Lecture 4: Neural Networks and Backpropagation

Administrative: EdStem

Please make sure to check and read all pinned EdStem posts.

Administrative: Assignment 1

Due 1/21 11:59pm

- K-Nearest Neighbor
- Linear classifiers: SVM, Softmax

Pushed back deadline by a few days.

Administrative: Assignment 2

Will be released this weekend

Due 1/30 11:59pm

- Multi-layer Neural Networks,
- Image Features,
- Optimizers

Administrative: Fridays

This Friday
Quiz 1: 6\% of your grade
Backpropagation part 1 - the main algorithm for training neural networks
Presenter: Tanush Tadav

Administrative: Course Project

Project proposal due 2/06 11:59pm
Come to office hours to talk about your ideas

Recap: from last time

$f(x, W)=W x+b$

Recap: loss functions

$$
\begin{aligned}
s & =f(x ; W)=W x \quad \text { Linear score function } \\
L_{i} & =\sum_{j \neq y_{i}} \max \left(0, s_{j}-s_{y_{i}}+1\right) \quad \text { SVM loss (or softmax) } \\
L & =\frac{1}{N} \sum_{i=1}^{N} L_{i}+\lambda \sum_{k} W_{k}^{2} \quad \text { data loss + regularization }
\end{aligned}
$$

Finding the best W: Optimize with Gradient Descent


```
# Vanilla Gradient Descent
while True:
    weights_grad = evaluate_gradient(loss_fun, data, weights)
    weights += - step_size * weights_grad # perform parameter update

\section*{Gradient descent}
\[
\frac{d f(x)}{d x}=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
\]

Numerical gradient: slow :(, approximate :(, easy to write :) Analytic gradient: fast :), exact :), error-prone :(

In practice: Derive analytic gradient, check your implementation with numerical gradient

\section*{Stochastic Gradient Descent (SGD)}
\[
\begin{aligned}
L(W) & =\frac{1}{N} \sum_{i=1}^{N} L_{i}\left(x_{i}, y_{i}, W\right)+\lambda R(W) \\
\nabla_{W} L(W) & =\frac{1}{N} \sum_{i=1}^{N} \nabla_{W} L_{i}\left(x_{i}, y_{i}, W\right)+\lambda \nabla_{W} R(W)
\end{aligned}
\]

Full sum expensive when N is large!

Approximate sum using a minibatch of examples
32 / 64 / 128 common
```


Vanilla Minibatch Gradient Descent

while True:
data_batch = sample_training_data(data, 256) \# sample 256 examples
weights_grad = evaluate_gradient(loss_fun, data_batch, weights)
weights += - step_size * weights_grad \# perform parameter update

```

\section*{Optimization}



\section*{Strategy \#1: A first very bad idea solution: Random search}
```


assume X_train is the data where each column is an example (e.g. 3073 x 50,000)

assume Y_train are the labels (e.g. ID array of 50,000)

assume the function L evaluates the loss function

bestloss = float("inf") \# Python assigns the highest possible float value
for num in xrange(1000):
W = np.random.randn(10, 3073) * 0.0001 \# generate random parameters
loss = L(X_train, Y_train, W) \# get the loss over the entire training set
if loss < bestloss: \# keep track of the best solution
bestloss = loss
bestW = W
print 'in attempt %d the loss was %f, best %f' % (num, loss, bestloss)

prints:

in attempt 0 the loss was 9.401632, best 9.401632

in attempt 1 the loss was 8.959668, best 8.959668

in attempt 2 the loss was 9.044034, best 8.959668

in attempt 3 the loss was 9.278948, best 8.959668

in attempt 4 the loss was 8.857370, best 8.857370

in attempt 5 the loss was 8.943151, best 8.857370

in attempt 6 the loss was 8.605604, best 8.605604

... (trunctated: continues for 1000 lines)

```

Lets see how well this works on the test set...
```


Assume X_test is [3073 x 10000], Y_test [10000 x 1]

scores = Wbest.dot(Xte_cols) \# 10 x 10000, the class scores for all test examples

find the index with max score in each column (the predicted class)

Yte_predict = np.argmax(scores, axis = 0)

and calculate accuracy (fraction of predictions that are correct)

np.mean(Yte_predict == Yte)

returns 0.1555

```
15.5\% accuracy! not bad!
(SOTA is ~99.7\%)

\section*{Strategy \#2: Follow the slope}


Lecture 4-17
January 16, 2024

\section*{Strategy \#2: Follow the slope}

In 1-dimension, the derivative of a function:
\[
\frac{d f(x)}{d x}=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
\]

In multiple dimensions, the gradient is the vector of (partial derivatives) along each dimension

The slope in any direction is the dot product of the direction with the gradient The direction of steepest descent is the negative gradient

\section*{current W:}

\section*{gradient dW:}
\([0.34\),
-1.11,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
\(0.33, \ldots]\)
loss 1.25347

\section*{current W:}
\([0.34\),
-1.11,
0.78
0.12,
0.55
2.81,
-3.1,
-1.5,
\(0.33, \ldots]\)
loss 1.25347
\(\mathbf{W}+\mathbf{h}\) (first dim):
\([0.34+0.0001\),
-1.11,
0.78 ,
0.12 ,
0.55 ,
2.81,
-3.1,
-1.5,
0.33,...]
loss 1.25322

\section*{gradient dW:}


\section*{current W:}
[0.34,
-1.11,
0.78 ,
0.12 ,
0.55 ,
2.81,
-3.1,
-1.5,
\(0.33, \ldots\) ]
loss 1.25347
\(\mathbf{W}+\mathbf{h}\) (first dim):
\([0.34+0.0001\),
-1.11,
0.78 ,
0.12,
0.55 ,
2.81,
-3.1,
-1.5,
\(0.33, \ldots\) ]
loss 1.25322

\section*{gradient dW:}
[-2.5,
?,
?
(1.25322-1.25347)/0.0001
\[
=-2.5
\]
\[
\frac{d f(x)}{d x}=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
\]
?
\[
?, \ldots]
\]

\section*{current W:}
\(\mathbf{W}+\mathbf{h}\) (second dim):

\section*{gradient dW:}
\begin{tabular}{l|l}
{\([0.34\),} & {\([0.34\),} \\
-1.11, & \(-1.11+\mathbf{0 . 0 0 0 1}\), \\
0.78, & 0.78, \\
0.12, & 0.12, \\
0.55, & 0.55, \\
2.81, & 2.81, \\
-3.1, & -3.1, \\
-1.5, & -1.5, \\
\(0.33, \ldots]\) & \(0.33, \ldots]\) \\
loss 1.25347 & loss 1.25353
\end{tabular}

\section*{current W:}
\(\mathbf{W}+\mathbf{h}\) (second dim):
[0.34,
\(-1.11+0.0001\),
0.78 ,
0.12 ,
0.55 ,
2.81,
-3.1,
-1.5,
\(0.33, \ldots\) ]
Ioss 1.25353

\section*{gradient dW:}


\section*{current W:}
\(\mathbf{W}+\mathbf{h}\) (third dim):
\begin{tabular}{l|l}
{\([0.34\),} & {\([0.34\),} \\
-1.11, & -1.11, \\
0.78, & \(0.78+\mathbf{0 . 0 0 0 1}\), \\
0.12, & 0.12, \\
0.55, & 0.55, \\
2.81, & 2.81, \\
-3.1, & -3.1, \\
-1.5, & -1.5, \\
\(0.33, \ldots]\) & \(0.33, \ldots]\) \\
loss 1.25347 & loss 1.25347
\end{tabular}

\section*{gradient dW:}
[-2.5,
0.6 ,
?,
?
?
?
?
?
?,...]

\section*{current W:}
\begin{tabular}{l|l}
{\([0.34\),} & {\([0.34\),} \\
-1.11, & -1.11, \\
0.78, & \(0.78+\mathbf{0 . 0 0 0 1}\), \\
0.12, & 0.12, \\
0.55, & 0.55, \\
2.81, & 2.81, \\
-3.1, & -3.1, \\
-1.5, & -1.5, \\
\(0.33, \ldots]\) & \(0.33, \ldots]\) \\
loss 1.25347 & loss 1.25347
\end{tabular}
\(\mathbf{W}+\mathbf{h}\) (third dim):
[0.34,
-1.11,
0.78 + 0.0001,
0.12 ,
0.55 ,
2.81,
-3.1,
-1.5,
0.33,...]

Ioss 1.25347

\section*{gradient dW:}
[-2.5,
0.6 ,
0 ,
?,
(1.25347-1.25347)/0.0001
\[
=0
\]
\[
\frac{d f(x)}{d x}=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
\]
\[
!, \ldots]
\]

\section*{current W:}
\begin{tabular}{l|l}
{\([0.34\),} & {\([0.34\),} \\
-1.11, & -1.11, \\
0.78, & \(0.78+0.0001\), \\
0.12, & 0.12, \\
0.55, & 0.55, \\
2.81, & 2.81, \\
-3.1, & -3.1, \\
-1.5, & -1.5, \\
\(0.33, \ldots]\) & \(0.33, \ldots]\) \\
loss 1.25347 & loss 1.25347
\end{tabular}

\section*{gradient dW:}
[-2.5,
0.6 ,

0 ,
?

\section*{Numeric Gradient}
- Slow! Need to loop over all dimensions
- Approximate

\section*{This is silly. The loss is just a function of W:}
\[
\begin{aligned}
& L=\frac{1}{N} \sum_{i=1}^{N} L_{i}+\sum_{k} W_{k}^{2} \\
& L_{i}=\sum_{j \neq y_{i}} \max \left(0, s_{j}-s_{y_{i}}+1\right) \\
& s=f(x ; W)=W x
\end{aligned}
\]
\[
\text { want } \nabla_{W} L
\]

\section*{This is silly. The loss is just a function of W:}
\(L=\frac{1}{N} \sum_{i=1}^{N} L_{i}+\sum_{k} W_{k}^{2}\)
\(L_{i}=\sum_{j \neq y_{i}} \max \left(0, s_{j}-s_{y_{i}}+1\right)\)
\(s=f(x ; W)=W x\)
want \(\nabla_{W} L\)

Use calculus to compute an analytic gradient


This image is in the public domain


This image is in the public domain

\section*{current W:}

\section*{gradient dW:}
[0.34,
-1.11,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
\(0.33, \ldots]\)
loss 1.25347

\section*{In summary:}
- Numerical gradient: approximate, slow, easy to write
- Analytic gradient: exact, fast, error-prone
=>
In practice: Always use analytic gradient, but check implementation with numerical gradient. This is called a gradient check.

\section*{Gradient Descent}
```


