Lecture 18:

Generative Al Part 2
GANSs & Diffusion

Ranjay Krishna, Sarah Pratt Lecture 18 - 1 March 01, 2024

Administrative

- Milestone was due last week
- Quiz 5 (last quiz) will take place last 30 minutes of next lecture
- Assignment 5 due Friday

Final project details:
- Submit your posters for printing before Friday, March 8th, at 10 a.m.
- Poster session: March 11th (Monday), from 10:30AM-12:20PM at HUB 145
- Final reports due Mon, Mar 11

Ranjay Krishna, Sarah Pratt Lecture 18 - 2 March 01, 2024

Generative Al so far: Autoregressive models

Generate image pixels starting from corner

—0——0

Dependency on previous pixels modeled
using an RNN (LSTM)

©O O O O ©

Very slow during both training and
testing; N x N image requires 2N-1
sequential steps!

@)
o

@)
o

[van der Oord et al. 2016]

Ranjay Krishna, Sarah Pratt Lecture 18 - 3 3 March 01, 2024

Variational Autoencoders: Intractability

Data likelihood: pe(z) = [pe(2)pe(z|2)dz

po(x | 2)pe(2)

Anotheridea: p,(x) = X: 28x28 image = 784-dim vector

pe(z | x) z: 20-dim vector
Encoder Network Decoder Network
d¢ (Z | x) = N(.uz|xr z:zlx) Peo (x | Z) = N(ﬂx|z: z:x|z)
uZIX: 20 zZlX: 20 u‘XIZ: 768 ZXIZ: 768
Linear(400->20) Linear(400->20) Linear(400->768) Linear(400->768)
f i 1 f
Linear(784->400) Linear(20->400)
1 1
x: 784 z: 20

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Ranjay Krishna, Sarah Pratt Lecture 18 - 4 March 01, 2024

Variational Autoencoders

log pg(2V) = E. q,(zlz) {logpg(x(i))} (pe(z'?) Does not depend on z)

/

—E,
We want to
maximize the B
data = E,
likelihood

=E,

=E,

Decoder network gives p,(x|z), can
compute estimate of this term through

sampling.

Ranjay Krishna, Sarah Pratt

[(4)
o 20 | 2pa2)

] (Bayes’ Rule)

po(z | 2)
(4) (4)

log po(a™ | z)pg(z) 42| @ .)] (Multiply by constant)

po(z |2@) qy(z | 2®)
- : (@) (z]| ™)
lo D 2)| — E, [10 M] + E, [10 qu—] Logarithms
logpo(a? | 2)] g 8 | (Logarithms)
logpo (¢ | 2)] — Dicr(go(= | 2®) || po(2)) + Dcr(g0(= | 2©) || po(z | 7))

i i ;

This KL term (between Pg(z[x) intractable (saw
Gaussians for encoder and z €arlier), can’t compute this KL

prior) has nice closed-form term :(But we know KL
solution! divergence always >=0.

Lecture 18 - 5

March 01, 2024

Variational Autoencoders

log pg(zV) = E. q,(zlz) {logpg(x(i))} (pe(z'?) Does not depend on z)

/ — EZ Og

g 202 | 2)po(2)

: Bayes’ Rule
0]) (Baves Rl

We want to ot -
. . h 7 7
(rjna][xmlzet - E. |log po(a™ | z)pg(z) 42| @ .) (Multiply by constant)
ata p9<z ‘ x(”) q¢<z l 517(1))
likelihood] (2| (7;)) | i))
= E, |logpe(z@ | z)} —E, [log M] +E, [log 4p(z |)] (Logarithms)
i po(2) po(z |z
=|E. |log po(z'” | Z)} — Dic(g9(2 | 29) |Ipo(2))|+ Dicr(ap(2 | 2)Hpe(z | 2))

£(z9.0,¢) >0

Tractable lower bound which we can take
gradient of and optimize! (p,(x|z) differentiable,
KL term is differentiable)

Ranjay Krishna, Sarah Pratt Lecture 18 - 6 March 01,

2024

Variational Autoencoders

log pg(zV) = E. q,(zlz) {logpg(x(i))} (pe(z'?) Does not depend on z)

[(i) |
=E; |lo Po(z |Z)(P)"<Z)] (Bayes’ Rule) Encoder:
Decoder: pe(z | =) make approximate
' B po (D | 2)po(2) qe(z | =) . posterior distribution
reconstruct E, |log oz [2) gu(z | 20) (Multiply by constant) close to prior

the input data

g po(z'? | 2)} —1, [log M] 4

~[E- [log20(a? |)] ~ Diculaole | e Tpa(e))|+ Dicilastz | 29) (e | 29)

