Cutout", arXiv 2017



Works very well for small datasets like CIFAR, less common for large datasets like ImageNet

Ranjay Krishna, Sarah Pratt

Lecture 7 - 119 ¹¹⁹ January 25, 2024

Regularization: Mixup Training: Train on random blends of images Testing: Use original images

Examples:

Dropout Batch Normalization Data Augmentation DropConnect Fractional Max Pooling Stochastic Depth Cutout / Random Crop Mixup

Target label: cat: 0.4 dog: 0.6

¹²⁰January 25, 2024

CNN

Randomly blend the pixels of pairs of training images, e.g. 40% cat, 60% dog

Lecture 7 - 120

Zhang et al, "mixup: Beyond Empirical Risk Minimization", ICLR 2018

Regularization: CutMix Training: Train on random blends of images Testing: Use original images

Examples:

Dropout Batch Normalization Data Augmentation DropConnect Fractional Max Pooling Stochastic Depth Cutout / Random Crop Mixup

Yun et al, "CutMix: Regularization Strategies to Train Strong Classifiers with Localizable Features", ICCV 2019

Target label: cat: 0.4 dog: 0.6

¹²¹January 25, 2024

CNN

Replace random crops of one image with another: e.g. 60% of pixels from cat, 40% from dog

Ranjay Krishna, Sarah Pratt

Lecture 7 - 121

Regularization: Label Smoothing Training: Change target distribution Testing: Take argmax over predictions

Examples:

Dropout Batch Normalization Data Augmentation DropConnect Fractional Max Pooling Stochastic Depth Cutout / Random Crop Mixup Label Smoothing

Ranjay Krishna, Sarah Pratt

Standard Training:
Cat: 100%
Dog: 0%
Fish: 0%

Label Smoothing: Cat: 90% Dog: 5% Fish: 5%

122 January 25, 2024

Set target distribution to be $1 - \frac{K-1}{K}\epsilon$ on the correct category and ϵ/K on all other categories, with *K* categories and $\epsilon \in 0,1$. Loss is cross-entropy between predicted and target distribution.

Szegedy et al, "Rethinking the Inception Architecture for Computer Vision", CVPR 2015

Lecture 7 - 122

Regularization - In practice Training: Add random noise Testing: Marginalize over the noise

Examples:

Dropout Batch Normalization Data Augmentation

DropConnect Fractional Max Pooling Stochastic Depth Cutout / Random Crop Mixup

- Use **dropout** for large fully-connected layers
- Using batchnorm is always a good idea
- Try Cutout, MixUp, CutMix,
 Stochastic Depth, Label Smoothing to squeeze out a bit of extra performance

Ranjay Krishna, Sarah Pratt

Lecture 7 - 123 ¹²³ January 25, 2024

Ranjay Krishna, Sarah Pratt

Lecture 7 - 124 124 January 25, 2024

Choosing Hyperparameters: Grid Search

Choose several values for each hyperparameter (Often space choices log-linearly)

Example:

Weight decay: [1x10⁻⁴, 1x10⁻³, 1x10⁻², 1x10⁻¹] Learning rate: [1x10⁻⁴, 1x10⁻³, 1x10⁻², 1x10⁻¹]

Evaluate all possible choices on this hyperparameter grid

Ranjay Krishna, Sarah Pratt

Lecture 7 - 125 125 January 25, 2024

Choosing Hyperparameters: Random search

Choose several values for each hyperparameter (Often space choices log-linearly)

Example:

Weight decay: **log-uniform** on $[1x10^{-4}, 1x10^{-1}]$ Learning rate: **log-uniform** on $[1x10^{-4}, 1x10^{-1}]$

Run many different trials

Ranjay Krishna, Sarah Pratt

Lecture 7 - 126 126 January 25, 2024

Random Search vs. Grid Search

Random Search for Hyper-Parameter Optimization Bergstra and Bengio, 2012

Grid Layout

<u>Random Layout</u>

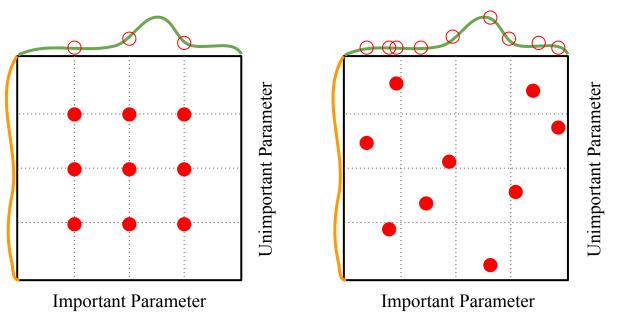


Illustration of Bergstra et al., 2012 by Shayne Longpre, copyright CS231n 2017

Ranjay Krishna, Sarah Pratt

Lecture 7 - 127 ¹²⁷ January 25, 2024

Choosing Hyperparameters (without tons of GPUs)

