Lecture 4: Neural Networks and Backpropagation

Ranjay Krishna, Sarah Pratt

Lecture 4 - 1

Administrative: EdStem

Please make sure to check and read all pinned EdStem posts.

Ranjay Krishna, Sarah Pratt

Lecture 4 - 2

Administrative: Assignment 1

Due 1/21 11:59pm

- K-Nearest Neighbor
- Linear classifiers: SVM, Softmax

Pushed back deadline by a few days.

Ranjay Krishna, Sarah Pratt

Lecture 4 - 3

Administrative: Assignment 2

Will be released this weekend

Due 1/30 11:59pm

- Multi-layer Neural Networks,

Lecture 4 - 4

- Image Features,
- Optimizers

Administrative: Fridays

This Friday

Quiz 1: 6% of your grade

Backpropagation part 1 - the main algorithm for training neural networks

Presenter: Tanush Tadav

Ranjay Krishna, Sarah Pratt

Lecture 4 - 5

Administrative: Course Project

Project proposal due 2/06 11:59pm

Come to office hours to talk about your ideas

Ranjay Krishna, Sarah Pratt

Lecture 4 - 6

Recap: from last time

f(x,W) = Wx + b

January 16, 2024

Ranjay Krishna, Sarah Pratt

Recap: loss functions

$$s=f(x;W)=Wx$$
 Linear score function
$$L_i=\sum_{j\neq y_i}\max(0,s_j-s_{y_i}+1) \quad \text{SVM loss (or softmax)}$$

$$L = \frac{1}{N} \sum_{i=1}^{N} L_i + \lambda \sum_k W_k^2$$

data loss + regularization

January 16, 2024

Ranjay Krishna, Sarah Pratt

Finding the best W: Optimize with Gradient Descent

January 16, 2024

Vanilla Gradient Descent

while True:

Landscape image is <u>CC0 1.0</u> public domain Walking man image is <u>CC0 1.0</u> public domain

Ranjay Krishna, Sarah Pratt

weights_grad = evaluate_gradient(loss_fun, data, weights)
weights += - step_size * weights_grad # perform parameter update

Gradient descent

$$rac{df(x)}{dx} = \lim_{h o 0} rac{f(x+h) - f(x)}{h}$$

Numerical gradient: slow :(, approximate :(, easy to write :) **Analytic gradient**: fast :), exact :), error-prone :(

Lecture 4 - 10

January 16, 2024

In practice: Derive analytic gradient, check your implementation with numerical gradient

Stochastic Gradient Descent (SGD)

$$L(W) = \frac{1}{N} \sum_{i=1}^{N} L_i(x_i, y_i, W) + \lambda R(W)$$
$$\nabla_W L(W) = \frac{1}{N} \sum_{i=1}^{N} \nabla_W L_i(x_i, y_i, W) + \lambda \nabla_W R(W)$$

Full sum expensive when N is large!

Approximate sum using a **minibatch** of examples 32 / 64 / 128 common

```
# Vanilla Minibatch Gradient Descent
while True:
    data_batch = sample_training_data(data, 256) # sample 256 examples
    weights_grad = evaluate_gradient(loss_fun, data_batch, weights)
    weights += - step_size * weights_grad # perform parameter update
```

Ranjay Krishna, Sarah Pratt

Lecture 4 - 11 January 16, 2024

Optimization

12

January 16, 2024

Lecture 4 -

This image is CC0 1.0 public domain

January 16, 2024

13

Lecture 4 -

Walking man image is CC0 1.0 public domain

Ranjay Krishna, Sarah Pratt

Strategy #1: A first very bad idea solution: Random search

```
# assume X train is the data where each column is an example (e.g. 3073 x 50,000)
# assume Y train are the labels (e.g. 1D array of 50,000)
# assume the function L evaluates the loss function
bestloss = float("inf") # Python assigns the highest possible float value
for num in xrange(1000):
 W = np.random.randn(10, 3073) * 0.0001 # generate random parameters
 loss = L(X train, Y train, W) # get the loss over the entire training set
 if loss < bestloss: # keep track of the best solution
   bestloss = loss
   bestW = W
 print 'in attempt %d the loss was %f, best %f' % (num, loss, bestloss)
# prints:
# in attempt 0 the loss was 9.401632, best 9.401632
# in attempt 1 the loss was 8.959668, best 8.959668
# in attempt 2 the loss was 9.044034, best 8.959668
# in attempt 3 the loss was 9.278948, best 8.959668
# in attempt 4 the loss was 8.857370, best 8.857370
# in attempt 5 the loss was 8.943151, best 8.857370
# in attempt 6 the loss was 8.605604, best 8.605604
# ... (trunctated: continues for 1000 lines)
```

Ranjay Krishna, Sarah Pratt

Lecture 4 - 15 January 16, 2024

Lets see how well this works on the test set...

Assume X_test is [3073 x 10000], Y_test [10000 x 1]
scores = Wbest.dot(Xte_cols) # 10 x 10000, the class scores for all test examples
find the index with max score in each column (the predicted class)
Yte_predict = np.argmax(scores, axis = 0)
and calculate accuracy (fraction of predictions that are correct)
np.mean(Yte_predict == Yte)
returns 0.1555

15.5% accuracy! not bad! (SOTA is ~99.7%)

Ranjay Krishna, Sarah Pratt

Lecture 4 - 16

Strategy #2: Follow the slope

Ranjay Krishna, Sarah Pratt

Lecture 4 - 17 January 16, 2024

Strategy #2: Follow the slope

In 1-dimension, the derivative of a function:

$$rac{df(x)}{dx} = \lim_{h o 0} rac{f(x+h) - f(x)}{h}$$

In multiple dimensions, the **gradient** is the vector of (partial derivatives) along each dimension

The slope in any direction is the **dot product** of the direction with the gradient The direction of steepest descent is the **negative gradient**

Lecture 4 - 18

January 16, 2024

current W:	
[0.34,	
-1.11,	
0.78,	
0.12,	
0.55,	
2.81,	
-3.1,	
-1.5,	
0.33,]	
loss 1.25347	

gradient dW:

Ranjay Krishna, Sarah Pratt

Lecture 4 - 19 January 16, 2024

current W:	W + h (first dim):	gradient dW:
[0.34,	[0.34 + 0.0001 ,	[?,
-1.11,	-1.11,	?,
0.78,	0.78,	?,
0.12,	0.12,	?.
0.55,	0.55,	?,
2.81,	2.81,	?
-3.1,	-3.1,	?,
-1.5,	-1.5,	?.
0.33,]	0.33,]	?]
loss 1.25347	loss 1.25322	

Ranjay Krishna, Sarah Pratt

Lecture 4 - 20

current W:	W + h (first dim):	gradient dW:
[0.34, -1.11, 0.78, 0.12, 0.55, 2.81, -3.1, -1.5, 0.33,] Ioss 1.25347	[0.34 + 0.0001 , -1.11, 0.78, 0.12, 0.55, 2.81, -3.1, -1.5, 0.33,] Ioss 1.25322	$[-2.5, ?, ?, ?, ?, ?, ?, ?, ?,]$ $(1.25322 - 1.25347)/0.0001 = -2.5$ $\frac{df(x)}{dx} = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$?, ?,]

Ranjay Krishna, Sarah Pratt

Lecture 4 - 21

current W:	W + h (second dim):
[0.34,	[0.34,
-1.11,	-1.11 + 0.0001 ,
0.78,	0.78,
0.12,	0.12,
0.55,	0.55,
2.81,	2.81,
-3.1,	-3.1,
-1.5,	-1.5,
0.33,]	0.33,]
loss 1.25347	loss 1.25353

gradient dW: [-2.5, ?, ?, ?, ?, ?, ?, ?, ?,...]

