Lecture 5:
Convolutional Neural Networks

Ranjay Krishna, Sarah Pratt Lecture 5 - 1 January 18, 2024

Administrative: EdStem

Please make sure to check and read all pinned EdStem posts.

Ranjay Krishna, Sarah Pratt Lecture 5- 2 January 18, 2024

Administrative: Assignment 1
Due 1/21 11:59pm

- K-Nearest Neighbor
- Linear classifiers: SVM, Softmax

Pushed back deadline by a few days.

Ranjay Krishna, Sarah Pratt Lecture 5- 3 January 18, 2024

Administrative: Assignment 2

Will be released this weekend

Due 1/30 11:59pm

- Multi-layer Neural Networks,
- Image Features,

- Optimizers

Ranjay Krishna, Sarah Pratt Lecture 5- 4 January 18, 2024

Administrative: Fridays

This Friday
Quiz 1: 6% of your grade

Backpropagation part 1 - the main algorithm for training neural
networks

Presenter: Tanush Tadav

Ranjay Krishna, Sarah Pratt Lecture 5- 5 January 18, 2024

Administrative: Course Project

Project proposal due 2/06 11:59pm

Come to office hours to talk about your ideas

Ranjay Krishna, Sarah Pratt Lecture 5- 6 January 18, 2024

Last time: Neural Networks
Linear score function: f — Wa
2-layer Neural Network f = Womax(0, Wix)

X W1 |h| W2 |g

10
dog frog horse ship truck

3072 100

deer

plane car bird cat
. ’ H .‘.. - : y !

Ranjay Krishna, Sarah Pratt Lecture 5- 7 January 18, 2024

Ranjay Krishna, Sarah Pratt Lecture 5 - January 18, 2024

“local gradient”

Ranjay Krishna, Sarah Pratt Lecture 5 - January 18, 2024

“local gradient”

Z

oL
0z

%
“Upstream

gradient”

Ranjay Krishna, Sarah Pratt Lecture 5 - 10 January 18, 2024

“local gradient”
= .8

<
“Downstream -
gradients oL
% o
“Upstream
gradient”

Ranjay Krishna, Sarah Pratt Lecture 5 - 11 January 18, 2024

“local gradient”
= .8

“Downstream
gradients”

Z

oL
0z

8=
oL “Upstream
gradient”

Ranjay Krishna, Sarah Pratt Lecture 5 - 12 January 18, 2024

“local gradient”
= .8

“Downstream
gradients”

Z

oL
0z

8=
oL “Upstream
gradient”

Jay Krishna, Sarah Pratt Lecture 5 - (K] January 18, 2024

def f(wd, x0, wl, x1, w2):

Backprop Implementation: P———
“Flat” code Forward pass: i e
s2 = s@ + sl

Compute output
s3 = 52 + w2
w0 2.00

L = sigmoid(s3)

L grad_L = 1.0
grad_s3 = grad_L *x (1 - L) * L
grad_w2 = grad_s3

wl -

grad_s2 = grad_s3

2 @?;; Backward pass:
Compute grads

x1 -2.

20.60 grad_s® = grad_s2

grad_s1l = grad_s2

wzag? grad_wl = grad_sl x x1
grad_x1 = grad_sl x wl
grad_w@ = grad_s@ * x0
grad_x0 = grad_s@ x wo@

Ranjay Krishna, Sarah Pratt Lecture 5 - 14 January 18, 2024

Backprop Implementation:
“Flat” code

w0 2.00

0:73
1.00

0.20

Forward pass:
Compute output

Base case

def f(wo,

x0, wl, x1, w2):

SO = wl
sl =wl
s2 = s0O
s3 = s2

*

*

+

-4

L = sigmoid(s3)

X0
x1
sl
w2

grad_L = 1.0

grad_s3 = grad_L *x (1 - L) * L
grad_w2 = grad_s3

grad_s2 = grad_s3

grad_s® = grad_s2

grad_s1l = grad_s2

grad_wl = grad_sl x x1

grad_x1 = grad_sl x wl

grad_w@ = grad_s@ *x x0

grad_x0 = grad_s@ x wo@

Ranjay Krishna, Sarah Pratt

Lecture 5 - 15

January 18, 2024

Backprop Implementation:
“Flat” code

w0 2.00

1.00
0.20

0.73

1.00

0.20

Forward pass:
Compute output

Sigmoid

def f(wo,

x0, wl, x1, w2):

SO = wl
sl =wl
s2 = s0O
s3 = s2

*

*

e

-4

X0
x1
sl
w2

||L = sigmoid(s3)

grad L = 1.0

grad_s3 = grad_L *x (1 - L) * L
grad_w2 = grad_s3

grad_s2 = grad_s3

grad_s® = grad_s2

grad_s1l = grad_s2

grad_wl = grad_sl x x1

grad_x1 = grad_sl x wl

grad_w@ = grad_s@ * x0

grad_x0 = grad_s@ x wo@

Ranjay Krishna, Sarah Pratt

Lecture 5 - 16

January 18, 2024

def f(wd, x0, wl, x1, w2):

Backprop Implementation: P———
Flat” code Forward pass: S; e e
Compute output | ~=— =i s
s3 = s2 + w2

w0 & L = sigmoid(s3)

grad_L = 1.0
rad L x (1 — L) *x L
grad_w2 = grad_s3

4.00

.80 rad s3 =

Add gate
N Lm)/:;\\073 grad_s2 = grad_s3
0200 _/ 1.00 grad_s@ = grad_s2

grad_s1l = grad_s2

-0.60

wzag? grad_wl = grad_sl x x1
grad_x1 = grad_sl x wl
grad_w@ = grad_s@ * x0
grad_x0 = grad_s@ x wo@

Ranjay Krishna, Sarah Pratt Lecture 5 - 17 January 18, 2024

def f(wd, x0, wl, x1, w2):

Backprop Implementation: prP—
Flat” code Forward pass: LW e X
Compute output |22= 52 * =1

s3 = s2 + w2

Wojggi><::>_ L = sigmoid(s3)
-2.00
x0 -1.00
o grad_L = 1.0
grad_s3 = grad_L *x (1 - L) * L
wl -3.00
T grad_w2 = grad_s3
o 50 . 321/?;\\?33 grad_s2 = grad_s3
ot 2 : rad_s@® = grad_s2
0.0 Add gate | 27%°-°7 T 9ret-
grad_s1l = grad_s2
Wz;g? grad_wl = grad_s1 * X1
grad_x1 = grad_sl x wl
grad_w@ = grad_s@ * x0
grad_x0 = grad_s@ x wo@

Ranjay Krishna, Sarah Pratt Lecture 5 - 18 January 18, 2024

def f(wd, x0, wl, x1, w2):

Backprop Implementation: P———
“Flat” code Forward pass: L x)
s2 = s@ + sl

Compute output
s3 = 52 + w2
w0 2.00

L = sigmoid(s3)

grad_L = 1.0
grad_s3 = grad_L *x (1 - L) * L
grad_w2 = grad_s3

Lm)/:;\\073 grad_s2 = grad_s3
o s grad_s@ = grad_s2

wl -3.00

-0.40
6.00
0.20

x1 -2.00

-0.60

___////////// grad s1 = grad s2
w2 -3.00
: rad_wl = grad_s1l * x1
020 Multiply gate iy A~
grad_x1 = grad_sl x wl
grad_w@ = grad_s@ * x0
grad_x0 = grad_s@ x wo@

Ranjay Krishna, Sarah Pratt Lecture 5 - 19 January 18, 2024

i def (w0, X0, wl, x1, w2):
Backprop Implementation: of 1(u6, 10, M1, 21, v
“Flat” code Forward pass: | £ 7 A
s2 = sO + sl

Compute output oy o 8 o

w0 2.00
-0.20

L = sigmoid(s3)

-2.00
0.20

= grad_L = 1.0

grad_s3 = grad_L *x (1 - L) * L
grad_w2 = grad_s3

Lm)/:;\\073 grad_s2 = grad_s3
o s grad_s@ = grad_s2

wl -

x1 -2.
-0.60
grad_s1l = grad_s2

wzag? grad_wl = grad_sl x x1
grad_x1 = grad_sl x wl

. grad_w@ = grad_s@ * x0

Multiply gate grad_x0 = grad_s@ x wo@

Ranjay Krishna, Sarah Pratt Lecture 5 - 20 January 18, 2024

“Flat” Backprop: Do this for assignment 2!

Stage your forward/backward computation!

E.g. for the SVM:

receive W (weights), X (da
forward pass (we hav 1in€s)
scores = #...
margins = #...
data loss = #...
reg loss = #...
loss = data loss + reg loss

backward pass (we have 5 lines)
dmargins = # ...
dscores = #...

dw = #. ..

Ranjay Krishna, Sarah Pratt

= Z#yi max(0,s; — sy, + 1)

[\f\— Wzl |Li

S o
/@g
45

O

|

A4

(optionally, we go direct to dscores)

Lecture 5 - 21

January 18, 2024

“Flat” Backprop: Do this for assignment 1!

E.g. for two-layer neural net:

receive W1,W2,bl,b2 (weights/biases), X (data)

forward pass:

hl = #... function of X,W1,6bl

scores = #... function of hl,W2,b2

loss = #... (several lines of code to evaluate Softmax loss)
backward pass:

dscores = #...

dhl,dw2,db2 = #...

dwl,dbl = #...