Lecture 7 - 128 128

January 25, 2024

Step 1: Check initial loss

Turn off weight decay, sanity check loss at initialization e.g. log(C) for softmax with C classes

Lecture 7 - 129 129

January 25, 2024

Step 1: Check initial loss
Step 2: Overfit a small sample

Try to train to 100% training accuracy on a small sample of training data (~5-10 minibatches); fiddle with architecture, learning rate, weight initialization

Loss not going down? LR too low, bad initialization Loss explodes to Inf or NaN? LR too high, bad initialization

Lecture 7 - 130 130

January 25, 2024

Step 1: Check initial lossStep 2: Overfit a small sampleStep 3: Find LR that makes loss go down

Use the architecture from the previous step, use all training data, turn on small weight decay, find a learning rate that makes the loss drop significantly within ~100 iterations

Lecture 7 - 131 131

January 25, 2024

Good learning rates to try: 1e-1, 1e-2, 1e-3, 1e-4

Step 1: Check initial loss
Step 2: Overfit a small sample
Step 3: Find LR that makes loss go down
Step 4: Coarse grid, train for ~1-5 epochs

Choose a few values of learning rate and weight decay around what worked from Step 3, train a few models for ~1-5 epochs.

Lecture 7 - 132 132

January 25, 2024

Good weight decay to try: 1e-4, 1e-5, 0

Step 1: Check initial loss

Ranjay Krishna, Sarah Pratt

- **Step 2**: Overfit a small sample
- Step 3: Find LR that makes loss go down
- **Step 4**: Coarse grid, train for ~1-5 epochs
- Step 5: Refine grid, train longer

Pick best models from Step 4, train them for longer (~10-20 epochs) without learning rate decay

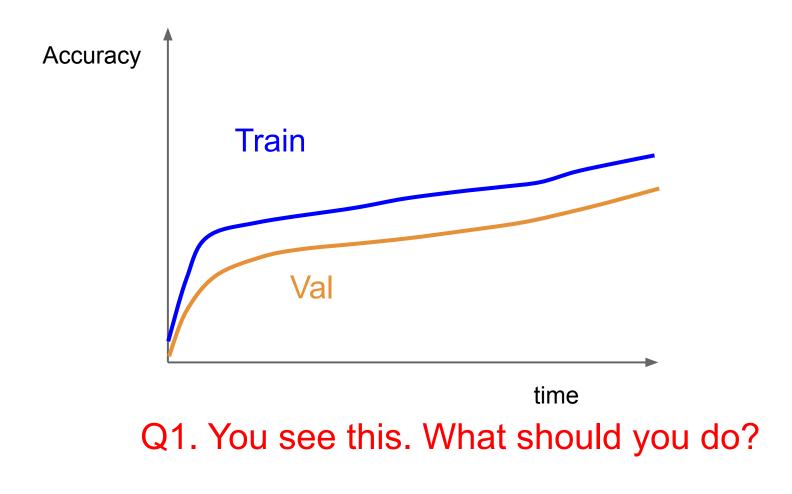
Lecture 7 - 133 133

January 25, 2024

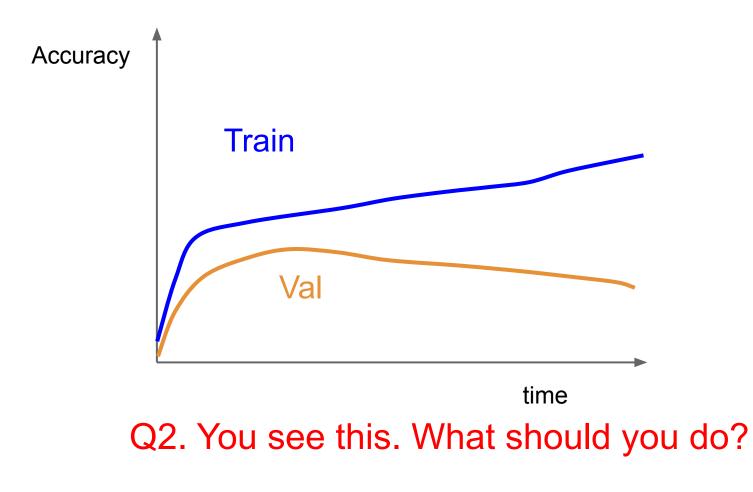
- Step 1: Check initial loss
- Step 2: Overfit a small sample
- Step 3: Find LR that makes loss go down
- Step 4: Coarse grid, train for ~1-5 epochs
- Step 5: Refine grid, train longer
- Step 6: Look at loss and accuracy curves

