Lecture 5: Convolutional Neural Networks

Ranjay Krishna, Sarah Pratt

Lecture 5 - 1

Administrative: EdStem

Please make sure to check and read all pinned EdStem posts.

Ranjay Krishna, Sarah Pratt

Administrative: Assignment 1

Due 1/21 11:59pm

- K-Nearest Neighbor
- Linear classifiers: SVM, Softmax

Pushed back deadline by a few days.

Ranjay Krishna, Sarah Pratt

Lecture 5 - 3

Administrative: Assignment 2

Will be released this weekend

Due 1/30 11:59pm

- Multi-layer Neural Networks,
- Image Features,
- Optimizers

Ranjay Krishna, Sarah Pratt

Administrative: Fridays

This Friday

Quiz 1: 6% of your grade

Backpropagation part 1 - the main algorithm for training neural networks

Presenter: Tanush Tadav

Ranjay Krishna, Sarah Pratt

Administrative: Course Project

Project proposal due 2/06 11:59pm

Come to office hours to talk about your ideas

Ranjay Krishna, Sarah Pratt

Last time: Neural Networks

Ranjay Krishna, Sarah Pratt

Lecture 5 - 7

Lecture 5 -

8

Lecture 5 -

9

Lecture 5 -

January 18, 2024

10

Lecture 5 -

January 18, 2024

11

Lecture 5 -

12

Forward pass: Compute output

d	ef	f(v	v0,	x	0,	w1,	x1,	w2):
	s٥) =	w0	*	X	0		
	s1	=	w1	*	X	1		
	s2	2 =	s0	+	S	1		
	s3	3 =	s2	+	W	2		
	L	= :	sigr	no:	id	(s3)		

grad_L = 1.0
grad_s3 = grad_L * (1 - L) * L
grad_w2 = grad_s3
grad_s2 = grad_s3
grad_s0 = grad_s2
grad_s1 = grad_s2
grad_w1 = grad_s1 * x1
grad_x1 = grad_s1 * w1
grad_w0 = grad_s0 * x0
grad_x0 = grad_s0 * w0

Ranjay Krishna, Sarah Pratt

Lecture 5 - 14

def	f(w0,	x0, w1,	x1,	w2):
s	0 = w0	* x0		
	1 = w1			
s	2 = s0	+ s1		
s	3 = s2	+ w2		
L	= sigr	noid(s3)		

Base case
grad_L = 1.0
grad_s3 = grad_L * (1 - L) * L
grad_w2 = grad_s3
grad_s2 = grad_s3
grad_s0 = grad_s2
grad_s1 = grad_s2
grad_w1 = grad_s1 * x1
grad_x1 = grad_s1 * w1
grad_w0 = grad_s0 * x0
grad_x0 = grad_s0 * w0

January 18, 2024

Ranjay Krishna, Sarah Pratt

Lecture 5 - 15

Forward pass:

Compute output

Forward pass:
Compute output

Sigmoid

def	f(\	w0,	X	Э,	w1,	x1,
s0) =	w0	*	xØ)	
s1	=	w1	*	x1	<u>l</u>	
s2	=	s0	+	s1	Ĺ	
		s2				
L	= 9	sigr	no:	id((s3)	

grad_L = 1.0
grad_s3 = grad_L * (1 - L) * L
grad_w2 = grad_s3
grad_s2 = grad_s3
grad_s0 = grad_s2
grad_s1 = grad_s2
grad_w1 = grad_s1 * x1
grad_x1 = grad_s1 * w1
grad_w0 = grad_s0 * x0
grad_x0 = grad_s0 * w0

January 18, 2024

w2):

Ranjay Krishna, Sarah Pratt

Forward pass: Compute output

Add gate

de	ef	f(v	v0,	x	Э,	w1,	x1,
ſ	s0	=	w0	*	x٥)	
	s1	=	w1	*	x1	-	
	s2	=	s0	+	s1		
	s3	=	s2	+	w2	2	
	L	= 5	sigr	no:	id(s3)	

grad_L = 1.0
 grad s3 = grad L * (1 - L) * L
grad_w2 = grad_s3
grad_s2 = grad_s3
grad_s0 = grad_s2
grad_s1 = grad_s2
grad_w1 = grad_s1 * x1
grad_x1 = grad_s1 * w1
grad_w0 = grad_s0 * x0
grad_x0 = grad_s0 * w0

January 18, 2024

w2):

Ranjay Krishna, Sarah Pratt

c	<pre>def f(w0, x0, w1, x1, w2):</pre>
	s0 = w0 * x0
Forward pass:	s1 = w1 * x1
Compute output	s2 = s0 + s1
Compute Output	s3 = s2 + w2
	L = sigmoid(s3)

grad_L = 1.0
grad_s3 = grad_L * (1 - L) * L
grad_w2 = grad_s3
grad_s2 = grad_s3
grad_s0 = grad_s2
grad_s1 = grad_s2
grad_w1 = grad_s1 * x1
grad_x1 = grad_s1 * w1
grad_w0 = grad_s0 * x0
grad_x0 = grad_s0 * w0

January 18, 2024

Ranjay Krishna, Sarah Pratt

Lecture 5 - 18

Add gate

	<pre>def f(w0, x0, w1, x1, w2):</pre>
	s0 = w0 * x0
Forward pass:	s1 = w1 * x1
Compute output	s2 = s0 + s1
Compute output	s3 = s2 + w2
	L = sigmoid(s3)

	grad_L = 1.0
	grad_s3 = grad_L * (1 - L) * L
	grad_w2 = grad_s3
	grad_s2 = grad_s3
	grad_s0 = grad_s2
,	grad_s1 = grad_s2
	grad_w1 = grad_s1 * x1
	grad_x1 = grad_s1 * w1
	grad_w0 = grad_s0 * x0
	grad_x0 = grad_s0 * w0

January 18, 2024

Ranjay Krishna, Sarah Pratt

Lecture 5 - 19

lef	f(w0,	x0,	w1,	x1,	w2
s0	= w0	* x()		
s1	= w1	* x1	Ĺ		
	= s0				
s3	= s2	+ w2	2		
L	= sign	noid((s3)		

$grad_L = 1.0$			
$grad_s3 = grad_L * (1 - L) * L$			
grad_w2 = grad_s3			
grad_s2 = grad_s3			
grad_s0 = grad_s2			
grad_s1 = grad_s2			
grad_w1 = grad_s1 * x1			
grad_x1 = grad_s1 * w1			
grad_w0 = grad_s0 * x0			
grad_x0 = grad_s0 * w0			

January 18, 2024

):

Ranjay Krishna, Sarah Pratt

Lecture 5 - 20

Forward pass:

"Flat" Backprop: Do this for assignment 2!

