Lecture 3: Loss Functions Optimization

Administrative: Assignment 0

- Due tonight by 11:59pm
- Easy assignment
- Hardest part is learning how to use colab and how to submit on gradescope
- Worth 0\% of your grade
- Used to evaluate how prepared you are to take this course

Administrative: Assignment 1

Due 1/18 11:59pm

- K-Nearest Neighbor
- Linear classifiers: SVM, Softmax

Administrative: EdStem

Please make sure to check and read all pinned EdStem posts.

Administrative: Fridays

This Friday 9:30-10:30am and again 12:30-1:30pm

Quiz Prep

Presenter: Mahtab Bigverdi (TA)

Administrative: Course Project

Project proposal due 2/06 11:59pm
"Is X a valid project for 493G1?"

- Anything related to deep learning
- Maximum of 3 students per team
- Make a EdStem private post or come to TA Office Hours

More info on the website

Administrative: Fridays

Next week Friday

Quiz Prep

Presenter: Mahtab Bigverdi (TA)

Last time: Image Classification: A core task in Computer Vision

This image by Nikita is
licensed under CC-BY 2.0
(assume given a set of labels) \{dog, cat, truck, plane, ...\}
cat
dog
bird
deer
truck

Recall from last time: Challenges of recognition

Recall from last time: data-driven approach, kNN

train	
test	
train	validation

Recall from last time: Linear Classifier

Visual Viewpoint	
One template per class	Geometric Viewpoint Hytting up space

Class 1: Three modes
Class 2: Everything else

Interpreting a Linear Classifier: Visual Viewpoint

plane	car

Example with an image with 4 pixels, and 3 classes (cat/dog/ship)

Algebraic Viewpoint

$$
f(x, W)=W x
$$

Visual Viewpoint Input image

Interpreting a Linear Classifier: Geometric Viewpoint

Linear Classifier

Parametric Approach

Image

Array of $32 \times 32 \times 3$ numbers (3072 numbers total)

Parametric Approach: Linear Classifier

Image $\quad f(x, W)=W x$

Array of $32 \times 32 \times 3$ numbers (3072 numbers total)

10 numbers giving class scores

Parametric Approach: Linear Classifier

Array of $32 \times 32 \times 3$ numbers (3072 numbers total)

$$
\frac{. \mathrm{W}, \mathrm{~W})}{\frac{\mathrm{W} \mathrm{X}^{2}}{10 \times 1}=10 \times 3072}
$$

10 numbers giving class scores

Parametric Approach: Linear Classifier

[He et al. 2015]

Recall CIFAR10

50,000 training images each image is $32 \times 32 \times 3$

10,000 test images.

Algebraic viewpoint: Example with an image with 4 pixels, and 3 classes (cat/dog/ship)

Flatten tensors into a vector

Algebraic viewpoint: Example with an image with 4 pixels, and 3 classes (cat/dog/ship)

Flatten tensors into a vector

Algebraic viewpoint: Example with an image with 4 pixels, and 3 classes (cat/dog/ship)

Flatten tensors into a vector

Algebraic viewpoint: Example with an image with 4 pixels, and 3 classes (cat/dog/ship)

Flatten tensors into a vector

Algebraic viewpoint: Example with an image with 4 pixels, and 3 classes (cat/dog/ship)

Flatten tensors into a vector

Algebraic viewpoint: Bias trick to simply computation

Flatten tensors into a vector

Ranjay Krishna, Sarah Pratt
Lecture 3-28
January 11, 2024

Visual Viewpoint: learning templates

Algebraic viewpoint:

Visual Viewpoint: learning templates

Visual Viewpoint: learning templates

plane

bird

cat

deer

dog

frog

horse
\square
ship

Visual Viewpoint: learning templates

plane

ship \square

Visual Viewpoint: learning templates

Geometric Viewpoint: linear decision boundaries

$$
f(x, W)=W x+b
$$

Array of $32 \times 32 \times 3$ numbers (3072 numbers total)

Geometric Viewpoint: linear decision boundaries

$$
f(x, W)=W x+b
$$

Array of $32 \times 32 \times 3$ numbers (3072 numbers total)

Geometric Viewpoint: linear decision boundaries

Hard cases for a linear classifier

Class 1:
First and third quadrants

Class 2:
Second and fourth quadrants

Class 1:

$1<=$ L2 norm <= 2
Class 2:
Everything else

Class 1:

Three modes

Class 2:

Everything else

Recall the Minsky report 1969 from last lecture

Unable to learn the XNOR function

X	Y	$F(x, y)$
0	0	0
0	1	1
1	0	1
1	1	0

Three viewpoints for interpreting linear classifiers

Algebraic Viewpoint	Visual Viewpoint
$f(x, W)=W x$	One template per class

Geometric Viewpoint

Hyperplanes cutting up space

Next: How to train the weights in a Linear Classifier

TODO:

1. Define a loss function that quantifies our unhappiness with the scores across the training data.
2. Come up with a way of efficiently finding the parameters that minimize the loss function. (optimization)

Example output for CIFAR-10:

- A random W produces the following 10 scores for the 3 images to the left.
- 10 scores because there are 10 classes.
- First column bad because dog is highest.
- Second column good.
- Third column bad because frog is highest

Suppose: 3 training examples, 3 classes.
With some W the scores $f(x, W)=W x$ are:

cat
3.2
1.3
2.2
car

4.9
2.5
frog
-1.7
2.0 -3.1

Suppose: 3 training examples, 3 classes. With some W the scores $f(x, W)=W x$ are:

cat
3.2
1.3
2.2
car
5.1
4.9
2.5
frog
-1.7
2.0 -3.1

Suppose: 3 training examples, 3 classes. With some W the scores $f(x, W)=W x$ are:

cat
3.2
5.1
car
frog
1.3
2.2
4.9
2.5

$$
\begin{array}{lll}
-1.7 & 2.0 & -3.1
\end{array}
$$

A loss function tells how good our current classifier is

Given a dataset of examples

$$
\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{N}
$$

Where x_{i}, is image and y_{i} is (integer) label

Suppose: 3 training examples, 3 classes. With some W the scores $f(x, W)=W x$ are:

