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Lecture 6:
Training Neural Networks
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Has been released

Due 1/30 11:59pm
- Multi-layer Neural Networks, 
- Image Features, 
- Optimizers

Administrative: Assignment 2
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This Friday 

Backprop review continued

Presenter: Tanush

Administrative: Fridays
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Project proposal due 2/06 11:59pm 

Come to office hours to talk about your ideas

Administrative: Course Project
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Where we are now...
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Where we are now...

Linear score function:

2-layer Neural Network
      

x hW1 sW2

3072 100 10

Neural Networks
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Illustration of LeCun et al. 1998 from CS231n 2017 Lecture 1

Where we are now...

Convolutional Neural Networks
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Where we are now...
Convolutional Layer

32

32

3

32x32x3 image
5x5x3 filter

convolve (slide) over all 
spatial locations

activation map

1

28

28
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Where we are now...
Convolutional Layer

32

32

3

Convolution Layer

activation maps

6

28

28

For example, if we had 6 5x5 filters, we’ll 
get 6 separate activation maps:

We stack these up to get a “new image” of size 28x28x6!
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Pooling layer
- makes the representations smaller and more manageable 
- operates over each activation map independently:
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1 1 2 4

5 6 7 8

3 2 1 0

1 2 3 4

Single depth slice

x

y

max pool with 2x2 filters 
and stride 2 6 8

3 4

MAX POOLING
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Pooling layer: summary

Let’s assume input is W1 x H1 x C
Conv layer needs 2 hyperparameters:
- The spatial extent F
- The stride S

This will produce an output of W2 x H2 x C where:
- W2 = (W1 - F )/S + 1
- H2 = (H1 - F)/S + 1

Number of parameters: 0
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Where we are now...

Landscape image is CC0 1.0 public domain
Walking man image is CC0 1.0 public domain

Learning network parameters through optimization
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http://maxpixel.freegreatpicture.com/Mountains-Valleys-Landscape-Hills-Grass-Green-699369
https://creativecommons.org/publicdomain/zero/1.0/
http://www.publicdomainpictures.net/view-image.php?image=139314&picture=walking-man
https://creativecommons.org/publicdomain/zero/1.0/
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Where we are now...

Mini-batch SGD
Loop:
1. Sample a batch of data
2. Forward prop it through the graph 

(network), get loss
3. Backprop to calculate the gradients
4. Update the parameters using the gradient
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Today: Training Neural Networks 
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Overview
1. One time setup

activation functions, preprocessing, weight 
initialization, regularization, gradient checking

2. Training dynamics
babysitting the learning process, 
parameter updates, hyperparameter optimization

3. Evaluation
model ensembles, test-time augmentation, transfer 
learning 
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Part 1
- Activation Functions
- Data Preprocessing
- Weight Initialization
- Batch Normalization
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Activation Functions
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Activation Functions
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Activation Functions
Sigmoid

tanh

ReLU

Leaky ReLU

Maxout

ELU
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Activation Functions

Sigmoid

- Squashes numbers to range [0,1]
- Historically popular since they 

have nice interpretation as a 
saturating “firing rate” of a neuron
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Activation Functions

Sigmoid

- Squashes numbers to range [0,1]
- Historically popular since they 

have nice interpretation as a 
saturating “firing rate” of a neuron

3 problems:

1. Saturated neurons “kill” the 
gradients

22
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sigmoid 
gate

x
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sigmoid 
gate

x

What happens when x = -10?
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sigmoid 
gate

x

What happens when x = -10?
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sigmoid 
gate

x

What happens when x = -10?
What happens when x = 0?
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sigmoid 
gate

x

What happens when x = -10?
What happens when x = 0?
What happens when x = 10?
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sigmoid 
gate

x

What happens when x = -10?
What happens when x = 0?
What happens when x = 10?
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sigmoid 
gate

x

What happens when x = -10?
What happens when x = 0?
What happens when x = 10?
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Why is this a problem?
If all the gradients flowing back will be 
zero and weights will never change

sigmoid 
gate

x
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Activation Functions

Sigmoid

- Squashes numbers to range [0,1]
- Historically popular since they 

have nice interpretation as a 
saturating “firing rate” of a neuron

3 problems:

1. Saturated neurons “kill” the 
gradients

2. Sigmoid outputs are not 
zero-centered
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Consider what happens when the input to a neuron is 
always positive...