Vanilla Gradient Descent

while True:
weights_grad = evaluate_gradient(loss_fun, data, weights)
weights += - step_size * weights_grad \# perform parameter update

```


\section*{Stochastic Gradient Descent (SGD)}
\[
\begin{aligned}
L(W) & =\frac{1}{N} \sum_{i=1}^{N} L_{i}\left(x_{i}, y_{i}, W\right)+\lambda R(W) \\
\nabla_{W} L(W) & =\frac{1}{N} \sum_{i=1}^{N} \nabla_{W} L_{i}\left(x_{i}, y_{i}, W\right)+\lambda \nabla_{W} R(W)
\end{aligned}
\]

Full sum expensive when N is large!

Approximate sum using a minibatch of examples
32 / 64 / 128 common
```


Vanilla Minibatch Gradient Descent

while True:
data_batch = sample_training_data(data, 256) \# sample 256 examples
weights_grad = evaluate_gradient(loss_fun, data_batch, weights)
weights += - step_size * weights_grad \# perform parameter update

```

Next, let's discuss how we can find the best W!
\[
\begin{aligned}
s & =f(x ; W)=W x \quad \text { Linear score function } \\
L_{i} & =\sum_{j \neq y_{i}} \max \left(0, s_{j}-s_{y_{i}}+1\right) \quad \text { SVM loss (or softmax) } \\
L & =\frac{1}{N} \sum_{i=1}^{N} L_{i}+\lambda \sum_{k} W_{k}^{2} \quad \text { data loss + regularization } \\
& \text { How to find the best } \mathrm{W} ? \quad \nabla_{W} L
\end{aligned}
\]

\section*{Problem: Linear Classifiers are not very powerful}

Visual Viewpoint


Linear classifiers learn one template per class

Geometric Viewpoint


Linear classifiers can only draw linear decision boundaries

\section*{Pixel Features}


\section*{Image Features}


\section*{Image Features: Motivation}


Cannot separate red and blue points with linear classifier

\section*{Feature become linearly separable through a non-linear transformation}


Cannot separate red and blue points with linear classifier
\[
f(x, y)=(r(x, y), \theta(x, y))
\]



After applying feature transform, points can be separated by linear classifier

\section*{Example: Color Histogram}


\section*{Example: Histogram of Oriented Gradients (HoG)}


Divide image into \(8 \times 8\) pixel regions Within each region quantize edge direction into 9 bins


Example: \(320 \times 240\) image gets divided into \(40 \times 30\) bins; in each bin there are 9 numbers so feature vector has \(30 * 40 * 9=10,800\) numbers

\section*{Example: Bag of Words}

\section*{Step 1: Build codebook}


\section*{Step 2: Encode images}


\section*{Combine many different features if unsure which features are better}


\section*{Image features vs neural networks}


\section*{One Solution: Non-linear feature transformation}

\[
f(x, y)=(r(x, y), \theta(x, y))
\]

Transform data with a cleverly chosen feature transform f, then apply linear classifier


Color Histogram


Histogram of Oriented Gradients (HoG)


\section*{Neural Networks}

Neural networks: the original linear classifier
(Before) Linear score function: \(\quad f=W x\)
\[
x \in \mathbb{R}^{D}, W \in \mathbb{R}^{C \times D}
\]

\section*{Neural networks: 2 layers}
(Before) Linear score function: \(\quad f=W x\)
(Now) 2-layer Neural Network \(\quad f=W_{2} \max \left(0, W_{1} x\right)\)
\[
x \in \mathbb{R}^{D}, W_{1} \in \mathbb{R}^{H \times D}, W_{2} \in \mathbb{R}^{C \times H}
\]
(In practice we will usually add a learnable bias at each layer as well)

\section*{Neural networks: also called fully connected network}
(Before) Linear score function: \(\quad f=W x\)
(Now) 2-layer Neural Network \(\quad f=W_{2} \max \left(0, W_{1} x\right)\)
\[
x \in \mathbb{R}^{D}, W_{1} \in \mathbb{R}^{H \times D}, W_{2} \in \mathbb{R}^{C \times H}
\]
"Neural Network" is a very broad term; these are more accurately called "fully-connected networks" or sometimes "multi-layer perceptrons" (MLP)
(In practice we will usually add a learnable bias at each layer as well)

\section*{Neural networks: 3 layers}
(Before) Linear score function: \(\quad f=W x\)
(Now) 2-layer Neural Network \(\quad f=W_{2} \max \left(0, W_{1} x\right)\) or 3-layer Neural Network
\[
\begin{gathered}
f=W_{3} \max \left(0, W_{2} \max \left(0, W_{1} x\right)\right) \\
x \in \mathbb{R}^{D}, W_{1} \in \mathbb{R}^{H_{1} \times D}, W_{2} \in \mathbb{R}^{H_{2} \times H_{1}}, W_{3} \in \mathbb{R}^{C \times H_{2}}
\end{gathered}
\]
(In practice we will usually add a learnable bias at each layer as well)

\section*{Neural networks: hierarchical computation}
(Before) Linear score function: \(\quad f=W x\)
(Now) 2-layer Neural Network \(\quad f=W_{2} \max \left(0, W_{1} x\right)\)


\section*{Neural networks: learning 100s of templates}
(Before) Linear score function: \(\quad f=W x\)
(Now) 2-layer Neural Network \(\quad f=W_{2} \max \left(0, W_{1} x\right)\)


Learn 100 templates instead of 10.
Share templates between classes

\section*{Examples of templates from real neural networks}


Neural networks: why is max operator important?
(Before) Linear score function: \(\quad f=W x\)
(Now) 2-layer Neural Network \(\quad f=W_{2} \max \left(0, W_{1} x\right)\)
The function \(\max (0, z)\) is called the activation function. Q: What if we try to build a neural network without one?
\[
f=W_{2} W_{1} x
\]

Neural networks: why is max operator important?
(Before) Linear score function: \(\quad f=W x\)
(Now) 2-layer Neural Network \(\quad f=W_{2} \max \left(0, W_{1} x\right)\)
The function \(\max (0, z)\) is called the activation function. Q: What if we try to build a neural network without one?
\[
f=W_{2} W_{1} x \quad W_{3}=W_{2} W_{1} \in \mathbb{R}^{C \times H}, f=W_{3} x
\]

A: We end up with a linear classifier again!

\section*{Activation functions}

Sigmoid
\(\sigma(x)=\frac{1}{1+e^{-x}}\)

tanh
\(\tanh (x)\)


\section*{ReLU}
\(\max (0, x)\)

\section*{Leaky ReLU \(\max (0.1 x, x)\)}


\section*{Maxout}
\(\max \left(w_{1}^{T} x+b_{1}, w_{2}^{T} x+b_{2}\right)\)

ELU
\(\begin{cases}x & x \geq 0 \\ \alpha\left(e^{x}-1\right) & x<0\end{cases}\)


\section*{Activation functions}

ReLU is a good default choice for most problems

Sigmoid
\(\sigma(x)=\frac{1}{1+e^{-x}}\)

tanh
\(\tanh (x)\)


ReLU
\(\max (0, x)\)

Leaky ReLU \(\max (0.1 x, x)\)


\section*{Maxout}
\(\max \left(w_{1}^{T} x+b_{1}, w_{2}^{T} x+b_{2}\right)\)

ELU
\(\begin{cases}x & x \geq 0 \\ \alpha\left(e^{x}-1\right) & x<0\end{cases}\)


\section*{Neural networks: Architectures}


\section*{Example feed-forward computation of a neural network}

```


forward-pass of a 3-layer neural network:

f = lambda x: 1.0/(1.0 + np.exp(-x)) \# activation function (use sigmoid)
x = np.random.randn(3, 1) \# random input vector of three numbers (3x1)
h1 = f(np.dot(W1, x) + b1) \# calculate first hidden layer activations (4xl)
h2 = f(np.dot(W2, h1) + b2) \# calculate second hidden layer activations (4x1)
out = np.dot(W3, h2) + b3 \# output neuron (1x1)

```

\section*{Example feed-forward computation of a neural network}

hidden layer 1 hidden layer 2
```


forward-pass of a 3-layer neural network:

f = lambda x: 1.0/(1.0 + np.exp(-x)) \# activation function (use sigmoid)
h1 = f(np.dot(W1, x) + b1) \# calculate first hidden layer activations (4xl)
h2 = f(np.dot(W2, h1) + b2) \# calculate second hidden layer activations (4x1)
out = np.dot(W3, h2) + b3 \# output neuron (1x1)

```

\section*{Example feed-forward computation of a neural network}

hidden layer 1 hidden layer 2
```


forward-pass of a 3-layer neural network:

f = lambda x: 1.0/(1.0 + np.exp(-x)) \# activation function (use sigmoid)
x = np.random.randn(3, 1) \# random input vector of three numbers (3\times1)
h2 = f(np.dot(W2, h1) + b2) \# calculate second hidden layer activations (4x1)
out = np.dot(W3, h2) + b3 \# output neuron (1x1)

```

\section*{Example feed-forward computation of a neural network}

hidden layer 1 hidden layer 2
```


forward-pass of a 3-layer neural network:

f = lambda x: 1.0/(1.0 + np.exp(-x)) \# activation function (use sigmoid)
x = np.random.randn(3, 1) \# random input vector of three numbers (3\times1)
h1 = f(np.dot(W1, x) + b1) \# calculate first hidden layer activations (4x1
h2 = f(np.dot(W2, h1) + b2) \# calculate second hidden layer activations (4x1)
out = np.dot(W3, h2) + b3 \# output neuron (1x1)

```

\section*{Example feed-forward computation of a neural network}

hidden layer 1 hidden layer 2
```


forward-pass of a 3-layer neural network:

f = lambda x: 1.0/(1.0 + np.exp(-x)) \# activation function (use sigmoid)
x = np.random. randn(3,1) \# random input vector of three numbers (3\times1)
h1 = f(np.dot(W1, x) + b1) \# calculate first hidden layer activations (4x1)
out = np.dot(W3, h2) + b3 \# output neuron (1\times1)

```

\section*{Example feed-forward computation of a neural network}

hidden layer 1 hidden layer 2
```


forward-pass of a 3-layer neural network:

f = lambda x: 1.0/(1.0 + np.exp(-x)) \# activation function (use sigmoid)
x = np.random.randn(3,1) \# random input vector of three numbers (3\times1)
h1 = f(np.dot(W1, x) + bl) \# calculate first hidden layer activations (4xl)
h2 = f(np.dot(W2, h1) + b2) \# calculate second hidden layer activations (4x1)
out = np.dot(W3, h2) + b3 \# output neuron (1\times1)

```

\section*{Full implementation of training a 2-layer Neural Network needs ~20 lines:}
```