3.2
1.3
2.2
4.9
2.5
2.0

A loss function tells how good our current classifier is

Given a dataset of examples

$$
\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{N}
$$

Where x_{i}, is image and y_{i} is (integer) label

Loss over the dataset is a average of loss over examples:

$$
L=\frac{1}{N} \sum_{i} L_{i}\left(f\left(x_{i}, W\right), y_{i}\right)
$$

Suppose: 3 training examples, 3 classes.
With some W the scores $f(x, W)=W x$ are:

Multiclass SVM loss:

Given an example $\left(x_{i}, y_{i}\right)$ where x_{i} is the image and where y_{i} is the (integer) label,
and using the shorthand for the scores vector: $s=f\left(x_{i}, W\right)$
cat
car
frog
2.0
4.9

$$
-1.7
$$

the SVM loss has the form:
2.2
2.5

$$
\begin{aligned}
L_{i} & =\sum_{j \neq y_{i}} \begin{cases}0 & \text { if } s_{y_{i}} \geq s_{j}+1 \\
s_{j}-s_{y_{i}}+1 & \text { otherwise }\end{cases} \\
& =\sum_{j \neq y_{i}} \max \left(0, s_{j}-s_{y_{i}}+1\right)
\end{aligned}
$$

Suppose: 3 training examples, 3 classes.
With some W the scores $f(x, W)=W x$ are:

Multiclass SVM loss:

Given an example $\left(x_{i}, y_{i}\right)$ where x_{i} is the image and where y_{i} is the (integer) label,
and using the shorthand for the scores vector: $s=f\left(x_{i}, W\right)$
the SVM loss has the form:

$$
\begin{aligned}
L_{i} & =\sum_{j \neq y_{i}} \begin{cases}0 & \text { if } s_{y_{i}} \geq s_{j}+1 \\
s_{j}-s_{y_{i}}+1 & \text { otherwise } \\
& =\sum_{j \neq y_{i}} \max \left(0, s_{j}-s_{y_{i}}+1\right)\end{cases}
\end{aligned}
$$

Suppose: 3 training examples, 3 classes.
With some W the scores $f(x, W)=W x$ are:

Multiclass SVM loss:

Given an example $\left(x_{i}, y_{i}\right)$ where x_{i} is the image and where y_{i} is the (integer) label,
and using the shorthand for the scores vector: $s=f\left(x_{i}, W\right)$
the SVM loss has the form:

$$
\begin{aligned}
L_{i} & =\sum_{j \neq y_{i}} \begin{cases}0 & \text { if } s_{y_{i}} \geq s_{j}+1 \\
s_{j}-s_{y_{i}}+1 & \text { otherwise }\end{cases} \\
& =\sum_{j \neq y_{i}} \max \left(0, s_{j}-s_{y_{i}}+1\right)
\end{aligned}
$$

Suppose: 3 training examples, 3 classes.
With some W the scores $f(x, W)=W x$ are:

Multiclass SVM loss:

Given an example $\left(x_{i}, y_{i}\right)$ where x_{i} is the image and where y_{i} is the (integer) label,
and using the shorthand for the scores vector: $s=f\left(x_{i}, W\right)$
the SVM loss has the form:
cat 3.2
1.3
2.2
5.1
car
frog
-1.7
4.9
2.5

$$
L_{i}=\sum_{j \neq y_{i}} \begin{cases}0 & \text { if } s_{y_{i}} \geq s_{j}+1 \\ s_{j}-s_{y_{i}}+1 & \text { otherwise }\end{cases}
$$

$$
2.0 \quad-3.1=\sum_{j \neq y_{i}} \max \left(0, s_{j}-s_{y_{i}}+1\right)
$$

Suppose: 3 training examples, 3 classes. With some W the scores $f(x, W)=W x$ are:

3.2

5.1
-1.7
1.3
2.2
4.9
2.0
2.5
-3.1

Interpreting Multiclass SVM loss:

$$
\begin{aligned}
L_{i} & =\sum_{j \neq y_{i}} \begin{cases}0 & \text { if } s_{y_{i}} \geq s_{j}+1 \\
s_{j}-s_{y_{i}}+1 & \text { otherwise }\end{cases} \\
& =\sum_{j \neq y_{i}} \max \left(0, s_{j}-s_{y_{i}}+1\right)
\end{aligned}
$$

Suppose: 3 training examples, 3 classes. With some W the scores $f(x, W)=W x$ are:

Suppose: 3 training examples, 3 classes. With some W the scores $f(x, W)=W x$ are:

3.2

5.1
-1.7

Interpreting Multiclass SVM Ioss:

car
frog
1.3
2.2
4.9
2.0
2.5
-3.1

$$
\begin{aligned}
L_{i} & =\sum_{j \neq y_{i}} \begin{cases}0 & \text { if } s_{y_{i}} \geq s_{j}+1 \\
s_{j}-s_{y_{i}}+1 & \text { otherwise }\end{cases} \\
& =\sum_{j \neq y_{i}} \max \left(0, s_{j}-s_{y_{i}}+1\right)
\end{aligned}
$$

Suppose: 3 training examples, 3 classes. With some W the scores $f(x, W)=W x$ are:

Multiclass SVM loss:

Given an example $\left(x_{i}, y_{i}\right)$ where x_{i} is the image and where y_{i} is the (integer) label,
and using the shorthand for the scores vector: $s=f\left(x_{i}, W\right)$
the SVM loss has the form:

$$
L_{i}=\sum_{j \neq y_{i}} \max \left(0, s_{j}-s_{y_{i}}+1\right)
$$3.21.32.2

car 5.1
frog -1.7
4.9
2.5
2.0 -3.1

Suppose: 3 training examples, 3 classes. With some W the scores $f(x, W)=W x$ are:

cat	3.2
car	5.1
frog	-1.7
Losses:	2.9

Multiclass SVM loss:

Given an example $\left(x_{i}, y_{i}\right)$ where x_{i} is the image and where y_{i} is the (integer) label,
and using the shorthand for the scores vector: $s=f\left(x_{i}, W\right)$
the SVM loss has the form:

$$
\begin{aligned}
& L_{i}=\sum_{j \neq y_{i}} \max \left(0, s_{j}-s_{y_{i}}+1\right) \\
&=\max (0,5.1-3.2+1) \\
& \quad+\max (0,-1.7-3.2+1)
\end{aligned}
$$

Suppose: 3 training examples, 3 classes. With some W the scores $f(x, W)=W x$ are:

cat	3.2
car	5.1
frog	-1.7
Losses:	2.9

Multiclass SVM loss:

Given an example $\left(x_{i}, y_{i}\right)$ where x_{i} is the image and where y_{i} is the (integer) label,
and using the shorthand for the scores vector: $s=f\left(x_{i}, W\right)$
the SVM loss has the form:

$$
\begin{aligned}
L_{i} & =\sum_{j \neq y_{i}} \max \left(0, s_{j}-s_{y_{i}}+1\right) \\
& =\max (0,5.1-3.2+1) \\
& +\max (0,-1.7-3.2+1)
\end{aligned}
$$

Suppose: 3 training examples, 3 classes. With some W the scores $f(x, W)=W x$ are:

Multiclass SVM loss:

Given an example $\left(x_{i}, y_{i}\right)$ where x_{i} is the image and where y_{i} is the (integer) label,
and using the shorthand for the scores vector: $s=f\left(x_{i}, W\right)$
the SVM loss has the form:

$$
\begin{aligned}
L_{i} & =\sum_{j \neq y_{i}} \max \left(0, s_{j}-s_{y_{i}}+1\right) \\
& =\max (0,5.1-3.2+1) \\
& +\max (0,-1.7-3.2+1) \\
& =\max (0,2.9)+\max (0,-3.9)
\end{aligned}
$$

Suppose: 3 training examples, 3 classes. With some W the scores $f(x, W)=W x$ are:

Multiclass SVM loss:

Given an example $\left(x_{i}, y_{i}\right)$ where x_{i} is the image and where y_{i} is the (integer) label,
and using the shorthand for the scores vector: $s=f\left(x_{i}, W\right)$
the SVM loss has the form:

$$
\begin{aligned}
L_{i} & =\sum_{j \neq y_{i}} \max \left(0, s_{j}-s_{y_{i}}+1\right) \\
= & \max (0,5.1-3.2+1) \\
& +\max (0,-1.7-3.2+1) \\
= & \max (0,2.9)+\max (0,-3.9) \\
= & 2.9+0 \\
= & 2.9
\end{aligned}
$$

Suppose: 3 training examples, 3 classes. With some W the scores $f(x, W)=W x$ are:

Multiclass SVM loss:

Given an example $\left(x_{i}, y_{i}\right)$ where x_{i} is the image and where y_{i} is the (integer) label,
and using the shorthand for the scores vector: $s=f\left(x_{i}, W\right)$
the SVM loss has the form:

$$
\begin{aligned}
L_{i} & =\sum_{j \neq y_{i}} \max \left(0, s_{j}-s_{y_{i}}+1\right) \\
= & \max (0,1.3-4.9+1) \\
& +\max (0,2.0-4.9+1) \\
= & \max (0,-2.6)+\max (0,-1.9) \\
= & 0+0 \\
= & 0
\end{aligned}
$$

Suppose: 3 training examples, 3 classes. With some W the scores $f(x, W)=W x$ are:

Multiclass SVM loss:

Given an example $\left(x_{i}, y_{i}\right)$ where x_{i} is the image and where y_{i} is the (integer) label,
and using the shorthand for the scores vector: $s=f\left(x_{i}, W\right)$
the SVM loss has the form:

$$
L_{i}=\sum_{j \neq y_{i}} \max \left(0, s_{j}-s_{y_{i}}+1\right)
$$

$$
=\max (0,2.2-(-3.1)+1)
$$

$$
+\max (0,2.5-(-3.1)+1)
$$

$$
=\max (0,6.3)+\max (0,6.6)
$$

$$
=6.3+6.6
$$

$$
=12.9
$$

Suppose: 3 training examples, 3 classes. With some W the scores $f(x, W)=W x$ are:

Multiclass SVM loss:

Given an example $\left(x_{i}, y_{i}\right)$
 where x_{i} is the image and where y_{i} is the (integer) label,
and using the shorthand for the scores vector: $s=f\left(x_{i}, W\right)$

$$
\begin{gathered}
-3.1 \\
12.9
\end{gathered}
$$

the SVM loss has the form:

$$
L_{i}=\sum_{j \neq y_{i}} \max \left(0, s_{j}-s_{y_{i}}+1\right)
$$

Loss over full dataset is average:

$$
L=\frac{1}{N} \sum_{i=1}^{N} L_{i}
$$

$$
L=(2.9+0+12.9) / 3
$$

$$
=5.27
$$

Suppose: 3 training examples, 3 classes.
With some W the scores $f(x, W)=W x$ are:

Multiclass SVM loss:

$L_{i}=\sum_{j \neq y_{i}} \max \left(0, s_{j}-s_{y_{i}}+1\right)$

Q1: What happens to loss if car scores decrease by 0.5 for this training example?
cat1.3

4.9

4.9
2.0
2.0 0 0
car
car
frog
frog
Losses:
Losses:

Suppose: 3 training examples, 3 classes.
With some W the scores $f(x, W)=W x$ are:

Multiclass SVM loss:

$L_{i}=\sum_{j \neq y_{i}} \max \left(0, s_{j}-s_{y_{i}}+1\right)$

cat

car
frog
Losses:
1.3
4.9
2.0

0

Suppose: 3 training examples, 3 classes.
With some W the scores $f(x, W)=W x$ are:

Multiclass SVM loss:
$L_{i}=\sum_{j \neq y_{i}} \max \left(0, s_{j}-s_{y_{i}}+1\right)$

cat

car
frog
Losses:
1.3
4.9
2.0

0

Q1: What happens to loss if car scores decrease by 0.5 for this training example?