Ranjay Krishna, Sarah Pratt Lecture 5 - 22 January 18, 2024

Backprop Implementation: Modularized API

Graph (or Net) object (rough pseudo code)

class ComputationalGraph(object):

o

w0 2.00

def forward(inputs):
1. [pass inputs to input gates...]
2. forward the computational graph:
for gate in self.graph.nodes topologically sorted():
gate.forward()
return loss # the final gate in the graph outputs the loss

def backward():

for gate in reversed(self.graph.nodes topologically sorted()):
gate.backward() # little piece of backprop (chain rule applied)

return inputs gradients

Ranjay Krishna, Sarah Pratt Lecture 5 - 23 January 18, 2024

Modularized implementation: forward / backward API
Gate / Node / Function object: Actual PyTorch code

class Multiply(torch.autograd.Function):

X @staticmethod
i def forward(ctx, x, y): Need to stash
ctx.save_for_backward(x, y) €«————| some values for
Z= X%y use in backward
3/ return z
@staticmethod
def backward(ctx, grad_z): - Upstream
(X,y,Z are ScalarS) grat- gradient

X, y = ctx.saved_tensors
grad_x =y *x grad_z # dz/dx % dL/dz Multiply upstream
grad_y = X *x grad_z # dz/dy * dL/dz | and local gradients
return grad_x, grad_y

Ranjay Krishna, Sarah Pratt Lecture 5 - 24 January 18, 2024

Example: PyTorch operators

pytorch / pytorch @Wwatch~ 1221 KuUnstar 26770 YFork 6340 &) SpatialClassNLLCriterion.c Canonicalize all includes in PyTorch. (#14849) 4 months ago
) spatialC allincludes in PyTorch. (#14849) 4 months ago
< Pull J i i Insight:
Code Issues 2,286 'ull requests 661 Projects 4 Wiki nsights taiDilatedConvolution lize all includes in PyTorch. (#14849) 4 months ago
i &) Spatialc g.c c allincludes in PyTorch. (#14849) 4 months ago
Tree: 517¢7¢9861~ pytorch / aten / src / THNN / generic / Upload files ~ Find file ~ History
Spati c c allincludes in PyTorch. (#14849) 4 months ago
B35 ezyang and facebook-github-bot Canonicalize allincludes in PyTorch. (#14849) == Latest commit 517¢7c9 on Dec 8, 2018 £ spatialFullDilatedConvolution.c Canonicalize all includes in PyTorch. (#14849) 4 months ago
E) SpatialMaxUnpooling.c Canonicalize all includes in PyTorch. (#14849) 4 months ago
) AbsCriterion.c Canonicalize all includes in PyTorch. (#14849) 4 months ago 2 g.c c lize allincludes in PyTorch. (#14849) 4 months ago
E) BCECriterion.c Canonicalize all includes in PyTorch. (#14849) 4 months ago 9. c allincludes in PyTorch. (#14849) 4 months ago;
[E) ClassNLLCriterion.c Canonicalize all includes in PyTorch. (#14849) 4 months ago B Spatiall allinchides in PyTorch: (#14849) 4 monthsago;
= B tiall 1} lud PyTorch. (#14849) 4 nths
[E) Col2im.c Canonicalize all includes in PyTorch. (#14849) 4 months ago ¢ alkincludes In yTorch: ¢) onthe 890,
—] THNN.h Canonicalize all includes in PyTorch. (#14849) 4 months ago
JELUC Canonicalize all includes in PyTorch. (#14849) 4 months ago i ¢) :
= Tanh.c Canonicalize all includes in PyTorch. (#14849) 4 months ago
) FeatureLPPooling.c Canonicalize all includes in PyTorch. (#14849) 4 months ago
) c c allincludes in PyTorch. (#14849) 4 months ago
5) GatedLinearUnit.c Canonicalize all includes in PyTorch. (#14849) 4 months ago
E g.c [allincludes in PyTorch. (#14849) 4 months ago
) HardTanh.c Canonicalize all includes in PyTorch. (#14849) 4 months ago
B nvolution.c all includes in PyTorch. (#14849) 4 months ago
[E Im2Col.c Canonicalize all includes in PyTorch. (#14849) 4 months ago
2 TemporalUpSamplingLinear.c Canonicalize all includes in PyTorch. (#14849) 4 months ago
=) IndexLinear.c Canonicalize all includes in PyTorch. (#14849) 4 months ago
=) Temporall ,c allincludes in PyTorch. (#14849) 4 months ago
[E) LeakyReLU.c Canonicalize all includes in PyTorch. (#14849) 4 months ago i}
] - all includes in PyTorch. (#14849) 4 months ago
E) LogSigmoid.c Canonicalize all includes in PyTorch. (#14849) 4 months ago
) gc G allincludes in PyTorch. (#14849) 4 months ago
=) MSECriterion.c Canonicalize all includes in PyTorch. (#14849) 4 months ago
2 g.c Ci lize all includes in PyTorch. (#14849) 4 months ago
) MultiL riterion.c [& all includes in PyTorch. (#14849) 4 months ago
lumetricC o all includes in PyTorch. (#14849) 4 months ago
) MultiMarginCriterion.c Canonicalize all includes in PyTorch. (#14849) 4 months ago
ul g i Y () 9 /olumetricDilatedConvolution.c [all includes in PyTorch. (#14849) 4 months ago
E) RReLU.c Canonicalize all includes in PyTorch. (#14849) 4 months ago i oo all nchudes i PyTorch; (#14540) P —
) Sigmoid.c Canonicalize all includes in PyTorch. (#14849) 4 months ago o 3 T allinchudes in PyTorch, (#14849) 4 montha ago
=) SmoothL1Criterion.c Canonicalize all includes in PyTorch. (#14849) 4 months ago E) VolumetricFullDilatedConvolution.c Canonicalize all includes in PyTorch. (#14849) 4 months ago
B SoftMarginCriterion.c Canonicalize all includes in PyTorch. (#14849) 4 months ago &) P— allincludes in PyTorch, (#14849) D
[E) SoftPlus.c Canonicalize all includes in PyTorch. (#14849) 4 months ago) c [all includes in PyTorch. (#14849) 4 months ago
2 Softshrink.c Canonicalize all includes in PyTorch. (#14849) 4 months ago Jumetrict ¢ ¢ allincludes in PyTorch. (#14849) 4 months ago
E) sparseLinear.c Canonicalize all includes in PyTorch. (#14849) 4 months ago lumetricUpSamplingTrilinear.c lize allincludes in PyTorch. (#14849) 4 months ago
) gc C all includes in PyTorch. (#14849) 4 months ago E) linear_upsampling.h Implement nn.functionalinterpolate based on upsample. (#8591) 9 months ago
) gc c all includes in PyTorch. (#14849) 4 months ago) pooling_shape.h Use integer math to compute output size of pooling operations (#14405) 4 months ago
) gc c allincludes in PyTorch. (#14849) 4 months ago B unfold.c Canonicalize allincludes in PyTorch. (#14849) 4 months ago

Ranjay Krishna, Sarah Pratt Lecture 5 - 25 anuary 18, 2024

#ifndef TH_GENERIC_FILE

#define TH_GENERIC_FILE "THNN/generic/Sigmoid.c" PyTO rCh Singid Iayer

#else

void THNN_(Sigmoid_updateOutput) (rw
THNNState *state, FO ard
THTensor *xinput,].
THTensor xoutput) _

{ 0($)—— 1 —

THTensor_(sigmoid) (output, input); —+_ €
}

void THNN_(Sigmoid_updateGradInput) (
THNNState *state,
THTensor *xgradOutput,
THTensor *xgradInput,
THTensor xoutput)

THNN_CHECK_NELEMENT (output, gradOutput);

THTensor_(resizeAs) (gradInput, output);

TH_TENSOR_APPLY3(scalar_t, gradInput, scalar_t, gradOutput, scalar_t, output,
scalar_t z = xoutput_data;
*gradInput_data = *gradOutput_data * (1. - z) * z;

);

#endif Source

Ranjay Krishna, Sarah Pratt Lecture 5 - 26 January 18, 2024

https://github.com/pytorch/pytorch/blob/517c7c98610402e2746586c78987c64c28e024aa/aten/src/THNN/generic/Sigmoid.c

#ifndef TH_GENERIC_FILE
#define TH_GENERIC_FILE "THNN/generic/Sigmoid.c"

PyTorch sigmoid layer

#else
static void sigmoid_kernel(TensorIterator& iter) {
void THNN_(Sigmoid_updateOutput) (FO ard AT_DISPATCH_FLOATING_TYPES(iter.dtype(), "sigmoid_cpu", [&]() {
THNNState *state, unary;ke”ml‘vec
) iter,
THTensor *input, 1 [=](scalar_t a) —> scalar_t {|re'turn (1/ (1+ std::exp((—a))));l}.
THTensor xoutput) 0'(:1,') [=](Vec256<scalar_t> a) {
{ 1 + 6_1- a = Vec256<scalar_t>((scalar_t)(0)) - a;
THTensor_(sigmoid) (output, input); ap= avexpl);
} a = Vec256<scalar_t>((scalar_t)(1)) + a;
a = a.reciprocal();

void THNN_(Sigmoid_updateGradInput) (
THNNState *state,
THTensor xgradOutput,
THTensor *xgradInput,
THTensor xoutput)