import numpy as np
from numpy.random import randn
N, D_in, H, D_out = 64, 1000, 100, 10
x, y = randn(N, D_in), randn(N, D_out)
w1, w2 = randn(D_in, H), randn(H, D_out)
for t in range(2000):
h = 1 / (1 + np.exp(-x.dot(w1)))
y_pred = h.dot(w2)
loss = np.square(y_pred - y).sum()
print(t, loss)
grad_y_pred = 2.0 * (y_pred - y)
grad_w2 = h.T.dot(grad_y_pred)
grad_h = grad_y_pred.dot(w2.T)
grad_w1 = x.T.dot(grad_h * h * (1 - h))
w1 -= 1e-4 * grad_w1
w2 -= 1e-4 * grad_w2

```

\section*{Full implementation of training a 2-layer Neural Network needs ~20 lines:}
```

import numpy as np
from numpy.random import randn
N, D_in, H, D_out = 64, 1000, 100, 10
x, y = randn(N, D_in), randn(N, D_out)
w1, w2 = randn(D_in, H), randn(H, D_out)
for t in range(2000):
h = 1 / (1 + np.exp(-x.dot(w1)))
y_pred = h.dot(w2)
loss = np.square(y_pred - y).sum()
print(t, loss)
grad_y_pred = 2.0 * (y_pred - y)
grad_w2 = h.T.dot(grad_y_pred)
grad_h = grad_y_pred.dot(w2.T)
grad_w1 = x.T.dot(grad_h * h * (1 - h))
w1 -= 1e-4 * grad w1
w2 -= 1e-4 * grad_w2

```

\section*{Full implementation of training a 2-layer Neural Network needs ~20 lines:}
```

import numpy as np
from numpy.random import randn
N, D_in, H, D_out = 64, 1000, 100, 10
x, y = randn(N, D_in), randn(N, D_out)
w1, w2 = randn(D_in, H), randn(H, D_out)
for t in range(2000):
h = 1 / (1 + np.exp(-x.dot(w1)))
y_pred = h.dot(w2)
loss = np.square(y_pred - y).sum()
print(t, loss)
grad_y_pred = 2.0 * (y_pred - y)
grad_w2 = h.T.dot(grad_y_pred)
grad_h = grad_y_pred.dot(w2.T)
grad_w1 = x.T.dot(grad_h * h * (1 - h))
w1 -= 1e-4 * grad_w1
w2 -= 1e-4 * grad_w2

```

\section*{Full implementation of training a 2-layer Neural Network needs ~20 lines:}
```

import numpy as np
from numpy.random import randn
N, D_in, H, D_out = 64, 1000, 100, 10
x, y = randn(N, D_in), randn(N, D_out)
w1, w2 = randn(D_in, H), randn(H, D_out)
for t in range(2000):
h = 1 / (1 + np.exp(-x.dot(w1)))
y_pred = h.dot(w2)
loss = np.square(y_pred - y).sum()
print(t, loss)
grad_y_pred = 2.0 * (y_pred - y)
grad_w2 = h.T.dot(grad_y_pred)
grad_h = grad_y_pred.dot(w2.T)
grad w1 = x.T.dot(grad_h * h * (1 - h))
w1 -= 1e-4 * grad_w1
w2 -= 1e-4 * grad_w2

```

\section*{Ranjay Krishna, Sarah Pratt}

Lecture 4-68

\section*{Full implementation of training a 2-layer Neural Network needs ~20 lines:}
```

import numpy as np
from numpy.random import randn
N, D_in, H, D_out = 64, 1000, 100, 10
x, y = randn(N, D_in), randn(N, D_out)
w1, w2 = randn(D_in, H), randn(H, D_out)
for t in range(2000):
h = 1 / (1 + np.exp(-x.dot(w1)))
y_pred = h.dot(w2)
loss = np.square(y_pred - y).sum()
print(t, loss)
grad_y_pred = 2.0 * (y_pred - y)
grad_w2 = h.T.dot(grad_y_pred)
grad_h = grad_y_pred.dot(w2.T)
grad_w1 = x.T.dot(grad_h * h * (1 - h))

```
```