Stage your forward/backward computation!

Ranjay Krishna, Sarah Pratt

Lecture 5 - 21

"Flat" Backprop: Do this for assignment 1!

E.g. for two-layer neural net:

```
# receive W1,W2,b1,b2 (weights/biases), X (data)
# forward pass:
h1 = #... function of X,W1,b1
scores = #... function of h1,W2,b2
loss = #... (several lines of code to evaluate Softmax loss)
# backward pass:
dscores = #...
dh1, dW2, db2 = #...
dW1, db1 = #...
```

Ranjay Krishna, Sarah Pratt

Lecture 5 - 22

Backprop Implementation: Modularized API

Graph (or Net) object (rough pseudo code)

Ranjay Krishna, Sarah Pratt

Lecture 5 - 23

Modularized implementation: forward / backward API

Gate / Node / Function object: Actual PyTorch code

(x,y,z are scalars)

<pre>class Multiply(torch.autograd.Function):</pre>		
@staticmethod		
<pre>def forward(ctx, x, y):</pre>	Need to stash	
ctx.save_for_backward(x, y) ┥ 🛶 🛶	some values for	
z = x * y	use in backward	
return z		
@staticmethod		
<pre>def backward(ctx, grad_z):</pre>	_ Upstream	
<pre>x, y = ctx.saved_tensors</pre>	gradient	
grad_x = y * grad_z # dz/dx * dL/dz	Multiply upstream	
grad_y = x * grad_z # dz/dy * dL/dz	and local gradients	
<pre>return grad_x, grad_y</pre>		
	-	

Ranjay Krishna, Sarah Pratt

Lecture 5 - 24

Example: PyTorch operators

pytorch / pytorch			1,221	🖈 Uns	tar 26,770	¥ Fork	6,340
↔Code ①Issues 2,286	Pull requests 561	🗉 Wiki 🔄 Ins	ights				
Tree: 517c7c9861 - pytorch / aten	/ src / THNN / generic /		Create r	ew file	Upload files	Find file	History
ezyang and facebook-github-bot C	anonicalize all includes in PyTorch. (#14849)			Late	st commit 517	c7c9 on Dec	: 8, 2018
AbsCriterion.c	Canonicalize all includes in PyTorch. (#	14849)				4 mor	nths ago
BCECriterion.c	Canonicalize all includes in PyTorch. (#	14849)				4 mor	nths ago
ClassNLLCriterion.c	Canonicalize all includes in PyTorch. (#	14849)				4 mor	nths ago
Col2Im.c	Canonicalize all includes in PyTorch. (#	14849)				4 mor	nths ago
ELU.c	Canonicalize all includes in PyTorch. (#"	14849)				4 mor	nths ago
FeatureLPPooling.c	Canonicalize all includes in PyTorch. (#	14849)				4 mor	nths ago
GatedLinearUnit.c	Canonicalize all includes in PyTorch. (#	14849)				4 mor	nths ago
HardTanh.c	Canonicalize all includes in PyTorch. (#	14849)				4 mor	nths ago
Im2Col.c	Canonicalize all includes in PyTorch. (#	14849)				4 mor	nths ago
IndexLinear.c	Canonicalize all includes in PyTorch. (#	14849)				4 mor	nths ago
LeakyReLU.c	Canonicalize all includes in PyTorch. (#	14849)				4 mor	nths ago
LogSigmoid.c	Canonicalize all includes in PyTorch. (#	14849)				4 mor	nths ago
MSECriterion.c	Canonicalize all includes in PyTorch. (#	14849)				4 mor	nths ago
MultiLabelMarginCriterion.c	Canonicalize all includes in PyTorch. (#	14849)				4 mor	nths ago
MultiMarginCriterion.c	Canonicalize all includes in PyTorch. (#	14849)				4 mor	nths ago
RReLU.c	Canonicalize all includes in PyTorch. (#	14849)				4 mor	nths ago
Sigmoid.c	Canonicalize all includes in PyTorch. (#	14849)				4 mor	nths ago
SmoothL1Criterion.c	Canonicalize all includes in PyTorch. (#	14849)				4 mor	nths ago
SoftMarginCriterion.c	Canonicalize all includes in PyTorch. (#	14849)				4 mor	nths ago
SoftPlus.c	Canonicalize all includes in PyTorch. (#	14849)				4 mor	nths ago
SoftShrink.c	Canonicalize all includes in PyTorch. (#"	14849)				4 mor	nths ago
SparseLinear.c	Canonicalize all includes in PyTorch. (#"	14849)				4 mor	nths ago
SpatialAdaptiveAveragePooling.c	Canonicalize all includes in PyTorch. (#*	14849)				4 mor	nths ago
SpatialAdaptiveMaxPooling.c	Canonicalize all includes in PyTorch. (#	14849)				4 mor	nths ago
SpatialAveragePooling.c	Canonicalize all includes in PyTorch. (#	4849)				4 mor	ths ago