Q2: what is the min/max possible SVM loss L_{i} ?

Q3: At initialization W is small so all $s \approx 0$. What is the loss L_{i}, assuming N examples and C classes?

Suppose: 3 training examples, 3 classes.
With some W the scores $f(x, W)=W x$ are:

Multiclass SVM loss:

Given an example $\left(x_{i}, y_{i}\right)$ where x_{i} is the image and where y_{i} is the (integer) label,
and using the shorthand for the scores vector: $s=f\left(x_{i}, W\right)$
the SVM loss has the form:
$L_{i}=\sum_{j \neq y_{i}} \max \left(0, s_{j}-s_{y_{i}}+1\right)$
Q4: What if the sum was over all classes? (including j = y_i)

Suppose: 3 training examples, 3 classes.
With some W the scores $f(x, W)=W x$ are:

Multiclass SVM loss:

Given an example $\left(x_{i}, y_{i}\right)$ where x_{i} is the image and where y_{i} is the (integer) label,
and using the shorthand for the scores vector: $s=f\left(x_{i}, W\right)$
the SVM loss has the form:
$L_{i}=\sum_{j \neq y_{i}} \max \left(0, s_{j}-s_{y_{i}}+1\right)$
Q5: What if we used mean instead of sum?

Suppose: 3 training examples, 3 classes.
With some W the scores $f(x, W)=W x$ are:

Multiclass SVM loss:

Given an example $\left(x_{i}, y_{i}\right)$ where x_{i} is the image and where y_{i} is the (integer) label,
and using the shorthand for the scores vector: $s=f\left(x_{i}, W\right)$
the SVM loss has the form:
$L_{i}=\sum_{j \neq y_{i}} \max \left(0, s_{j}-s_{y_{i}}+1\right)$
Q6: What if we used

$$
L_{i}=\sum_{j \neq y_{i}} \max \left(0, s_{j}-s_{y_{i}}+1\right)^{2}
$$

Suppose: 3 training examples, 3 classes.

Multiclass SVM loss:

With some W the scores $f(x, W)=W x$ are:

3.2
5.1
-1.7
2.9
1.3
2.2
4.9
2.0 -3.1

0
2.5

Q6: What if we used

$$
L_{i}=\sum_{j \neq y_{i}} \max \left(0, s_{j}-s_{y_{i}}+1\right)^{2}
$$

Multiclass SVM Loss: Example code

$$
L_{i}=\sum_{j \neq y_{i}} \max \left(0, s_{j}-s_{y_{i}}+1\right)
$$

```
def L_i_vectorized(x, y, W):
    scores = W.dot(x)
    margins = np.maximum(0, scores - scores[y] + 1) # Then calculate the margins sj - syi
    margins[y] = 0
    loss_i = np.sum(margins)
    return loss_i
```

$$
f(x, W)=W x
$$

$$
L=\frac{1}{N} \sum_{i=1}^{N} \sum_{j \neq y_{i}} \max \left(0, f\left(x_{i} ; W\right)_{j}-f\left(x_{i} ; W\right)_{y_{i}}+1\right)
$$

Q7. Suppose that we found a W such that $L=0$. Is this W unique?
$f(x, W)=W x$
$L=\frac{1}{N} \sum_{i=1}^{N} \sum_{j \neq y_{i}} \max \left(0, f\left(x_{i} ; W\right)_{j}-f\left(x_{i} ; W\right)_{y_{i}}+1\right)$
E.g. Suppose that we found a W such that $L=0$. Is this W unique?

No! 2 W is also has $\mathrm{L}=0$!

Suppose: 3 training examples, 3 classes. With some W the scores $f(x, W)=W x$ are:

$L_{i}=\sum_{j \neq y_{i}} \max \left(0, s_{j}-s_{y_{i}}+1\right)$

Before:

$$
\begin{aligned}
= & \max (0,1.3-4.9+1) \\
& +\max (0,2.0-4.9+1) \\
= & \max (0,-2.6)+\max (0,-1.9) \\
= & 0+0 \\
= & 0
\end{aligned}
$$

With W twice as large:

$$
\begin{aligned}
= & \max (0,2.6-9.8+1) \\
& +\max (0,4.0-9.8+1) \\
= & \max (0,-6.2)+\max (0,-4.8) \\
= & 0+0 \\
= & 0
\end{aligned}
$$

$f(x, W)=W x$
$L=\frac{1}{N} \sum_{i=1}^{N} \sum_{j \neq y_{i}} \max \left(0, f\left(x_{i} ; W\right)_{j}-f\left(x_{i} ; W\right)_{y_{i}}+1\right)$
E.g. Suppose that we found a W such that $L=0$. Is this W unique?

No! 2W is also has $L=0$! How do we choose between W and 2W?

Regularization

$$
L(W)=\underbrace{\frac{1}{N} \sum_{i=1}^{N} L_{i}\left(f\left(x_{i}, W\right), y_{i}\right)}
$$

Data loss: Model predictions should match training data

Regularization

$$
L(W)=\underbrace{\frac{1}{N} \sum_{i=1}^{N} L_{i}\left(f\left(x_{i}, W\right), y_{i}\right)}+\underbrace{\lambda R(W)}
$$

Data loss: Model predictions should match training data

Regularization: Prevent the model from doing too well on training data

Regularization intuition: toy example training data

Regularization intuition: Prefer Simpler Models

Regularization: Prefer Simpler Models

Regularization

$$
L(W)=\underbrace{\frac{1}{N} \sum_{i=1}^{N} L_{i}\left(f\left(x_{i}, W\right), y_{i}\right)}+\underbrace{\lambda R(W)}
$$

Data loss: Model predictions should match training data

Regularization: Prevent the model from doing too well on training data

Occam's Razar: Among multiple competing hypotheses, the simplest is the best, William of Ockham 1285-1347

Regularization

$\lambda=$ regularization strength (hyperparameter)

$$
L(W)=\underbrace{\frac{1}{N} \sum_{i=1}^{N} L_{i}\left(f\left(x_{i}, W\right), y_{i}\right)}+\underbrace{\lambda R(W)}
$$