Ranjay Krishna, Sarah Pratt

Lecture 4 - 22

current W:	W + h (second dim):
[0.34,	[0.34,
-1.11,	-1.11 + 0.0001 ,
0.78,	0.78,
0.12,	0.12,
0.55,	0.55,
2.81,	2.81,
-3.1,	-3.1,
-1.5,	-1.5,
0.33,]	0.33,]
loss 1.25347	loss 1.25353

January 16, 2024

Ranjay Krishna, Sarah Pratt

current W:	W + h (third di
[0.34,	[0.34,
-1.11,	-1.11,
0.78,	0.78 + 0.0001,
0.12,	0.12,
0.55,	0.55,
2.81,	2.81,
-3.1,	-3.1,
-1.5,	-1.5,
0.33,]	0.33,]
loss 1.25347	loss 1.25347

gradient dW:

dim):

Ranjay Krishna, Sarah Pratt

Lecture 4 - 24 January 16, 2024

current W:	W + h (third di
[0.34,	[0.34,
-1.11,	-1.11,
0.78,	0.78 + 0.0001 ,
0.12,	0.12,
0.55,	0.55,
2.81,	2.81,
-3.1,	-3.1,
-1.5,	-1.5,
0.33,]	0.33,]
loss 1.25347	loss 1.25347

dim):

Lecture 4 -

25

January 16, 2024

current W:

[0.34, -1.11, 0.78, 0.12, 0.55, 2.81, -3.1, -1.5, 0.33,...] loss 1.25347

W + h (third dim):

[0.34]-1.11, 0.78 + **0.0001**, 0.12, 0.55, 2.81, -3.1, -1.5, 0.33,...] loss 1.25347

gradient dW:

- Approximate

26

Lecture 4 -

(,...|

January 16, 2024

This is silly. The loss is just a function of W:

Lecture 4 -

- 27

January 16, 2024

$$egin{aligned} L &= rac{1}{N} \sum_{i=1}^N L_i + \sum_k W_k^2 \ L_i &= \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1) \ s &= f(x; W) = Wx \end{aligned}$$

want $\nabla_W L$

This is silly. The loss is just a function of W:

$$egin{aligned} L &= rac{1}{N} \sum_{i=1}^N L_i + \sum_k W_k^2 \ L_i &= \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1) \ s &= f(x; W) = Wx \end{aligned}$$

want $\nabla_W L$

Use calculus to compute an analytic gradient

This image is in the public domain

This image is in the public domain

January 16, 2024

28 Lecture 4

current W:

[0.34, -1.11, 0.78, 0.12, 0.55, 2.81, -3.1, -1.5, 0.33,...] loss 1.25347

[-2.5, dW = ... 0.6, (some function 0, data and W) 0.2, 0.7, -0.5, 1.1, 1.3, -2.1,...]

gradient dW:

January 16, 2024

Ranjay Krishna, Sarah Pratt

In summary:

- Numerical gradient: approximate, slow, easy to write
- Analytic gradient: exact, fast, error-prone

=>

In practice: Always use analytic gradient, but check implementation with numerical gradient. This is called a gradient check.

30

January 16, 2024

Lecture 4 -

Gradient Descent

```
# Vanilla Gradient Descent
while True:
    weights_grad = evaluate_gradient(loss_fun, data, weights)
    weights += - step_size * weights_grad # perform parameter update
```

Lecture 4 -

31

January 16, 2024

negative gradient direction

Ranjay Krishna, Sarah Pratt

Lecture 4 - 32 January 16, 2024

Stochastic Gradient Descent (SGD)

$$L(W) = \frac{1}{N} \sum_{i=1}^{N} L_i(x_i, y_i, W) + \lambda R(W)$$
$$\nabla_W L(W) = \frac{1}{N} \sum_{i=1}^{N} \nabla_W L_i(x_i, y_i, W) + \lambda \nabla_W R(W)$$

Full sum expensive when N is large!

Approximate sum using a **minibatch** of examples 32 / 64 / 128 common

January 16, 2024

33

Lecture 4

```
# Vanilla Minibatch Gradient Descent
while True:
    data_batch = sample_training_data(data, 256) # sample 256 examples
    weights_grad = evaluate_gradient(loss_fun, data_batch, weights)
    weights += - step_size * weights_grad # perform parameter update
```

Next, let's discuss how we can find the best W!

$$s=f(x;W)=Wx$$
 Linear score function
$$L_i=\sum_{j\neq y_i}\max(0,s_j-s_{y_i}+1) \quad \text{SVM loss (or softmax)}$$

$$L = \frac{1}{N} \sum_{i=1}^{N} L_i + \lambda \sum_k W_k^2$$

data loss + regularization

January 16, 2024

How to find the best W?

$$\nabla_W L$$

Lecture 4 - 34

Problem: Linear Classifiers are not very powerful

Visual Viewpoint

Linear classifiers learn one template per class

Geometric Viewpoint

Linear classifiers can only draw linear decision boundaries

Ranjay Krishna, Sarah Pratt

Lecture 4 - 35 January 16, 2024

Pixel Features

$$f(x) = Wx$$

$$f(x) = wx$$

Ranjay Krishna, Sarah Pratt

Lecture 4 - 36
Image Features

Ranjay Krishna, Sarah Pratt

Lecture 4 - 37

Image Features: Motivation

Cannot separate red and blue points with linear classifier

Ranjay Krishna, Sarah Pratt

Lecture 4 - 38

Feature become linearly separable through a non-linear transformation

 $f(x, y) = (r(x, y), \theta(x, y))$

Cannot separate red and blue points with linear classifier After applying feature transform, points can be separated by linear classifier

January 16, 2024

θ

Ranjay Krishna, Sarah Pratt

Lecture 4 - 39

Example: Color Histogram

Ranjay Krishna, Sarah Pratt

Lecture 4 - 40 Ja

Example: Histogram of Oriented Gradients (HoG)

Divide image into 8x8 pixel regions Within each region quantize edge direction into 9 bins

Lowe, "Object recognition from local scale-invariant features", ICCV 1999 Dalal and Triggs, "Histograms of oriented gradients for human detection," CVPR 2005

Ranjay Krishna, Sarah Pratt

Example: 320x240 image gets divided into 40x30 bins; in each bin there are 9 numbers so feature vector has 30*40*9 = 10,800 numbers

Lecture 4 - 41

Example: Bag of Words

Step 1: Build codebook

Ranjay Krishna, Sarah Pratt

Lecture 4 - 42

Combine many different features if unsure which features are better

Ranjay Krishna, Sarah Pratt

Lecture 4 - 43

Image features vs neural networks

Ranjay Krishna, Sarah Pratt

Lecture 4 - 44

One Solution: Non-linear feature transformation

Color Histogram

Histogram of Oriented Gradients (HoG)

January 16, 2024

Ranjay Krishna, Sarah Pratt

Lecture 4 - 45

Neural Networks

Ranjay Krishna, Sarah Pratt

Lecture 4 - 46

Neural networks: the original linear classifier

(**Before**) Linear score function: f=Wx

$$x \in \mathbb{R}^D, W \in \mathbb{R}^{C \times D}$$

Ranjay Krishna, Sarah Pratt

Lecture 4 - 47

Neural networks: 2 layers

(**Before**) Linear score function:

(**Now**) 2-layer Neural Network

$$f = Wx$$

$$f=W_2\max(0,W_1x)$$

$$x \in \mathbb{R}^D, W_1 \in \mathbb{R}^{H \times D}, W_2 \in \mathbb{R}^{C \times H}$$

(In practice we will usually add a learnable bias at each layer as well)

Ranjay Krishna, Sarah Pratt

Lecture 4 - 48 January 16, 2024

Neural networks: also called fully connected network

(Before) Linear score function: f = Wx(Now) 2-layer Neural Network $f = W_2 \max(0, W_1x)$ $x \in \mathbb{R}^D, W_1 \in \mathbb{R}^{H imes D}, W_2 \in \mathbb{R}^{C imes H}$