w1 -= 1e-4 * grad_w1

```
w1 -= 1e-4 * grad_w1
w2 -= 1e-4 * grad_w2
```

w2 -= 1e-4 * grad_w2

```

Define the network

Forward pass

Calculate the analytical gradients

\author{
Gradient descent
}

\section*{Setting the number of layers and their sizes}


Do not use size of neural network as a regularizer. Use stronger regularization instead:



This image by Fotis Bobolas is
licensed under CC-BY 2.0

Impulses carried toward cell body


This image by Felipe Perucho is licensed under CC-BY 3.0

Impulses carried toward cell body


\section*{Ranjay Krishna, Sarah Pratt}

Lecture 4-74

Impulses carried toward cell body


Impulses carried toward cell body


\section*{Ranjay Krishna, Sarah Pratt}

Biological Neurons:
Complex connectivity patterns


This image is CCO Public Domain

Neurons in a neural network: Organized into regular layers for computational efficiency

hidden layer 1 hidden layer 2

Biological Neurons:
Complex connectivity patterns


This image is CCO Public Domain

\section*{But neural networks with random connections can work too!}


Xie et al, "Exploring Randomly Wired Neural Networks for Image Recognition", arXiv 2019

\section*{Be very careful with your brain analogies!}

\section*{Biological Neurons:}
- Many different types
- Dendrites can perform complex non-linear computations
- Synapses are not a single weight but a complex non-linear dynamical system
[Dendritic Computation. London and Hausser]

\section*{Plugging in neural networks with loss functions}
\[
\begin{aligned}
s & =f\left(x ; W_{1}, W_{2}\right)=W_{2} \max \left(0, W_{1} x\right) \quad \text { Nonlinear score function } \\
L_{i} & =\sum_{j \neq y_{i}} \max \left(0, s_{j}-s_{y_{i}}+1\right) \quad \text { SVM Loss on predictions } \\
R(W) & =\sum_{k} W_{k}^{2} \quad \text { Regularization } \\
L & =\frac{1}{N} \sum_{i=1}^{N} L_{i}+\lambda R\left(W_{1}\right)+\lambda R\left(W_{2}\right) \quad \text { Total loss: data loss + regularization }
\end{aligned}
\]

\section*{Problem: How to compute gradients?}
\[
\begin{aligned}
s & =f\left(x ; W_{1}, W_{2}\right)=W_{2} \max \left(0, W_{1} x\right) \quad \text { Nonlinear score function } \\
L_{i} & =\sum_{j \neq y_{i}} \max \left(0, s_{j}-s_{y_{i}}+1\right) \quad \text { SVM Loss on predictions } \\
R(W) & =\sum_{k} W_{k}^{2} \text { Regularization } \\
L & =\frac{1}{N} \sum_{i=1}^{N} L_{i}+\lambda R\left(W_{1}\right)+\lambda R\left(W_{2}\right) \text { Total loss: data loss + regularization } \\
& \text { If we can compute } \frac{\partial L}{\partial W_{1}}, \frac{\partial L}{\partial W_{2}} \text { then we can learn } \mathrm{W}_{1} \text { and } \mathrm{W}_{2}
\end{aligned}
\]

\section*{(Bad) Idea: Derive \(\nabla_{W} L\) on paper}
\[
\begin{array}{rlrl}
s & =f(x ; W)=W x & & \text { Probl } \\
L_{i} & =\sum_{j \neq y_{i}} \max \left(0, s_{j}-s_{y_{i}}+1\right) & & \text { matrix } \\
& =\sum_{j \neq y_{i}} \max \left(0, W_{j,:} \cdot x+W_{y_{i},:} \cdot x+1\right) & & \text { Probl } \\
L & =\frac{1}{N} \sum_{i=1}^{N} L_{i}+\lambda \sum_{k} W_{k}^{2} & & \text { instea } \\
& =\frac{1}{N} \sum_{i=1}^{N} \sum_{j \neq y_{i}} \max \left(0, W_{j,:} \cdot x+W_{y_{i},:} \cdot x+1\right)+\lambda \sum_{k} W_{k}^{2} & \text { re-der } \\
\nabla_{W} L & =\nabla_{W}\left(\frac{1}{N} \sum_{i=1}^{N} \sum_{j \neq y_{i}} \max \left(0, W_{j,:} \cdot x+W_{y_{i},:} \cdot x+1\right)+\lambda \sum_{k} W_{k}^{2}\right)
\end{array}
\]

\section*{Better Idea: Computational graphs + Backpropagation}


\section*{Convolutional network (AlexNet)}


\title{
Really complex neural networks!!
}


Figure reproduced with permission from a Twitter post by Andrej Karpathy.

\section*{Solution: Backpropagation}

\section*{Backpropagation: a simple example}
\[
f(x, y, z)=(x+y) z
\]

Backpropagation: a simple example
\[
f(x, y, z)=(x+y) z
\]

Backpropagation: a simple example
\[
\begin{aligned}
& f(x, y, z)=(x+y) z \\
& \text { e.g. } x=-2, y=5, z=-4
\end{aligned}
\]


Backpropagation: a simple example
\[
\begin{aligned}
& f(x, y, z)=(x+y) z \\
& \text { e.g. } x=-2, y=5, z=-4
\end{aligned}
\]
\[
q=x+y \quad \frac{\partial q}{\partial x}=1, \frac{\partial q}{\partial y}=1
\]

Backpropagation: a simple example
\[
\begin{aligned}
& f(x, y, z)=(x+y) z \\
& \text { e.g. } x=-2, y=5, z=-4
\end{aligned}
\]
\[
q=x+y \quad \frac{\partial q}{\partial x}=1, \frac{\partial q}{\partial y}=1
\]
\[
f=q z \quad \frac{\partial f}{\partial q}=z, \frac{\partial f}{\partial z}=q
\]

Backpropagation: a simple example
\[
\begin{aligned}
& f(x, y, z)=(x+y) z \\
& \text { e.g. } x=-2, y=5, z=-4
\end{aligned}
\]
\[
q=x+y \quad \frac{\partial q}{\partial x}=1, \frac{\partial q}{\partial y}=1
\]
\[
f=q z \quad \frac{\partial f}{\partial q}=z, \frac{\partial f}{\partial z}=q
\]

Want: \(\quad \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\)


Backpropagation: a simple example
\[
\begin{aligned}
& f(x, y, z)=(x+y) z \\
& \text { e.g. } x=-2, y=5, z=-4
\end{aligned}
\]
\[
q=x+y \quad \frac{\partial q}{\partial x}=1, \frac{\partial q}{\partial y}=1
\]
\[
f=q z \quad \frac{\partial f}{\partial q}=z, \frac{\partial f}{\partial z}=q
\]

Want: \(\quad \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\)


Backpropagation: a simple example
\[
\begin{aligned}
& f(x, y, z)=(x+y) z \\
& \text { e.g. } x=-2, y=5, z=-4
\end{aligned}
\]
\[
q=x+y \quad \frac{\partial q}{\partial x}=1, \frac{\partial q}{\partial y}=1
\]
\[
f=q z \quad \frac{\partial f}{\partial q}=z, \frac{\partial f}{\partial z}=q
\]

Want: \(\quad \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\)


Backpropagation: a simple example
\[
\begin{aligned}
& f(x, y, z)=(x+y) z \\
& \text { e.g. } x=-2, y=5, z=-4
\end{aligned}
\]
\[
q=x+y \quad \frac{\partial q}{\partial x}=1, \frac{\partial q}{\partial y}=1
\]
\[
f=q z \quad \frac{\partial f}{\partial q}=z, \frac{\partial f}{\partial z}=q
\]

Want: \(\quad \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\)


Backpropagation: a simple example
\[
\begin{aligned}
& f(x, y, z)=(x+y) z \\
& \text { e.g. } x=-2, y=5, z=-4
\end{aligned}
\]
\[
q=x+y \quad \frac{\partial q}{\partial x}=1, \frac{\partial q}{\partial y}=1
\]
\[
f=q z \quad \frac{\partial f}{\partial q}=z, \frac{\partial f}{\partial z}=q
\]

Want: \(\quad \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\)

\(\frac{\partial f}{\partial z}\)

Backpropagation: a simple example
\[
\begin{aligned}
& f(x, y, z)=(x+y) z \\
& \text { e.g. } x=-2, y=5, z=-4
\end{aligned}
\]
\[
q=x+y \quad \frac{\partial q}{\partial x}=1, \frac{\partial q}{\partial y}=1
\]
\[
f=q z \quad \frac{\partial f}{\partial q}=z, \frac{\partial f}{\partial z}=q
\]

Want: \(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\)


Backpropagation: a simple example
\[
\begin{aligned}
& f(x, y, z)=(x+y) z \\
& \text { e.g. } x=-2, y=5, z=-4
\end{aligned}
\]
\[
q=x+y \quad \frac{\partial q}{\partial x}=1, \frac{\partial q}{\partial y}=1
\]
\[
f=q z \quad \frac{\partial f}{\partial q}=z, \frac{\partial f}{\partial z}=q
\]

Want: \(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\)


Backpropagation: a simple example
\[
\begin{aligned}
& f(x, y, z)=(x+y) z \\
& \text { e.g. } x=-2, y=5, z=-4
\end{aligned}
\]
\[
q=x+y \quad \frac{\partial q}{\partial x}=1, \frac{\partial q}{\partial y}=1
\]
\[
f=q z \quad \frac{\partial f}{\partial q}=z, \frac{\partial f}{\partial z}=q
\]

Want: \(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\)

\[
\begin{array}{|l|}
\hline \frac{\partial f}{\partial y}=\frac{\partial f}{\partial q} \\
\hline \begin{array}{c}
\text { Upstream } \\
\text { gradient }
\end{array} \\
\substack{\text { Local } \\
\text { gradient }} \\
\hline
\end{array}
\]

Backpropagation: a simple example
\[
\begin{aligned}
& f(x, y, z)=(x+y) z \\
& \text { e.g. } x=-2, y=5, z=-4
\end{aligned}
\]
\[
q=x+y \quad \frac{\partial q}{\partial x}=1, \frac{\partial q}{\partial y}=1
\]
\[
f=q z \quad \frac{\partial f}{\partial q}=z, \frac{\partial f}{\partial z}=q
\]

Want: \(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\)

\[
\underbrace{\frac{\partial f}{\partial y}=\frac{\partial f}{\partial q}}_{\substack{\text { Upstream } \\ \text { gradient }}} \frac{\partial q}{\partial y} \underbrace{}_{\substack{\text { Local } \\ \text { gradient }}}
\]

Backpropagation: a simple example
\[
\begin{aligned}
& f(x, y, z)=(x+y) z \\
& \text { e.g. } x=-2, y=5, z=-4
\end{aligned}
\]
\[
q=x+y \quad \frac{\partial q}{\partial x}=1, \frac{\partial q}{\partial y}=1
\]
\[
f=q z \quad \frac{\partial f}{\partial q}=z, \frac{\partial f}{\partial z}=q
\]

Want: \(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\)

\[
\frac{\frac{\partial f}{\partial x}=\frac{\partial f}{\partial q} \frac{\partial q}{\partial x}}{\substack{\text { Upstream } \\ \text { gradient }}}
\]

Backpropagation: a simple example
\[
\begin{aligned}
& f(x, y, z)=(x+y) z \\
& \text { e.g. } x=-2, y=5, z=-4
\end{aligned}
\]
\[
q=x+y \quad \frac{\partial q}{\partial x}=1, \frac{\partial q}{\partial y}=1
\]
\[
f=q z \quad \frac{\partial f}{\partial q}=z, \frac{\partial f}{\partial z}=q
\]

Want: \(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\)

\[
\frac{\frac{\partial f}{\partial x}=\frac{\partial f}{\partial q} \frac{\partial q}{\partial x}}{\substack{\text { Upstream } \\ \text { gradient }}}
\]







\section*{Another example: \(\quad f(w, x)=\frac{1}{1+e^{-\left(w_{0} x_{0}+w_{1} x_{1}+w_{2}\right)}}\)}


\section*{Another example: \(\quad f(w, x)=\frac{1}{1+e^{-\left(w_{0} x_{0}+w_{1} x_{1}+w_{2}\right)}}\)}


\section*{Another example: \(\quad f(w, x)=\frac{1}{1+e^{-\left(w_{0} x_{0}+w_{1} x_{1}+w_{2}\right)}}\)}


Another example: \(\quad f(w, x)=\frac{1}{1+e^{-\left(w_{0} x_{0}+w_{1} x_{1}+w_{2}\right)}}\)

\[
\begin{array}{lll|ll}
f(x)=e^{x} & \rightarrow & \frac{d f}{d x}=e^{x} & f(x)=\frac{1}{x} & \rightarrow \\
f_{a}(x)=a x & \rightarrow & \frac{d f}{d x}=a & f_{c}(x)=c+x & \\
& & \rightarrow & \frac{d f}{d x}=-1 / x^{2} \\
& & & \frac{d f}{d x}=1
\end{array}
\]

Another example: \(\quad f(w, x)=\frac{1}{1+e^{-\left(w_{0} x_{0}+w_{1} x_{1}+w_{2}\right)}}\)

\begin{tabular}{lll|lll}
\(f(x)=e^{x}\) & \(\rightarrow\) & \(\frac{d f}{d x}=e^{x}\) & & \(\rightarrow f(x)=\frac{1}{x}\) & \(\rightarrow\)
\end{tabular}

Another example: \(\quad f(w, x)=\frac{1}{1+e^{-\left(w_{0} x_{0}+w_{1} x_{1}+w_{2}\right)}}\)

\begin{tabular}{lll|lll|}
\(f(x)=e^{x}\) & \(\rightarrow\) & \(\frac{d f}{d x}=e^{x}\) & \(f(x)=\frac{1}{x}\) & \(\rightarrow\) & \(\frac{d f}{d x}=-1 / x^{2}\) \\
\(f_{a}(x)=a x\) & \(\rightarrow\) & \(\frac{d f}{d x}=a\) & \(f_{c}(x)=c+x\) & \(\rightarrow\) & \(\frac{d f}{d x}=1\)
\end{tabular}

Another example: \(\quad f(w, x)=\frac{1}{1+e^{-\left(w_{0} x_{0}+w_{1} x_{1}+w_{2}\right)}}\)

\begin{tabular}{lll|lll}
\(f(x)=e^{x}\) & \(\rightarrow\) & \(\frac{d f}{d x}=e^{x}\) & \(f(x)=\frac{1}{x}\) & \(\rightarrow\) & \(\frac{d f}{d x}=-1 / x^{2}\) \\
\(f_{a}(x)=a x\) & \(\rightarrow\) & \(\frac{d f}{d x}=a\) & \(f_{c}(x)=c+x\) & \(\rightarrow\) & \(\frac{d f}{d x}=1\)
\end{tabular}

Another example: \(\quad f(w, x)=\frac{1}{1+e^{-\left(w_{0} x_{0}+w_{1} x_{1}+w_{2}\right)}}\)

\begin{tabular}{lll|lll}
\(f(x)=e^{x}\) & \(\rightarrow\) & \(\frac{d f}{d x}=e^{x}\) & \(f(x)=\frac{1}{x}\) & \(\rightarrow\) & \(\frac{d f}{d x}=-1 / x^{2}\) \\
\(f_{a}(x)=a x\) & \(\rightarrow\) & \(\frac{d f}{d x}=a\) & \(f_{c}(x)=c+x\) & \(\rightarrow\) & \(\frac{d f}{d x}=1\)
\end{tabular}

Another example: \(\quad f(w, x)=\frac{1}{1+e^{-\left(w_{0} x_{0}+w_{1} x_{1}+w_{2}\right)}}\)

\[
\begin{array}{|lll|lll}
\hline f(x)=e^{x} & \rightarrow & \frac{d f}{d x}=e^{x} & f(x)=\frac{1}{x} & \rightarrow & \frac{d f}{d x}=-1 / x^{2} \\
f_{a}(x)=a x & \rightarrow & \frac{d f}{d x}=a & f_{c}(x)=c+x & \rightarrow & \frac{d f}{d x}=1
\end{array}
\]

Another example: \(\quad f(w, x)=\frac{1}{1+e^{-\left(w_{0} x_{0}+w_{1} x_{1}+w_{2}\right)}}\)

\[
\begin{array}{|lll|lll}
\hline f(x)=e^{x} & \rightarrow & \frac{d f}{d x}=e^{x} & f(x)=\frac{1}{x} & \rightarrow & \frac{d f}{d x}=-1 / x^{2} \\
f_{a}(x)=a x & \rightarrow & \frac{d f}{d x}=a & f_{c}(x)=c+x & \rightarrow & \frac{d f}{d x}=1
\end{array}
\]

Another example: \(\quad f(w, x)=\frac{1}{1+e^{-\left(w_{0} x_{0}+w_{1} x_{1}+w_{2}\right)}}\)

\begin{tabular}{|lll|lll}
\(f(x)=e^{x}\) & \(\rightarrow\) & \(\frac{d f}{d x}=e^{x}\) & \(f(x)=\frac{1}{x}\) & \(\rightarrow\) & \begin{tabular}{c}
\(\frac{d f}{d x}=-1 / x^{2}\) \\
\hline\(f_{a}(x)=a x\)
\end{tabular} \\
\hline
\end{tabular}

Another example: \(\quad f(w, x)=\frac{1}{1+e^{-\left(w_{0} x_{0}+w_{1} x_{1}+w_{2}\right)}}\)

\begin{tabular}{lll|l}
\(f(x)=e^{x}\) & \(\rightarrow\) & \(\frac{d f}{d x}=e^{x}\) & \(f(x)=\frac{1}{x}\) \\
\(f_{a}(x)=a x\) & \(\rightarrow\) & \(\frac{d f}{d x}=a\) & \(\rightarrow\) \\
\(f_{c}(x)=c+x\) & \(\rightarrow\) & \(\frac{d f}{d x}=-1 / x^{2}\) \\
\hline
\end{tabular}

Another example: \(\quad f(w, x)=\frac{1}{1+e^{-\left(w_{0} x_{0}+w_{1} x_{1}+w_{2}\right)}}\)


Another example: \(\quad f(w, x)=\frac{1}{1+e^{-\left(w_{0} x_{0}+w_{1} x_{1}+w_{2}\right)}}\)


Another example: \(\quad f(w, x)=\frac{1}{1+e^{-\left(w_{0} x_{0}+w_{1} x_{1}+w_{2}\right)}}\)

\[
\begin{array}{lll|lll}
f(x)=e^{x} & \rightarrow & \frac{d f}{d x}=e^{x} & f(x)=\frac{1}{x} & \rightarrow & \\
f_{a}(x)=a x & \rightarrow & \frac{d f}{d x}=a & f_{c}(x)=c+x & \rightarrow & \frac{d f}{d x}=-1 / x^{2} \\
& \rightarrow & \rightarrow & \frac{d f}{d x}=1
\end{array}
\]

Another example: \(\quad f(w, x)=\frac{1}{1+e^{-\left(w_{0} x_{0}+w_{1} x_{1}+w_{2}\right)}}\)

[upstream gradient] x [local gradient]
w0: \([0.2] \times[-1]=-0.2\)
\(\mathrm{x0}:[0.2] \times[2]=0.4\)

\begin{tabular}{lll|lll}
\(f(x)=e^{x}\) & \(\rightarrow\) & \(\frac{d f}{d x}=e^{x}\) & \(f(x)=\frac{1}{x}\) & \(\rightarrow\) & \(\frac{d f}{d x}=-1 / x^{2}\) \\
\(f_{a}(x)=a x\) & \(\rightarrow\) & \(\frac{d f}{d x}=a\) & \(f_{c}(x)=c+x\) & \(\rightarrow\) & \(\frac{d f}{d x}=1\)
\end{tabular}

Another example: \(\quad f(w, x)=\frac{1}{1+e^{-\left(w_{0} x_{0}+w_{1} x_{1}+w_{2}\right)}}\)


Another example: \(\quad f(w, x)=\frac{1}{1+e^{-\left(w_{0} x_{0}+w_{1} x_{1}+w_{2}\right)}}\)


Computational graph representation may not be unique. Choose one where local gradients at each node can be easily expressed!

\(\begin{aligned} & \text { Sigmoid local } \\ & \text { gradient: }\end{aligned} \frac{d \sigma(x)}{d x}=\frac{e^{-x}}{\left(1+e^{-x}\right)^{2}}=\left(\frac{1+e^{-x}-1}{1+e^{-x}}\right)\left(\frac{1}{1+e^{-x}}\right)=(1-\sigma(x)) \sigma(x)\)

Another example: \(\quad f(w, x)=\frac{1}{1+e^{-\left(w_{0} x_{0}+w_{1} x_{1}+w_{2}\right)}}\)


Computational graph representation may not be unique. Choose one where local gradients at each node can be easily expressed!


Sigmoid local gradient:
\[
\frac{d \sigma(x)}{d x}=\frac{e^{-x}}{\left(1+e^{-x}\right)^{2}}=\left(\frac{1+e^{-x}-1}{1+e^{-x}}\right)\left(\frac{1}{1+e^{-x}}\right)=(1-\sigma(x)) \sigma(x)
\]

Another example: \(\quad f(w, x)=\frac{1}{1+e^{-\left(w_{0} x_{0}+w_{1} x_{1}+w_{2}\right)}}\)


Computational graph representation may not be unique. Choose one where local gradients at each node can be easily expressed!

\[
[1.00] \times[(1-0.73)(0.73)]=0.2
\]

Sigmoid local gradient:
\[
\frac{d \sigma(x)}{d x}=\frac{e^{-x}}{\left(1+e^{-x}\right)^{2}}=\left(\frac{1+e^{-x}-1}{1+e^{-x}}\right)\left(\frac{1}{1+e^{-x}}\right)=(1-\sigma(x)) \sigma(x)
\]

\section*{Patterns in gradient flow}

\author{
add gate: gradient distributor
}


\section*{Patterns in gradient flow}
add gate: gradient distributor

mul gate: "swap multiplier"


\section*{Patterns in gradient flow}
add gate: gradient distributor

copy gate: gradient adder

mul gate: "swap multiplier"


\section*{Patterns in gradient flow}
add gate: gradient distributor

copy gate: gradient adder

mul gate: "swap multiplier"

max gate: gradient router


\section*{Backprop Implementation: "Flat" code}

def \(f(w 0, x 0, w 1, x 1, w 2):\)

Forward pass:
Compute output
\[
\begin{aligned}
& \mathrm{s} 0=\mathrm{w} 0 * \mathrm{x} 0 \\
& \mathrm{~s} 1=\mathrm{w} 1 * \mathrm{x} 1 \\
& \mathrm{~s} 2=\mathrm{s} 0+\mathrm{s} 1 \\
& \mathrm{~s} 3=\mathrm{s} 2+\mathrm{w} 2 \\
& \mathrm{~L}=\text { sigmoid }(\mathrm{s} 3)
\end{aligned}
\]
```