What can we say about the gradients on w?
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Consider what happens when the input to a neuron is 
always positive...

What can we say about the gradients on w?
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Consider what happens when the input to a neuron is 
always positive...

What can we say about the gradients on w?
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Consider what happens when the input to a neuron is 
always positive...

What can we say about the gradients on w?

35

We know that local gradient of sigmoid is always positive
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Consider what happens when the input to a neuron is 
always positive...

What can we say about the gradients on w?
We know that local gradient of sigmoid is always positive
We are assuming x is always positive

36
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Consider what happens when the input to a neuron is 
always positive...

What can we say about the gradients on w?
We know that local gradient of sigmoid is always positive
We are assuming x is always positive

So!! Sign of gradient for all wi is the same as the sign of upstream scalar gradient!
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Consider what happens when the input to a neuron is 
always positive...

What can we say about the gradients on w?
Always all positive or all negative :(

hypothetical 
optimal w 
vector

zig zag path

allowed 
gradient 
update 
directions

allowed 
gradient 
update 
directions
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Consider what happens when the input to a neuron is 
always positive...

What can we say about the gradients on w?
Always all positive or all negative :(
(For a single element! Minibatches help)

hypothetical 
optimal w 
vector

zig zag path

allowed 
gradient 
update 
directions

allowed 
gradient 
update 
directions

39
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Activation Functions

Sigmoid

- Squashes numbers to range [0,1]
- Historically popular since they 

have nice interpretation as a 
saturating “firing rate” of a neuron

3 problems:

1. Saturated neurons “kill” the 
gradients

2. Sigmoid outputs are not 
zero-centered

3. exp() is a bit compute expensive
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Activation Functions

tanh(x)

- Squashes numbers to range [-1,1]
- zero centered (nice)
- still kills gradients when saturated :(

[LeCun et al., 1991]
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Activation Functions - Computes f(x) = max(0,x)

- Does not saturate (in +region)
- Very computationally efficient
- Converges much faster than 

sigmoid/tanh in practice (e.g. 6x)

ReLU
(Rectified Linear Unit)

[Krizhevsky et al., 2012]
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Activation Functions

ReLU
(Rectified Linear Unit)

- Computes f(x) = max(0,x)

- Does not saturate (in +region)
- Very computationally efficient
- Converges much faster than 

sigmoid/tanh in practice (e.g. 6x)

- Not zero-centered output
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Activation Functions

ReLU
(Rectified Linear Unit)

- Computes f(x) = max(0,x)

- Does not saturate (in +region)
- Very computationally efficient
- Converges much faster than 

sigmoid/tanh in practice (e.g. 6x)

- Not zero-centered output
- An annoyance:

hint: what is the gradient when x < 0?
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ReLU 
gate

x

What happens when x = -10?
What happens when x = 0?
What happens when x = 10?
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DATA CLOUD
active ReLU

dead ReLU
will never activate 
=> never update
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DATA CLOUD
active ReLU

dead ReLU
will never activate 
=> never update

=> people like to initialize 
ReLU neurons with slightly 
positive biases (e.g. 0.01)

47



Ranjay Krishna, Sarah Pratt Lecture 6 - January 23, 2024

Activation Functions

Leaky ReLU

- Does not saturate
- Computationally efficient
- Converges much faster than 

sigmoid/tanh in practice! (e.g. 6x)
- will not “die”.

[Mass et al., 2013]
[He et al., 2015]
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Activation Functions

Leaky ReLU

- Does not saturate
- Computationally efficient
- Converges much faster than 

sigmoid/tanh in practice! (e.g. 6x)
- will not “die”.