"Neural Network" is a very broad term; these are more accurately called "fully-connected networks" or sometimes "multi-layer perceptrons" (MLP)

(In practice we will usually add a learnable bias at each layer as well)

Ranjay Krishna, Sarah Pratt

Lecture 4 - 49 January 16, 2024

Neural networks: 3 layers

(**Before**) Linear score function: f = Wx

(Now) 2-layer Neural Network $f = W_2 \max(0, W_1 x)$ or 3-layer Neural Network

$$f=W_3\max(0,W_2\max(0,W_1x))$$

$$x \in \mathbb{R}^{D}, W_1 \in \mathbb{R}^{H_1 \times D}, W_2 \in \mathbb{R}^{H_2 \times H_1}, W_3 \in \mathbb{R}^{C \times H_2}$$

(In practice we will usually add a learnable bias at each layer as well)

Ranjay Krishna, Sarah Pratt

Lecture 4 - 50 January 16, 2024

Neural networks: hierarchical computation

(**Before**) Linear score function: f = Wx(Now) 2-layer Neural Network $f = W_2 \max(0, W_1 x)$ h W1 W2 Χ S 10 100 3072 $x \in \mathbb{R}^D, W_1 \in \mathbb{R}^{H \times D}, W_2 \in \mathbb{R}^{C \times H}$

Ranjay Krishna, Sarah Pratt

Lecture 4 - 51

Learn 100 templates instead of 10.

Share templates between classes

January 16, 2024

Ranjay Krishna, Sarah Pratt

Lecture 4 - 52

Examples of templates from real neural networks

January 16, 2024

Lecture 4 - 53

Springenberg et al, "Striving for Simplicity: The All Convolutional Net", ICLR Workshop 2015 Figure copyright Jost Tobias Springenberg, Alexey Dosovitskiy, Thomas Brox, Martin Riedmiller, 2015; reproduced with permission.

Ranjay Krishna, Sarah Pratt

Neural networks: why is max operator important?

(Before) Linear score function: f = Wx(Now) 2-layer Neural Network $f = W_2 \max(0, W_1 x)$

The function max(0, z) is called the **activation function**. **Q**: What if we try to build a neural network without one?

Lecture 4 - 54

$$f = W_2 W_1 x$$

Neural networks: why is max operator important?

(Before) Linear score function: f = Wx(Now) 2-layer Neural Network $f = W_2 \max(0, W_1 x)$

The function max(0, z) is called the **activation function**. **Q:** What if we try to build a neural network without one?

$$f = W_2 W_1 x$$
 $W_3 = W_2 W_1 \in \mathbb{R}^{C \times H}, f = W_3 x$

Lecture 4 - 55

January 16, 2024

A: We end up with a linear classifier again!

Activation functions

Leaky ReLU $\max(0.1x, x)$

 $\begin{array}{l} \textbf{Maxout} \\ \max(w_1^T x + b_1, w_2^T x + b_2) \end{array}$

Ranjay Krishna, Sarah Pratt

Lecture 4 - 56

Activation functions

Ranjay Krishna, Sarah Pratt

ReLU is a good default choice for most problems

 $\begin{array}{l} \textbf{Maxout} \\ \max(w_1^T x + b_1, w_2^T x + b_2) \end{array}$

Lecture 4 - 57

Neural networks: Architectures

Ranjay Krishna, Sarah Pratt

Lecture 4 - 58

forward-pass of a 3-layer neural network: f = lambda x: 1.0/(1.0 + np.exp(-x)) # activation function (use sigmoid) x = np.random.randn(3, 1) # random input vector of three numbers (3x1) h1 = f(np.dot(W1, x) + b1) # calculate first hidden layer activations (4x1) h2 = f(np.dot(W2, h1) + b2) # calculate second hidden layer activations (4x1) out = np.dot(W3, h2) + b3 # output neuron (1x1)

Ranjay Krishna, Sarah Pratt

Lecture 4 - 59 January 16, 2024

forward-pass of a 3-layer neural network:
<pre>f = lambda x: 1.0/(1.0 + np.exp(-x)) # activation function (use sigmoid)</pre>
<pre>x = np.random.randn(3, 1) # random input vector of three numbers (3x1)</pre>
<pre>h1 = f(np.dot(W1, x) + b1) # calculate first hidden layer activations (4x1)</pre>
<pre>h2 = f(np.dot(W2, h1) + b2) # calculate second hidden layer activations (4x1)</pre>
<pre>out = np.dot(W3, h2) + b3 # output neuron (1x1)</pre>

Ranjay Krishna, Sarah Pratt

Lecture 4 - 60 January 16, 2024

x = np.random.randn(3, 1) # random input vector of three numbers (3x1)

h1 = f(np.dot(W1, x) + b1) # calculate first hidden layer activations (4x1) h2 = f(np.dot(W2, h1) + b2) # calculate second hidden layer activations (4x1) out = np.dot(W3, h2) + b3 # output neuron (1x1)

Ranjay Krishna, Sarah Pratt

Lecture 4 - 61

out = np.dot(W3, h2) + b3 # output neuron (1x1)

Ranjay Krishna, Sarah Pratt

Lecture 4 - 62

Ranjay Krishna, Sarah Pratt

Lecture 4 - 63 January 16, 2024

out = np.dot(W3, h2) + b3 # output neuron (1x1)

Ranjay Krishna, Sarah Pratt

Lecture 4 - 64 January 16, 2024

```
import numpy as np
 1
    from numpy.random import randn
 2
 3
    N, D in, H, D out = 64, 1000, 100, 10
 4
    x, y = randn(N, D_in), randn(N, D_out)
 5
    w1, w2 = randn(D in, H), randn(H, D out)
 6
 7
    for t in range(2000):
 8
      h = 1 / (1 + np.exp(-x.dot(w1)))
 9
10
      y_pred = h.dot(w2)
11
      loss = np.square(y pred - y).sum()
      print(t, loss)
12
13
14
      grad y pred = 2.0 * (y pred - y)
      grad_w2 = h.T.dot(grad_y_pred)
15
      grad h = grad y pred.dot(w2.T)
16
      grad_w1 = x.T.dot(grad_h * h * (1 - h))
17
18
      w1 -= 1e-4 * grad w1
19
20
      w^2 -= 1e^{-4} * qrad w^2
```

Ranjay Krishna, Sarah Pratt

Lecture 4 - 65

```
import numpy as np
 1
    from numpy.random import randn
 2
 3
    N, D_in, H, D_out = 64, 1000, 100, 10
 4
    x, y = randn(N, D_in), randn(N, D_out)
 5
    w1, w2 = randn(D_in, H), randn(H, D_out)
 6
 7
    for t in range(2000):
 8
      h = 1 / (1 + np.exp(-x.dot(w1)))
 9
10
      y_pred = h.dot(w2)
11
      loss = np.square(y pred - y).sum()
      print(t, loss)
12
13
14
      grad y pred = 2.0 * (y pred - y)
      grad_w2 = h.T.dot(grad_y_pred)
15
       grad h = grad y pred.dot(w2.T)
16
      grad_w1 = x.T.dot(grad_h * h * (1 - h))
17
18
      w1 -= 1e-4 * grad w1
19
20
      w^2 -= 1e^{-4} * qrad w^2
```