grad_L = 1.0
grad_s3 = grad_L * (1 - L) * L
grad_w2 = grad_s3
grad_s2 = grad_s3
grad_s0 = grad_s2
grad_s1 = grad_s2
grad_w1 = grad_s1 * x1
grad_x1 = grad_s1 * w1
grad_w0 = grad_s0 * x0
grad_x0 = grad_s0 * w0

```

\section*{Backprop Implementation: "Flat" code}

def \(f(w 0, x 0, w 1, x 1, w 2):\)

Forward pass: Compute output
\[
\begin{aligned}
& \mathrm{s} 0=\mathrm{w} 0 * x 0 \\
& \mathrm{~s} 1=\mathrm{w} 1 * x 1 \\
& \mathrm{~s} 2=\mathrm{s} 0+\mathrm{s} 1 \\
& \mathrm{~s} 3=\mathrm{s} 2+\mathrm{w} 2 \\
& \mathrm{~L}=\operatorname{sigmoid}(\mathrm{s} 3)
\end{aligned}
\]

Base case
```

grad_L = 1.0
grad_s3 = grad_L * (1 - L) * L
grad_w2 = grad_s3
grad_s2 = grad_s3
grad_s0 = grad_s2
grad_s1 = grad_s2
grad_w1 = grad_s1 * x1
grad_x1 = grad_s1 * w1
grad_w0 = grad_s0 * x0
grad_x0 = grad_s0 * w0

```

\section*{Backprop Implementation: "Flat" code}

def \(f(w 0, x 0, w 1, x 1, w 2):\)

Forward pass: Compute output
\(\mathrm{s} 0=\mathrm{w} 0 * \mathrm{x} 0\)
\(\mathrm{~s} 1=\mathrm{w} 1 * \mathrm{x} 1\)
\(\mathrm{~s} 2=\mathrm{s} 0+\mathrm{s} 1\)
\(\mathrm{~s} 3=\mathrm{s} 2+\mathrm{w} 2\)
\(\mathrm{~L}=\) sigmoid \((\mathrm{s} 3)\)
grad_L \(=1.0\)
Sigmoid
\[
\begin{aligned}
& \text { grad_s3 }=\text { grad_L } *(1-\mathrm{L}) * \mathrm{~L} \\
& \text { grad_w2 }=\text { grad_s3 } \\
& \text { grad_s2 }=\text { grad_s3 } \\
& \text { grad_s0 }=\text { grad_s2 } \\
& \text { grad_s1 }=\text { grad_s2 } \\
& \text { grad_w1 }=\text { grad_s1 } * x 1 \\
& \text { grad_x1 }=\text { grad_s1 } * w 1 \\
& \text { grad_w0 }=\text { grad_s0 } * x 0 \\
& \text { grad_x0 }=\text { grad_s0 } * w 0
\end{aligned}
\]

\section*{Backprop Implementation: "Flat" code}

def \(f(w 0, x 0, w 1, x 1, w 2):\)

Forward pass: Compute output
\(s 0=w 0 * x 0\)
\(s 1=w 1 * x 1\)
\(s 2=s 0+s 1\)
\(s 3=s 2+w 2\)
\(L=\operatorname{sigmoid}(s 3)\)
\[
\begin{aligned}
& \text { grad_L }=1.0 \\
& \text { grad_s3 }=\text { grad L } *(1-\mathrm{L}) * \mathrm{~L} \\
& \hline \text { grad_w2 }=\text { grad_s3 } \\
& \text { grad_s2 }=\text { grad_s3 } \\
& \text { grad_s0 }=\text { grad_s2 } \\
& \text { grad_s1 }=\text { grad_s2 } \\
& \text { grad_w1 }=\text { grad_s1 *x1 } \\
& \text { grad_x1 }=\text { grad_s1 *w1 } \\
& \text { grad_w0 }=\text { grad_s0 } * x 0 \\
& \text { grad_x0 }=\text { grad_s0 } * w 0
\end{aligned}
\]

\section*{Backprop Implementation: "Flat" code}

def f(w0, x0, w1, x1, w2):

Forward pass: Compute output
\(s 0=\mathrm{w} 0 * \mathrm{x} 0\)
\(\mathrm{~s} 1=\mathrm{w} 1 * \mathrm{x} 1\)
\(\mathrm{~s} 2=\mathrm{s} 0+\mathrm{s} 1\)
\(\mathrm{~s} 3=\mathrm{s} 2+\mathrm{w} 2\)
\(\mathrm{~L}=\operatorname{sigmoid}(\mathrm{s} 3)\)
\[
\text { grad_L = } 1.0
\]
\[
\text { grad_s3 }=\text { grad_L } *(1-L) * L
\]
grad_w2 = grad_s3
grad_s2 = grad_s3

Add gate
\begin{tabular}{l}
\hline grad_s0 \(=\) grad_s2 \\
grad_s1 \(=\) grad_s2 \\
\hline grad_w1 \(=\) grad_s1 \(*\) x1 \\
grad_x1 \(=\) grad_s1 \(*\) w1 \\
grad_w0 \(=\) grad_s0 \(*\) x0 \\
grad_x0 \(=\) grad_s0 \(*\) w0
\end{tabular}

\section*{Backprop Implementation: "Flat" code}

def \(f(w 0, x 0, w 1, x 1, w 2):\)

Forward pass: Compute output
\(s 0=w 0 * x 0\)
\(s 1=w 1 * x 1\)
\(s 2=s 0+s 1\)
\(s 3=s 2+w 2\)
\(L=\operatorname{sigmoid}(s 3)\)
\[
\text { grad_L = } 1.0
\]
\[
\text { grad_s3 }=\text { grad_L } *(1-\mathrm{L}) * \mathrm{~L}
\]
grad_w2 = grad_s3
grad_s2 = grad_s3
grad_s0 = grad_s2
grad_s1 = grad_s2

Multiply gate
\[
\begin{aligned}
& \text { grad_w1 }=\text { grad_s1 } * x 1 \\
& \text { grad_x1 }=\text { grad_s1 } * w 1 \\
& \hline \text { grad_w0 }=\text { grad_s0 } * x 0 \\
& \text { grad_x0 }=\text { grad_s0 } * w 0
\end{aligned}
\]

\section*{Backprop Implementation: "Flat" code}

def f(w0, x0, w1, x1, w2):

Forward pass: Compute output
\(\mathrm{s} 0=\mathrm{w} 0 * \times 0\)
\(\mathrm{~s} 1=\mathrm{w} 1 * \mathrm{x} 1\)
\(\mathrm{~s} 2=\mathrm{s} 0+\mathrm{s} 1\)
\(\mathrm{~s} 3=\mathrm{s} 2+\mathrm{w} 2\)
\(\mathrm{~L}=\operatorname{sigmoid}(\mathrm{s} 3)\)
\[
\begin{aligned}
& \text { grad_L }=1.0 \\
& \text { grad_s3 }=\text { grad_L } *(1-\mathrm{L}) * L \\
& \text { grad_w2 }=\text { grad_s3 } \\
& \text { grad_s2 }=\text { grad_s3 } \\
& \text { grad_s0 }=\text { grad_s2 } \\
& \text { grad_s1 }=\text { grad_s2 } \\
& \text { grad_w1 }=\text { grad_s1 *x1 } \\
& \text { grad_x1 }=\text { grad_s1 *w1 } \\
& \hline \text { grad_w0 }=\text { grad_s0 } * x 0 \\
& \text { grad_x0 }=\text { grad_s0 } * w 0
\end{aligned}
\]

\section*{"Flat" Backprop: Do this for assignment 2!}

\section*{Stage your forward/backward computation!}

\section*{E.g. for the SVM:}
```