£(z9.0.9) =
Tractable lower bound which we can take

gradient of and optimize! (p,(x|z) differentiable,
KL term differentiable)

] (Logarithms)

Ranjay Krishna, Sarah Pratt Lecture 18 - 7 March 01, 2024

Variational Autoencoders

Putting it all together: maximizing the
likelihood lower bound

E. [logps(e® |)| — Dir(gs(= | 27) || po(2))

- -

£(z9,0,6)

Ranjay Krishna, Sarah Pratt Lecture 18 - 8 March 01, 2024

Variational Autoencoders

Putting it all together: maximizing the
likelihood lower bound

E. [logps(a | 2)] —]DKLm(z B Hm(z)j

L(z?,0,9)

Let’s look at computing the KL
divergence between the estimated
posterior and the prior given some data

Input Data b

Ranjay Krishna, Sarah Pratt Lecture 18 - 9 March 01, 2024

Variational Autoencoders

Putting it all together: maximizing the
likelihood lower bound

E. [logps(a | 2)] —]DKLm(z B Hm(z)j

L(z?,0,9)

Hz|z

Encoder network

9 (2|)
Input Data

Ranjay Krishna, Sarah Pratt

Lecture 18 - 10

March 01, 2024

Variational Autoencoders

Putting it all together: maximizing the
likelihood lower bound

E. [logps(a | 2)] —]DKL<q¢<z B |\p9<z>2|

L(z?,0,9)

Dkr, (N(/J‘zkca EZICC)HN(O?I))

This equation has an analytical solution

Make approximate
posterior distribution

close to prior Hz|z Zz|:c
Encoder network V\/
94(2|7)
Input Data b

Ranjay Krishna, Sarah Pratt Lecture 18 - 11 March 01, 2024

Variational Autoencoders

Putting it all together: maximizing the
likelihood lower bound

E. [logps(e® |)| [- D (gs(= | 27) || po(2))

L(z?,0,9)

Make approximate
posterior distribution
close to prior

Not part of the computation graph!

|

<

Sample z from z|x ~ j\/’(,qu|w, Zz|:c)

/

Hz|z

Encoder network

9 (2|)
Input Data

~_

Zz|:c

b

Ranjay Krishna, Sarah Pratt

Lecture 18 - 12

March 01, 2024

Va rl atl ona I Au toe N COd ers Reparameterization trick to make

sampling differentiable:

Putting it all together: maximizing the
likelihood lower bound sample € ~ N(0, I)

, | z = €T
E. [logpo(a® | 2)] |- Drcs(gol= | 29) I po(2)) Hzle T €02q

-

L(z?,0,9)

VA
Sample z from z|a7 ~ N(Mz|a;, Ez|:c)

/

Hz|x >, E
Encoder network V\/
q¢(z|z)
Input Data b

Ranjay Krishna, Sarah Pratt Lecture 18 - 13 March 01, 2024

Va rl atl ona I Au tOe N COd ers Reparameterization trick to make

sampling differentiable:

Putting it all together: maximizing the
g g g Sample € ~ N(O, I

likelihood lower bound Input to
oy — the graph
£ [1°gp9($(i) | 2)] - Dicr(gs(2 | 29) [po(2)) - 'u’zm
L(z¥,0,9) Part of computation graph
Z

Sample z from z|a7 ~ N(Mz|a;, Zz|:c)

/

Hz|x >, E
Encoder network V\/
q¢(z|z)
Input Data b

Ranjay Krishna, Sarah Pratt Lecture 18 - 14 March 01, 2024

Variational Autoencoders

Putting it all together: maximizing the
likelihood lower bound

E. |logpo(2 |)| [~ Dicr(as(= | #7) || po(2)) Hz|z

/ 2a:lz
L(zD,0,¢) Decoder network \/
po(x|2)

VA
Sample z from z|a7 ~ N(Mz|a;, Zz|:c)

/

/’l’ZI:B Zz |a;
Encoder network V\/
e (2|)
Input Data b

Ranjay Krishna, Sarah Pratt Lecture 18 - 15 March 01, 2024

Variational Autoencoders

Maximize likelihood of original
input being reconstructed

Putting it all together: maximizing the
likelihood lower bound

i
E. [logpa(e? | 2)| [+ enlaolz |) | p0(2) Kz Xiz)z

L(zD,0,¢) Decoder network \/
po(x|z)