Define the network

Ranjay Krishna, Sarah Pratt

Lecture 4 - 66

Define the network

Lecture 4 - 67

January 16, 2024

Forward pass

Ranjay Krishna, Sarah Pratt

```
import numpy as np
 1
    from numpy.random import randn
 2
 3
    N, D in, H, D out = 64, 1000, 100, 10
 4
    x, y = randn(N, D_in), randn(N, D_out)
 5
    w1, w2 = randn(D in, H), randn(H, D out)
 6
 7
    for t in range(2000):
 8
      h = 1 / (1 + np.exp(-x.dot(w1)))
 9
10
      y_pred = h.dot(w2)
11
      loss = np.square(y pred - y).sum()
      print(t, loss)
12
13
       grad_y pred = 2.0 * (y pred - y)
14
      grad_w2 = h.T.dot(grad_y_pred)
15
       grad h = grad y pred.dot(w2.T)
16
      grad_w1 = x.T.dot(grad_h * h * (1 - h))
17
18
      w1 -= 1e-4 * grad w1
19
20
      w^2 -= 1e^{-4} * qrad w^2
```

Define the network

Forward pass

Calculate the analytical gradients

January 16, 2024

Ranjay Krishna, Sarah Pratt

Lecture 4 - 68

```
import numpy as np
 1
    from numpy.random import randn
 2
 3
    N, D in, H, D out = 64, 1000, 100, 10
 4
    x, y = randn(N, D_in), randn(N, D_out)
 5
    w1, w2 = randn(D in, H), randn(H, D out)
 6
 7
    for t in range(2000):
 8
      h = 1 / (1 + np.exp(-x.dot(w1)))
 9
10
      y_pred = h.dot(w2)
11
      loss = np.square(y pred - y).sum()
      print(t, loss)
12
13
14
      grad y pred = 2.0 * (y pred - y)
      grad_w2 = h.T.dot(grad_y_pred)
15
       grad h = grad y pred.dot(w2.T)
16
       grad_w1 = x.T.dot(grad_h * h * (1 - h))
17
18
19
       w1 -= 1e-4 * grad w1
20
       w2 = 1e - 4 * qrad w2
```

Define the network

Forward pass

Calculate the analytical gradients

Gradient descent

Ranjay Krishna, Sarah Pratt

Lecture 4 - 69

Setting the number of layers and their sizes

more neurons = more capacity

Ranjay Krishna, Sarah Pratt

Lecture 4 - 70 January 16, 2024

Do not use size of neural network as a regularizer. Use stronger regularization instead:

 $\lambda = 0.001$ $\lambda = 0.01$ $\lambda = 0.1$ 0 0 0 12 $L(W) = \frac{1}{N} \sum_{i=1}^{N} L_i(f(x_i, W), y_i) + \lambda R(W)$

Ranjay Krishna, Sarah Pratt

Lecture 4 - 71 January 16, 2024

This image by Fotis Bobolas is licensed under CC-BY 2.0

Ranjay Krishna, Sarah Pratt

Lecture 4 - 72

is licensed under CC-BY 3.0

Ranjay Krishna, Sarah Pratt

Lecture 4 - 73

Ranjay Krishna, Sarah Pratt

Lecture 4 - 74 January 16, 2024

Ranjay Krishna, Sarah Pratt

Lecture 4 - 75 January 16, 2024

Ranjay Krishna, Sarah Pratt

Lecture 4 - 76 January 16, 2024

Biological Neurons: Complex connectivity patterns

Neurons in a neural network: Organized into regular layers for computational efficiency

January 16, 2024

Lecture 4 - 77

This image is CC0 Public Domain

Biological Neurons: Complex connectivity patterns

This image is CC0 Public Domain

But neural networks with random connections can work too!

Xie et al, "Exploring Randomly Wired Neural Networks for Image Recognition", arXiv 2019

Ranjay Krishna, Sarah Pratt

Lecture 4 - 78

Be very careful with your brain analogies!

Biological Neurons:

- Many different types
- Dendrites can perform complex non-linear computations
- Synapses are not a single weight but a complex non-linear dynamical system

Lecture 4 - 79

January 16, 2024

[Dendritic Computation. London and Hausser]

Plugging in neural networks with loss functions

$$s = f(x; W_1, W_2) = W_2 \max(0, W_1 x)$$
 Nonlinear score function
 $L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)$ SVM Loss on predictions

$$\begin{split} R(W) &= \sum_k W_k^2 \quad \text{Regularization} \\ L &= \frac{1}{N} \sum_{i=1}^N L_i + \lambda R(W_1) + \lambda R(W_2) \quad \text{Total loss: data loss + regularization} \end{split}$$

Ranjay Krishna, Sarah Pratt

Lecture 4 - 80 January 16, 2024

Problem: How to compute gradients?

$$\begin{split} s &= f(x; W_1, W_2) = W_2 \max(0, W_1 x) \quad \text{Nonlinear score function} \\ L_i &= \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1) \quad \text{SVM Loss on predictions} \\ R(W) &= \sum_k W_k^2 \quad \text{Regularization} \\ L &= \frac{1}{N} \sum_{i=1}^N L_i + \lambda R(W_1) + \lambda R(W_2) \quad \text{Total loss: data loss + regularization} \\ \text{If we can compute } \frac{\partial L}{\partial W_1}, \frac{\partial L}{\partial W_2} \text{ then we can learn } W_1 \text{ and } W_2 \end{split}$$

Ranjay Krishna, Sarah Pratt

Lecture 4 - 81 January 16, 2024

(Bad) Idea: Derive $\nabla_W L$ on paper

$$s = f(x; W) = Wx$$

$$L_{i} = \sum_{j \neq y_{i}} \max(0, s_{j} - s_{y_{i}} + 1)$$

$$= \sum_{j \neq y_{i}} \max(0, W_{j,:} \cdot x + W_{y_{i},:} \cdot x + 1)$$

$$L = \frac{1}{N} \sum_{i=1}^{N} L_{i} + \lambda \sum_{k} W_{k}^{2}$$

$$= \frac{1}{N} \sum_{i=1}^{N} \sum_{j \neq y_{i}} \max(0, W_{j,:} \cdot x + W_{y_{i},:} \cdot x + 1) + \lambda \sum_{k} W_{k}^{2}$$

$$\nabla_{W}L = \nabla_{W} \left(\frac{1}{N} \sum_{i=1}^{N} \sum_{j \neq y_{i}} \max(0, W_{j,:} \cdot x + W_{y_{i},:} \cdot x + 1) + \lambda \sum_{k} W_{k}^{2} \right)$$

Problem: Very tedious: Lots of matrix calculus, need lots of paper

Problem: What if we want to change loss? E.g. use softmax instead of SVM? Need to re-derive from scratch =(

Problem: Not feasible for very complex models!

January 16, 2024

 W_k^2

Lecture 4 - 82

Better Idea: Computational graphs + Backpropagation

Ranjay Krishna, Sarah Pratt

Lecture 4 - 83

Figure copyright Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission.

Ranjay Krishna, Sarah Pratt

Lecture 4 - 84

Figure reproduced with permission from a Twitter post by Andrej Karpathy.

January 16, 2024

Ranjay Krishna, Sarah Pratt

Solution: Backpropagation

Ranjay Krishna, Sarah Pratt

Lecture 4 - 86

$$f(x,y,z) = (x+y)z$$

Ranjay Krishna, Sarah Pratt

Lecture 4 - 87

$$f(x,y,z) = (x+y)z$$

January 16, 2024

Ranjay Krishna, Sarah Pratt

$$f(x, y, z) = (x + y)z$$

e.g. x = -2, y = 5, z = -4

January 16, 2024

Ranjay Krishna, Sarah Pratt

$$f(x,y,z) = (x+y)z$$

e.g. x = -2, y = 5, z = -4
 $q = x + y$ $rac{\partial q}{\partial x} = 1, rac{\partial q}{\partial y} = 1$

January 16, 2024

Ranjay Krishna, Sarah Pratt

$$f(x, y, z) = (x + y)z$$

e.g. x = -2, y = 5, z = -4

$$egin{aligned} q &= x + y & rac{\partial q}{\partial x} &= 1, rac{\partial q}{\partial y} &= 1 \ f &= qz & rac{\partial f}{\partial q} &= z, rac{\partial f}{\partial z} &= q \end{aligned}$$