receive W (weights),

```
\# forward pass (we have lines)
scores = \#...
margins = \#...
data loss = \#...
reg_loss = \#...
loss \(=\) data_loss + reg_loss

\# backward pass (we have 5 lines)
dmargins = \# ... (optionally, we go direct to dscores)
dscores = \#...
dW = \#...

\section*{"Flat" Backprop: Do this for assignment 1!}
E.g. for two-layer neural net:
```


receive W1,W2,b1,b2 (weights/biases), X (data)

forward pass:

h1 = \#... function of X,W1,b1
scores = \#... function of h1,W2,b2
loss = \#... (several lines of code to evaluate Softmax loss)

backward pass:

dscores = \#...
dh1,dW2,db2 = \#...
dW1,db1 = \#. ..

```

\section*{Backprop Implementation: Modularized API}

\section*{Graph (or Net) object (rough pseudo code)}
```

class ComputationalGraph(object):
\#...
def forward(inputs):
\# 1. [pass inputs to input gates...]
\# 2. forward the computational graph:
for gate in self.graph.nodes_topologically_sorted():
gate.forward()
return loss \# the final gate in the graph outputs the loss
def backward():
for gate in reversed(self.graph.nodes_topologically_sorted()):
gate.backward() \# little piece of backprop (chain rule applied)
return inputs_gradients

```

\section*{Modularized implementation: forward / backward API}

Gate / Node / Function object: Actual PyTorch code


\section*{Example：PyTorch operators}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{\(\square\) pytorch／pytorch} & \multicolumn{2}{|r|}{－Watch－} & 1，221 & \multirow[t]{2}{*}{＊Unstar} & \multirow[t]{2}{*}{tar 26,770} & \multirow[t]{2}{*}{\％Fork} & \multirow[t]{2}{*}{6，340} \\
\hline «Code（1） Ssues 2,286 & 57Pull requests 567 & IIIProjectis 4 & 毌 Wik & & & & & & \\
\hline \multicolumn{4}{|l|}{Tree：577\％798861－pytorch／aten／scl／THNN／generic／} & & Create & wilie & Upload filies & Find file & History \\
\hline \multicolumn{4}{|l|}{} & & & \multicolumn{4}{|l|}{Latest coommit 517c7c on Dec 8， 2018} \\
\hline \multicolumn{10}{|l|}{．．} \\
\hline 目Abscriterion．c & \multicolumn{3}{|l|}{Canonicalize all includes in PyTorch．（114849）} & & & & & \multicolumn{2}{|l|}{4 month ago} \\
\hline 目BCECriterion． & \multicolumn{3}{|l|}{Canonicalize all includes in PyTorch．（\＃11849）} & & & & & \multicolumn{2}{|l|}{4 months ago} \\
\hline 目Classvucriterion． & \multicolumn{3}{|l|}{Canonicalize all includes in PyTorch．（\＃14849）} & & & & & \multicolumn{2}{|l|}{4 months ago} \\
\hline 目Col2Im．c & \multicolumn{3}{|l|}{Canoricalize all includes in PyTorch．（\＃14849）} & & & & & \multicolumn{2}{|l|}{4 months ago} \\
\hline 目Elu．c & \multicolumn{3}{|l|}{Canonicalize all includes in PyTorch．（\＃14849）} & & & & & \multicolumn{2}{|l|}{4 montrs ago} \\
\hline 目FeatureLPPooting．c & \multicolumn{3}{|l|}{Canoricalize all includes in PyTorch．（\＃14849）} & & & & & \multicolumn{2}{|l|}{4 months ago} \\
\hline 目 GatedLinerunitc & \multicolumn{3}{|l|}{Canoricalize all inludes in PyTorch．（114849）} & & & & & \multicolumn{2}{|l|}{4 month ago} \\
\hline 目HardTanh．c & \multicolumn{3}{|l|}{Canoricalize all includes in PyTorch．（114849）} & & & & & \multicolumn{2}{|l|}{4 months ago} \\
\hline 目1m2001．c & \multicolumn{3}{|l|}{Canoricalize all includes in PyTorch．（114849）} & & & & & \multicolumn{2}{|l|}{4 months ago} \\
\hline （1alidexinearc & \multicolumn{3}{|l|}{Canoricalize all includes in PyTorch．（\＃14849）} & & & & & \multicolumn{2}{|l|}{4 months ago} \\
\hline 目LeakyRelu．c & \multicolumn{3}{|l|}{Canonicalize all includes in PyTorch．（\＃14849）} & & & & & \multicolumn{2}{|l|}{4 months ago} \\
\hline 目LogSigmoid．c & \multicolumn{3}{|l|}{Canonicalize all includes in PyTorch．（\＃14849）} & & & & & \multicolumn{2}{|l|}{4 months ago} \\
\hline 目MSECriterion．c & \multicolumn{3}{|l|}{Canooicalize all includes in PyTorch．（\＄14849）} & & & & & \multicolumn{2}{|l|}{4 months aso} \\
\hline 目MuttiliabelMarginCriterion．c & \multicolumn{3}{|l|}{Canonicalize all includes in PyTorch．（\＃11849）} & & & & & \multicolumn{2}{|l|}{4 months ago} \\
\hline 目Mutimargincriterion．c & \multicolumn{3}{|l|}{Canonicalize all includes in PyTorch．（\＃14849）} & & & & & \multicolumn{2}{|l|}{4 months ago} \\
\hline 目RRELU．C & \multicolumn{3}{|l|}{Canonicalize all includes in Pytorch．（\＃14849）} & & & & & \multicolumn{2}{|l|}{4 montrs ago} \\
\hline 目Sigmoid．c & \multicolumn{3}{|l|}{Canooicalize all includes in PyTorch．（\＃14849）} & & & & & \multicolumn{2}{|l|}{4 months ago} \\
\hline 目SmoothLICriterion．c & \multicolumn{3}{|l|}{Canonicalize all includes in PyTorch．（\＄14849）} & & & & & \multicolumn{2}{|l|}{4 months ago} \\
\hline 目 SotMargincriterion．c & \multicolumn{3}{|l|}{Canooricalize all includes in PyTorch．（\＃14849）} & & & & & \multicolumn{2}{|l|}{4 months ago} \\
\hline 目 Sofitips． 0 & \multicolumn{3}{|l|}{Canonicalize all includes in PyTorch．（\＃14849）} & & & & & \multicolumn{2}{|l|}{4 morths ago} \\
\hline 目SoftShnink．c & \multicolumn{3}{|l|}{Canonicalize all includes in PyTorch．（\＃14849）} & & & & & \multicolumn{2}{|l|}{\[
4 \text { months ago }
\]} \\
\hline －Sparselinear．c & \multicolumn{3}{|l|}{Canooicalize all includes in PyTorch．（\＃14849）} & & & & & \multicolumn{2}{|l|}{4 montrs ago} \\
\hline －SpatialAdaptiveAveragePooling．c & \multicolumn{3}{|l|}{c Canonicalize all includes in PyTorch．（\＃14849）} & & & & & \multicolumn{2}{|l|}{4 months ago} \\
\hline 目SpatialdapaptiveMaxPooling． & \multicolumn{3}{|l|}{Canonicalize all includes in PyTorch．（\＃14849）} & & & & & \multicolumn{2}{|l|}{4 months ago} \\
\hline 目SpatialaveragePooling．c & \multicolumn{3}{|l|}{Canonicalize all includes in PyTorch．（\＃14849）} & & & & & \multicolumn{2}{|l|}{\[
4 \text { months ago }
\]} \\
\hline
\end{tabular}

\begin{tabular}{|c|c|}
\hline Canonicalize al includes in PyTrorch．（\＃18849） & 4 monts \({ }^{\text {a }}\) \\
\hline Canonicalize all ncludes in PyTorch．（\＃14849） & 4 monts aso \\
\hline Canonicalize all includes in PyTorch．（\＃14849） & 4 monhs ago \\
\hline Canonicalize all includes in PyTorch．（\＃14849） & 4 month as \\
\hline Canonicalize all includes in PyTorch．（\＃14849） & 4 monhs ago \\
\hline Canonicalize all includes in PyTorch．（\＃14849） & 4 monhs ago \\
\hline Canoricalize all includes in PyTorch．（\＃14849） & 4 monhs ago \\
\hline Canonicalize al includes in PyTorch．（\＃14849） & 4 months ago \\
\hline Canonicalize al includes in PyTorch．（\＃14849） & 4 month ago \\
\hline Canonicalize all includes in PyTorch．（\＃14849） & 4 months as \\
\hline Canonicalize all includes in PyTorch．（\＃14849） & 4 month ago \\
\hline Canonicalize al includes in PyTorch．（\＃14849） & 4 months ago \\
\hline Canonicalize al includes in PyTorch．（\＃14849） & 4 monts ago \\
\hline Canonicalize all includes in PyTorch．（\＃14849） & 4 month ago \\
\hline Canonicalize all includes in PyTorch．（\＃14849） & 4 month ago \\
\hline Canonicalize all includes in PyTorch．（\＃14849） & 4 months ago \\
\hline Canonicalize all includes in PyTorch．（\＃14849） & 4 months ago \\
\hline Canoricaize all includes in PyTorch．（\＃14849） & 4 monts ago \\
\hline Canonicaize al includes in PyTorch．（\＃14849） & 4 month aso \\
\hline Canonicalize al includes in PyTorch．（\＃14849） & 4 month ago \\
\hline Canoricalize all includes in PyTorch．（\＃14849） & 4 month ago \\
\hline Canonicalize al includes in PyTorch．（114849） & 4 month ago \\
\hline Canonicalize al includes in PyTorch．（114849） & 4 monts ago \\
\hline Canonicalize al includes in PyTorch．（114849） & 4 month as \\
\hline Canonicalize all includes in PyTorch．（\＃14849） & 4 month ago \\
\hline Canoricalize all includes in PyTorch．（\＃14849） & 4 month ago \\
\hline Canonicalize al includes in PyTorch．（114849） & 4 monts ago \\
\hline Canonicalize al includes in PyTorch．（\＃14849） & 4 month ago \\
\hline Canonicaize al includes in PyTorch．（114849） & 4 month ago \\
\hline Canonicalize al includes in PyTorch．（\＃14849） & 4 monts ago \\
\hline Implement nn．functional．interpolate based on upsample，（\＃8591） & 9 monts ago \\
\hline Use integer math to compute output size of pooing operations（\＃14405） & 4 month ago \\
\hline Canonicalize all includes in PyTroch．（\＃14849） & 4 month \\
\hline
\end{tabular}

\section*{\#ifndef TH_GENERIC_FILE}
\#define TH_GENERIC_FILE "THNN/generic/Sigmoid.c"
\#else

\section*{PyTorch sigmoid layer}
```