Ranjay Krishna, Sarah Pratt

SpatialClassNLLCriterion.c	Canonicalize all includes in PyTorch. (#14849)	4 months ago
SpatialConvolutionMM.c	Canonicalize all includes in PyTorch. (#14849)	4 months ago
SpatialDilatedConvolution.c	Canonicalize all includes in PyTorch. (#14849)	4 months ago
SpatialDilatedMaxPooling.c	Canonicalize all includes in PyTorch. (#14849)	4 months ago
SpatialFractionalMaxPooling.c	Canonicalize all includes in PyTorch. (#14849)	4 months ago
SpatialFullDilatedConvolution.c	Canonicalize all includes in PyTorch. (#14849)	4 months ago
SpatialMaxUnpooling.c	Canonicalize all includes in PyTorch. (#14849)	4 months ago
SpatialReflectionPadding.c	Canonicalize all includes in PyTorch. (#14849)	4 months ago
SpatialReplicationPadding.c	Canonicalize all includes in PyTorch. (#14849)	4 months ago
SpatialUpSamplingBilinear.c	Canonicalize all includes in PyTorch. (#14849)	4 months ago
SpatialUpSamplingNearest.c	Canonicalize all includes in PyTorch. (#14849)	4 months ago
THNN.h	Canonicalize all includes in PyTorch. (#14849)	4 months ago
Tanh.c	Canonicalize all includes in PyTorch. (#14849)	4 months ago
TemporalReflectionPadding.c	Canonicalize all includes in PyTorch. (#14849)	4 months ago
TemporalReplicationPadding.c	Canonicalize all includes in PyTorch. (#14849)	4 months ago
TemporalRowConvolution.c	Canonicalize all includes in PyTorch. (#14849)	4 months ago
TemporalUpSamplingLinear.c	Canonicalize all includes in PyTorch. (#14849)	4 months ago
TemporalUpSamplingNearest.c	Canonicalize all includes in PyTorch. (#14849)	4 months ago
VolumetricAdaptiveAveragePoolin	Canonicalize all includes in PyTorch. (#14849)	4 months ago
VolumetricAdaptiveMaxPooling.c	Canonicalize all includes in PyTorch. (#14849)	4 months ago
VolumetricAveragePooling.c	Canonicalize all includes in PyTorch. (#14849)	4 months ago
VolumetricConvolutionMM.c	Canonicalize all includes in PyTorch. (#14849)	4 months ago
VolumetricDilatedConvolution.c	Canonicalize all includes in PyTorch. (#14849)	4 months ago
VolumetricDilatedMaxPooling.c	Canonicalize all includes in PyTorch. (#14849)	4 months ago
VolumetricFractionalMaxPooling.c	Canonicalize all includes in PyTorch. (#14849)	4 months ago
VolumetricFullDilatedConvolution.c	Canonicalize all includes in PyTorch. (#14849)	4 months ago
VolumetricMaxUnpooling.c	Canonicalize all includes in PyTorch. (#14849)	4 months ago
VolumetricReplicationPadding.c	Canonicalize all includes in PyTorch. (#14849)	4 months ago
VolumetricUpSamplingNearest.c	Canonicalize all includes in PyTorch. (#14849)	4 months ago
VolumetricUpSamplingTrilinear.c	Canonicalize all includes in PyTorch. (#14849)	4 months ago
linear_upsampling.h	Implement nn.functional.interpolate based on upsample. (#8591)	9 months ago
pooling_shape.h	Use integer math to compute output size of pooling operations (#14405)	4 months ago
) unfold.c	Canonicalize all includes in PyTorch. (#14849)	4 months ago

Lecture 5 - 25

```
#ifndef TH GENERIC FILE
                                                                                         PyTorch sigmoid layer
    #define TH GENERIC_FILE "THNN/generic/Sigmoid.c"
    #else
    void THNN_(Sigmoid_updateOutput)(
                                                                 Forward
             THNNState *state,
             THTensor *input,
             THTensor *output)
                                                           \sigma(x) =
 9
      THTensor_(sigmoid)(output, input);
    void THNN_(Sigmoid_updateGradInput)(
14
             THNNState *state,
             THTensor *gradOutput,
             THTensor *gradInput,
             THTensor *output)
18
19
      THNN_CHECK_NELEMENT(output, gradOutput);
      THTensor_(resizeAs)(gradInput, output);
21
      TH_TENSOR_APPLY3(scalar_t, gradInput, scalar_t, gradOutput, scalar_t, output,
        scalar_t z = *output_data;
        *gradInput_data = *gradOutput_data * (1. - z) * z;
23
      );
24
25
                                                                                                                                        Source
    #endif
```

Lecture 5 - 26

Lecture 5 - 27

Lecture 5 - 28

So far: backprop with scalars

What about vector-valued functions?

Ranjay Krishna, Sarah Pratt

Recap: Vector derivatives

Scalar to Scalar

 $x\in \mathbb{R}, y\in \mathbb{R}$

Regular derivative:

 $\frac{\partial y}{\partial x} \in \mathbb{R}$

If x changes by a small amount, how much will y change?

Ranjay Krishna, Sarah Pratt

Lecture 5 -

Recap: Vector derivatives

Scalar to Scalar

Vector to Scalar

 $x \in \mathbb{R}, y \in \mathbb{R}$

Regular derivative:

Derivative is Gradient:

 $x \in \mathbb{R}^N, y \in \mathbb{R}$

 $\frac{\partial y}{\partial x} \in \mathbb{R}$

$$\frac{\partial y}{\partial x} \in \mathbb{R}^N \quad \left(\frac{\partial y}{\partial x}\right)_n = \frac{\partial y}{\partial x_n}$$

If x changes by a small amount, how much will y change?

For each element of x, if it changes by a small amount then how much will y change?

Ranjay Krishna, Sarah Pratt

Lecture 5 -

Remember this example from last lecture?

Vector to Scalar $\begin{bmatrix} -1.00\\ -2.00 \end{bmatrix} x \in \mathbb{R}^N, y \in \mathbb{R}$ 0.73

Derivative is Gradient:

$$\frac{\partial y}{\partial x} \in \mathbb{R}^N \quad \left(\frac{\partial y}{\partial x}\right)_n = \frac{\partial y}{\partial x_n} \quad \begin{bmatrix} 0.40\\ -0.60 \end{bmatrix}$$

Ranjay Krishna, Sarah Pratt

Lecture 5 - 32

Recap: Vector derivatives

Scalar to Scalar

 $x \in \mathbb{R}, y \in \mathbb{R}$

Regular derivative:

 $\frac{\partial y}{\partial x} \in \mathbb{R}$

If x changes by a small amount, how much will y change?