Ranjay Krishna, Sarah Pratt

Lecture 4 - 91

$$f(x, y, z) = (x + y)z$$

e.g. x = -2, y = 5, z = -4

$$q=x+y \hspace{0.5cm} rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

$$f = qz$$
 $rac{\partial f}{\partial q} = z, rac{\partial f}{\partial z} = q$
Want: $rac{\partial f}{\partial x}, rac{\partial f}{\partial y}, rac{\partial f}{\partial z}$

Want:
$$\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y},$$

January 16, 2024

Lecture 4 - 92

$$f(x, y, z) = (x + y)z$$

e.g. x = -2, y = 5, z = -4

$$q=x+y \hspace{0.5cm} rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

 ∂z

Want:
$$\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}$$

January 16, 2024

Lecture 4 - 93

$$f(x, y, z) = (x + y)z$$

e.g. x = -2, y = 5, z = -4

$$q=x+y \hspace{0.5cm} rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

$$egin{aligned} f = qz & rac{\partial f}{\partial q} = z, rac{\partial f}{\partial z} = q \end{aligned}$$
 Want: $rac{\partial f}{\partial x}, rac{\partial f}{\partial y}, rac{\partial f}{\partial z} \end{aligned}$

Want:
$$\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y},$$

$$x \xrightarrow{-2} + q \xrightarrow{3}$$

$$y \xrightarrow{5} + f \xrightarrow{-12} + f \xrightarrow$$

Lecture 4 - 94

January 16, 2024

$$f(x, y, z) = (x + y)z$$

e.g. x = -2, y = 5, z = -4

$$q=x+y$$
 $rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

 ∂z

Want:
$$\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}$$

January 16, 2024

Lecture 4 - 95

$$f(x, y, z) = (x + y)z$$

e.g. x = -2, y = 5, z = -4

$$q=x+y \hspace{0.5cm} rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

$$f = qz$$
 $rac{\partial f}{\partial q} = z, rac{\partial f}{\partial z} = q$
Want: $rac{\partial f}{\partial x}, rac{\partial f}{\partial y}, rac{\partial f}{\partial z}$

Want:
$$\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y},$$

January 16, 2024

Lecture 4 - 96

$$f(x, y, z) = (x + y)z$$

e.g. x = -2, y = 5, z = -4

$$q=x+y \hspace{0.5cm} rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

Want:
$$\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$$

$$x \frac{-2}{y \frac{5}{5}} + \frac{q 3}{\sqrt{f - 12}} + \frac{q 3}{\sqrt{f - 12}} + \frac{f - 12}{\sqrt{f - 12}} + \frac{f - 12}{\sqrt{f - 12}} + \frac{\partial f}{\partial q}$$

January 16, 2024

Lecture 4 - 97

$$f(x, y, z) = (x + y)z$$

e.g. x = -2, y = 5, z = -4

$$q=x+y \hspace{0.5cm} rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

$$egin{aligned} f &= qz & rac{\partial f}{\partial q} &= z, rac{\partial f}{\partial z} &= q \end{aligned}$$
 Want: $rac{\partial f}{\partial x}, rac{\partial f}{\partial y}, rac{\partial f}{\partial z} \end{aligned}$

Want:
$$\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}$$

January 16, 2024

Lecture 4 - 98

$$f(x, y, z) = (x + y)z$$

e.g. x = -2, y = 5, z = -4

$$q=x+y$$
 $rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$

$$f = qz$$
 $\frac{\partial f}{\partial q} = z, \frac{\partial f}{\partial z} = q$
Want: $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial y}$

 $\frac{\partial y}{\partial x}, \frac{\partial y}{\partial y}, \frac{\partial y}{\partial z}$

$$z \frac{-4}{3}$$
Chain rule:
$$\frac{\partial f}{\partial y} = \frac{\partial f}{\partial q} \frac{\partial q}{\partial y}$$

Upstream gradient

3

f -12

*

+

x -2

y 5

Ranjay Krishna, Sarah Pratt

Lecture 4 - 99 January 16, 2024

Local

gradient

$$f(x, y, z) = (x + y)z$$

e.g. x = -2, y = 5, z = -4

$$q=x+y$$
 $rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$

$$egin{aligned} f &= qz & rac{\partial f}{\partial q} &= z, rac{\partial f}{\partial z} &= q \end{aligned}$$
 Want: $rac{\partial f}{\partial x}, rac{\partial f}{\partial y}, rac{\partial f}{\partial z} \end{aligned}$

Want:
$$\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}$$

Ranjay Krishna, Sarah Pratt

Lecture 4 - 100 January 16, 2024

$$f(x, y, z) = (x + y)z$$

e.g. x = -2, y = 5, z = -4

$$q=x+y$$
 $rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

$$rac{\partial f}{\partial x}, rac{\partial f}{\partial y}, rac{\partial f}{\partial z}$$

Ranjay Krishna, Sarah Pratt

Lecture 4 - 101 January 16, 2024

$$f(x, y, z) = (x + y)z$$

e.g. x = -2, y = 5, z = -4

$$q=x+y \hspace{0.5cm} rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

$$egin{aligned} f = qz & rac{\partial f}{\partial q} = z, rac{\partial f}{\partial z} = q \end{aligned}$$
 Want: $rac{\partial f}{\partial x}, rac{\partial f}{\partial y}, rac{\partial f}{\partial z} \end{aligned}$

Want:
$$\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y},$$

Ranjay Krishna, Sarah Pratt

Lecture 4 - 102 January 16, 2024

Lecture 4 - 103 January 16, 2024

Lecture 4 - 104 January 16, 2024

Lecture 4 - 105 January 16, 2024

Lecture 4 - 106 January 16, 2024

Lecture 4 - 107 January 16, 2024

$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$

Ranjay Krishna, Sarah Pratt

Lecture 4 - 109 January 16, 2024

$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$

Ranjay Krishna, Sarah Pratt

Lecture 4 - 110 January 16, 2024

$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$

Ranjay Krishna, Sarah Pratt

Lecture 4 - 111 January 16, 2024

$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$

Ranjay Krishna, Sarah Pratt

Lecture 4 - 112 January 16, 2024

$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$

Ranjay Krishna, Sarah Pratt

Lecture 4 - 113 January 16, 2024

$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$

Ranjay Krishna, Sarah Pratt

Lecture 4 - 114 January 16, 2024

$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$

Ranjay Krishna, Sarah Pratt

Lecture 4 - 115 January 16, 2024

$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$

Ranjay Krishna, Sarah Pratt

Lecture 4 - 116 January 16, 2024

$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$

Ranjay Krishna, Sarah Pratt

Lecture 4 - 117 January 16, 2024

$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$

Ranjay Krishna, Sarah Pratt

Lecture 4 - 118 January 16, 2024

$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$

Ranjay Krishna, Sarah Pratt

Lecture 4 - 119 January 16, 2024

$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$

Ranjay Krishna, Sarah Pratt

Lecture 4 - 120 January 16, 2024

$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$

Ranjay Krishna, Sarah Pratt

Lecture 4 - 121 January 16, 2024

$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$

Ranjay Krishna, Sarah Pratt

Lecture 4 - 122 January 16, 2024

Ranjay Krishna, Sarah Pratt

Lecture 4 - 123 January 16, 2024

$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$

Ranjay Krishna, Sarah Pratt

Lecture 4 - 124 January 16, 2024

w0 2.00

x0 -1.00

-0.20

$$f(w,x) = \frac{1}{1 + e^{-(w_0 x_0 + w_1 x_1 + w_2)}}$$

$$\frac{-2.00}{0.20}$$
Sigmoid function
$$\sigma(x) = \frac{1}{1 + e^{-x}}$$
Sigmoid
$$\sigma(x) = \frac{1}{1 + e^{-x}}$$
Sigmoid
$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

Computational graph representation may not be unique. Choose one where local gradients at each node can be easily expressed!