void THNN_(Sigmoid_updateOutput)(
THNNState *state,
THTensor *input,
THTensor *output)
{
THTensor_(sigmoid)(output, input);
}

```

\section*{Forward}

```

void THNN_(Sigmoid_updateGradInput)(
THNNState *state,
THTensor *gradOutput,
THTensor *gradInput,
THTensor *output)
{
THNN_CHECK_NELEMENT(output, gradOutput);
THTensor_(resizeAs)(gradInput, output);
TH_TENSOR_APPLY3(scalar_t, gradInput, scalar_t, gradOutput, scalar_t, output,
scalar_t z = *output_data;
*gradInput_data = *gradOutput_data * (1. - z) * z;
);
}

```
\#endif
\#ifndef TH_GENERIC_FILE
\#define TH_GENERIC_FILE "THNN/generic/Sigmoid.c"
\#else

\section*{PyTorch sigmoid layer}
```

void THNN_(Sigmoid_updateOutput)(
THNNState *state,
THTensor *input,
THTensor *output)
{
THTensor_(sigmoid)(output, input);
}

```

\section*{Forward}
\[
\sigma(x)=\frac{1}{1+e^{-x}}
\]
static void sigmoid_kernel(TensorIterator\& iter) \{
AT_DISPATCH_FLOATING_TYPES(iter.dtype(), "sigmoid_cpu", [\&]() \{

\section*{unary_kernel_vec(}
iter,
[=](scalar_t a) -> scalar_t \{ return (1 / (1 + std:: exp((-a)))); [=](Vec256<scalar_t> a) \{
a = Vec256<scalar_t>((scalar_t)(0)) - a; \(\mathrm{a}=\mathrm{a} \cdot \exp ()\);
a = Vec256<scalar_t>((scalar_t)(1)) + a;
\(\mathrm{a}=\mathrm{a}\). reciprocal();
Forward actually
\{
THNN_CHECK_NELEMENT (output, gradOutput);
THTensor_(resizeAs)(gradInput, output);
TH_TENSOR_APPLY3(scalar_t, gradInput, scalar_t, gradOutput, scalar_t, output,
        scalar_t z = *output_data;
        *gradInput_data \(=\) *grad0utput_data \(*(1 .-z) * z\);
    );
\}

\section*{\#ifndef TH_GENERIC_FILE}
\#define TH_GENERIC_FILE "THNN/generic/Sigmoid.c"
\#else

\section*{PyTorch sigmoid layer}
```