Vector to Scalar

$$x \in \mathbb{R}^N, y \in \mathbb{R}$$

Derivative is Gradient:

$$\frac{\partial y}{\partial x} \in \mathbb{R}^N \quad \left(\frac{\partial y}{\partial x}\right)_n = \frac{\partial y}{\partial x_n}$$

Vector to Vector $x \in \mathbb{R}^N, y \in \mathbb{R}^M$

Derivative is Jacobian:

$$\frac{\partial y}{\partial x} \in \mathbb{R}^{N \times M} \left(\frac{\partial y}{\partial x}\right)_{n,m} = \frac{\partial y_m}{\partial x_n}$$

For each element of x, if it changes by a small amount then how much will y change? For each element of x, if it changes by a small amount then how much will each element of y change?

Ranjay Krishna, Sarah Pratt

Lecture 5 -

³ January 18, 2024

Backprop with Vectors

Ranjay Krishna, Sarah Pratt

Lecture 5 -

Backprop with Vectors

Ranjay Krishna, Sarah Pratt

Lecture 5 -

Backprop with Vectors

Ranjay Krishna, Sarah Pratt

Lecture 5 -

Ranjay Krishna, Sarah Pratt

Lecture 5 -

January 18, 2024

37

Ranjay Krishna, Sarah Pratt

Lecture 5 -

38 Janua

Ranjay Krishna, Sarah Pratt

Lecture 5 -

January 18, 2024

39

Ranjay Krishna, Sarah Pratt

Lecture 5 -

40

Ranjay Krishna, Sarah Pratt

Lecture 5 -

41 J

Gradients of variables wrt loss have same dims as the original variable

Ranjay Krishna, Sarah Pratt

Lecture 5 -

42

Ranjay Krishna, Sarah Pratt

Lecture 5 -

Upstream gradient

Ranjay Krishna, Sarah Pratt

Lecture 5 -

Ranjay Krishna, Sarah Pratt

Lecture 5 -

Ranjay Krishna, Sarah Pratt

Lecture 5 -

Ranjay Krishna, Sarah Pratt

Lecture 5 -

Jacobian is **sparse**: off-diagonal entries always zero! Never **explicitly** form Jacobian -- instead use **implicit** multiplication

Ranjay Krishna, Sarah Pratt

Lecture 5 -

⁸ January 18, 2024

Jacobian is **sparse**: off-diagonal entries always zero! Never **explicitly** form Jacobian -- instead use **implicit** multiplication

Ranjay Krishna, Sarah Pratt

Lecture 5 -

Lecture 5 -

January 18, 2024

50

Lecture 5 -

January 18, 2024

51

Lecture 5 -

52

Lecture 5 -

January 18, 2024

53

Also see derivation by Prof. Justin Johnson: https://courses.cs.washington.edu/courses/cse493g1/23s p/resources/linear-backprop.pdf

y: [N×M]

January 18, 2024

Ranjay Krishna, Sarah Pratt

Lecture 5 - 54

x: [N×D] [21-3] [-342] w: [D×M] [321-1] [2132] [321-2] Matrix Multiply $y_{n,m} = \sum_{d} x_{n,d} w_{d,m}$

Jacobians: dy/dx: [(N×D)×(N×M)] dy/dw: [(D×M)×(N×M)]

For a neural net we may have N=64, D=M=4096 Each Jacobian takes ~256 GB of memory! Must work with them implicitly! [5 2 17 1] dL/dy: [N×M] [2 3 -3 9] [-8 1 4 6]

y: [N×M]

[13 9 -2 -6]

Ranjay Krishna, Sarah Pratt

Lecture 5 - 55

Ranjay Krishna, Sarah Pratt

Lecture 5 - 56

January 18, 2024

y: [N×M]

x: [N×D] | 1]-3] [-3 4 2] w: [D×M] [3 2 1 - 1] 2 1 3 2] [3 2 1 -2]

Matrix Multiply
$$y_{n,m} = \sum_{d} x_{n,d} w_{d,m}$$

Q: What parts of y are affected by one element of x?

A: $\underline{x_{n,d}}$ affects the whole row $y_{n,\cdot}$

$$\frac{\partial L}{\partial x_{n,d}} = \sum_{m} \frac{\partial L}{\partial y_{n,m}} \frac{\partial y_{n,m}}{\partial x_{n,d}}$$

y: [N×M]

Ranjay Krishna, Sarah Pratt

Lecture 5 - 57

-6 x: [N×D] Matrix Multiply 2 5 • 2 **1**-3] $y_{n,m} = \sum x_{n,d} w_{d,m}$ [-3 4 2] dL/dy: [N×M] w: [D×M] 23-39 $[-8 \ 1 \ 4 \ 6]$ [3 2 1 -1] **Q**: What parts of y **Q**: How much are affected by one 2 1 3 2] does $x_{n,d}$ [321-2] element of x? affect $y_{n,m}$? A: $x_{n,d}$ affects the whole row $y_{n,\cdot}$ $\frac{\partial L}{\partial x_{n,d}} = \sum_{m} \frac{\partial L}{\partial y_{n,m}} \frac{\partial y_{n,m}}{\partial x_{n,d}}$

Ranjay Krishna, Sarah Pratt

Lecture 5 - 58

January 18, 2024

N×M

N×M -6 x: [N×D] Matrix Multiply 2 5 2 **1** -3] $y_{n,m} = \sum x_{n,d} w_{d,m}$ $[-3 \ 4 \ 2]$ dL/dy: [N×M] w: [D×M] 2 3-3 9 [-8 1 4 6] **Q**: What parts of y 3 2 1 - 1] **Q**: How much 2 1 3 2] are affected by one does $\overline{x}_{n,d}$ [321-2] element of x? affect $y_{n,m}$? A: $x_{n,d}$ affects the A: $w_{d,m}$ whole row $y_{n,\cdot}$ $\frac{\partial L}{\partial x_{n,d}} = \sum \frac{\partial L}{\partial y_{n,m}} \frac{\partial y_{n,m}}{\partial x_{n,d}} = \sum \frac{\partial L}{\partial y_{n,m}} w_{d,m}$