Ranjay Krishna, Sarah Pratt

Lecture 4 - 125 January 16, 2024

w0 2.00

x0 -1.00

w1 -3.00

x1 -2.00

w2 -3.00 0.20

0.40

-0.20

$$f(w,x) = \frac{1}{1 + e^{-(w_0 x_0 + w_1 x_1 + w_2)}}$$
Correction
$$f(w,x) = \frac{1}{1 + e^{-(w_0 x_0 + w_1 x_1 + w_2)}}$$
be used
by use of the term of the term of the term of te

Computational graph representation may not be unique. Choose one where local gradients at each node can be easily expressed!

0.73

1.00

Sigmoid local $\frac{d\sigma(x)}{dx} = \frac{e^{-x}}{(1+e^{-x})^2} = \left(\frac{1+e^{-x}-1}{1+e^{-x}}\right) \left(\frac{1}{1+e^{-x}}\right) = (1-\sigma(x))\sigma(x)$

Ranjay Krishna, Sarah Pratt

Lecture 4 - 126 January 16, 2024

w0 2.00

x0 -1.00

w1 -3.00

x1 -2.00

w2 -3.00

0.20

0.40

-0.20

e:
$$f(w,x) = \frac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$

Sigmoid function $\sigma(x) = \frac{1}{1+e^{-x}}$
Computational graph
representation may
be unique. Choose
where local graph
each node can be
expressed!
 $f(x) = \frac{1}{1+e^{-x}}$
Sigmoid
 $f(x) = \frac{1}{1+e^{-x}}$
Sigmoid
 $f(x) = \frac{1}{1+e^{-x}}$
Sigmoid
 $f(x) = \frac{1}{1+e^{-x}}$
Sigmoid
 $f(x) = \frac{1}{1+e^{-x}}$
 $f(x) = \frac{1}{1+e^{-x}}$
Sigmoid
 $f(x) = \frac{1}{1+e^{-x}}$
 $f(x) = \frac{1}{1+e^{-x}}$

putational graph sentation may not nique. Choose one e local gradients at node can be easily essed!

0.73

1.00

 $rac{d\sigma(x)}{dx} = rac{e^{-x}}{\left(1+e^{-x}
ight)^2} = \left(rac{1+e^{-x}-1}{1+e^{-x}}
ight) \left(rac{1}{1+e^{-x}}
ight) = \left(1-\sigma(x)
ight) \sigma(x)$ Sigmoid local gradient:

Ranjay Krishna, Sarah Pratt

Lecture 4 - 127 January 16, 2024

w0 2.00

x0 -1.00

w1 -3.00

x1 -2.00

w2 -3.00

0.20

0.40

-2.00

0.20

6.00

0.20

$$f(w,x) = \frac{1}{1 + e^{-(w_0 x_0 + w_1 x_1 + w_2)}}$$

Sigmoid
function
$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

Computational graph representation may not be unique. Choose one where local gradients at each node can be easily expressed!

0.73

1.00

1/x

[upstream gradient] x [local gradient] [1.00] x [(1 - 0.73) (0.73)] = 0.2

Sigmoid local $\frac{d\sigma(x)}{dx} = \frac{e^{-x}}{(1+e^{-x})^2} = \left(\frac{1+e^{-x}-1}{1+e^{-x}}\right) \left(\frac{1}{1+e^{-x}}\right) = (1-\sigma(x))\sigma(x)$

Ranjay Krishna, Sarah Pratt

Lecture 4 - 128 January 16, 2024

1.37

-0.53

add gate: gradient distributor

Ranjay Krishna, Sarah Pratt

Lecture 4 - 129

January 16, 2024

add gate: gradient distributor

mul gate: "swap multiplier"

Ranjay Krishna, Sarah Pratt

Lecture 4 - 130 January 16, 2024

add gate: gradient distributor

copy gate: gradient adder

mul gate: "swap multiplier"

Ranjay Krishna, Sarah Pratt

Lecture 4 - 131 January 16, 2024

add gate: gradient distributor

copy gate: gradient adder

mul gate: "swap multiplier"

max gate: gradient router

Ranjay Krishna, Sarah Pratt

Lecture 4 - 132 January 16, 2024

Forward pass: Compute output

d	ef	f()	w0,	X	0,	w1,	x1,	w2):
	s) =	w0	*	X	0		
	s1	L =	w1	*	X	1		
	s2	2 =	s0	+	S	1		
	s3	3 =	s2	+	W	2		
	L	= :	sigr	no:	id	(s3)		

grad_L = 1.0
$grad_s3 = grad_L * (1 - L) * L$
grad_w2 = grad_s3
grad_s2 = grad_s3
grad_s0 = grad_s2
grad_s1 = grad_s2
grad_w1 = grad_s1 * x1
grad_x1 = grad_s1 * w1
grad_w0 = grad_s0 * x0
grad_x0 = grad_s0 * w0

Ranjay Krishna, Sarah Pratt

Lecture 4 - 133 January 16, 2024

de	<mark>f f</mark> (w0,	x0, w1,	x1,	w2):
	s0 = w0	* ×0		
	s1 = w1	* x1		
3	s2 = s0	+ s1		
	s3 = s2	+ w2		
- 1	L = sign	noid(s3)		

Forward pass: Compute output

Base case

grad_L = 1.0 grad_s3 = grad_L * (1 - L) * L grad_w2 = grad_s3 grad_s2 = grad_s3 grad_s0 = grad_s2 grad_s1 = grad_s2 grad_w1 = grad_s1 * x1 grad_x1 = grad_s1 * w1 grad_w0 = grad_s0 * x0 grad_x0 = grad_s0 * w0

Lecture 4 - 134 January 16, 2024

Forward pass:
Compute output

Sigmoid

lef	f(\	w0,	x	Э,	w1,	x1,
s	0 =	w0	*	x)	
s	1 =	w1	*	x1	L	
s	2 =	s0	+	s1	L	
S	3 =	s2	+	W2	2	
L	=	sigr	no:	id((s3)	

grad_L = 1.0
$grad_s3 = grad_L * (1 - L) * L$
grad_w2 = grad_s3
grad_s2 = grad_s3
grad_s0 = grad_s2
grad_s1 = grad_s2
grad_w1 = grad_s1 * x1
grad_x1 = grad_s1 * w1
grad_w0 = grad_s0 * x0
grad x0 = grad s0 * w0

w2):

Lecture 4 - 135 January 16, 2024

Forward pass: Compute output

Add gate

de	ef	f(v	v0,	X	Э,	w1,	x1,
	s0	=	w0	*	x)	
	s1	=	w1	*	x1	L	
	s2	=	s0	+	s1	Ĺ	
	s3	=	s2	+	W2	2	
	L	= 5	sigr	no:	id((s3)	

$grad_L = 1.0$
<u>grad_s3 = grad_L * (1 - L) * L</u>
grad_w2 = grad_s3
grad_s2 = grad_s3
grad_s0 = grad_s2
grad_s1 = grad_s2
grad_w1 = grad_s1 * x1
grad_x1 = grad_s1 * w1
grad_w0 = grad_s0 * x0
grad_x0 = grad_s0 * w0

w2):

Lecture 4 - 136 January 16, 2024

	s0	=	w0	*	x0
Forward pass:	s1	=	w1	*	x1
Compute output	s2	=	s0	+	s1
Compute Output	s3	=	s2	+	w2

Add gate

grad_L = 1.0
$grad_s3 = grad_L * (1 - L) * L$
grad_w2 = grad_s3
grad_s2 = grad_s3
grad_s0 = grad_s2
grad_s1 = grad_s2
grad_w1 = grad_s1 * x1
grad_x1 = grad_s1 * w1
grad_w0 = grad_s0 * x0
grad x0 = grad s0 * w0

def f(w0, x0, w1, x1, w2):