THNN_CHECK_NELEMENT (output, gradOutput);
THTensor_(resizeAs) (gradInput, output);

return a;

3
1)

Forward actually
defined elsewhere...

return (1 / (1 + std::exp((-a))));

TH_TENSOR_APPLY3(scalar_t, gradInput, scalar_t, gradOutput, scalar_t, output,

scalar_t z = xoutput_data;
*gradInput_data = *gradOutput_data * (1. - z) * z;
);

#endif

Source

Ranjay Krishna, Sarah Pratt

Lecture 5 - 27

January 18, 2024

https://github.com/pytorch/pytorch/blob/517c7c98610402e2746586c78987c64c28e024aa/aten/src/THNN/generic/Sigmoid.c
https://github.com/pytorch/pytorch/blob/82b570528db0a43fc04bb90f5d4538c01e4a5582/aten/src/ATen/native/cpu/UnaryOpsKernel.cpp

#ifndef TH_GENERIC_FILE

#define TH_GENERIC_FILE "THNN/generic/Sigmoid.c" PyTO rCh Singid Iayer

#else
static void sigmoid_kernel(TensorIterator& iter) {
void THNN_(Sigmoid_updateOutput) (FO ard AT_DISPATCH_FLOATING_TYPES(iter.dtype(), "sigmoid_cpu", [&]() {
THNNState *state, unary_kernel.vec!
. iter,
THTensor *input, 1 [=](scalar_t a) -> scalar_t { return (1 / (1 + std::exp((-a)))); },
THTensor *output) O'(fL') _ [=](Vec256<scalar_t> a) {
{ - 1 + e_x a = Vec256<scalar_t>((scalar_t)(0)) - a;
THTensor_(sigmoid) (output, input); a = a.exp();
} a = Vec256<scalar_t>((scalar_t)(1)) + a;
a = a.reciprocal();
return a;
void THNN_(Sigmoid_updateGradInput) (1 Forward aCtua”y
THNNState *state }; i
: defined elsewhere...
THTensor xgradOutput, Y
THTensor *xgradInput,
THTensor xoutput)
{
THNN_CHECK_NELEMENT (output, gradOutput);
THTensor_(resizeAs)(gradInput, output); Backward
TH_TENSOR_APPLY3(scalar_t, gradInput, scalar_t, gradOutput, scalar_t, output,
scalar_t z = xoutput_data;
xgradInput_data = *gradOutput_data *x (1. - z) * z; (()) ()
—] i
p l—o0o(x))o(x
¥
#endif Source

Ranjay Krishna, Sarah Pratt Lecture 5 - 28 January 18, 2024

https://github.com/pytorch/pytorch/blob/517c7c98610402e2746586c78987c64c28e024aa/aten/src/THNN/generic/Sigmoid.c
https://github.com/pytorch/pytorch/blob/82b570528db0a43fc04bb90f5d4538c01e4a5582/aten/src/ATen/native/cpu/UnaryOpsKernel.cpp

So far: backprop with scalars

What about vector-valued functions?

Ranjay Krishna, Sarah Pratt Lecture 5 - January 18, 2024

Recap: Vector derivatives

Scalar to Scalar
reR,yeR

Regular derivative:

dy
— R
0x€

If x changes by a
small amount, how
much will y change?

Ranjay Krishna, Sarah Pratt Lecture 5 - January 18, 2024

Recap: Vector derivatives

Scalar to Scalar Vector to Scalar

reRyeR reRY yeR
Regular derivative: Derivative is Gradient:
dy dy o~ (9 Ay
R cR (—) =
(9:5 = afE dz). Oz,
If x changes by a For each element of x,
small amount, how if it changes by a small

much will y change? amount then how much
will y change?

Lecture 5 - January 18, 2024

Ranjay Krishna, Sarah Pratt

Remember this example from last lecture?

w0 2.00 1
f(w’x) = 1 + e—('u’o;to+’l£'1171+'w2)

Sigmoid

100 | /&). -100 _—— (D137 1ML 073
020 \'/ 020 Y 053 __J 053 | 100

0.20

Derivative is Gradient:
Vector to Scalar erivative is Gradien

i 8y dy dy 0.40
1.00 N N (9%Y) _
|:_2_00j| reR Y € R o7 % cR (8.7:)” - Oz, |:—0.60j|

Ranjay Krishna, Sarah Pratt Lecture 5 - 32 January 18, 2024

Recap: Vector derivatives

Scalar to Scalar Vector to Scalar

rceR,yceR reRY yeR

Regular derivative: Derivative is Gradient:
Jy dy N (9y\ _ 9y
o =8 B = K (%)n - Oz

For each element of x,
if it changes by a small
amount then how much
will y change?

If x changes by a
small amount, how
much will y change?

3y N i
“d R X M (
(9.% = 873

Vector to Vector
reRY yeRM

Derivative is Jacobian:
0y> _ Oym
n.m

oy,

For each element of x, if it
changes by a small amount
then how much will each
element of y change?

January 18, 2024

Ranjay Krishna, Sarah Pratt

Lecture 5 -

Backprop with Vectors

T Loss L still a scalar!

\
y/’

Ranjay Krishna, Sarah Pratt Lecture 5 - 34 January 18, 2024

Backprop with Vectors

D

X

L

Ranjay Krishna, Sarah Pratt

\
/

Lecture 5 -

Loss L still a scalar!

rARD

Z

>

35 January 18, 2024

Backprop with Vectors

D

X

L

Ranjay Krishna, Sarah Pratt

\
/

Lecture 5 -

Loss L still a scalar!

rARD

Z

>

oL
0z

“Upstream gradient”

36 January 18, 2024

Backprop with Vectors

DX . \
OL

“Upstream gradient”

For each element of z, how
much does it influence L?

Loss L still a scalar!

Ranjay Krishna, Sarah Pratt Lecture 5 - 37 January 18, 2024

Backprop with Vectors

D T Loss L still a scalar!
X \
o)
207 Z|D,
ax T
“Downstream < f >
gradients” =

D, 1Y % 2] 2
—— A, “Upstream gradient”
Y For each element of z, how
much does it influence L?

Ranjay Krishna, Sarah Pratt Lecture 5 - 38 January 18, 2024

N

Backprop with Vectors

D |
X \
> 2z o
——
“Downstream @x (93
gradientsn/'
Dy y %

Ranjay Krishna, Sarah Pratt

Loss L still a scalar!

“local

gradients”
z|D
z
f =
OL
82 Dz

“Upstream gradient”

For each element of z, how
much does it influence L?

Lecture 5 - 39 January 18, 2024

Backprop with Vectors

Loss L still a scalar!

D [T “local
izzai D, xD)] 21D,
———
“Downstream < 0z f >
gradients” 0z =
D Y A/BL Jacobian 0z z

y v/ .
5 Y matrices “Upstream gradient”
Y For each element of z, how
much does it influence L?

Ranjay Krishna, Sarah Pratt Lecture 5 - 40 January 18, 2024

Backprop with Vectors

Loss L still a scalar!

D [z “local
y \ gradients”

D, s aﬁz o7 D, xD] Z|D,
“Downstream Matri o2 f -

strea atrix-vector 0z)
gdt/ 55| [D. x D.] oL

y z Bz

D |Y A/BIJ Jacobian > DZ

Y 2 .
6/ Y matrices “Upstream gradient”
D k For each element of z, how

much does it influence L?

Ranjay Krishna, Sarah Pratt Lecture 5 - 41 January 18, 2024

Gradients of variables wrt loss have same dims as the original variable

D

X

L

Loss L still a scalar!

D

X

“Upstream gradient”
D) For each element of z, how
y much does it influence L?

Ranjay Krishna, Sarah Pratt Lecture 5 - 42 January 18, 2024

Backprop with Vectors
4D input x:
1

Ranjay Krishna, Sarah Pratt

2] ——
o

1] .

f(x) = max(0,x)
(elementwise)

Lecture 5 -

4D output z:

—_—

—_—

—_—

_—

1

[0]
3]
0]

January 18, 2024

Backprop with Vectors
4D input x:
1

Ranjay Krishna, Sarah Pratt

2] ——
o

1] .

f(x) = max(0,x)
(elementwise)

Lecture 5 -

4D output z:
— [1]
— [0]
— [3]
—— [0]
4D dL/dz:
[4]
[-1] ——— Upstream
5 1——— gradient
[9] —

January 18, 2024

Backprop with Vectors
4D input x:
1

Ranjay Krishna, Sarah Pratt

2] ——
o

1] .

f(x) = max(0,x)
(elementwise)

Jacobian dz/dx

1

0

1

0]

Lecture 5 -

4D output z:
— [1]
— [0]
— [3]
—— [0]
4D dL/dz:
— [4]
[-1] ——— Upstream
~— 1[5 1~—— gradient

January 18, 2024

Backprop with Vectors
4D input x:
1

Ranjay Krishna, Sarah Pratt

2] ——
o

1] .

f(x) = max(0,x)
(elementwise)

dz/dx] [dL/dz]
[1 1[4]
(0000][-1]