Ranjay Krishna, Sarah Pratt

Lecture 5 - 59

Ranjay Krishna, Sarah Pratt

Lecture 5 - 60

Lecture 5 - 61

January 18, 2024

 $[N \times D] [N \times M] [M \times D]$

 $[D \times M]$ $[D \times N]$ $[N \times M]$

 $\frac{\partial L}{\partial w} = x^T \left(\frac{\partial L}{\partial y}\right)$

By similar logic:

These formulas are easy to remember: they are the only way to make shapes match up!

x: [N×D] 2 1 -3] [-3 4 2] w: [D×M] [3 2 1 -1] [2132] [321-2]

Matrix Multiply
$$y_{n,m} = \sum_{d} x_{n,d} w_{d,m}$$

<u>y: [N</u>×M]

Backprop with Matrices

Wrapping up: Neural Networks

Ranjay Krishna, Sarah Pratt

Lecture 5 - 62

Next: Convolutional Neural Networks

Ranjay Krishna, Sarah Pratt

Lecture 5 - 63

Recap: Fully Connected Layer

32x32x3 image -> stretch to 3072 x 1

Ranjay Krishna, Sarah Pratt

Lecture 5 - 64

Fully Connected Layer

32x32x3 image -> stretch to 3072 x 1

Ranjay Krishna, Sarah Pratt

Lecture 5 - 65

32x32x3 image -> preserve spatial structure

Main idea: only look at small patches of an image

Ranjay Krishna, Sarah Pratt

Lecture 5 - 66

Convolution Layer

32x32x3 image

5x5x3 filter

Convolve the filter with the image i.e. "slide over the image spatially, computing dot products"

Ranjay Krishna, Sarah Pratt

Lecture 5 - 67

32x32x3 image

Filters always extend the full depth of the input volume

32 32

Ranjay Krishna, Sarah Pratt

5x5x3 filter

Convolve the filter with the image i.e. "slide over the image spatially, computing dot products"

Lecture 5 - 68

(i.e. 5*5*3 = 75-dimensional dot product + bias)

Ranjay Krishna, Sarah Pratt

Lecture 5 - 69

Ranjay Krishna, Sarah Pratt

Lecture 5 - 70

Lecture 5 - 71

January 18, 2024

Ranjay Krishna, Sarah Pratt

Ranjay Krishna, Sarah Pratt

Lecture 5 - 72

Convolution Layer

Ranjay Krishna, Sarah Pratt

Lecture 5 - 73

Convolution Layer

activation map

28

Ranjay Krishna, Sarah Pratt

Lecture 5 - 74

January 18, 2024

28

Convolution Layer

consider a second, green filter

Ranjay Krishna, Sarah Pratt

Lecture 5 - 75

January 18, 2024

28

For example, if we had 6 5x5 filters, we'll get 6 separate activation maps:

We stack these up to get a "new image" of size 28x28x6!

Ranjay Krishna, Sarah Pratt

Lecture 5 - 76

Preview: ConvNet is a sequence of Convolution Layers, interspersed with activation functions

Ranjay Krishna, Sarah Pratt

Lecture 5 - 77

Preview: ConvNet is a sequence of Convolution Layers, interspersed with activation functions

Ranjay Krishna, Sarah Pratt

Lecture 5 - 78

Preview

[Zeiler and Fergus 2013]

Visualization of VGG-16 by Lane McIntosh. VGG-16 architecture from [Simonyan and Zisserman 2014].

Ranjay Krishna, Sarah Pratt

Lecture 5 - 79

Ranjay Krishna, Sarah Pratt

Lecture 5 - 80

Ranjay Krishna, Sarah Pratt

Lecture 5 - 81

preview:

Ranjay Krishna, Sarah Pratt

Lecture 5 - 82

Ranjay Krishna, Sarah Pratt

Lecture 5 - 83

7x7 input (spatially) assume 3x3 filter

Ranjay Krishna, Sarah Pratt

Lecture 5 - 84

7x7 input (spatially) assume 3x3 filter

Ranjay Krishna, Sarah Pratt

Lecture 5 - 85

7x7 input (spatially) assume 3x3 filter

Ranjay Krishna, Sarah Pratt

Lecture 5 - 86

7x7 input (spatially) assume 3x3 filter

Ranjay Krishna, Sarah Pratt

Lecture 5 - 87

7x7 input (spatially) assume 3x3 filter

=> 5x5 output

Ranjay Krishna, Sarah Pratt

7x7 input (spatially) assume 3x3 filter applied **with stride 2**

Ranjay Krishna, Sarah Pratt

7x7 input (spatially) assume 3x3 filter applied **with stride 2**

Ranjay Krishna, Sarah Pratt

Lecture 5 - 90

7x7 input (spatially) assume 3x3 filter applied with stride 2 => 3x3 output!

Ranjay Krishna, Sarah Pratt

7x7 input (spatially) assume 3x3 filter applied **with stride 3?**

Ranjay Krishna, Sarah Pratt

Lecture 5 - 92

7x7 input (spatially) assume 3x3 filter applied **with stride 3?**

doesn't fit! cannot apply 3x3 filter on 7x7 input with stride 3.

January 18, 2024

Ranjay Krishna, Sarah Pratt

F Ν F

Ν

Output size: (N - F) / stride + 1

e.g. N = 7, F = 3:
stride 1 =>
$$(7 - 3)/1 + 1 = 5$$

stride 2 => $(7 - 3)/2 + 1 = 3$
stride 3 => $(7 - 3)/3 + 1 = 2.33$:\

Ranjay Krishna, Sarah Pratt

Lecture 5 - 94

In practice: Common to zero pad the border

e.g. input 7x7
3x3 filter, applied with stride 1
pad with 1 pixel border => what is the output?

(recall:) (N - F) / stride + 1

Ranjay Krishna, Sarah Pratt

Lecture 5 - 95

In practice: Common to zero pad the border

e.g. input 7x7
3x3 filter, applied with stride 1
pad with 1 pixel border => what is the output?

7x7 output!

(recall:) (N + 2P - F) / stride + 1

Ranjay Krishna, Sarah Pratt

Lecture 5 - 96

In practice: Common to zero pad the border

e.g. input 7x7
3x3 filter, applied with stride 1
pad with 1 pixel border => what is the output?