L = sigmoid(s3)

Lecture 4 - 137 January 16, 2024

	<pre>def f(w0, x0, w1, x1, w2):</pre>
	s0 = w0 * x0
Forward pass: Compute output	s1 = w1 * x1
	s2 = s0 + s1
	s3 = s2 + w2
	L = sigmoid(s3)

Multiply gate

grad_L = 1.0
grad_s3 = grad_L * (1 - L) * L
grad_w2 = grad_s3
grad_s2 = grad_s3
grad_s0 = grad_s2
grad_s1 = grad_s2
grad_w1 = grad_s1 * x1
grad_x1 = grad_s1 * w1
grad_w0 = grad_s0 * x0
grad_x0 = grad_s0 * w0

Lecture 4 - 138

January 16, 2024

def f(w0, x0, w1, x1, w2):
 s0 = w0 * x0
 s1 = w1 * x1
 s2 = s0 + s1
 s3 = s2 + w2
 L = sigmoid(s3)

grad_L = 1.0
grad_s3 = grad_L * (1 - L) * L
grad_w2 = grad_s3
grad_s2 = grad_s3
grad_s0 = grad_s2
grad_s1 = grad_s2
grad_w1 = grad_s1 * x1
grad_x1 = grad_s1 * w1
grad_w0 = grad_s0 * x0
grad_x0 = grad_s0 * w0

Multiply gate

Forward pass:

Ranjay Krishna, Sarah Pratt

Lecture 4 - 139 January 16, 2024

"Flat" Backprop: Do this for assignment 2!

Stage your forward/backward computation!

Lecture 4 - 140

January 16, 2024

"Flat" Backprop: Do this for assignment 1!

E.g. for two-layer neural net:

```
# receive W1,W2,b1,b2 (weights/biases), X (data)
# forward pass:
h1 = #... function of X,W1,b1
scores = #... function of h1,W2,b2
loss = #... (several lines of code to evaluate Softmax loss)
# backward pass:
dscores = #...
dh1, dW2, db2 = #...
dW1, db1 = #...
```

Ranjay Krishna, Sarah Pratt

Lecture 4 - 141 January 16, 2024

Backprop Implementation: Modularized API

Graph (or Net) object (rough pseudo code)

January 16, 2024

Lecture 4 - 142

Modularized implementation: forward / backward API

Gate / Node / Function object: Actual PyTorch code

(x,y,z are scalars)

<pre>class Multiply(torch.autograd.Function):</pre>			
@staticmethod			
<pre>def forward(ctx, x, y):</pre>	Need to stash		
ctx.save_for_backward(x, y) ┥	some values for		
z = x * y	use in backward		
return z			
@staticmethod			
<pre>def backward(ctx, grad_z):</pre>	_ Upstream		
<pre>x, y = ctx.saved_tensors</pre>	gradient		
$grad_x = y * grad_z # dz/dx * dL/dz$	Multiply upstream		
<pre>grad_y = x * grad_z # dz/dy * dL/dz</pre>	and local gradients		
<pre>return grad_x, grad_y</pre>			

Lecture 4 - 143

January 16, 2024

Example: PyTorch operators

pytorch / pytorch 🛇 Wate				\star Unsta	r 26,770	¥ Fork	6,340
↔ Code ① Issues 2,286 ①	Pull requests 561 III Projects 4	Wiki 🔟 Ins	sights				
Tree: 517c7c9861 - pytorch / aten	/ src / THNN / generic /		Create r	new file L	Ipload files	Find file	History
ezyang and facebook-github-bot C	anonicalize all includes in PyTorch. (#14849)			Latest	commit 517	c7c9 on Dec	: 8, 2018
AbsCriterion.c	Canonicalize all includes in PyTorch. (#148	349)				4 mor	nths ago
BCECriterion.c	Canonicalize all includes in PyTorch. (#148	349)				4 mor	nths ago
ClassNLLCriterion.c	Canonicalize all includes in PyTorch. (#148	349)				4 mor	nths ago
Col2Im.c	Canonicalize all includes in PyTorch. (#148	349)				4 mor	nths ago
ELU.c	Canonicalize all includes in PyTorch. (#148	349)				4 mor	nths ago
FeatureLPPooling.c	Canonicalize all includes in PyTorch. (#148	349)				4 mor	nths ago
GatedLinearUnit.c	Canonicalize all includes in PyTorch. (#148	349)				4 mor	nths ago
HardTanh.c	Canonicalize all includes in PyTorch. (#148	349)				4 mor	nths ago
Im2Col.c	Canonicalize all includes in PyTorch. (#148	349)				4 mor	nths ago
IndexLinear.c	Canonicalize all includes in PyTorch. (#148	349)				4 mor	nths ago
LeakyReLU.c	Canonicalize all includes in PyTorch. (#148	349)				4 mor	nths ago
LogSigmoid.c	Canonicalize all includes in PyTorch. (#148	349)				4 mor	nths ago
MSECriterion.c	Canonicalize all includes in PyTorch. (#148	349)				4 mor	nths ago
MultiLabelMarginCriterion.c	Canonicalize all includes in PyTorch. (#148	349)				4 mor	nths ago
MultiMarginCriterion.c	Canonicalize all includes in PyTorch. (#148	349)				4 mor	nths ago
RReLU.c	Canonicalize all includes in PyTorch. (#148	349)				4 mor	nths ago
Sigmoid.c	Canonicalize all includes in PyTorch. (#148	349)				4 mor	nths ago
SmoothL1Criterion.c	Canonicalize all includes in PyTorch. (#148	349)				4 mor	nths ago
SoftMarginCriterion.c	Canonicalize all includes in PyTorch. (#148	349)				4 mor	nths ago
SoftPlus.c	Canonicalize all includes in PyTorch. (#148	349)				4 mor	nths ago
SoftShrink.c	Canonicalize all includes in PyTorch. (#148	349)				4 mor	nths ago
SparseLinear.c	Canonicalize all includes in PyTorch. (#148	349)				4 mor	nths ago
SpatialAdaptiveAveragePooling.c	Canonicalize all includes in PyTorch. (#148	349)				4 mor	nths ago
SpatialAdaptiveMaxPooling.c	Canonicalize all includes in PyTorch. (#148	349)				4 mor	nths ago
SpatialAveragePooling c	Canonicalize all includes in PyTorch (#14)	349)				4 mor	oths ago