C01ts |

1[5]
0][9]

Lecture 5 -

4D output z:

—_—

—_—

—_—

_—

1

[0]
3]
0]

4D dL/dz:

-—

+—

-—

-«—

[4]
[-1
[O]

~— Upstream
——— gradient

[9]

January 18, 2024

Backprop with Vectors

4D input x:

[1]
(-2]
5

1

—_—

—_—

_—

f(x) = max(0,x)
(elementwise)

4D dL/dx:

[4]

o 010

-—

+—

-—

-«—

Ranjay Krishna, Sarah Pratt

dz/dx] [dL/dZ]
[1 1[4]
000][-1]
C01ts |

1[5]
0][9]

Lecture 5 -

4D output z:

—_—

—_—

—_—

_—

1

[0]
3]
0]

4D dL/dz:

-—

+—

-—

-«—

[4]
[-1
[O]

Upstream
gradient

[9]

January 18, 2024

Backprop with Vectors

4D input x:

Jacobian is sparse:
off-diagonal entries
always zero! Never
explicitly form
Jacobian -- instead
use implicit
multiplication

[1]
(-2]
[3]

1

s

>

 —_

f(x) = max(0,x)
(elementwise)

4D dL/dx:

[4]

o 010

-—

+—

-—

-«—

Ranjay Krishna, Sarah Pratt

dz/dx] [dL/dz]
[1 1[4]
000][-1]

C011s

1[5]
0][9]

Lecture 5 -

4D output z:

>

s

>

 —_

1

[0]
3]
0]

4D dL/dz:

-—

+—

-—

-«—

[4]
[-1
[O]

Upstream
gradient

[9]

January 18, 2024

Backprop with Vectors

4D input x: 4D output z:
[1] [1]
TN P _ 0]
Jacobian is sparse: : 3 - f(X) - max(Q,x) : 3 :
off-diagonal entries . | (elementwise) | ! 7.
always zero! Never [1] ——— — [0]
explicjtly fqrm
P 4D dL/dx: [dz/dx] [dL/dZ] 4D dL/dz:

_ o1 [4]
1 <8L) _ {(c?z)Z ifx; >0 [-1]~—— Upstream

multiplication

o 0 otherwise — [5] ——— gradient

9

-—

O 010 PH~

Ranjay Krishna, Sarah Pratt Lecture 5 - January 18, 2024

Backprop with Matrices (or Tensors)

[DxM] |

.I:

Jacobian
matrices

Matrix-vector

multiply
[Dyx |Vly] Y /

Loss L still a scalar!

dL/dx always has the
same shape as x!

Z] [BxM,]

>

Ranjay Krishna, Sarah Pratt Lecture 5 -

50 January 18, 2024

Backprop with Matrices (or Tensors) Loss L still a scalar!

dL/dx always has the
[D xM] :C\ same shape as !
[D, xM] X
~ f d\L Z [DZXMZ]

« * dZ >
Downlstrea},m Matrix-vector f =

gradients % oL
DM [y —— o | [D,<M,]

0 Jacobian
0L !
y 07 matrices “Upstream gradient”
[DyXMy] For each element of z, how

much does it influence L?

Ranjay Krishna, Sarah Pratt Lecture 5 - 51 January 18, 2024

Backprop with Matrices (or Tensors)

Loss L still a scalar!

dL/dx always has the

x (11
DM 2 local same shape as X!
[D xM] -
=< 9297 Z| [D_xM]
Ox 07\ z z
“Downstream Matri < >
: . atrix-vector Oz
gradients multiply Y
X
y Y A/a,zfi Jacobian Oz| "7z 7z
D xM] By 07 matrices “Upstream gradient”
X
y oy For each element of y, how much For each element of z, how

does it influence each element of z? Much does it influence L?

Ranjay Krishna, Sarah Pratt Lecture 5 - Y January 18, 2024

Backprop with Matrices (or Tensors) Loss L still a scalar!

[DxM] | dL/dx always has the

local same shape as X!
\ gradients”
[D xM]

X X =< 929, [(D,*M,)*(D,xM,)] z| [D.xM_]
Ox 07\ z z

“Down_strealm Matrix-vector ¢ Oz < -

gradients multiply o [(D,xM)x(D,xM,)] 5L
D xM / = | [D,xM]
[y y] J 97 EE Jacobian 0z £
D xM] By 07 matrices “Upstream gradient”

y oy For each element of y, how much For each element of z, how

does it influence each element of z? Much does it influence L?

Ranjay Krishna, Sarah Pratt Lecture 5 - 53 January 18, 2024

Backprop with Matrices

y: [NxM]
13 9 -2 -6]
x: [NxD] Matrix Multiply [9217 1]
[2 1 -3]
[3 4 2] Yeigrs = 3 By il dL/dy: [NxM]
w: [DxM] —— g [2 3-3 9]
[3 2 1-1] [-8 14 6]
[2 13 2]
[32 1-2]

Also see derivation by Prof. Justin Johnson:

https://courses.cs.washington.edu/courses/cse493q1/23s
p/resources/linear-backprop.pdf

Ranjay Krishna, Sarah Pratt

Lecture 5 - 54 January 18, 2024

https://courses.cs.washington.edu/courses/cse493g1/23sp/resources/linear-backprop.pdf
https://courses.cs.washington.edu/courses/cse493g1/23sp/resources/linear-backprop.pdf

Backprop with Matrices

y: [NxM]
13 9 -2 -6]

x: [NxD] Matrix Multiply [9217 1]
[2 1 -3]

[3 4 2] Yriyrs = Y o, 08 dL/dy: [NXM]
w:[DxM] ’ [23-39]

[321-1] Jacobians: [-8146]

[2 13 2] dy/dx: [(NxD)x(NxM)]

[32 1-2]

dy/dw: [(DxM)x(NxM)]

For a neural net we may have
N=64, D=M=4096
Each Jacobian takes ~256 GB of
memory! Must work with them implicitly!

Ranjay Krishna, Sarah Pratt

Lecture 5 - 55 January 18, 2024

Backprop with Matrices

y: [NxM]
13 9 -2 -6]
x: [NxD] Matrix Multiply [9217 1]
[2 (1]-3]
[3 4 2] Yriyrs = Y o, 08 dL/dy: [NXM]
w:[DxM] — ¢ [2 3-3 9]
[32 1-1] Q: What parts of y [-8 14 6]
[2 1 3 2] are affected by one
[3 2 1-2] element of x?

Ranjay Krishna, Sarah Pratt

Lecture 5 - 56 January 18, 2024

Backprop with Matrices y: [NxM]

13 9 -2 -6]]
x: [NxD] Matrix Multiply [9217 1]
[2 [1]-3]
[3 4 2] Yriyrs = Y o, 08 dL/dy: [NXM]
w: [DxM] —— g —— [|2 3-3 9]
[32 1-1] Q: What parts of y [-8 14 6]
[2 1 3 2] are affected by one
[3 2 1-2] element of x?

A: |7y 4 |affects the
whole row Yn .

oL oL (f)yn m

()In .d 5 ()yn ,m ()-/E‘n ,d

Ranjay Krishna, Sarah Pratt Lecture 5 - 57 January 18, 2024

Backprop with Matrices y: [NxM]

13 9 [-2] -6]]
x: [NxD] Matrix Multiply [9217 1]
[2 (1]-3]
[-3 4 2] Yeigrs = 3 By il dL/dy: [NxM]
w: [DxM] —— g [[2 3-3 9]
[3 2 1-1] Q: What parts of y Q Howmuch [-8146]
[2 1 3 2] are affected by one does[rn.d
[3 2 1-2] element of x? affect| Yn,m|?

A: |7y 4 |affects the
whole row Yn .

oL oL (f)yn m

()In .d 5 ()yn ,m ()-/E‘n ,d

Ranjay Krishna, Sarah Pratt Lecture 5 - 58 January 18, 2024

Backprop with Matrices y: [NxM]

13 9 [-2] -6]]
x: [NxD] Matrix Multiply [9217 1]
[2 (1]-3]
[-3 4 2] Yeigrs = 3 By il dL/dy: [NxM]
w: [DxM] —— g [[2 3-3 9]
[3 2 1-1] Q: What parts of y Q Howmuch [-8146]
[2 1[3] 2] are affected by one does[rn.d
[3 2 1-2] element of x? affect| Yn,m|?

A: |7y 4 |affects the A: Wd,m
whole row Yn,, -

L Z ()L ()/l/n m W)
= ; ‘d,m
()In d ()l/n m ()En d ()yn.-m

Ranjay Krishna, Sarah Pratt Lecture 5 - 59 January 18, 2024

Backprop with Matrices y: [NxM]

13 9 [-2] -6]]

x: [NxD] Matrix Multiply [9217 1]
[2 (1]-3]

[-3 4 2] Yn,m = an’dwd’m dL/dy: [NxM]
w: [DxM] —— g [[2 3-3 9]
[3 2 1-1] Q: What parts of y Q Howmuch [-8146]
[2 1|3 2] are affected by one does|[Tn.d

[32 1-2] element of x? affect| Yn,m|?
_ ~ A:[rn.d |affects the A:lwg m

[NxD] [NxM] [MxD] \whole row ¥n.- |

OL <0L> T Z ()L (f)/l/n m ; U
—-— = —_— w — = b / "'(1.‘
Ox ()1/ ()In d ()Un m ()En d ()yn.-m "

Ranjay Krishna, Sarah Pratt Lecture 5 - 60 January 18, 2024

Backprop with Matrices y: [NxM]

13 9 [-2] -6]]
x: [NxD] Matrix Multiply [52 17 1]
[2[1]-3]
[3 4 2] Yriyrs = Y o, 08 dL/dy: [NXM]
w: [DxM] — ¢ — [[2.3-3 9]
[3 2 1-1] [-8 1 4 6]
[2 113] 2] _ -
(32 1-2] By similar logic:
INxD] [NxM] [MxD] DxM] [DxN] [NxM] These formulas are
() easy to remember: they
oL _ (d_L> Ll 8_L — T (9_L are the only way to
Ox dy) ow Oy make shapes match up!