7x7 output!

in general, common to see CONV layers with
stride 1, filters of size FxF, and zero-padding with
(F-1)/2. (will preserve size spatially)
e.g. F = 3 => zero pad with 1
F = 5 => zero pad with 2
F = 7 => zero pad with 3

Ranjay Krishna, Sarah Pratt

Lecture 5 - 97

Remember back to...

E.g. 32x32 input convolved repeatedly with 5x5 filters shrinks volumes spatially! (32 -> 28 -> 24 ...). Shrinking too fast is not good, doesn't work well.

Ranjay Krishna, Sarah Pratt

Lecture 5 - 98

Let's assume output size is HxWxD. What is D?

January 18, 2024

Ranjay Krishna, Sarah Pratt

Let's assume output size is HxWxD. What is D? **10**

Ranjay Krishna, Sarah Pratt

Examples time:

Let's assume output size is HxWxD. What is D? 10 What is H or W?

January 18, 2024

Ranjay Krishna, Sarah Pratt

Examples time:

Let's assume output size is HxWxD. What is D? 10 What is H or W? (32+2*2-5)/1+1 = 32

Ranjay Krishna, Sarah Pratt

Lecture 5 - 102

Examples time:

Let's assume output size is HxWxD. What is D? 10 What is H or W? (32+2*2-5)/1+1 = 32So the total output size is: 32x32x10

January 18, 2024

Ranjay Krishna, Sarah Pratt

Number of parameters in this layer?

January 18, 2024

Ranjay Krishna, Sarah Pratt

Examples time:

January 18, 2024

Number of parameters in this layer? each filter has 5*5*3 + 1 = 76 params (+1 for bias) => 76*10 = 760

Ranjay Krishna, Sarah Pratt

Convolution layer: summary

Let's assume input is $W_1 \times H_1 \times C$ Conv layer needs 4 hyperparameters:

- Number of filters K
- The filter size **F**
- The stride S
- The zero padding P

This will produce an output of $W_2 \times H_2 \times K$ where:

-
$$W_2 = (W_1 - F + 2P)/S + 1$$

- $H_2 = (H_1 - F + 2P)/S + 1$

Number of parameters: F²CK and K biases

Convolution layer: summary

Let's assume input is $W_1 \times H_1 \times C$ Conv layer needs 4 hyperparameters:

- Number of filters K
- The filter size F
- The stride **S**
- The zero padding P

This will produce an output of $W_2 \times H_2 \times K$ where:

- $W_2 = (W_1 F + 2P)/S + 1$
- $H_2 = (H_1 F + 2P)/S + 1$

Number of parameters: F²CK and K biases

Common settings:

K = (powers of 2, e.g. 32, 64, 128, 512)

- F = 3, S = 1, P = 1

- F = 5, S = 2, P = ? (whatever fits)

January 18, 2024

- F = 1, S = 1, P = 0

Ranjay Krishna, Sarah Pratt

(btw, 1x1 convolution layers make perfect sense)

Ranjay Krishna, Sarah Pratt

Lecture 5 - 108

(btw, 1x1 convolution layers make perfect sense)

Ranjay Krishna, Sarah Pratt

Lecture 5 - 109

Example: CONV layer in PyTorch

Conv2d

CLASS torch.nn.Conv2d(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True)

[SOURCE]

Applies a 2D convolution over an input signal composed of several input planes.

In the simplest case, the output value of the layer with input size $(N, C_{\rm in}, H, W)$ and output $(N, C_{\rm out}, H_{\rm out}, W_{\rm out})$ can be precisely described as:

$$\operatorname{out}(N_i, C_{\operatorname{out}_j}) = \operatorname{bias}(C_{\operatorname{out}_j}) + \sum_{k=0}^{C_{\operatorname{in}}-1} \operatorname{weight}(C_{\operatorname{out}_j}, k) \star \operatorname{input}(N_i, k)$$

where \star is the valid 2D cross-correlation operator, N is a batch size, C denotes a number of channels, H is a height of input planes in pixels, and W is width in pixels.

- stride controls the stride for the cross-correlation, a single number or a tuple.
- padding controls the amount of implicit zero-paddings on both sides for padding number of points for each dimension.
- dilation controls the spacing between the kernel points; also known as the à trous algorithm. It is harder to
 describe, but this link has a nice visualization of what dilation does.
- groups controls the connections between inputs and outputs. in_channels and out_channels must both be divisible by groups.For example,
 - At groups=1, all inputs are convolved to all outputs.
 - At groups=2, the operation becomes equivalent to having two conv layers side by side, each seeing half the input channels, and producing half the output channels, and both subsequently concatenated.
 - At groups= in_channels, each input channel is convolved with its

own set of filters, of size: $\begin{bmatrix} C_{out} \\ C_{in} \end{bmatrix}$.

The parameters kernel_size, stride, padding, dilation can either be:

- a single int in which case the same value is used for the height and width dimension
- a tuple of two ints in which case, the first int is used for the height dimension, and the second int for the width dimension

Conv layer needs 4 hyperparameters:

- Number of filters **K**
- The filter size F
- The stride S
- The zero padding **P**

Ranjay Krishna, Sarah Pratt

Lecture 5 - 110

Example: CONV layer in Keras

Conv layer needs 4 hyperparameters:

- Number of filters **K**
- The filter size **F**
- The stride S
- The zero padding P

Conv2D

[source]

keras.layers.Conv2D(filters, kernel_size, strides=(1, 1), padding='valid', data_format=None, d:

2D convolution layer (e.g. spatial convolution over images).

This layer creates a convolution kernel that is convolved with the layer input to produce a tensor of outputs. If use_bias is True, a bias vector is created and added to the outputs. Finally, if activation is not None, it is applied to the outputs as well.

When using this layer as the first layer in a model, provide the keyword argument input_shape (tuple of integers, does not include the batch axis), e.g. input_shape=(128, 128, 3) for 128x128 RGB pictures in data_format="channels_last".