Parametric Rectifier (PReLU)

backprop into \alpha
(parameter)

[Mass et al., 2013]
[He et al., 2015]
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Activation Functions
Exponential Linear Units (ELU)

- All benefits of ReLU
- Closer to zero mean outputs
- Negative saturation regime 

compared with Leaky ReLU 
adds some robustness to noise 

- Computation requires exp()

[Clevert et al., 2015]

50

(Alpha default = 1)
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Activation Functions
Scaled Exponential Linear Units (SELU)

- Scaled versionof ELU that 
works better for deep networks

- “Self-normalizing” property;
- Can train deep SELU networks 

without BatchNorm 
- (will discuss more later)

[Klambauer et al. ICLR 2017]

51

α = 1.6733, λ = 1.0507
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Maxout “Neuron”
- Does not have the basic form of dot product -> 

nonlinearity
- Generalizes ReLU and Leaky ReLU 
- Linear Regime! Does not saturate! Does not die!

Problem: doubles the number of parameters/weights :(

[Goodfellow et al., 2013]
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Activation Functions
Swish

- They trained a neural network 
to generate and test out 
different non-linearities.

- Swish outperformed all other 
options for CIFAR-10 accuracy

[Ramachandran et al. 2018]
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Activation Functions
GeLU

[Hendrycks and Gimpel, Gaussian Error Linear Units (GELUs), 2016]

54

- Idea: Multiply input by 0 or 1 
at random; large values 
more likely to be multiplied 
by 1, small values more 
likely to be multiplied by 0 
(data-dependent dropout)

- Take expectation over 
randomness

- Very common in 
Transformers (BERT, GPT, 
ViT)
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TLDR: In practice:

- Use ReLU. Be careful with your learning rates
- Use GeLU is using transformers
- Try out Leaky ReLU / Maxout / ELU / SELU

- To squeeze out some marginal gains
- Don’t use sigmoid or tanh
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Data Preprocessing
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Data Preprocessing

(Assume X [NxD] is data matrix, 
each example in a row)
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Remember: Consider what happens when 
the input to a neuron is always positive...

What can we say about the gradients on w?
Always all positive or all negative :(
(this is also why you want zero-mean data!)

hypothetical 
optimal w 
vector

zig zag path

allowed 
gradient 
update 
directions

allowed 
gradient 
update 
directions
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Data Preprocessing
Before normalization: classification loss 
very sensitive to changes in weight matrix; 
hard to optimize

After normalization: less sensitive to small 
changes in weights; easier to optimize
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Data Preprocessing
Before normalization: classification loss 
very sensitive to changes in weight matrix; 
hard to optimize

After normalization: less sensitive to small 
changes in weights; easier to optimize
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(Assume X [NxD] is data matrix, each example in a row)

Data Preprocessing

61
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Data Preprocessing
In practice, you may also see PCA and Whitening of the data

(data has diagonal 
covariance matrix)

(covariance matrix is the 
identity matrix)
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TLDR: In practice for Images: center only

- Subtract the mean image (e.g. AlexNet)
(mean image = [32,32,3] array)

- Subtract per-channel mean (e.g. VGGNet)
(mean along each channel = 3 numbers)

- Subtract per-channel mean and
Divide by per-channel std (e.g. ResNet)
(mean along each channel = 3 numbers)

e.g. consider CIFAR-10 example with [32,32,3] images

Not common 
to do PCA or 
whitening
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Weight Initialization

64
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- Q: what happens when W=constant init is used?
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- First idea: Small random numbers 
(gaussian with zero mean and 1e-2 standard deviation)
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- First idea: Small random numbers 
(gaussian with zero mean and 1e-2 standard deviation)

Works ~okay for small networks, but problems with 
deeper networks.

67



Ranjay Krishna, Sarah Pratt Lecture 6 - January 23, 2024

Weight Initialization: Activation statistics
Forward pass for a 6-layer 
net with hidden size 4096

68

What will happen to the activations for the last layer?
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Weight Initialization: Activation statistics
Forward pass for a 6-layer 
net with hidden size 4096

All activations tend to zero 
for deeper network layers

Q: What do the gradients 
dL/dW look like?