Ranjay Krishna, Sarah Pratt Lecture 5 - 61 January 18, 2024

Wrapping up: Neural Networks
Linear score function: f — Wa
2-layer Neural Network f = Womax(0, Wix)

X W1 |h| W2 |g

10
dog frog horse ship truck

3072 100

deer

plane car bird cat
. ’ H .‘.. - : y !

Ranjay Krishna, Sarah Pratt Lecture 5 - 62 January 18, 2024

Next: Convolutional Neural Networks

Image Maps

Fully Connected

Input

Convolutions
Subsamplmg

lllustration of LeCun et al. 1998

Ranjay Krishna, Sarah Pratt Lecture 5 - 63 January 18, 2024

Recap: Fully Connected Layer

32x32x3 image -> stretch to 3072 x 1

input activation
W x
1 10 x 3072 11O
3072 * 10
weights

Ranjay Krishna, Sarah Pratt Lecture 5 - 64 January 18, 2024

Fully Connected Layer

32x32x3 image -> stretch to 3072 x 1

input activation
Wax
1 10 x 3072 119
3072 X /4 10
weights
1 number:

the result of taking a dot product
between a row of W and the input
(a 3072-dimensional dot product)

Ranjay Krishna, Sarah Pratt Lecture 5 - 65 January 18, 2024

Convolution Layer

32x32x3 image -> preserve spatial structure

32 height
Main idea: only look at

small patches of an image

3 depth

Ranjay Krishna, Sarah Pratt Lecture 5 - 66 January 18, 2024

Convolution Layer

32x32x3 image

ox5x3 filter
32 L/
I Convolve the filter with the image
i.e. “slide over the image spatially,

computing dot products”

32

Ranjay Krishna, Sarah Pratt Lecture 5 - 67 January 18, 2024

CO nVOI Ut|0n I—ayer Filters always extend the full
S depth of the input volume

32x32x3 image /
9x5x3 filter
32 L/
I Convolve the filter with the image
i.e. “slide over the image spatially,

computing dot products”

32

Ranjay Krishna, Sarah Pratt Lecture 5 - 68 January 18, 2024

Convolution Layer

__— 32x32x3 image

5x5x3 filter w
=
the result of taking a dot product between the

filter and a small 5x5x3 chunk of the image

32 (i.e. 5*5*3 = 75-dimensional dot product + bias)

] wiz+b

™~ 1 number:

Ranjay Krishna, Sarah Pratt Lecture 5 - 69 January 18, 2024

Convolution Layer

32

0

32

Ranjay Krishna, Sarah Pratt Lecture 5- 70 January 18, 2024

Convolution Layer

32

==

32

Ranjay Krishna, Sarah Pratt Lecture 5 - 71 January 18, 2024

Convolution Layer

32

Ranjay Krishna, Sarah Pratt Lecture 5 - 72 January 18, 2024

Convolution Layer

32

Ranjay Krishna, Sarah Pratt Lecture 5- 73 January 18, 2024

Convolution Layer

Ve

I

32

—

V
——0

32x32x3 image
ox5x3 filter

convolve (slide) over all
spatial locations

activation map

AN

28

N

Ranjay Krishna, Sarah Pratt

Lecture 5- 74

January 18, 2024

Convolution Layer consider a second, green filter

_— 32x32x3 image activation maps

5x5x3 filter %
=
@>@ &

convolve (slide) over all

spatial locations
32 / 28

Ranjay Krishna, Sarah Pratt Lecture 5- 75 January 18, 2024

For example, if we had 6 5x5 filters, we’ll get 6 separate activation maps:

32

32

3

Convolution Layer

activation maps

y

28

A

We stack these up to get a “new image” of size 28x28x6!

Ranjay Krishna, Sarah Pratt

Lecture 5 - 76 January 18, 2024

Preview: ConvNet is a sequence of Convolution Layers, interspersed with
activation functions

32 28

CONYV,
RelLU
e.g.6
5x5x3
filters

32 28

Ranjay Krishna, Sarah Pratt Lecture 5- 77 January 18, 2024

Preview: ConvNet is a sequence of Convolution Layers, interspersed with
activation functions

32 28 o4
CONV, CONV. CONV.
RelU RelU RelU
2-95- % e.g. 10
XoX 5x5x6
32 filters 28 Fltore 24
3 6 10

Ranjay Krishna, Sarah Pratt Lecture 5- 78 January 18, 2024

Preview [Zeiler and Fergus 2013] 3t i Smomon s s 014,
: : Linearly
Low-level Mid-level High-level separable
features features features .
classifier

VGG-16 Conv1 1 VGG-16 Conv3._ VGG-16 Convs 3

Ranjay Krishna, Sarah Pratt Lecture 5- 79 January 18, 2024

Preview Low-level

features

Mid-level
features

High-level
features

v

separable

Linearly

classifier

VGG-16 Convil _

VGG

Retinal ganglion cell
receptive fields

Ranjay Krishna, Sarah Pratt

g

VG

-16 Conv3_2

LGN and V1
simple cells Complex cells:
Response to light

orientation and movement

Hypercomplex cells:
response to movement
with an end point

\\

No response Response

(end point)

Lecture 5 - 80

G-16 Co

ol

nv5._3

January 18, 2024

one filter => _
one activation map example 5x5 filters

(32 total)

“ SECINEERNNZINIANEENE SO RSTISREREERS
.

Activations:

We call the layer convolutional
because it is related to convolution
of two signals:

fleylsgleyl = Y, D fln.nl-glx—n,y—n,]

ny=—oco i, =—oco T

elementwise multiplication and sum of
a filter and the signal (image)

Figure copyright Andrej Karpathy.

Ranjay Krishna, Sarah Pratt Lecture 5 - 81 January 18, 2024

preview:

RELU RELU RELU RELU RELU RELU
CONV |CONV CONV | CONV CONV | CONV FC

St e i

(R %

Sl EEELEE!

Ranjay Krishna, Sarah Pratt Lecture 5 - 82 January 18, 2024

A closer look at spatial dimensions:

B

—

V
——0

32

32x32x3 image
5x5x3 filter

convolve (slide) over all
spatial locations

activation map

L

.

28

Ranjay Krishna,

Sarah Pratt

Lecture 5 - 83

January 18, 2024

A closer look at spatial dimensions:

14

/X7 input (spatially)
assume 3x3 filter

Ranjay Krishna, Sarah Pratt Lecture 5 - 84 January 18, 2024

A closer look at spatial dimensions:

14

/X7 input (spatially)
assume 3x3 filter

Ranjay Krishna, Sarah Pratt Lecture 5 - 85 January 18, 2024

A closer look at spatial dimensions:

14

/X7 input (spatially)
assume 3x3 filter

Ranjay Krishna, Sarah Pratt Lecture 5 - 86 January 18, 2024

A closer look at spatial dimensions:

14

/X7 input (spatially)
assume 3x3 filter

Ranjay Krishna, Sarah Pratt Lecture 5 - 87 January 18, 2024

A closer look at spatial dimensions:

14

/X7 input (spatially)
assume 3x3 filter

=> 5x5 output

Ranjay Krishna, Sarah Pratt Lecture 5 - 88 January 18, 2024

A closer look at spatial dimensions:

14

/X7 input (spatially)
assume 3x3 filter
applied with stride 2

Ranjay Krishna, Sarah Pratt Lecture 5 - 89 January 18, 2024

A closer look at spatial dimensions:

14

/X7 input (spatially)
assume 3x3 filter
applied with stride 2

Ranjay Krishna, Sarah Pratt Lecture 5 - 90 January 18, 2024

A closer look at spatial dimensions:

I4
/X7 input (spatially)

assume 3x3 filter
applied with stride 2
=> 3x3 output!

Ranjay Krishna, Sarah Pratt Lecture 5 - 91 January 18, 2024

A closer look at spatial dimensions:

14

/X7 input (spatially)
assume 3x3 filter
applied with stride 3?

Ranjay Krishna, Sarah Pratt Lecture 5 - 92 January 18, 2024

A closer look at spatial dimensions:

14

/X7 input (spatially)
assume 3x3 filter
applied with stride 3?

7 doesn’t fit!
cannot apply 3x3 filter on
/X7 input with stride 3.