Data loss: Model predictions should match training data

Regularization: Prevent the model from doing too well on training data

Regularization

$\lambda=$ regularization strength (hyperparameter)

$$
L(W)=\underbrace{\frac{1}{N} \sum_{i=1}^{N} L_{i}\left(f\left(x_{i}, W\right), y_{i}\right)}+\underbrace{\lambda R(W)}
$$

Data loss: Model predictions should match training data

Regularization: Prevent the model from doing too well on training data

Simple examples

L2 regularization: $R(W)=\sum_{k} \sum_{l} W_{k, l}^{2}$
L1 regularization: $R(W)=\sum_{k} \sum_{l}\left|W_{k, l}\right|$
Elastic net (L1 + L2): $R(W)=\sum_{k} \sum_{l} \beta W_{k, l}^{2}+\left|W_{k, l}\right|$

Regularization

$\lambda=$ regularization strength (hyperparameter)

$$
L(W)=\underbrace{\frac{1}{N} \sum_{i=1}^{N} L_{i}\left(f\left(x_{i}, W\right), y_{i}\right)}+\underbrace{\lambda R(W)}
$$

Data loss: Model predictions should match training data

Regularization: Prevent the model from doing too well on training data

Simple examples

L2 regularization: $R(W)=\sum_{k} \sum_{l} W_{k, l}^{2}$
L1 regularization: $R(W)=\sum_{k} \sum_{l}\left|W_{k, l}\right|$
Elastic net (L1 + L2): $R(W)=\sum_{k} \sum_{l} \beta W_{k, l}^{2}+\left|W_{k, l}\right|$

More complex:

Dropout
Batch normalization
Stochastic depth, fractio

Regularization

$\lambda=$ regularization strength (hyperparameter)

$$
L(W)=\underbrace{\frac{1}{N} \sum_{i=1}^{N} L_{i}\left(f\left(x_{i}, W\right), y_{i}\right)}+\underbrace{\lambda R(W)}
$$

Data loss: Model predictions should match training data

Regularization: Prevent the model from doing too well on training data

Why regularize?

- Express preferences over weights
- Make the model simple so it works on test data
- Improve optimization by adding curvature

Regularization: Expressing Preferences

$$
\begin{aligned}
x= & {[1,1,1,1] } \\
w_{1}= & {[1,0,0,0] } \\
w_{2}= & {[0.25,0.25,0.25,0.25] } \\
& w_{1}^{T} x=w_{2}^{T} x=1
\end{aligned}
$$

L2 Regularization
$R(W)=\sum_{k} \sum_{l} W_{k, l}^{2}$ Which of w1 or w2 will the L2 regularizer prefer?

Regularization: Expressing Preferences

$$
\begin{aligned}
x & =[1,1,1,1] \\
w_{1} & =[1,0,0,0]
\end{aligned}
$$

L2 Regularization
$R(W)=\sum_{k} \sum_{l} W_{k, l}^{2}$ Which of w1 or w2 will

$$
w_{2}=[0.25,0.25,0.25,0.25]
$$ the L2 regularizer prefer? L2 regularization likes to "spread out" the weights

$$
w_{1}^{T} x=w_{2}^{T} x=1
$$

Regularization: Expressing Preferences

$$
\begin{aligned}
x & =[1,1,1,1] \\
w_{1} & =[1,0,0,0]
\end{aligned}
$$

$$
w_{2}=[0.25,0.25,0.25,0.25]
$$

$$
w_{1}^{T} x=w_{2}^{T} x=1
$$

L2 Regularization

$$
R(W)=\sum_{k} \sum_{l} W_{k, l}^{2}
$$ Which of w1 or w2 will the L2 regularizer prefer? L2 regularization likes to "spread out" the weights

Which one would L1

 regularization prefer?
Softmax classifier

Softmax Classifier (Multinomial Logistic Regression)

Want to interpret raw classifier scores as probabilities
cat
3.2
car $\quad 5.1$
frog -1.7

Softmax Classifier (Multinomial Logistic Regression)

Want to interpret raw classifier scores as probabilities

$$
s=f\left(x_{i} ; W\right) \quad P\left(Y=k \mid X=x_{i}\right)=\frac{e^{s_{k}}}{\sum_{j} e^{s_{j}}} \quad \begin{aligned}
& \text { Softmax } \\
& \text { Function }
\end{aligned}
$$

cat
3.2
car $\quad 5.1$
frog -1.7

Softmax Classifier (Multinomial Logistic Regression)

Want to interpret raw classifier scores as probabilities

$$
s=f\left(x_{i} ; W\right) \quad P\left(Y=k \mid X=x_{i}\right)=\frac{e^{s_{k}}}{\sum_{j} e^{s_{j}}} \quad \begin{aligned}
& \text { Softmax } \\
& \text { Function }
\end{aligned}
$$

Probabilities
must be $>=0$

Softmax Classifier (Multinomial Logistic Regression)

Want to interpret raw classifier scores as probabilities

$$
s=f\left(x_{i} ; W\right) \quad P\left(Y=k \mid X=x_{i}\right)=\frac{e^{s_{k}}}{\sum_{j} e^{s_{j}}} \quad \begin{aligned}
& \text { Softmax } \\
& \text { Function }
\end{aligned}
$$

Probabilities Probabilities
must be $>=0 \quad$ must sum to 1

Softmax Classifier (Multinomial Logistic Regression)

Want to interpret raw classifier scores as probabilities

$$
s=f\left(x_{i} ; W\right) \quad P\left(Y=k \mid X=x_{i}\right)=\frac{e^{s_{k}}}{\sum_{j} e^{s_{j}}} \quad \begin{aligned}
& \text { Softmax } \\
& \text { Function }
\end{aligned}
$$

Probabilities Probabilities
must be $>=0 \quad$ must sum to 1

Softmax Classifier (Multinomial Logistic Regression)