Lecture 7 - 134 134

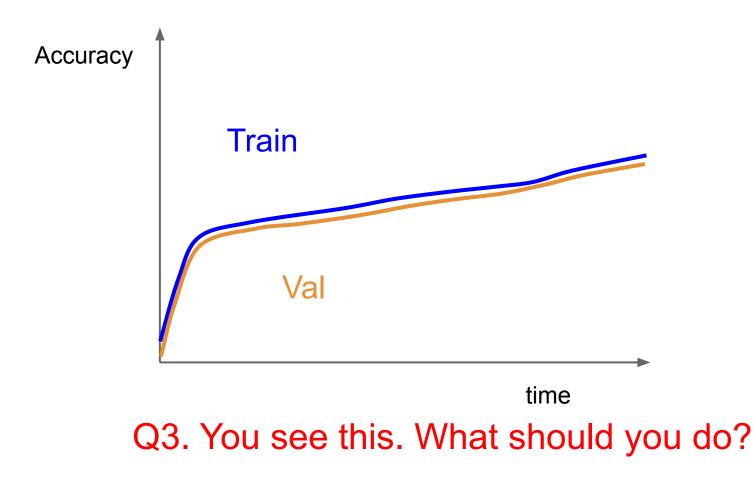
January 25, 2024



Lecture 7 - 135 ¹³⁵ January 25, 2024

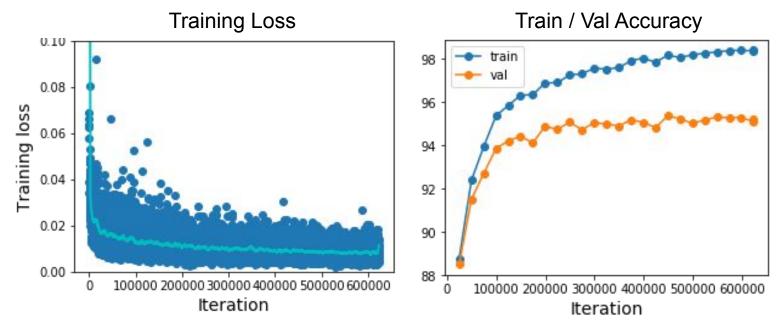


Lecture 7 - 136 ¹³⁶ January 25, 2024



Lecture 7 - 137 ¹³⁷ January 25, 2024

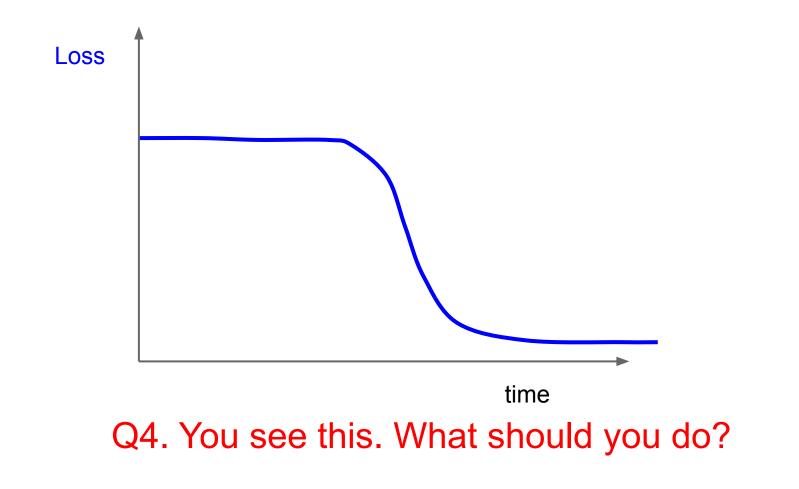
Look at learning curves!