Ranjay Krishna, Sarah Pratt Lecture 5 - 93 January 18, 2024

Output size:
= (N - F) / stride + 1
N eg.N=7,F=3:
F stride 1=>(7-3)/1+1=5
stride2=>(7-3)/2+1=3

(
stride 3 => (7-3)/3+1=2.33:\

Ranjay Krishna, Sarah Pratt Lecture 5- 94 January 18, 2024

n practice: Common to zero pad the border
ol Il Il Bl B e.g. input 7x7
0 3x3 filter, applied with stride 1
0 pad with 1 pixel border => what is the output?
0
0
(recall:)
(N - F)/ stride + 1

Ranjay Krishna, Sarah Pratt Lecture 5 - 95 January 18, 2024

n practice: Common to zero pad the border
ol Il Il Bl B e.g. input 7x7
0 3x3 filter, applied with stride 1
0 pad with 1 pixel border => what is the output?
° 7x7 output!
0
(recall:)
(N + 2P - F) / stride + 1

Ranjay Krishna, Sarah Pratt Lecture 5 - 96 January 18, 2024

n practice: Common to zero pad the border

0/0|{0|0O0|0|O

e.g. input 7x7
0 3x3 filter, applied with stride 1
0 pad with 1 pixel border => what is the output?
° 7x7 output!
0 in general, common to see CONYV layers with

stride 1, filters of size FxF, and zero-padding with
(F-1)/2. (will preserve size spatially)
e.g. F =3 => zero pad with 1

F =5 => zero pad with 2

F =7 => zero pad with 3

Ranjay Krishna, Sarah Pratt Lecture 5 - 97 January 18, 2024

Remember back to...
E.g. 32x32 input convolved repeatedly with 5x5 filters shrinks volumes spatially!
(32 -> 28 -> 24 ...). Shrinking too fast is not good, doesn’t work well.

32 28 24
CONYV, CONYV, CONYV,
RelLU RelLU RelLU
e.g.6 e.g. 10
ox5x3 5Xx5x6
32 filters 28 filters 24

Ranjay Krishna, Sarah Pratt Lecture 5 - 98 January 18, 2024

Examples time: / /

Input volume: 32x32x3
10 5x5 filters with stride 1, pad 2 _/

Let’'s assume output size is HxWxD.
What is D?

Ranjay Krishna, Sarah Pratt Lecture 5 - 99 January 18, 2024

Examples time: / /

Input volume: 32x32x3
10 5x5 filters with stride 1, pad 2 _/

Let’'s assume output size is HxWxD.
What is D? 10

Ranjay Krishna, Sarah Pratt Lecture 5 - 100 January 18, 2024

Examples time: / /

Input volume: 32x32x3
10 5x5 filters with stride 1, pad 2 _/

<

Let’'s assume output size is HxWxD.

What is D? 10
What is H or W?

Ranjay Krishna, Sarah Pratt Lecture 5 - 101 January 18, 2024

Examples time: / /

Input volume: 32x32x3
10 5x5 filters with stride 1, pad 2 _/ _/

Let’'s assume output size is HxWxD.

What is D? 10
What is H or W? (32+2*2-5)/1+1 = 32

Ranjay Krishna, Sarah Pratt Lecture 5 - 102 January 18, 2024

Examples time: / /

Input volume: 32x32x3
10 5x5 filters with stride 1, pad 2 _/ _/

Let’'s assume output size is HxWxD.
What is D? 10

What is H or W? (32+2*2-5)/1+1 = 32
So the total output size is: 32x32x10

Ranjay Krishna, Sarah Pratt Lecture 5 - 103 January 18, 2024

Examples time: / /

Input volume: 32x32x3
10 5x5 filters with stride 1, pad 2 i

<
A

Number of parameters in this layer?

Ranjay Krishna, Sarah Pratt Lecture 5 - 104 January 18, 2024

Examples time: / /

Input volume: 32x32Xx
10 5x5 filters with stride 1, pad 2 _/

Number of parameters in this layer?
each filter has 5*5*3 + 1 = 76 params (+1 for bias)
=> 7610 =760

Ranjay Krishna, Sarah Pratt Lecture 5 - 105 January 18, 2024

Convolution layer: summary

Let's assume inputis W, xH, x C
Conv layer needs 4 hyperparameters:
- Number of filters K
- The filter size F
- The stride S
- The zero padding P
This will produce an output of W, x H, x K
where:
- W, =(W,-F +2P)/S+1
- H,=(H,-F +2P)/S + 1
Number of parameters: F2CK and K biases

Ranjay Krishna, Sarah Pratt Lecture 5 - 106 January 18, 2024

Convolution layer: summary Common settings:

, . . K = f2, 2,64,128,512
Let's assume inputis W, xH, x C) (Eiw§rgi1 ;2 13 64,128, 512
Conv layer needs 4 hyperparameters: . f- 5: g = 1: P=2

- Number of filters K - F=5,S =2, P=7? (whatever fits)
- F=1,8=1,P=0

- The filter size F

- The stride S

- The zero padding P
This will produce an output of W, x H, x K
where:

- W, =(W, -F +2P)/S+1

- H,=(H,-F +2P)/S +1

Number of parameters F°CK and K biases

Ranjay Krishna, Sarah Pratt Lecture 5 - 107 January 18, 2024

(btw, 1x1 convolution layers make perfect sense)

1x1 CONV

o6 with 32 filters 56

(each filter has size
1x1x64, and performs a
64-dimensional dot

56 product)

64 32

56

Ranjay Krishna, Sarah Pratt Lecture 5 - 108 January 18, 2024

(btw, 1x1 convolution layers make perfect sense)

L

1x1 CONV
o6 with 32 filters

56

(each filter has size
1x1x64, and performs a
64-dimensional dot

56 product)

64 32

56

Ranjay Krishna, Sarah Pratt Lecture 5 - 109 January 18, 2024

Example: CONV
layer in PyTorch

Conv layer needs 4 hyperparameters:

- Number of filters K
- The filter size F

- The stride S

- The zero padding P

Conv2d

CLASS torch.nn.Conv2d(in_channels, out_channels, kernel_size, stride=1, padding=0,
dilation=1, groups=1, bias=Tzrue)

Applies a 2D convolution over an input signal composed of several input planes.

In the simplest case, the output value of the layer with input size (N, Ciy, H, W) and output
(N, Couty Houty Wout) can be precisely described as:

Cin—1
Out(N;, Cou,) = bias(Cow,) + Y weight(Cou, , k) * input(N;, k)
k=0
where * is the valid 2D cross-correlation operator, N is a batch size, C' denotes a number of channels, H is a height of

input planes in pixels,and W is width in pixels.

e stride controls the stride for the cross-correlation, a single number or a tuple.
« padding controls the amount of implicit zero-paddings on both sides for padding number of points for each
dimension.
e dilation controls the spacing between the kernel points; also known as the a trous algorithm. It is harder to
describe, but this link has a nice visualization of what dilation does.
« groups controls the connections between inputs and outputs. in_channels and out_channels must both be
divisible by groups. For example,
o Atgroups=1, all inputs are convolved to all outputs.
o At groups=2, the operation becomes equivalent to having two conv
layers side by side, each seeing half the input channels, and producing
half the output channels, and both subsequently concatenated.

o Atgroups= in_channels, each input channel is convolved with its

own set of filters, of size: {%J 3

The parameters kernel_size, stride, padding, dilation can either be:

¢ asingle int -in which case the same value is used for the height and
width dimension
¢ a tuple of two ints - in which case, the first int is used for the height

dimension, and the second int for the width dimension L
PyTorch is licensed under BSD 3-clause.

Lecture 5 - 110 January 18, 2024

Ranjay Krishna, Sarah Pratt

https://pytorch.org/
https://github.com/pytorch/examples/blob/master/LICENSE

Example: CONV
xample:
I . keras.layers.Conv2D(filters, kernel_size, strides=(1, 1), padding='valid', data_format=None, d:

2D convolution layer (e.g. spatial convolution over images).

This layer creates a convolution kernel that is convolved with the layer input to produce a tensor of
outputs. If use_bias is True, a bias vector is created and added to the outputs. Finally, if

activation is not None , it is applied to the outputs as well.
When using this layer as the first layer in a model, provide the keyword argument input_shape
(tuple of integers, does not include the batch axis), e.g. input_shape=(128, 128, 3) for 128x128

RGB pictures in data_format="channels_last" .

Arguments

filters: Integer, the dimensionality of the output space (i.e. the number of output filters in the

convolution).

« kernel_size: An integer or tuple/list of 2 integers, specifying the height and width of the 2D
convolution window. Can be a single integer to specify the same value for all spatial dimensions.

« strides: An integer or tuple/list of 2 integers, specifying the strides of the convolution along the

height and width. Can be a single integer to specify the same value for all spatial dimensions.

Conv Iayer needs 4 hyperpa rameters Specifying any stride value != 1 is incompatible with specifying any dilation_rate value!= 1.

« padding: one of "valid" or "same" (case-insensitive). Note that "same" is slightly inconsistent

= N U m ber Of fl Ite rS K across backends with strides != 1, as described here

_ The fllter SIZG F « data_format: A string, one of "channels_last" or "channels_first" . The ordering of the
. dimensions in the inputs. "channels_last" corresponds to inputs with shape (batch, height,
= The Stl‘lde S width, channels) while "channels_first" corresponds to inputs with shape (batch, channels,

- The Ze ro paddlng P height, width) . It defaults to the image_data_format value found in your Keras config file at

~/.keras/keras. json . If you never set it, then it will be "channels_last".