Want to interpret raw classifier scores as probabilities

$$
s=f\left(x_{i} ; W\right) \quad P\left(Y=k \mid X=x_{i}\right)=\frac{e^{s_{k}}}{\sum_{j} e^{s_{j}}}
$$

Probabilities must be >= 0

Probabilities must sum to 1

$$
L_{i}=-\log P\left(Y=y_{i} \mid X=x_{i}\right)
$$

car
frog
24.5
164.0
normalize
0.13

0.87 \rightarrow| $L_{i}=-\log (0.13)$ |
| :---: |
| $=2.04$ |

probabilities

Softmax Classifier (Multinomial Logistic Regression)

Want to interpret raw classifier scores as probabilities

$$
s=f\left(x_{i} ; W\right) \quad P\left(Y=k \mid X=x_{i}\right)=\frac{e^{s_{k}}}{\sum_{j} e^{s_{j}}}
$$

Probabilities
must be >= 0
Softmax Function

Probabilities must sum to 1

$$
L_{i}=-\log P\left(Y=y_{i} \mid X=x_{i}\right)
$$

> | 0.13 | |
| :---: | :---: |
| 0. | $L_{i}=$ |
| $=-\log (0.13)$ | |
| $=2.04$ | |

0.87
0.00

Maximum Likelihood Estimation Choose weights to maximize the likelihood of the observed data

Unnormalized log-probabilities / logits
unnormalized probabilities

Softmax Classifier (Multinomial Logistic Regression)

Want to interpret raw classifier scores as probabilities

$$
s=f\left(x_{i} ; W\right) \quad P\left(Y=k \mid X=x_{i}\right)=\frac{e^{s_{k}}}{\sum_{j} e^{s_{j}}}
$$

Probabilities
must be >= 0
\square
Probabilities must sum to 1

$$
L_{i}=-\log P\left(Y=y_{i} \mid X=x_{i}\right)
$$

$\xrightarrow{\text { exp }}$| $\mathbf{2 4 . 5}$ |
| ---: |
| 164.0 |
| 0.18 |$\xrightarrow{\text { normalize }}$| $\mathbf{0 . 1 3}$ |
| :--- | :--- |
| 0.87 |
| 0.00 |\rightarrow compare \leftarrow| $\mathbf{1 . 0 0}$ |
| :--- |
| 0.00 |
| 0.00 |

Unnormalized log-probabilities / logits
unnormalized probabilities
probabilities

Correct probs

Softmax Classifier (Multinomial Logistic Regression)

Want to interpret raw classifier scores as probabilities

$$
s=f\left(x_{i} ; W\right) \quad P\left(Y=k \mid X=x_{i}\right)=\frac{e^{s_{k}}}{\sum_{j} e^{s_{j}}}
$$

Probabilities
must be >= 0

Unnormalized log-probabilities / logits
unnormalized probabilities

Probabilities must sum to 1

$$
L_{i}=-\log P\left(Y=y_{i} \mid X=x_{i}\right)
$$

0.13		1.00
0.87	Kullback-Leibler	0.00
0.00	$D_{K L}(\underline{P} \mid \underline{Q})=$	0.00

Correct probs

Softmax Classifier (Multinomial Logistic Regression)

Want to interpret raw classifier scores as probabilities

$$
s=f\left(x_{i} ; W\right) \quad P\left(Y=k \mid X=x_{i}\right)=\frac{e^{s_{k}}}{\sum_{j} e^{s_{j}}}
$$

Probabilities
must be >= 0

Probabilities

$$
L_{i}=-\log P\left(Y=y_{i} \mid X=x_{i}\right)
$$

\longrightarrow compare	1.00	
Cross Entropy	0.00	
$\begin{gathered} H(\underline{P,} \underline{Q})= \\ H(p)+\underline{D_{K L}}(P \\| Q) \end{gathered}$	0.00	

Correct probs

Softmax Classifier (Multinomial Logistic Regression)

Want to interpret raw classifier scores as probabilities

Maximize probability of correct class

$$
L_{i}=-\log P\left(Y=y_{i} \mid X=x_{i}\right)
$$

cat

$$
3.2
$$

car
frog

$$
5.1
$$

$$
-1.7
$$

Putting it all together:

$$
L_{i}=-\log \left(\frac{e^{s y_{i}}}{\sum_{j} e^{s}}\right)
$$

$$
s=f\left(x_{i} ; W\right) \quad P\left(Y=k \mid X=x_{i}\right)=\frac{e^{s_{k}}}{\sum_{j} e^{s_{j}}}
$$

Softmax Classifier (Multinomial Logistic Regression)

Want to interpret raw classifier scores as probabilities

$$
s=f\left(x_{i} ; W\right)
$$

$$
P\left(Y=k \mid X=x_{i}\right)=\frac{e^{s_{k}}}{\sum_{j} e^{s_{j}}}
$$

cat
car
frog

$$
3.2
$$

5.1
-1.7

Maximize probability of correct class

$$
L_{i}=-\log P\left(Y=y_{i} \mid X=x_{i}\right) \quad L_{i}=-\log \left(\frac{e^{s y_{i}}}{\sum_{j} e^{s_{j}}}\right)
$$

Putting it all together:

Q1: What is the min/max possible softmax loss L_{i} ?

Softmax Classifier (Multinomial Logistic Regression)

cat
3.2

Want to interpret raw classifier scores as probabilities
$s=f\left(x_{i} ; W\right)$

$$
P\left(Y=k \mid X=x_{i}\right)=\frac{e^{s_{k}}}{\sum_{j} e^{s_{j}}} \text { Softmax } \text { Function }
$$

Maximize probability of correct class

$$
L_{i}=-\log P\left(Y=y_{i} \mid X=x_{i}\right)
$$

Q1: What is the min/max possible softmax loss L_{i} ?
Q2: At initialization all s_{j} will be approximately equal; what is the softmax loss L_{i}, assuming C classes?