69
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Weight Initialization: Activation statistics
Forward pass for a 6-layer 
net with hidden size 4096

All activations tend to zero 
for deeper network layers

Q: What do the gradients 
dL/dW look like?

A: All zero, no learning =(
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Weight Initialization: Activation statistics
Increase std of initial 
weights from 0.01 to 0.05

71

What will happen to the activations for the last layer?
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Weight Initialization: Activation statistics
Increase std of initial 
weights from 0.01 to 0.05

All activations saturate

Q: What do the gradients 
look like?
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Weight Initialization: Activation statistics
Increase std of initial 
weights from 0.01 to 0.05

All activations saturate

Q: What do the gradients 
look like?

A: Local gradients all zero, 
no learning =(
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Weight Initialization: “Xavier” Initialization
“Xavier” initialization: 
std = 1/sqrt(Din)

Glorot and Bengio, “Understanding the difficulty of training deep feedforward neural networks”, AISTAT 2010
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“Just right”: Activations are 
nicely scaled for all layers!

“Xavier” initialization: 
std = 1/sqrt(Din)

Glorot and Bengio, “Understanding the difficulty of training deep feedforward neural networks”, AISTAT 2010

Weight Initialization: “Xavier” Initialization
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“Just right”: Activations are 
nicely scaled for all layers!

For conv layers, Din is 
filter_size2 * input_channels

“Xavier” initialization: 
std = 1/sqrt(Din)

Glorot and Bengio, “Understanding the difficulty of training deep feedforward neural networks”, AISTAT 2010

Weight Initialization: “Xavier” Initialization
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“Xavier” initialization: 
std = 1/sqrt(Din)

Glorot and Bengio, “Understanding the difficulty of training deep feedforward neural networks”, AISTAT 2010

Weight Initialization: “Xavier” Initialization

Let: y = x1w1+x2w2+...+xDinwDin

“Just right”: Activations are 
nicely scaled for all layers!

For conv layers, Din is 
filter_size2 * input_channels
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“Xavier” initialization: 
std = 1/sqrt(Din)

Glorot and Bengio, “Understanding the difficulty of training deep feedforward neural networks”, AISTAT 2010

Weight Initialization: “Xavier” Initialization

Let: y = x1w1+x2w2+...+xDinwDin

“Just right”: Activations are 
nicely scaled for all layers!

For conv layers, Din is 
filter_size2 * input_channels

78

Assume: Var(x1) = Var(x2)= …=Var(xDin)
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“Xavier” initialization: 
std = 1/sqrt(Din)

Glorot and Bengio, “Understanding the difficulty of training deep feedforward neural networks”, AISTAT 2010

Weight Initialization: “Xavier” Initialization

Let: y = x1w1+x2w2+...+xDinwDin

“Just right”: Activations are 
nicely scaled for all layers!

For conv layers, Din is 
filter_size2 * input_channels

79

Assume: Var(x1) = Var(x2)= …=Var(xDin)

We want: Var(y) = Var(xi)
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“Xavier” initialization: 
std = 1/sqrt(Din)

Glorot and Bengio, “Understanding the difficulty of training deep feedforward neural networks”, AISTAT 2010

Weight Initialization: “Xavier” Initialization

Var(y) = Var(x1w1+x2w2+...+xDinwDin)                              
[substituting value of y]
          

Let: y = x1w1+x2w2+...+xDinwDin

“Just right”: Activations are 
nicely scaled for all layers!

For conv layers, Din is 
filter_size2 * input_channels

80

Assume: Var(x1) = Var(x2)= …=Var(xDin)

We want: Var(y) = Var(xi)
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“Xavier” initialization: 
std = 1/sqrt(Din)

Glorot and Bengio, “Understanding the difficulty of training deep feedforward neural networks”, AISTAT 2010

Weight Initialization: “Xavier” Initialization

Var(y) = Var(x1w1+x2w2+...+xDinwDin)                              
           = Din Var(xiwi)
[Assume all xi, wi are iid]
          

Let: y = x1w1+x2w2+...+xDinwDin

“Just right”: Activations are 
nicely scaled for all layers!