Keras is licensed under the MIT license.

Ranjay Krishna, Sarah Pratt Lecture 5 - 111 January 18, 2024

https://keras.io/
https://github.com/keras-team/keras/blob/master/LICENSE

The brain/neuron view of CONV Layer

_— 32x32x3 image

ox5x3 filter
2
\ 1 number:

32 the result of taking a dot product between
the filter and this part of the image
(i.e. 5*5*3 = 75-dimensional dot product)

Ranjay Krishna, Sarah Pratt Lecture 5 - 112 January 18, 2024

The brain/neuron view of CONV Layer

_— 32x32x3 image -

axon from a neuron

5x5x3 filter g

32— -
1 number:

It's just a neuron with local
connectivity... F
32 the result of taking a dot product between
the filter and this part of the image . =
(i.e. 5*5*3 = 75-dimensional dot product) I/ @

output axon

activation
function

Ranjay Krishna, Sarah Pratt Lecture 5- 113 January 18, 2024

Receptive field

v /]

XO 28 An activation map is a 28x28 sheet of neuron
_— | outputs:

1. Each is connected to a small region in the input
2. All of them share parameters

32 AS “5x5 filter” -> “5x5 receptive field for each neuron”

Ranjay Krishna, Sarah Pratt Lecture 5- 114 January 18, 2024

The brain/neuron view of CONV Layer

32

32

OO0 O(

E.g. with 5 filters,

28 CONYV layer consists of
neurons arranged in a 3D grid
(28x28x5)

There will be 5 different
28 neurons all looking at the same
region in the input volume

Ranjay Krishna, Sarah Pratt

Lecture 5 - 115 January 18, 2024

Reminder: Fully Connected Layer
Each neuron

32x32x3 image -> stretch to 3072 x 1 looks at the full

iInput volume
input activation
Wz
1 10 x 3072 s
3072 * 10
weights
1 number:

the result of taking a dot product
between a row of W and the input
(a 3072-dimensional dot product)

Ranjay Krishna, Sarah Pratt Lecture 5 - 116 January 18, 2024

FOUR layers in total: CONV/ReLU/POOL/FC

RELU RELU RELU RELU RELU RELU
CONV |CONV CONV | CONV CONV | CONV FC

St e i

(R %

Sl EEELEE!

Ranjay Krishna, Sarah Pratt Lecture 5 - 117 January 18, 2024

Pooling layer
- makes the representations smaller and more manageable
- operates over each activation map independently:

224x224x64

112x112x64

pool

.—>

|

—

224

— 112
downsampling
112

Ranjay Krishna, Sarah Pratt Lecture 5- 118 January 18, 2024

MAX POOLING

Single depth slice

X 11112 | 4
max pool with 2x2 filters
5| 6|7 | 8 and stride 2 6 | 8
31210 3|4
1123 | 4
y

Ranjay Krishna, Sarah Pratt Lecture 5 - 119 January 18, 2024

Pooling layer: summary

Let's assume inputis W, xH, x C
Conv layer needs 2 hyperparameters:
- The spatial extent F
- The stride S

This will produce an output of W, x H, x C where:
- W, =(W,-F)/S+1
- H,=(H,-F)/[S+1

Number of parameters: O

Ranjay Krishna, Sarah Pratt Lecture 5 - 120 January 18, 2024

Fully Connected Layer (FC layer)

- Contains neurons that connect to the entire input volume, as in ordinary Neural
Networks

ELU RELU RELU RELU RELU RELU
CONV lCONVl CONVl CONV lCONVl

|

& -
= e
a el
E 4
g -
= i
E !
=

LETRENLD

Ranjay Krishna, Sarah Pratt Lecture 5 - 121 January 18, 2024

Summary

- ConvNets stack CONV,POOL,FC layers

- Trend towards smaller filters and deeper architectures

- Trend towards getting rid of POOL/FC layers (just CONV)

- Between 2012-2016 architectures looked like
[([CONV-RELU)*N-POOL?]*M-(FC-RELU)*K,SOFTMAX
where N is usually up to ~5, M is large, 0 <= K <= 2.
- but recent advances such as ResNet/GooglLeNet

have challenged this paradigm

Ranjay Krishna, Sarah Pratt Lecture 5 - 122 January 18, 2024

A bit of history...

The Mark | Perceptron machine was the first
implementation of the perceptron algorithm.

The machine was connected to a camera that used
20x20 cadmium sulfide photocells to produce a 400-pixel

image.
1 fw-24+b5>0

SEQUENCE INDICATORS
L. : ,T\

recognized
letters of the alphabet

0 otherwise

update rule:
'UJ,'(t 4 1) — lL’,’(t) e C!(d] — yJ(t))IJ,,,

STEP BUTTONS

Frank Rosenblatt, ~1957: Perceptron

This image by Rocky Acosta is licensed under CC-BY 3.0

Ranjay Krishna, Sarah Pratt Lecture 5- 123 January 18, 2024

https://en.wikipedia.org/wiki/File:IBM_Automatic_Sequence_Controlled_Calculator_Sequence_Indicators.jpg
https://creativecommons.org/licenses/by/3.0/us/

A bit of history...

r*l,-l]
i e M
% N
uiz(h;») (E‘;EE;E; \{7
Quantizer | B
InputJ +l o
lines —>—oQutput 1 m
-

Ols are adjustable

Loo o) Reference . Desited
switch cutput

AAA

v

These figures are reproduced from Widrow 1960, Stanford Electronics Laboratories Technical

Wi d rOW a n d H Off, ~ 1 960 : Ad al i n e/M ad al i n e Report with permission from Stanford University Special Collections.

Ranjay Krishna, Sarah Pratt Lecture 5- 124 January 18, 2024

http://www-isl.stanford.edu/~widrow/papers/c1960adaptiveswitching.pdf
http://www-isl.stanford.edu/~widrow/papers/c1960adaptiveswitching.pdf
http://www.oac.cdlib.org/findaid/ark:/13030/c8rv0qw9/entire_text/

A bit of history...

recognizable math

input output
pattern pattern p
error
E,

Rumelhart et al., 1986: First time back-propagation became popular

Ranjay Krishna, Sarah Pratt Lecture 5 - 125 January 18, 2024

A bit Of hiStory. . i'"""""""'""""'i A —— D éEB&éFE

30
[Hinton and Salakhutdinov 2006] ... Wi '
- [w L M. '
give T 1 Wz
. . . £ i | Ti
Reinvigorated research in = § *——————- | % i :IE::_TI
. R S S SR Wyt
Deep Learning B s {v;v g 1
RL oW
8 I e]
g T T Ws i
§| 2000 units | i L |i | |
E E K
E - \- E iEncoder q ‘~ E
T brewanng | RBMiniiaized sutosncoder Fine-tuing wih backprop

lllustration of Hinton and Salakhutdinov 2006 by Lane
Mclintosh, copyright CS231n 2017

Ranjay Krishna, Sarah Pratt Lecture 5- 126 January 18, 2024

First strong results o)

HMM
pre-training
Acoustic Modeling using Deep Belief Networks —
Abdel-rahman Mohamed, George Dahl, Geoffrey Hinton, 2010 =N |
Context-Dependent Pre-trained Deep Neural Networks § ’g
for Large Vocabulary Speech Recognition 23 | |
George Dahl, Dong Yu, Li Deng, Alex Acero, 2012 a | |
r 1t t 1

. . . . Spectrogram
Imagenet classification with deep convolutional
neural networks lllustration of Dahl et aéég;fnbgol_%ne Mclintosh, copyright
Alex Krizhevsky, llya Sutskever, Geoffrey E Hinton, 2012

8

poaling 040 204

Figures copyright Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission.

Ranjay Krishna, Sarah Pratt

Lecture 5 - 127 January 18, 2024

. . . t
A bit of history: AL X-®-1- e
! ectrica
signalfrom

Hubel & Wiesel, L<T & brai
1959 x {

RECEPTIVE FIELDS OF SINGLE
NEURONES IN Stlmulus
THE CAT'S STRIATE CORTEX ‘ \ /

RECEPTIVE FIELDS, BINOCULAR N\

INTERACTION Stimulus ~ Response
AND FUNCTIONAL ARCHITECTURE IN

THE CAT'S VISUAL CORTEX
Cat image by CNX OpenStax is licensed

1 9 6 8 under CC BY 4.0; changes made
L B B)

Ranjay Krishna, Sarah Pratt Lecture 5 - 128 January 18, 2024

https://commons.wikimedia.org/wiki/File:Figure_35_03_05.jpg

A bit of history

Topographical mapping in the cortex:
nearby cells in cortex represent
nearby regions in the visual field

4

> Visual

B~ cortex

Retinotopy images courtesy of Jesse Gomez in the
Stanford Vision & Perception Neuroscience Lab.