Softmax Classifier (Multinomial Logistic Regression)

Want to interpret raw classifier scores as probabilities
$s=f\left(x_{i} ; W\right)$

$$
P\left(Y=k \mid X=x_{i}\right)=\frac{e^{s_{k}}}{\sum_{j} e^{s_{j}}}
$$

Maximize probability of correct class

$$
L_{i}=-\log P\left(Y=y_{i} \mid X=x_{i}\right)
$$

Q2: At initialization all s will be approximately equal; what is the loss?
A: $-\log (1 / C)=\log (C)$,
If $C=10$, then $L_{i}=\log (10) \approx 2.3$

Softmax vs. SVM

hinge loss (SVM)

Softmax vs. SVM

$$
L_{i}=-\log \left(\frac{e^{s_{y_{i}}}}{\sum_{j} e^{s_{j}}}\right)
$$

$$
L_{i}=\sum_{j \neq y_{i}} \max \left(0, s_{j}-s_{y_{i}}+1\right)
$$

Softmax vs. SVM

$$
L_{i}=-\log \left(\frac{e^{s y_{j}}}{\sum_{j} e^{e_{j}}}\right) \quad L_{i}=\sum_{j \neq y_{i}} \max \left(0, s_{j}-s_{y_{i}}+1\right)
$$

assume scores:
[10, -2, 3]
[10, 9, 9]
[10, -100, -100] and

$$
y_{i}=0
$$

Q: What is the SVM loss?

Softmax vs. SVM

$$
L_{i}=-\log \left(\frac{e^{e_{i_{i}}}}{\sum_{j} e_{j}^{j}}\right) \quad L_{i}=\sum_{j \neq y_{i}} \max \left(0, s_{j}-s_{y_{i}}+1\right)
$$

assume scores:
[10, -2, 3]
[10, 9, 9]
[10, -100, -100] and $y_{i}=0$

Q: What is the SVM loss?
Q: Is the Softmax loss zero for any of them?

Softmax vs. SVM

$$
L_{i}=-\log \left(\frac{e^{e_{y_{i}}}}{\sum_{j} e_{j}^{j}}\right) \quad L_{i}=\sum_{j \neq y_{i}} \max \left(0, s_{j}-s_{y_{i}}+1\right)
$$

assume scores:
[20, -2, 3]
[20, 9, 9]
[20, -100, -100]
and $y_{i}=0$

Q: What is the SVM loss?
Q: Is the Softmax loss zero for any of them?

I doubled the correct class score from 10 -> 20?

Recap

- We have some dataset of (x, y)
- We have a score function:

$$
s=f(x ; W) \stackrel{\text { e.g. }}{=} W x
$$

- We have a loss function:

$$
\begin{aligned}
& L_{i}=-\log \left(\frac{e^{s y_{i}}}{\sum_{j} e^{s_{j}}}\right) \\
& L_{i}=\sum_{j \neq y_{i}} \max \left(0, s_{j}-s_{y_{i}}+1\right) \\
& L=\frac{1}{N} \sum_{i=1}^{N} L_{i}+R(W) \text { Full loss }
\end{aligned}
$$

Recap

How do we find the best W?

- We have some dataset of (x, y)
- We have a score function:

$$
s=f(x ; W) \stackrel{\text { e.g. }}{=} W x
$$

- We have a loss function:

$$
\begin{aligned}
& L_{i}=-\log \left(\frac{e^{s y_{i}}}{\sum_{j} e^{s_{j}}}\right) \\
& L_{i}=\sum_{j \neq y_{i}} \max \left(0, s_{j}-s_{y_{i}}+1\right) \\
& L=\frac{1}{N} \sum_{i=1}^{N} L_{i}+R(W) \text { Full loss }
\end{aligned}
$$

Optimization

Ranjay Krishna, Sarah Pratt

This image is CCO 1.0 public domain

Lecture 3-110

Strategy \#1: A first very bad idea solution: Random search

```
# assume X_train is the data where each column is an example (e.g. 3073 x 50,000)
# assume Y_train are the labels (e.g. ID array of 50,000)
# assume the function L evaluates the loss function
bestloss = float("inf") # Python assigns the highest possible float value
for num in xrange(1000):
    W = np.random.randn(10, 3073) * 0.0001 # generate random parameters
    loss = L(X_train, Y_train, W) # get the loss over the entire training set
    if loss < bestloss: # keep track of the best solution
        bestloss = loss
        bestW = W
    print 'in attempt %d the loss was %f, best %f' % (num, loss, bestloss)
# prints:
# in attempt 0 the loss was 9.401632, best 9.401632
# in attempt 1 the loss was 8.959668, best 8.959668
# in attempt 2 the loss was 9.044034, best 8.959668
# in attempt 3 the loss was 9.278948, best 8.959668
# in attempt 4 the loss was 8.857370, best 8.857370
# in attempt 5 the loss was 8.943151, best 8.857370
# in attempt 6 the loss was 8.605604, best 8.605604
# ... (trunctated: continues for 1000 lines)
```


Ranjay Krishna, Sarah Pratt

Lets see how well this works on the test set...

```
# Assume X_test is [3073 x 10000], Y_test [10000 x 1]
scores = Wbest.dot(Xte_cols) # 10 x 10000, the class scores for all test examples
# find the index with max score in each column (the predicted class)
Yte_predict = np.argmax(scores, axis = 0)
# and calculate accuracy (fraction of predictions that are correct)
np.mean(Yte_predict == Yte)
# returns 0.1555
```

15.5\% accuracy! not bad!
(SOTA is ~99.7\%)

Strategy \#2: Follow the slope

Strategy \#2: Follow the slope

In 1-dimension, the derivative of a function:

$$
\frac{d f(x)}{d x}=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

In multiple dimensions, the gradient is the vector of (partial derivatives) along each dimension

The slope in any direction is the dot product of the direction with the gradient The direction of steepest descent is the negative gradient

current W:

gradient dW:

[0.34,
-1.11,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
$0.33, \ldots]$
loss 1.25347

current W:

$[0.34$,
-1.11,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
$0.33, \ldots]$
loss 1.25347
$\mathbf{W}+\mathbf{h}$ (first dim):
$[0.34+0.0001$,
-1.11,
0.78 ,
0.12 ,
0.55 ,
2.81,
-3.1,
-1.5,
0.33,...]