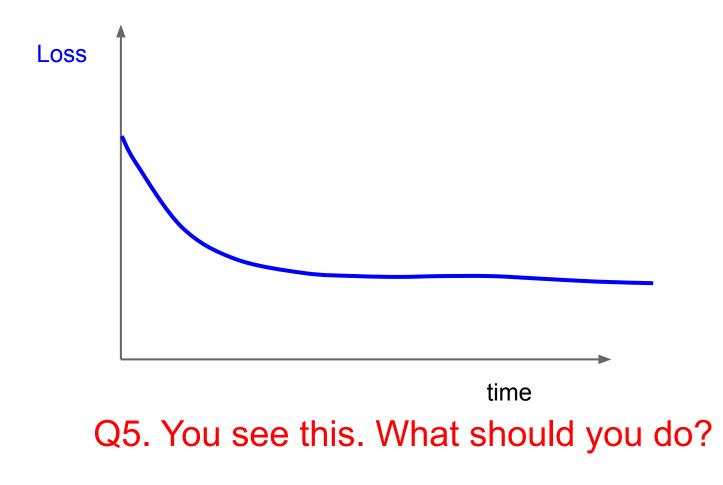
Losses may be noisy, use a scatter plot and also plot moving average to see trends better

Ranjay Krishna, Sarah Pratt

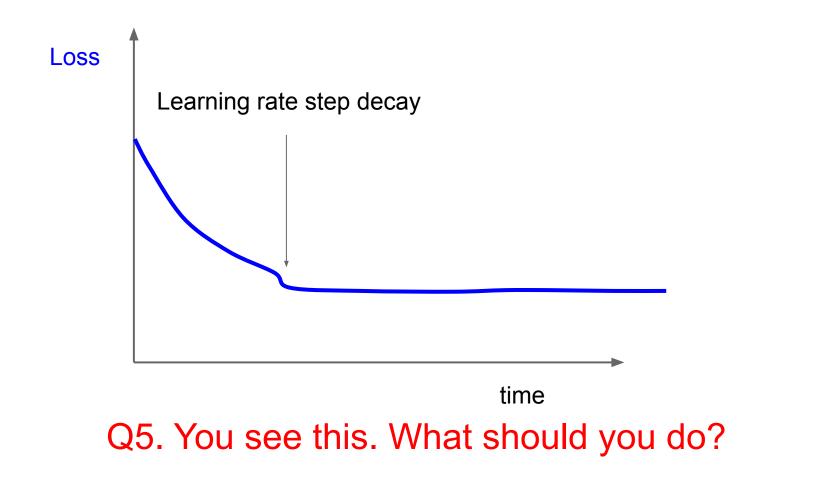
Lecture 7 - 138 ¹³⁸ January 25, 2024



Lecture 7 - 139 ¹³⁹ January 25, 2024



Lecture 7 - 140 ¹⁴⁰ January 25, 2024



Lecture 7 - 141 ¹⁴¹ January 25, 2024

Cross-validation

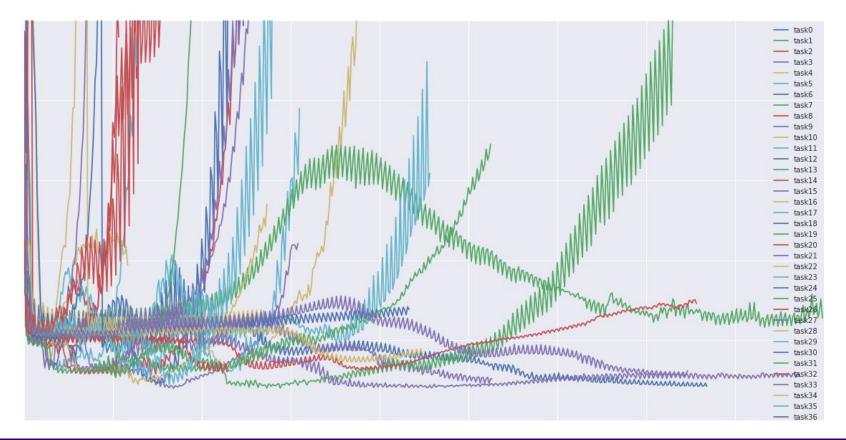
We develop "command centers" to visualize all our models training with different hyperparameters

check out <u>weights</u> and biases

Lecture 7 - 142 142

January 25, 2024

You can plot all your loss curves for different hyperparameters on a single plot



Ranjay Krishna, Sarah Pratt

Lecture 7 - 143 ¹⁴³ January 25, 2024

- Step 1: Check initial loss
- Step 2: Overfit a small sample
- Step 3: Find LR that makes loss go down
- Step 4: Coarse grid, train for ~1-5 epochs
- Step 5: Refine grid, train longer
- Step 6: Look at loss and accuracy curves