Arguments

- filters: Integer, the dimensionality of the output space (i.e. the number of output filters in the convolution).
- kernel_size: An integer or tuple/list of 2 integers, specifying the height and width of the 2D convolution window. Can be a single integer to specify the same value for all spatial dimensions.
- strides: An integer or tuple/list of 2 integers, specifying the strides of the convolution along the height and width. Can be a single integer to specify the same value for all spatial dimensions.
 Specifying any stride value != 1 is incompatible with specifying any dilation_rate value != 1.
- padding: one of "valid" or "same" (case-insensitive). Note that "same" is slightly inconsistent across backends with strides != 1, as described here
- data_format: A string, one of "channels_last" or "channels_first". The ordering of the dimensions in the inputs. "channels_last" corresponds to inputs with shape (batch, height, width, channels) while "channels_first" corresponds to inputs with shape (batch, channels, height, width). It defaults to the image_data_format value found in your Keras config file at ~/.keras/keras.json. If you never set it, then it will be "channels_last".

Keras is licensed under the MIT license.

January 18, 2024

Ranjay Krishna, Sarah Pratt

Lecture 5 - 111

The brain/neuron view of CONV Layer

Ranjay Krishna, Sarah Pratt

Lecture 5 - 112

The brain/neuron view of CONV Layer

It's just a neuron with local

connectivity...

the result of taking a dot product between the filter and this part of the image (i.e. 5*5*3 = 75-dimensional dot product)

Ranjay Krishna, Sarah Pratt

Lecture 5 - 113

Receptive field

Ranjay Krishna, Sarah Pratt

An activation map is a 28x28 sheet of neuron outputs:

- 1. Each is connected to a small region in the input
- 2. All of them share parameters

"5x5 filter" -> "5x5 receptive field for each neuron"

Lecture 5 - 114

The brain/neuron view of CONV Layer

E.g. with 5 filters, CONV layer consists of neurons arranged in a 3D grid (28x28x5)

There will be 5 different neurons all looking at the same region in the input volume

Ranjay Krishna, Sarah Pratt

Lecture 5 - 115

Ranjay Krishna, Sarah Pratt

Lecture 5 - 116

FOUR layers in total: CONV/ReLU/POOL/FC

Ranjay Krishna, Sarah Pratt

Lecture 5 - 117

Pooling layer

- makes the representations smaller and more manageable
- operates over each activation map independently:

Ranjay Krishna, Sarah Pratt

Lecture 5 - 118

MAX POOLING

Single depth slice

Y

max pool with 2x2 filters and stride 2

Ranjay Krishna, Sarah Pratt

Χ

Lecture 5 - 119

Pooling layer: summary

Let's assume input is $W_1 \times H_1 \times C$ Conv layer needs 2 hyperparameters:

- The spatial extent F
- The stride **S**

This will produce an output of $W_2 \times H_2 \times C$ where:

Lecture 5 - 120

January 18, 2024

- $W_2 = (W_1 F)/S + 1$
- $H_2^{-} = (H_1 F)/S + 1$

Number of parameters: 0

Ranjay Krishna, Sarah Pratt

Fully Connected Layer (FC layer)

- Contains neurons that connect to the entire input volume, as in ordinary Neural Networks

Ranjay Krishna, Sarah Pratt

Lecture 5 - 121

Summary

- ConvNets stack CONV,POOL,FC layers
- Trend towards smaller filters and deeper architectures
- Trend towards getting rid of POOL/FC layers (just CONV)
- Between 2012-2016 architectures looked like [(CONV-RELU)*N-POOL?]*M-(FC-RELU)*K,SOFTMAX where N is usually up to ~5, M is large, 0 <= K <= 2.
 - but recent advances such as ResNet/GoogLeNet have challenged this paradigm

Lecture 5 - 122

A bit of history...

The **Mark I Perceptron** machine was the first implementation of the perceptron algorithm.

The machine was connected to a camera that used 20×20 cadmium sulfide photocells to produce a 400-pixel image. $\begin{bmatrix} 1 & \text{if } w \cdot x + b > 0 \end{bmatrix}$

recognized letters of the alphabet

$$f(x) = \begin{cases} 1 & \text{if } w \cdot x + b \\ 0 & \text{otherwise} \end{cases}$$

w₀

 w_1x_1

 $w_2 x_2$

 $w_0 x_0$

10:2:

axon from a neuron

update rule: $w_i(t+1) = w_i(t) + \alpha(d_j - y_j(t))x_{j,i}$

Frank Rosenblatt, ~1957: Perceptron

This image by Rocky Acosta is licensed under CC-BY 3.0

Ranjay Krishna, Sarah Pratt

Lecture 5 - 123

 $\sum w_i x_i +$

activation

output ax

A bit of history...

Widrow and Hoff, ~1960: Adaline/Madaline

These figures are reproduced from <u>Widrow 1960</u>, <u>Stanford Electronics Laboratories Technical</u> <u>Report</u> with permission from <u>Stanford University Special Collections</u>.

output

switch

on-off-on

Ranjay Krishna, Sarah Pratt

Lecture 5 - 124

Rumelhart et al., 1986: First time back-propagation became popular

Ranjay Krishna, Sarah Pratt

Lecture 5 - 125

A bit of history...

[Hinton and Salakhutdinov 2006]

Reinvigorated research in Deep Learning

Illustration of Hinton and Salakhutdinov 2006 by Lane McIntosh, copyright CS231n 2017

Ranjay Krishna, Sarah Pratt

Lecture 5 - 126

First strong results

Acoustic Modeling using Deep Belief Networks Abdel-rahman Mohamed, George Dahl, Geoffrey Hinton, 2010 Context-Dependent Pre-trained Deep Neural Networks for Large Vocabulary Speech Recognition George Dahl, Dong Yu, Li Deng, Alex Acero, 2012

Imagenet classification with deep convolutional neural networks

Alex Krizhevsky, Ilya Sutskever, Geoffrey E Hinton, 2012

Illustration of Dahl et al. 2012 by Lane McIntosh, copyright CS231n 2017

January 18, 2024

Figures copyright Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission.

Ranjay Krishna, Sarah Pratt

Lecture 5 - 127

A bit of history:

Hubel & Wiesel, 1959

RECEPTIVE FIELDS OF SINGLE NEURONES IN THE CAT'S STRIATE CORTEX

1962

RECEPTIVE FIELDS, BINOCULAR INTERACTION AND FUNCTIONAL ARCHITECTURE IN THE CAT'S VISUAL CORTEX

1968...