Ranjay Krishna, Sarah Pratt Lecture 5- 129 January 18, 2024

Hierarchical organization Simple cells:

Response to light
orientation

Retinal ganglion cell LGN and V1 Complex cells:
receptive fields simple cells

Response to light
O ‘e orientation and movement
O Hypercomplex cells:
response to movement
with an end point

N\

lllustration of hierarchical orgal

ation in ear

nizatio
pathways by Lane Mclintosh, copyright CS231n 2017 NO response Response

(end point)

ly visual

Ranjay Krishna, Sarah Pratt Lecture 5 - January 18, 2024

A bit of history:

\
\

Neocognitron
[Fukushima 1980]

“sandwich” architecture (SCSCSC...)
simple cells: modifiable parameters
complex cells: perform pooling

\

A L
\Vf;g

Ranjay Krishna, Sarah Pratt Lecture 5 - 131 January 18, 2024

A bit of history:

Gradient-based learning applied to
document recognition

[LeCun, Bottou, Bengio, Haffner 1998]

Image Maps
Input

Convolut|ons Fully Connected
Subsamplmg

LeNet-5

Ranjay Krishna, Sarah Pratt Lecture 5 - 132 January 18, 2024

A bit of history:

ImageNet Classification with Deep
Convolutional Neural Networks

[Krizhevsky, Sutskever, Hinton, 2012]

Figure copyright Alex Krizhevsky, llya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission.

“AlexNet”

Ranjay Krishna, Sarah Pratt Lecture 5- 133 January 18, 2024

Fast-forward to today: ConvNets are everywhere

Classification Retrieval

motor scooter

container ship motor scooter legpard| &
black widow lifeboat go-kart jaguar | b= i
cockroach amphibian moped cheetah
tick fireboat bumper car snow leopard
starfish drilling platform golfcart Egyptian cat
» >

Yair ¥

rilie mushroom cherry adagascar ca
convertible J agaric dalmatian squirrel monkey
grille | mushroom grape | spider monkey
pickup jelly fungus elderberry titi
beach wagon gill fungus 'ﬂordshln buliterrier indri

fire engine | dead-man's-fingers currant howler monkey | |'

Figures copyright Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission.

Ranjay Krishna, Sarah Pratt Lecture 5- 134 January 18, 2024

Fast-forward to today: ConvNets are everywhere

Segmentation

Vocdhe ol S sgwuiaing' ‘B
. bR GIRG
i

‘ - =
Figures copyright Cl t Farabet, 2012.
Figures copyright Shaoqing Ren, Kaiming He, Ross Girschick, Jian Sun, 2015. Reproduced with permission. '8U PYTE ement rarabe [Farabet et al 2012]
"

Reproduced with permission.
[Faster R-CNN: Ren, He, Girshick, Sun 2015] i p

Ranjay Krishna, Sarah Pratt Lecture 5- 135 January 18, 2024

Fast-forward to today: ConvNets are everywhere

o IR

This image by GBPublic_PR is
licensed under CC-BY 2.0

g

NVIDIA Tesla line

Note that for embedded systems a typical setup
would involve NVIDIA Tegras, with integrated
GPU and ARM-based CPU cores.

Photo by Lane Mclntosh. Copyright CS231n 2017.

self-driving cars

Ranjay Krishna, Sarah Pratt Lecture 5 - 136 January 18, 2024

https://www.flickr.com/photos/gbpublic/8178512552
https://creativecommons.org/licenses/by/2.0/

Fast-forward to today: ConvNets are everywhere

Vg Score

poduE ‘Pl SSEID

Originalimage RGB channels conv0 conv4 --- mixed3/conv -+« mixed10/conv --:- Softmax

[Ta,gman et a/ 20 1 4] Activations of inception-v3 architecture [Szegedy et al. 2015] to image of Emma Mclntosh,
used with permission. Figure and architecture not from Taigman et al. 2014.

Spatial stream ConvNet
conv1 || conv2 || conv3 || conv4 || conv5 || fullé full7 fti
7x7x96 [|5x5x256 || 3x3x512 |[3x3x512 |[3x3x512|| 4096 2048
stride 2 || stride 2 || stride 1 || stride 1 || stride 1 || dropout || dropout

(. ; norm. nom. pool 2x2
single frame [P0l 2x2 | pool 2x2

l Temporal stream ConvNet

‘ conv1 || conv2 || conv3 || conv4 || conv5 || fullé full? fti
7x7x96 ||5x5x256 || 3x3x512 || 3x3x512 || 3x3x512|| 4096 2048
stride 2 || stride 2 || stride 1 || stride 1 || stride 1 || dropout || dropout

video

e

norm. ||pool 2x2 pool 2x2 input softmax
pool 2x2
optical flow fel
lllustration by Lane Mcintosh, conv2
. Figures copyright Simonyan et al., 2014. photos of Katie Cumnock used
[Slmonyan et al. 2014] Reproduced with permission. with permission. conv3

Ranjay Krishna, Sarah Pratt Lecture 5 - January 18, 2024

https://github.com/tensorflow/models/tree/master/inception

Fast-forward to today: ConvNets are everywhere

ne Mclintosh.

[Toshev, Szegedy 2014]

frame: t-3 t-2 t-1

”Smearine” . .

[GUO et al 2014] Figures copyright Xiaoxiao Guo, Satinder Singh, Honglak Lee, Richard Lewis,

and Xiaoshi Wang, 2014. Reproduced with permission.

Ranjay Krishna, Sarah Pratt Lecture 5- 138 January 18, 2024

Fast-forward to today: ConvNets are everywhere

Benign Benign Mallgnant Malignant Benign

9 , J .
. '/A o
[= ¥

[Levy et al. 2016] copyright Levy et al. 2016.

R eproduced with permission.

Photos by Lane Mclntosh.

[Sel’manet et al. 201 1] Copyright CS231n 2017.

. From left tourighé: gllJJiniZ dzmaaiir:‘ by NASA, L;ageugei::mitot(r-::ja:::]y Clresan et al
[Dleleman et al. 2014] ESA/Hubble, public d by NASA, and public d . []

Ranjay Krishna, Sarah Pratt Lecture 5- 139 January 18, 2024

https://commons.wikimedia.org/wiki/File:NGC_4414_(NASA-med).jpg
https://commons.wikimedia.org/wiki/File:M101_hires_STScI-PRC2006-10a.jpg
https://en.wikipedia.org/wiki/File:Hubble2005-01-barred-spiral-galaxy-NGC1300.jpg
https://pixabay.com/en/galaxies-overlapping-galaxies-601015/

This image by Christin Khan is in the public domain Photo and figure by Lane Mclintosh; not actual
and originally came from the U.S. NOAA. example from Mnih and Hinton, 2010 paper.

-

Whale recognition, Kaggle Challenge Mnih and Hinton, 2010

Ranjay Krishna, Sarah Pratt Lecture 5 - 140 January 18, 2024

https://commons.wikimedia.org/wiki/File:Sei_whale_mother_and_calf_Christin_Khan_NOAA.jpg

No errors

Image
Captioning
[Vinyals et al., 2015]

[Karpathy and Fei-Fei,
2015]

A white teddy bear sitting in A man in a baseball A woman is holding a cat
the grass uniform throwing a ball in her hand

All images are CCO Public domain:
https://pixabay.com/en/luggage-antique-cat-1643010/
https://pixabay.com/en/teddy-plush-bears-cute-teddy-bear-1623436/
o 5 ¥ g Mo . ” . https://pixabay.com/en/surf-wave-summer-sport-litoral-1668716/
e 2 = o https://pixabay.com/en/woman-female-model-portrait-adult-983967/

https://pixabay.com/en/handstand-lake-meditation-496008/

A man riding a wave on A cat Sitting on a A woman Standing on a https://pixabay.com/en/baseball-player-shortstop-infield-1045263/
top of a surfboard suitcase on the floor beach holding a surfboard Captions generated by Justin Johnson using Neuraltalk2

Ranjay Krishna, Sarah Pratt Lecture 5 - 141 January 18, 2024

https://pixabay.com/en/luggage-antique-cat-1643010/
https://pixabay.com/en/teddy-plush-bears-cute-teddy-bear-1623436/
https://pixabay.com/en/surf-wave-summer-sport-litoral-1668716/
https://pixabay.com/en/woman-female-model-portrait-adult-983967/
https://pixabay.com/en/handstand-lake-meditation-496008/
https://pixabay.com/en/baseball-player-shortstop-infield-1045263/
https://github.com/karpathy/neuraltalk2

Figures copyright Justin Johnson, 2015. Reproduced with permission. Generated using the Inceptionism approach
from a blog post by Google Resear:

Ranjay Krishna, Sarah Pratt

Original image is CCO public domain
Starry Night and Tree Roots by Van Gogh are in the public domain

Bokeh image is in the public domain Gatys et al, “Image Style Transfer using Convolutional Neural Networks”, CVPR 2016
Stylized images copyright Justin Johnson, 2017; Gatys et al, “Controlling Perceptual Factors in Neural Style Transfer”, CVPR 2017
reproduced with permission

Lecture 5 - 142 January 18, 2024

https://research.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html
https://pixabay.com/en/san-francisco-california-city-210230/
https://commons.wikimedia.org/wiki/File:Van_Gogh_-_Starry_Night_-_Google_Art_Project.jpg
https://commons.wikimedia.org/wiki/File:Vincent_van_Gogh_-_Tree_Roots_and_Trunks_(F816).jpg
https://pixabay.com/en/bokeh-abstract-background-blur-21951/