For conv layers, Din is 
filter_size2 * input_channels

81

Assume: Var(x1) = Var(x2)= …=Var(xDin)

We want: Var(y) = Var(xi)
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“Xavier” initialization: 
std = 1/sqrt(Din)

Glorot and Bengio, “Understanding the difficulty of training deep feedforward neural networks”, AISTAT 2010

Weight Initialization: “Xavier” Initialization

Var(y) = Var(x1w1+x2w2+...+xDinwDin)                              
           = Din Var(xiwi)
           = Din Var(xi) Var(wi)
[Assume all xi, wi are zero mean]
          

Let: y = x1w1+x2w2+...+xDinwDin

“Just right”: Activations are 
nicely scaled for all layers!

For conv layers, Din is 
filter_size2 * input_channels

82

Assume: Var(x1) = Var(x2)= …=Var(xDin)

We want: Var(y) = Var(xi)
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“Xavier” initialization: 
std = 1/sqrt(Din)

Glorot and Bengio, “Understanding the difficulty of training deep feedforward neural networks”, AISTAT 2010

Weight Initialization: “Xavier” Initialization

Var(y) = Var(x1w1+x2w2+...+xDinwDin)                              
           = Din Var(xiwi)
           = Din Var(xi) Var(wi)
[Assume all xi, wi are iid]
          

Let: y = x1w1+x2w2+...+xDinwDin

“Just right”: Activations are 
nicely scaled for all layers!

For conv layers, Din is 
filter_size2 * input_channels

83

Assume: Var(x1) = Var(x2)= …=Var(xDin)

We want: Var(y) = Var(xi)

So, Var(y) = Var(xi) only when Var(wi) = 1/Din
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Weight Initialization: What about ReLU?

Change from tanh to ReLU

84
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Weight Initialization: What about ReLU?

Xavier assumes zero 
centered activation function

Activations collapse to zero 
again, no learning =(

Change from tanh to ReLU

85
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Weight Initialization: Kaiming / MSRA Initialization

ReLU correction: std = sqrt(2 / Din)

He et al, “Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification”, ICCV 2015

“Just right”: Activations are 
nicely scaled for all layers!
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Proper initialization is an active area of research…
Understanding the difficulty of training deep feedforward neural networks
by Glorot and Bengio, 2010

Exact solutions to the nonlinear dynamics of learning in deep linear neural networks by Saxe et al, 2013

Random walk initialization for training very deep feedforward networks by Sussillo and Abbott, 2014

Delving deep into rectifiers: Surpassing human-level performance on ImageNet classification by He et 
al., 2015

Data-dependent Initializations of Convolutional Neural Networks by Krähenbühl et al., 2015

All you need is a good init, Mishkin and Matas, 2015

Fixup Initialization: Residual Learning Without Normalization, Zhang et al, 2019

The Lottery Ticket Hypothesis: Finding Sparse, Trainable Neural Networks, Frankle and Carbin, 2019
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Batch Normalization
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Batch Normalization
“you want zero-mean unit-variance activations? just make them so.”

[Ioffe and Szegedy, 2015]

consider a batch of activations at some layer. To make 
each dimension zero-mean unit-variance, apply:

this is a vanilla 
differentiable function...
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Input: Per-channel mean, 
shape is D

Per-channel var, 
shape is D

Normalized x,
Shape is N x D

Batch Normalization [Ioffe and Szegedy, 2015]

XN

D

90
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Input: Per-channel mean, 
shape is D

Per-channel var, 
shape is D

Normalized x,
Shape is N x D

Batch Normalization [Ioffe and Szegedy, 2015]

XN

D Problem: What if zero-mean, unit 
variance is too hard of a constraint? 
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Input: Per-channel mean, 
shape is D

Per-channel var, 
shape is D

Normalized x,
Shape is N x D

Batch Normalization [Ioffe and Szegedy, 2015]

Learnable scale and 
shift parameters:

Output,
Shape is N x D

Learning     =    ,
   =      will recover the 
identity function!
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Input: Per-channel mean, 
shape is D

Per-channel var, 
shape is D

Normalized x,
Shape is N x D

Batch Normalization: Test-Time

Learnable scale and 
shift parameters:

Output,
Shape is N x D

Learning     =    ,
   =      will recover the 
identity function!