<u>Cat image</u> by CNX OpenStax is licensed under CC BY 4.0; changes made

Ranjay Krishna, Sarah Pratt

Lecture 5 - 128

A bit of history

Topographical mapping in the cortex: nearby cells in cortex represent nearby regions in the visual field

Retinotopy images courtesy of Jesse Gomez in the Stanford Vision & Perception Neuroscience Lab.

Ranjay Krishna, Sarah Pratt

Lecture 5 - 129

Hierarchical organization

LGN and V1 Retinal ganglion cell receptive fields simple cells . . Visual stimulus

Illustration of hierarchical organization in early visual pathways by Lane McIntosh, copyright CS231n 2017

Simple cells: Response to light orientation

Complex cells: Response to light orientation and movement

Hypercomplex cells: response to movement with an end point

January 18, 2024

Lecture 5 - 130

Ranjay Krishna, Sarah Pratt

A bit of history:

Neocognitron [Fukushima 1980]

"sandwich" architecture (SCSCSC...) simple cells: modifiable parameters complex cells: perform pooling

Ranjay Krishna, Sarah Pratt

Lecture 5 - 131

A bit of history: Gradient-based learning applied to document recognition [LeCun, Bottou, Bengio, Haffner 1998]

LeNet-5

Ranjay Krishna, Sarah Pratt

Lecture 5 - 132

A bit of history: ImageNet Classification with Deep Convolutional Neural Networks [Krizhevsky, Sutskever, Hinton, 2012]

January 18, 2024

Figure copyright Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission.

"AlexNet"

Ranjay Krishna, Sarah Pratt

Lecture 5 - 133

Classification

Retrieval

Figures copyright Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission.

Ranjay Krishna, Sarah Pratt

Lecture 5 - 134

Detection

Figures copyright Shaoqing Ren, Kaiming He, Ross Girschick, Jian Sun, 2015. Reproduced with permission. Reproduced with permission.

Segmentation

[Farabet et al., 2012]

[Faster R-CNN: Ren, He, Girshick, Sun 2015]

Ranjay Krishna, Sarah Pratt

Lecture 5 - 135

Photo by Lane McIntosh. Copyright CS231n 2017.

This image by GBPublic_PR is licensed under CC-BY 2.0

NVIDIA Tesla line

Note that for embedded systems a typical setup would involve NVIDIA Tegras, with integrated GPU and ARM-based CPU cores.

self-driving cars

Ranjay Krishna, Sarah Pratt

Lecture 5 - 136

RGB channels Original image [Taigman et al. 2014]

H	Spatial stream ConvNet							
single frame	conv1 7x7x96 stride 2 norm. pool 2x2	conv2 5x5x256 stride 2 norm. pool 2x2	stride 1	conv4 3x3x512 stride 1	conv5 3x3x512 stride 1 pool 2x2	full6 4096 dropout	full7 2048 dropout	softmax
		Ter	mpor	al str	eam (Convl	Net	
multi-frame	conv1 7x7x96 stride 2 norm. pool 2x2	conv2 5x5x256 stride 2 pool 2x2	conv3 3x3x512 stride 1	conv4 3x3x512 stride 1	conv5 3x3x512 stride 1 pool 2x2	full6 4096 dropout	full7 2048 dropout	softmax

[Simonyan et al. 2014]

Figures copyright Simonyan et al., 2014. Reproduced with permission.

Activations of inception-v3 architecture [Szegedy et al. 2015] to image of Emma McIntosh, used with permission. Figure and architecture not from Taigman et al. 2014.

Ranjay Krishna, Sarah Pratt

Lecture 5 - 137

Images are examples of pose estimation, not actually from Toshev & Szegedy 2014. Copyright Lane McIntosh.

[Toshev, Szegedy 2014]

[Guo et al. 2014]

Figures copyright Xiaoxiao Guo, Satinder Singh, Honglak Lee, Richard Lewis, and Xiaoshi Wang, 2014. Reproduced with permission.

January 18, 2024

Ranjay Krishna, Sarah Pratt

Lecture 5 - 138

From left to right: <u>public domain by NASA</u>, usage <u>permitted</u> by ESA/Hubble, <u>public domain by NASA</u>, and <u>public domain</u>.

[Sermanet et al. 2011] [Ciresan et al.] Photos by Lane McIntosh. Copyright CS231n 2017.

January 18, 2024

Ranjay Krishna, Sarah Pratt

[Dieleman et al. 2014]

Lecture 5 - 139

This image by Christin Khan is in the public domain and originally came from the U.S. NOAA.

Whale recognition, Kaggle Challenge

Photo and figure by Lane McIntosh; not actual example from Mnih and Hinton, 2010 paper.

Mnih and Hinton, 2010

Ranjay Krishna, Sarah Pratt

Lecture 5 - 140

No errors

Minor errors

Somewhat related

A white teddy bear sitting in the grass

A man riding a wave on top of a surfboard

A man in a baseball uniform throwing a ball

A cat sitting on a suitcase on the floor

A woman is holding a cat in her hand

A woman standing on a beach holding a surfboard

Image Captioning

[Vinyals et al., 2015] [Karpathy and Fei-Fei, 2015]

All images are CC0 Public domain: https://pixabay.com/en/luggage-antique-cat-1643010/ https://pixabay.com/en/teddy-plush-bears-cute-teddy-bear-1623436/ https://pixabay.com/en/surf-wave-summer-sport-litoral-1668716/ https://pixabay.com/en/woman-female-model-portrait-adult-983967/ https://pixabay.com/en/handstand-lake-meditation-496008/ https://pixabay.com/en/baseball-player-shortstop-infield-1045263/

Captions generated by Justin Johnson using Neuraltalk2

Ranjay Krishna, Sarah Pratt

Lecture 5 - 141

Gatys et al, "Controlling Perceptual Factors in Neural Style Transfer", CVPR 2017

Figures copyright Justin Johnson, 2015. Reproduced with permission. Generated using the Inceptionism approach from a blog post by Google Research.

Ranjay Krishna, Sarah Pratt

Lecture 5 - 142