Lecture 7 - 144 144

January 25, 2024

Step 7: GOTO step 5

Hyperparameters to play with:

- learning rate,
- Its decay schedule, update type
- regularization (L2/Dropout strength)

This image by Paolo Guereta is licensed under CC-BY 2.0

Lecture 7 - 145 145

January 25, 2024

Summary

- Improve your training error:
 - Optimizers
 - Learning rate schedules
- Improve your test error:
 - Regularization
 - Choosing Hyperparameters

Lecture 7 - 146

146 January 25, 2024

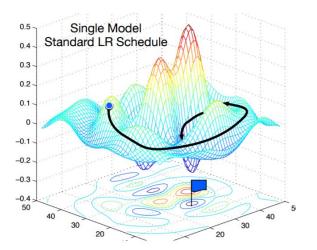
Next time: Visualizing and understanding neural networks

Ranjay Krishna, Sarah Pratt

Lecture 7 - 147 ¹⁴⁷ January 25, 2024

Model Ensembles: Tips and Tricks

Instead of training independent models, use multiple snapshots of a single model during training!



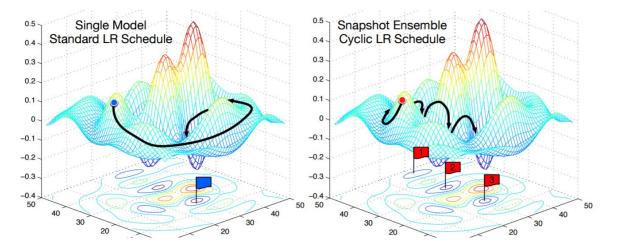
Loshchilov and Hutter, "SGDR: Stochastic gradient descent with restarts", arXiv 2016 Huang et al, "Snapshot ensembles: train 1, get M for free", ICLR 2017 Figures copyright Yixuan Li and Geoff Pleiss, 2017. Reproduced with permission.

Ranjay Krishna, Sarah Pratt

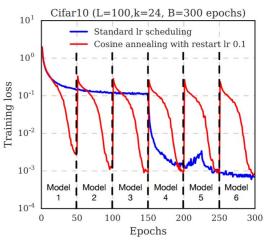
Lecture 7 - 148 ¹⁴⁸ January 25, 2024

Model Ensembles: Tips and Tricks

Instead of training independent models, use multiple snapshots of a single model during training!



Loshchilov and Hutter, "SGDR: Stochastic gradient descent with restarts", arXiv 2016 Huang et al, "Snapshot ensembles: train 1, get M for free", ICLR 2017 Figures copyright Yixuan Li and Geoff Pleiss, 2017. Reproduced with permission.



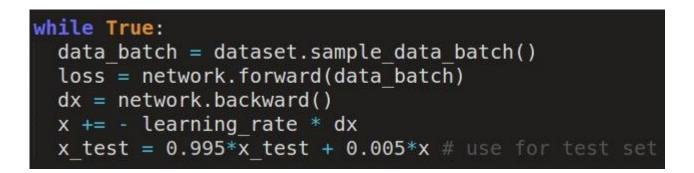
Cyclic learning rate schedules can make this work even better!

Ranjay Krishna, Sarah Pratt

Lecture 7 - 149 ¹⁴⁹January 25, 2024

Model Ensembles: Tips and Tricks

Instead of using actual parameter vector, keep a moving average of the parameter vector and use that at test time (Polyak averaging)



Lecture 7 - 150

¹⁵⁰January 25, 2024

Polyak and Juditsky, "Acceleration of stochastic approximation by averaging", SIAM Journal on Control and Optimization, 1992.

Track the ratio of weight updates / weight magnitudes:

```
# assume parameter vector W and its gradient vector dW
param_scale = np.linalg.norm(W.ravel())
update = -learning_rate*dW # simple SGD update
update_scale = np.linalg.norm(update.ravel())
W += update # the actual update
print update_scale / param_scale # want ~le-3
```

ratio between the updates and values: ~ 0.0002 / 0.02 = 0.01 (about okay) want this to be somewhere around 0.001 or so

Ranjay Krishna, Sarah Pratt

Lecture 7 - 151 ¹⁵¹ January 25, 2024