SpatialClassNLLCriterion.c	Canonicalize all includes in PyTorch. (#14849)	4 months ago
SpatialConvolutionMM.c	Canonicalize all includes in PyTorch. (#14849)	4 months ago
SpatialDilatedConvolution.c	Canonicalize all includes in PyTorch. (#14849)	4 months ago
SpatialDilatedMaxPooling.c	Canonicalize all includes in PyTorch. (#14849)	4 months ago
SpatialFractionalMaxPooling.c	Canonicalize all includes in PyTorch. (#14849)	4 months ago
SpatialFullDilatedConvolution.c	Canonicalize all includes in PyTorch. (#14849)	4 months ago
SpatialMaxUnpooling.c	Canonicalize all includes in PyTorch. (#14849)	4 months ago
SpatialReflectionPadding.c	Canonicalize all includes in PyTorch. (#14849)	4 months ago
SpatialReplicationPadding.c	Canonicalize all includes in PyTorch. (#14849)	4 months ago
SpatialUpSamplingBilinear.c	Canonicalize all includes in PyTorch. (#14849)	4 months ago
SpatialUpSamplingNearest.c	Canonicalize all includes in PyTorch. (#14849)	4 months ago
THNN.h	Canonicalize all includes in PyTorch. (#14849)	4 months ago
Tanh.c	Canonicalize all includes in PyTorch. (#14849)	4 months ago
TemporalReflectionPadding.c	Canonicalize all includes in PyTorch. (#14849)	4 months ago
TemporalReplicationPadding.c	Canonicalize all includes in PyTorch. (#14849)	4 months ago
TemporalRowConvolution.c	Canonicalize all includes in PyTorch. (#14849)	4 months ago
TemporalUpSamplingLinear.c	Canonicalize all includes in PyTorch. (#14849)	4 months ago
TemporalUpSamplingNearest.c	Canonicalize all includes in PyTorch. (#14849)	4 months ago
VolumetricAdaptiveAveragePoolin	Canonicalize all includes in PyTorch. (#14849)	4 months ago
VolumetricAdaptiveMaxPooling.c	Canonicalize all includes in PyTorch. (#14849)	4 months ago
VolumetricAveragePooling.c	Canonicalize all includes in PyTorch. (#14849)	4 months ago
VolumetricConvolutionMM.c	Canonicalize all includes in PyTorch. (#14849)	4 months ago
VolumetricDilatedConvolution.c	Canonicalize all includes in PyTorch. (#14849)	4 months ago
VolumetricDilatedMaxPooling.c	Canonicalize all includes in PyTorch. (#14849)	4 months ago
VolumetricFractionalMaxPooling.c	Canonicalize all includes in PyTorch. (#14849)	4 months ago
VolumetricFullDilatedConvolution.c	Canonicalize all includes in PyTorch. (#14849)	4 months ago
VolumetricMaxUnpooling.c	Canonicalize all includes in PyTorch. (#14849)	4 months ago
VolumetricReplicationPadding.c	Canonicalize all includes in PyTorch. (#14849)	4 months ago
VolumetricUpSamplingNearest.c	Canonicalize all includes in PyTorch. (#14849)	4 months ago
VolumetricUpSamplingTrilinear.c	Canonicalize all includes in PyTorch. (#14849)	4 months ago
linear_upsampling.h	Implement nn.functional.interpolate based on upsample. (#8591)	9 months ago
Dooling_shape.h	Use integer math to compute output size of pooling operations (#14405)	4 months ago
i unfold.c	Canonicalize all includes in PyTorch. (#14849)	4 months ago

Lecture 4 - 144

January 16, 2024
```
#ifndef TH GENERIC FILE
                                                                                         PyTorch sigmoid layer
    #define TH GENERIC_FILE "THNN/generic/Sigmoid.c"
    #else
    void THNN_(Sigmoid_updateOutput)(
                                                                 Forward
             THNNState *state,
             THTensor *input,
             THTensor *output)
                                                           \sigma(x) =
 9
      THTensor_(sigmoid)(output, input);
    void THNN_(Sigmoid_updateGradInput)(
14
             THNNState *state,
             THTensor *gradOutput,
             THTensor *gradInput,
             THTensor *output)
18
19
      THNN_CHECK_NELEMENT(output, gradOutput);
      THTensor_(resizeAs)(gradInput, output);
21
      TH_TENSOR_APPLY3(scalar_t, gradInput, scalar_t, gradOutput, scalar_t, output,
22
        scalar_t z = *output_data;
        *gradInput_data = *gradOutput_data * (1. - z) * z;
23
      );
24
25
                                                                                                                                        Source
    #endif
```

Lecture 4 - 145 January <u>16, 2024</u>

Lecture 4 - 146 January 16, 2024

Lecture 4 - 147 January 16, 2024

Summary for today:

- (Fully-connected) Neural Networks are stacks of linear functions and nonlinear activation functions; they have much more representational power than linear classifiers
- backpropagation = recursive application of the chain rule along a computational graph to compute the gradients of all inputs/parameters/intermediates
- implementations maintain a graph structure, where the nodes implement the forward() / backward() API

Lecture 4 - 148

January 16, 2024

- **forward**: compute result of an operation and save any intermediates needed for gradient computation in memory
- **backward**: apply the chain rule to compute the gradient of the loss function with respect to the inputs

So far: backprop with scalars

Next time: vector-valued functions!

Ranjay Krishna, Sarah Pratt

Lecture 4 - 149 January 16, 2024

Next Time: Convolutional neural networks

Lecture 4 - 150

January 16, 2024

Ranjay Krishna, Sarah Pratt

A vectorized example: $f(x, W) = ||W \cdot x||^2 = \sum_{i=1}^{n} (W \cdot x)_i^2$

Ranjay Krishna, Sarah Pratt

Lecture 4 - 151 January 16, 2024

A vectorized example: $f(x, W) = ||W \cdot x||^2 = \sum_{i=1}^n (W \cdot x)_i^2$ $\bigcup_{i \in \mathbb{R}^n \in \mathbb{R}^{n \times n}} ||W \cdot x||^2 = \sum_{i=1}^n (W \cdot x)_i^2$

Ranjay Krishna, Sarah Pratt

Lecture 4 - 152

January 16, 2024

A vectorized example: $f(x, W) = ||W \cdot x||^2 = \sum_{i=1}^{n} (W \cdot x)_i^2$

Ranjay Krishna, Sarah Pratt

Lecture 4 - 153 January 16, 2024

Lecture 4 - 154 January 16, 2024

Lecture 4 - 155 January 16, 2024

Lecture 4 - 156 January 16, 2024

A vectorized example:
$$f(x, W) = ||W \cdot x||^2 = \sum_{i=1}^{n} (W \cdot x)_i^2$$

 $\begin{bmatrix} 0.1 & 0.5 \\ -0.3 & 0.8 \end{bmatrix}_W$
 $\begin{bmatrix} 0.2 \\ 0.4 \end{bmatrix}_X$
 $q = W \cdot x = \begin{pmatrix} W_{1,1}x_1 + \dots + W_{1,n}x_n \\ \vdots \\ W_{n,1}x_1 + \dots + W_{n,n}x_n \end{pmatrix}$
 $f(q) = ||q||^2 = q_1^2 + \dots + q_n^2$
 $\frac{\partial f}{\partial q_i} = 2q_i$
 $\nabla_q f = 2q$

Lecture 4 - 157 January 16, 2024

A vectorized example:
$$f(x, W) = ||W \cdot x||^2 = \sum_{i=1}^{n} (W \cdot x)_i^2$$

$$\begin{bmatrix} 0.1 & 0.5 \\ -0.3 & 0.8 \end{bmatrix}_W$$

$$\begin{bmatrix} 0.2 \\ 0.4 \end{bmatrix}_x$$

$$\begin{bmatrix} 0.2 \\ 0.4 \end{bmatrix}_x$$

$$\begin{bmatrix} 0.2 \\ 0.4 \end{bmatrix}_x$$

$$\begin{bmatrix} 0.2 \\ 0.4 \\ 0.52 \end{bmatrix}$$

$$\begin{bmatrix} 0.2 \\ 0.4 \\ 0.52 \end{bmatrix}$$

$$\begin{bmatrix} 0.2 \\ 0.116 \\ 1.00 \end{bmatrix}$$

$$\frac{\partial f}{\partial q_i} = 2q_i$$

$$\begin{bmatrix} 0 \\ 0.44 \\ 0.52 \end{bmatrix}$$

$$\begin{bmatrix} 0 \\ 0.116 \\ 1.00 \end{bmatrix}$$

$$\begin{bmatrix} 0 \\ 0.116 \\ 0.64 \\ 0.52 \end{bmatrix}$$

Lecture 4 - 158 January 16, 2024

Lecture 4 - 159 January 16, 2024

Lecture 4 - 160 January 16, 2024

Lecture 4 - 161 January 16, 2024

Lecture 4 - 162 January 16, 2024

Lecture 4 - 163 January 16, 2024

Lecture 4 - 164 January 16, 2024

Lecture 4 - 165 January 16, 2024

Lecture 4 - 166

January 16, 2024

In discussion section: A matrix example...

Ranjay Krishna, Sarah Pratt

Lecture 4 - 167 January 16, 2024