void THNN_(Sigmoid_updateOutput)(
THNNState *state,
THTensor *input,
THTensor *output)
{
THTensor_(sigmoid)(output, input);
}

```
void THNN_(Sigmoid_updateGradInput)(
    THNNState *state,
    THTensor *gradOutput,
    THTensor *gradInput,
    THTensor *output)
\{
    THNN_CHECK_NELEMENT(output, gradOutput);
    THTensor_(resizeAs)(gradInput, output);
    TH_TENSOR_APPLY3(scalar_t, gradInput, scalar_t, gradOutput, scalar_t, output,
        scalar_t z = *output_data;
        *gradInput_data \(=\) *grad0utput_data \(*(1 .-z) * z\);
    );
\}
static void sigmoid_kernel(TensorIterator\& iter) \{

\section*{Forward}
    AT_DISPATCH_FLOATING_TYPES(iter.dtype(), "sigmoid_cpu", [\&]() \{
\[
\sigma(x)=\frac{1}{1+e^{-x}}
\]

\section*{unary_kernel_vec( \\ unary_kernel_vec}
iter,
[=](scalar_t a) \(\rightarrow\) scalar_t \{ return (1 / (1 + std:: exp((-a)))); \}, [=] (Vec256<scalar_t> a) \{
\(\mathrm{a}=\) Vec256<scalar_t>((scalar_t)(0)) - a; \(\mathrm{a}=\mathrm{a} \cdot \exp ()\);
\(a=\) Vec256<scalar_t>((scalar_t)(1)) \(+a ;\)
a = a.reciprocal();

Forward actually defined elsewhere...

Backward
\((1-\sigma(x)) \sigma(x)\)

\section*{Summary for today:}
- (Fully-connected) Neural Networks are stacks of linear functions and nonlinear activation functions; they have much more representational power than linear classifiers
- backpropagation = recursive application of the chain rule along a computational graph to compute the gradients of all inputs/parameters/intermediates
- implementations maintain a graph structure, where the nodes implement the forward() / backward() API
- forward: compute result of an operation and save any intermediates needed for gradient computation in memory
- backward: apply the chain rule to compute the gradient of the loss function with respect to the inputs

\section*{So far: backprop with scalars}

\section*{Next time: vector-valued functions!}

\section*{Next Time: Convolutional neural networks}


A vectorized example: \(f(x, W)=\|W \cdot x\|^{2}=\sum_{i=1}^{n}(W \cdot x)_{i}^{2}\)

A vectorized example: \(f(x, W)=\|W \cdot x\|^{2}=\sum_{i=1}^{n}(W \cdot x)_{i}^{2}\)
\[
\in \mathbb{R}^{n} \in \mathbb{R}^{n \times n}
\]

A vectorized example: \(f(x, W)=\|W \cdot x\|^{2}=\sum_{i=1}^{n}(W \cdot x)_{i}^{2}\)


A vectorized example: \(f(x, W)=\|W \cdot x\|^{2}=\sum_{i=1}^{n}(W \cdot x)_{i}^{2}\)
\(\left[\begin{array}{cc}0.1 & 0.5 \\ -0.3 & 0.8\end{array}\right] \mathbf{W}\)

\(q=W \cdot x=\left(\begin{array}{c}W_{1,1} x_{1}+\cdots+W_{1, n} x_{n} \\ \vdots \\ W_{n, 1} x_{1}+\cdots+W_{n, n} x_{n}\end{array}\right)\)
\(f(q)=\|q\|^{2}=q_{1}^{2}+\cdots+q_{n}^{2}\)

A vectorized example: \(f(x, W)=\|W \cdot x\|^{2}=\sum_{i=1}^{n}(W \cdot x)_{i}^{2}\)
\(\left[\begin{array}{cc}0.1 & 0.5 \\ -0.3 & 0.8\end{array}\right]_{\mathbf{W}}\)

\[
q=W \cdot x=\left(\begin{array}{c}
W_{1,1} x_{1}+\cdots+W_{1, n} x_{n} \\
\vdots \\
W_{n, 1} x_{1}+\cdots+W_{n, n} x_{n}
\end{array}\right)
\]
\[
f(q)=\|q\|^{2}=q_{1}^{2}+\cdots+q_{n}^{2}
\]

A vectorized example: \(f(x, W)=\|W \cdot x\|^{2}=\sum_{i=1}^{n}(W \cdot x)_{i}^{2}\)
\(\left[\begin{array}{cc}0.1 & 0.5 \\ -0.3 & 0.8\end{array}\right]_{\mathbf{W}}\)

\(q=W \cdot x=\left(\begin{array}{c}W_{1,1} x_{1}+\cdots+W_{1, n} x_{n} \\ \vdots \\ W_{n, 1} x_{1}+\cdots+W_{n, n} x_{n}\end{array}\right)\)
\(f(q)=\|q\|^{2}=q_{1}^{2}+\cdots+q_{n}^{2}\)

A vectorized example: \(f(x, W)=\|W \cdot x\|^{2}=\sum_{i=1}^{n}(W \cdot x)_{i}^{2}\)
\(\left[\begin{array}{cc}0.1 & 0.5 \\ -0.3 & 0.8\end{array}\right]_{\mathrm{W}}\)

\(q=W \cdot x=\left(\begin{array}{c}W_{1,1} x_{1}+\cdots+W_{1, n} x_{n} \\ \vdots \\ W_{n, 1} x_{1}+\cdots+W_{n, n} x_{n}\end{array}\right)\)
\[
\begin{aligned}
& \frac{\partial f}{\partial q_{i}}=2 q_{i} \\
& \nabla_{q} f=2 q
\end{aligned}
\]
\[
f(q)=\|q\|^{2}=q_{1}^{2}+\cdots+q_{n}^{2}
\]

A vectorized example: \(f(x, W)=\|W \cdot x\|^{2}=\sum_{i=1}^{n}(W \cdot x)_{i}^{2}\)
\(\left[\begin{array}{cc}0.1 & 0.5 \\ -0.3 & 0.8\end{array}\right]_{\mathrm{W}}\)

\(q=W \cdot x=\left(\begin{array}{c}W_{1,1} x_{1}+\cdots+W_{1, n} x_{n} \\ \vdots \\ W_{n, 1} x_{1}+\cdots+W_{n, n} x_{n}\end{array}\right)\)
\[
\begin{aligned}
& \frac{\partial f}{\partial q_{i}}=2 q_{i} \\
& \nabla_{q} f=2 q
\end{aligned}
\]
\[
f(q)=\|q\|^{2}=q_{1}^{2}+\cdots+q_{n}^{2}
\]

A vectorized example: \(f(x, W)=\|W \cdot x\|^{2}=\sum_{i=1}^{n}(W \cdot x)_{i}^{2}\)
\(\left[\begin{array}{cc}0.1 & 0.5 \\ -0.3 & 0.8\end{array}\right]_{\mathbf{W}}\)

\[
q=W \cdot x=\left(\begin{array}{c}
W_{1,1} x_{1}+\cdots+W_{1, n} x_{n} \\
\vdots \\
W_{n, 1} x_{1}+\cdots+W_{n, n} x_{n}
\end{array}\right)
\]
\[
f(q)=\|q\|^{2}=q_{1}^{2}+\cdots+q_{n}^{2}
\]

A vectorized example: \(f(x, W)=\|W \cdot x\|^{2}=\sum_{i=1}^{n}(W \cdot x)_{i}^{2}\)
\(\left[\begin{array}{cc}0.1 & 0.5 \\ -0.3 & 0.8\end{array}\right]_{W}\)

\[
\begin{aligned}
\mathrm{x} & 0.52]
\end{aligned} \begin{aligned}
\frac{\partial q_{k}}{\partial W_{i, j}} & =\mathbf{1}_{k=i} x_{j} \\
q=W \cdot x=\left(\begin{array}{c}
W_{1,1} x_{1}+\cdots+W_{1, n} x_{n} \\
\vdots \\
W_{n, 1} x_{1}+\cdots+W_{n, n} x_{n}
\end{array}\right) & \left.\begin{array}{rl}
\frac{\partial f}{\partial W_{i, j}} & =\sum_{k} \frac{\partial f}{\partial q_{k}} \frac{\partial q_{k}}{\partial W_{i, j}} \\
& =\sum_{k}\left(2 q_{k}\right)\left(\mathbf{1}_{k=i} x_{j}\right) \\
f(q)=\|q\|^{2}=q_{1}^{2}+\cdots+q_{n}^{2} &
\end{array}\right)=2 q_{i} x_{j}
\end{aligned}
\]
A vectorized example: \(f(x, W)=\|W \cdot x\|^{2}=\sum_{i=1}^{n}(W \cdot x)_{i}^{2}\)
\(\left[\begin{array}{cc}0.1 & 0.5 \\ -0.3 & 0.8\end{array}\right]\)
\(\left[\begin{array}{ll}0.088 & 0.176 \\ 0.104 & 0.208\end{array}\right]^{\mathbf{W}}\)

\(q=W \cdot x=\left(\begin{array}{c}W_{1,1} x_{1}+\cdots+W_{1, n} x_{n} \\ \vdots \\ W_{n, 1} x_{1}+\cdots+W_{n, n} x_{n}\end{array}\right)\)
\[
\begin{aligned}
\frac{\partial f}{\partial W_{i, j}} & =\sum_{k} \frac{\partial f}{\partial q_{k}} \frac{\partial q_{k}}{\partial W_{i, j}} \\
& =\sum_{k}\left(2 q_{k}\right)\left(\mathbf{1}_{k=i} x_{j}\right) \\
& =2 q_{i} x_{j}
\end{aligned}
\]
A vectorized example: \(f(x, W)=\|W \cdot x\|^{2}=\sum_{i=1}^{n}(W \cdot x)_{i}^{2}\) \(\left[\begin{array}{cc}0.1 & 0.5 \\ -0.3 & 0.8\end{array}\right] \mathrm{W}\)
\(\left[\begin{array}{ll}0.088 & 0.176 \\ 0.104 & 0.208\end{array}\right]^{\mathrm{W}}\)
\(q=W \cdot x=\left(\begin{array}{c}W_{1,1} x_{1}+\cdots+W_{1, n} x_{n} \\ \vdots \\ W_{n, 1} x_{1}+\cdots+W_{n, n} x_{n}\end{array}\right)\)
\[
f(q)=\|q\|^{2}=q_{1}^{2}+\cdots+q_{n}^{2}
\]
\[
\begin{aligned}
\frac{\partial f}{\partial W_{i, j}} & =\sum_{k} \frac{\partial f}{\partial q_{k}} \frac{\partial q_{k}}{\partial W_{i, j}} \\
& =\sum_{k}\left(2 q_{k}\right)\left(\mathbf{1}_{k=i} x_{j}\right) \\
& =2 q_{i} x_{j}
\end{aligned}
\]
\[
\begin{aligned}
& \text { A vectorized example: } f(x, W)=\|W \cdot x\|^{2}=\sum_{i=1}^{n}(W \cdot x)_{i}^{2} \\
& \nabla_{W} f=2 q \cdot x^{T} \\
& 0.104 \quad 0.208] \\
& \text { Always check: The } \\
& \text { gradient with } \\
& \text { respect to a variable } \\
& \text { should have the } \\
& \text { same shape as the } \\
& \text { variable } \\
& q=W \cdot x=\left(\begin{array}{c}
W_{1,1} x_{1}+\cdots+W_{1, n} x_{n} \\
\vdots \\
W_{n, 1} x_{1}+\cdots+W_{n, n} x_{n}
\end{array}\right) \\
& \frac{\partial f}{\partial W_{i, j}}=\sum_{k} \frac{\partial f}{\partial q_{k}} \frac{\partial q_{k}}{\partial W_{i, j}} \\
& =\sum_{k}\left(2 q_{k}\right)\left(\mathbf{1}_{k=i} x_{j}\right) \\
& =2{ }_{q}^{k} x_{j}
\end{aligned}
\]
A vectorized example: \(f(x, W)=\|W \cdot x\|^{2}=\sum_{i=1}^{n}(W \cdot x)_{i}^{2}\)
\(\left[\begin{array}{cc}0.1 & 0.5 \\ -0.3 & 0.8\end{array}\right]\)
\(\left[\begin{array}{ll}0.088 & 0.176 \\ 0.104 & 0.208\end{array}\right]^{\mathbf{W}}\)

\(q=W \cdot x=\left(\begin{array}{c}W_{1,1} x_{1}+\cdots+W_{1, n} x_{n} \\ \vdots \\ W_{n, 1} x_{1}+\cdots+W_{n, n} x_{n}\end{array}\right)\)
\(\frac{\partial q_{k}}{\partial x_{i}}=W_{k, i}\)
\(f(q)=\|q\|^{2}=q_{1}^{2}+\cdots+q_{n}^{2}\)
A vectorized example: \(f(x, W)=\|W \cdot x\|^{2}=\sum_{i=1}^{n}(W \cdot x)_{i}^{2}\)
\(\left[\begin{array}{cc}0.1 & 0.5 \\ -0.3 & 0.8\end{array}\right]\)
\(\left[\begin{array}{ll}0.088 & 0.176 \\ 0.104 & 0.208\end{array}\right]^{\mathbf{W}}\)

\(q=W \cdot x=\left(\begin{array}{c}W_{1,1} x_{1}+\cdots+W_{1, n} x_{n} \\ \vdots \\ W_{n, 1} x_{1}+\cdots+W_{n, n} x_{n}\end{array}\right)\)
\[
\begin{aligned}
\frac{\partial q_{k}}{\partial x_{i}} & =W_{k, i} \\
\frac{\partial f}{\partial x_{i}} & =\sum_{k} \frac{\partial f}{\partial q_{k}} \frac{\partial q_{k}}{\partial x_{i}} \\
& =\sum_{k} 2 q_{k} W_{k, i}
\end{aligned}
\]
A vectorized example: \(f(x, W)=\|W \cdot x\|^{2}=\sum_{i=1}^{n}(W \cdot x)_{i}^{2}\)
\(\left[\begin{array}{cc}{\left[\begin{array}{cc}0.1 & 0.5 \\ -0.3 & 0.8\end{array}\right]} \\ 0.108 & 0.176 \\ 0.208\end{array}\right] \mathbf{W}\)
\(\left[\begin{array}{c}-0.2 \\ 0.112 \\ 0.636\end{array}\right]^{\mathrm{X}}\)
\(q=W \cdot x=\left(\begin{array}{c}W_{1,1} x_{1}+\cdots+W_{1, n} x_{n} \\ \vdots \\ W_{n, 1} x_{1}+\cdots+W_{n, n} x_{n}\end{array}\right)\)
\(f(q)=\|q\|^{2}=q_{1}^{2}+\cdots+q_{n}^{2}\)
\[
\begin{aligned}
\frac{\partial q_{k}}{\partial x_{i}} & =W_{k, i} \\
\frac{\partial f}{\partial x_{i}} & =\sum_{k} \frac{\partial f}{\partial q_{k}} \frac{\partial q_{k}}{\partial x_{i}} \\
& =\sum_{k} 2 q_{k} W_{k, i}
\end{aligned}
\]

In discussion section: A matrix example...
\[
\begin{aligned}
z_{1} & =X W_{1} \\
h_{1} & =\operatorname{ReLU}\left(z_{1}\right) \\
\hat{y} & =h_{1} W_{2} \\
L & =\|\hat{y}\|_{2}^{2} \\
\frac{\partial L}{\partial W_{2}} & =\boldsymbol{?} \\
\frac{\partial L}{\partial W_{1}} & =\boldsymbol{?}
\end{aligned}
\]
```