Estimates depend on minibatch; 
can’t do this at test-time!
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Input: Per-channel mean, 
shape is D

Per-channel var, 
shape is D

Normalized x,
Shape is N x D

Batch Normalization: Test-Time

Learnable scale and 
shift parameters:

Output,
Shape is N x D

(Running) average of 
values seen during training

(Running) average of 
values seen during training

During testing batchnorm 
becomes a linear operator! 
Can be fused with the previous 
fully-connected or conv layer
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Batch Normalization [Ioffe and Szegedy, 2015]

FC

BN

tanh

FC

BN

tanh

...

Usually inserted after Fully 
Connected or Convolutional layers, 
and before nonlinearity.
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Batch Normalization [Ioffe and Szegedy, 2015]

FC

BN

tanh

FC

BN

tanh

...

- Makes deep networks much easier to train!
- Improves gradient flow
- Allows higher learning rates, faster convergence
- Networks become more robust to initialization
- Acts as regularization during training
- Zero overhead at test-time: can be fused with conv!
- Behaves differently during training and testing: this 

is a very common source of bugs!
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Batch Normalization for ConvNets

  x: N × D

𝞵,𝝈: 1 × D
ɣ,β: 1 × D
y = ɣ(x-𝞵)/𝝈+β

  x: N×C×H×W

𝞵,𝝈: 1×C×1×1
ɣ,β: 1×C×1×1
y = ɣ(x-𝞵)/𝝈+β

Normalize Normalize

Batch Normalization  for 
fully-connected networks

Batch Normalization for 
convolutional networks
(Spatial Batchnorm, BatchNorm2D)
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Layer Normalization

  x: N × D

𝞵,𝝈: 1 × D
ɣ,β: 1 × D
y = ɣ(x-𝞵)/𝝈+β

  x: N × D

𝞵,𝝈: N × 1
ɣ,β: 1 × D
y = ɣ(x-𝞵)/𝝈+β

Normalize Normalize

Layer Normalization for 
fully-connected networks
Same behavior at train and test!
Can be used in recurrent networks

Batch Normalization  for 
fully-connected networks

Ba, Kiros, and Hinton, “Layer Normalization”, arXiv 2016
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Instance Normalization

  x: N×C×H×W

𝞵,𝝈: 1×C×1×1
ɣ,β: 1×C×1×1
y = ɣ(x-𝞵)/𝝈+β

  x: N×C×H×W

𝞵,𝝈: N×C×1×1
ɣ,β: 1×C×1×1
y = ɣ(x-𝞵)/𝝈+β

Normalize Normalize

Instance Normalization for 
convolutional networks
Same behavior at train / test!

Batch Normalization  for 
convolutional networks

Ulyanov et al, Improved Texture Networks: Maximizing Quality and Diversity in Feed-forward Stylization and Texture Synthesis, CVPR 2017
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Comparison of Normalization Layers

Wu and He, “Group Normalization”, ECCV 2018
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Group Normalization

Wu and He, “Group Normalization”, ECCV 2018
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Summary
We looked in detail at:

- Activation Functions (use ReLU or GeLU)
- Data Preprocessing (images: subtract mean)
- Weight Initialization (use Xavier/He init)
- Batch Normalization (use this!)

TLDRs
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Next time: 
Training Neural Networks, Part 2
- Parameter update schemes
- Learning rate schedules
- Gradient checking
- Regularization (Dropout etc.)
- Babysitting learning
- Evaluation (Ensembles etc.)
- Hyperparameter Optimization
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