Ioss 1.25322

gradient dW:

[?,
?,
?
?
?
?
?
?
?,...]

current W:

[0.34,
-1.11, 0.78 , 0.12 ,
0.55 ,
2.81,
-3.1,
-1.5,
$0.33, .$.]
loss 1.25347
$\mathbf{W}+\mathbf{h}$ (first dim):
$[0.34+0.0001$,
-1.11,
0.78 ,
0.12 ,
0.55,
2.81,
-3.1,
-1.5,
$0.33, .$.]
loss 1.25322

gradient dW:

[-2.5,
?,
?
(1.25322-1.25347)/0.0001

$$
=-2.5
$$

$$
\frac{d f(x)}{d x}=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

?

$$
?, \ldots]
$$

current W:

$\mathbf{W}+\mathbf{h}($ second dim):

gradient dW:

[0.34,	$[0.34$,
-1.11,	$-1.11+0.0001$,
0.78,	0.78,
0.12,	0.12,
0.55,	0.55,
2.81,	2.81,
-3.1,	-3.1,
-1.5,	-1.5,
$0.33, \ldots]$	$0.33, \ldots]$
loss 1.25347	loss 1.25353

current W:

$[0.34$,	$[0.34$,
-1.11,	$-1.11+\mathbf{0 . 0 0 0 1}$,
0.78,	0.78,
0.12,	0.12,
0.55,	0.55,
2.81,	2.81,
-3.1,	-3.1,
-1.5,	-1.5,
$0.33, \ldots]$	$0.33, \ldots]$
loss 1.25347	loss 1.25353

$\mathbf{W}+\mathbf{h}$ (second dim):
[0.34,
$-1.11+0.0001$,
0.78,
0.12 ,
0.55 ,
2.81,
-3.1,
-1.5,
0.33,...]

Ioss 1.25353

gradient dW:

current W:

$\mathbf{W}+\mathbf{h}$ (third dim):

$[0.34$,	$[0.34$,
-1.11,	-1.11,
0.78,	$0.78+\mathbf{0 . 0 0 0 1}$,
0.12,	0.12,
0.55,	0.55,
2.81,	2.81,
-3.1,	-3.1,
-1.5,	-1.5,
$0.33, \ldots]$	$0.33, \ldots]$
loss 1.25347	loss 1.25347

gradient dW:

[-2.5,
0.6 ,
?,
?
?
?
?
?,
?,...]

current W:

$[0.34$,	$[0.34$,
-1.11,	-1.11,
0.78,	$0.78+0.0001$,
0.12,	0.12,
0.55,	0.55,
2.81,	2.81,
-3.1,	-3.1,
-1.5,	-1.5,
$0.33, \ldots]$	$0.33, \ldots]$
loss 1.25347	loss 1.25347

gradient dW:

0.6 ,
0 ,
?,
(1.25347-1.25347)/0.0001
$=0$

$$
\frac{d f(x)}{d x}=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

$$
!, \ldots .
$$

current W:

$[0.34$,	$[0.34$,
-1.11,	-1.11,
0.78,	$0.78+0.0001$,
0.12,	0.12,
0.55,	0.55,
2.81,	2.81,
-3.1,	-3.1,
-1.5,	-1.5,
$0.33, \ldots]$	$0.33, \ldots]$
loss 1.25347	loss 1.25347

gradient dW:

[-2.5,
0.6 ,

0 ,
?,

Numeric Gradient

- Slow! Need to loop over all dimensions
- Approximate

This is silly. The loss is just a function of W:

$$
\begin{aligned}
& L=\frac{1}{N} \sum_{i=1}^{N} L_{i}+\sum_{k} W_{k}^{2} \\
& L_{i}=\sum_{j \neq y_{i}} \max \left(0, s_{j}-s_{y_{i}}+1\right) \\
& s=f(x ; W)=W x
\end{aligned}
$$

$$
\text { want } \nabla_{W} L
$$

This is silly. The loss is just a function of W :

$L=\frac{1}{N} \sum_{i=1}^{N} L_{i}+\sum_{k} W_{k}^{2}$
$L_{i}=\sum_{j \neq y_{i}} \max \left(0, s_{j}-s_{y_{i}}+1\right)$
$s=f(x ; W)=W x$
want $\nabla_{W} L$

Use calculus to compute an analytic gradient

This image is in the public domain

This image is in the public domain

current W:

gradient dW:

$[0.34$,		$[-2.5$,
-1.11,	$d W=\ldots$	0.6,
0.78,	(some function	0,
0.12,	data and W)	0.2,
0.55,		0.7,
2.81,	-0.5,	
-3.1,	1.1,	
-1.5,	1.3,	
$0.33, \ldots]$		$-2.1, \ldots]$

In summary:

- Numerical gradient: approximate, slow, easy to write
- Analytic gradient: exact, fast, error-prone
=>
In practice: Always use analytic gradient, but check implementation with numerical gradient. This is called a gradient check.

Gradient Descent

```
# Vanilla Gradient Descent
while True:
    weights_grad = evaluate_gradient(loss_fun, data, weights)
    weights += - step_size * weights_grad # perform parameter update
```


Stochastic Gradient Descent (SGD)

$$
\begin{aligned}
L(W) & =\frac{1}{N} \sum_{i=1}^{N} L_{i}\left(x_{i}, y_{i}, W\right)+\lambda R(W) \\
\nabla_{W} L(W) & =\frac{1}{N} \sum_{i=1}^{N} \nabla_{W} L_{i}\left(x_{i}, y_{i}, W\right)+\lambda \nabla_{W} R(W)
\end{aligned}
$$

Full sum expensive when N is large!

Approximate sum using a minibatch of examples
32 / 64 / 128 common

```
# Vanilla Minibatch Gradient Descent
while True:
    data_batch = sample_training_data(data, 256) # sample 256 examples
    weights_grad = evaluate_gradient(loss_fun, data_batch, weights)
    weights += - step_size * weights_grad # perform parameter update
```


Next time:

Introduction to neural networks

Backpropagation