VA
Sample z from z|a7 ~ N(Mz|a;, Zz|:c)

/

l‘l’Z|.'I: Ez |x
Encoder network V\/
e (2|)
Input Data b

Ranjay Krishna, Sarah Pratt Lecture 18 - 16 March 01, 2024

Variational Autoencoders

Putting it all together: maximizing the

likelihood lower bound / \

E. [logps(e®” | 2)| = Dicr(as(= | 2¥) || po(2) [P Yzl
L(z®,0,¢) Decoder network \/
po(x|2)
For every minibatch of input 2
data: compute this forward Sample z from Z|iB ~ N(,u'z|a:7 Zz|:z:)
pass, and then backprop! /
/’l’Zlili Zzlx
Encoder network V\/
99 (2|z)
Input Data b

Ranjay Krishna, Sarah Pratt Lecture 18 - 17 March 01, 2024

Variational Autoencoders: Generating Data!

Our assumption about data generation
process

Sample from
true conditional £T

pe-(z | 2%)

Decoder
network
Sample from

true prior >

29 ~ py (2)

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Ranjay Krishna, Sarah Pratt Lecture 18 - 18

March 01, 2024

Variational Autoencoders: Generating Data!

Now given a trained VAE:
Our assumption about data generation use decoder network & sample z from prior!

process
Sample from L/
true conditipnal b Sample x|z from :clz ~ N(ux|z, 2x|z)
po-(z | 29)
Decoder / \
network Hz|z Z:Izlz
tsampl? from Decoder network \/
rue prior >
, po(x|2)
20~ pg (2) <

Sample z from z ~ N (0, I)
Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Ranjay Krishna, Sarah Pratt Lecture 18 - 19 March 01, 2024

ing Data!

Generat

| Autoencoders

lona

t

Ia

Var

Use decoder network. Now sample z from prior!

QDA NANNNANNNN SN SNNNNS
QAN LELLLLLWN NN~
QARG LELLLVVYYY N~
QAUAVVDNININLN Ly Go G ©YVVVY W~~~
QAOOVOHINININNHOE BPBDIYOIVI Y W = ——
QAQOQOMIMNMNMN N MDY IY D@ - ——
QOODOMHMMMMN MM ®OODD D — —
OODMMMN MMM NM®D DD e e —
OODOMMI MMM M0N0 WD DD e e —
QOMMM M 0N O 0000 o o = —
QA48 0% 0% 0P 000000 00 n & o~ 0~ P~ o~
R N Ko N N Nl ol U
G~
S ogororrororrrTaNN
Sdadadadadocrrcrrr T TTIIIINN
SddaddagororrrrrddIITRIRINN
SAdAddTTrrrrrrrrrrT™2TR™IR™NN
% B g gl e i<l <l el el ol ol ol O N NN N

Za:lz

N

Sample x|z from :E|z ~ N(Mm|z, Em|z)
M|z

Decoder network
po(x|z)

<
Sample z from z ~ N (0, I)

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

March 01, 2024

Lecture 18 - 20

=
©
| -
o
L
©
| G
(4]
n
-
C
L
@
| -
X
>
T
C
®
nd

ing Data!
Data manifold for 2-d z

Generati

| Autoencoders

lona

t

Ia

Var

QDA NANNNANNNN SN SNNNNS
QAN LELLLLLWN NN~
QARG LELLLVVYYY N~
QAUAVVDNININLN Ly Go G ©YVVVY W~~~
QOA0DHINININMWEBVIVVIV®w w—— 4
QAQOQOMIMNMNMN N MDY IY D@ - ——
QOODOMHMMMMN MM ®OODD D — —
OODMMMN MMM NM®D DD e e —
OODOMMI MMM M0N0 WD DD e e —
QOMMM M 0N O 0000 o o = —
QA48 0% 0% 0P 000000 00 n & o~ 0~ P~ o~
R N Ko N N Nl ol U
&221111%“?9?999977774
S ogororrororrrTaNN
Sdadadadadocrrcrrr T TTIIIINN
SddaddagororrrrrddIITRIRINN
SAdAddTTrrrrrrrrrrT™2TR™IR™NN
% B g gl e i<l <l el el ol ol ol O N NN N

< >

Vary z,

Za:lz

N

<
Sample z from z ~ N (0, I)

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Sample x|z from :E|z ~ N(Mm|z, Em|z)
M|z

Use decoder network. Now sample z from prior!
po(x|z)

Decoder network

Vary z,

March 01, 2024

Lecture 18 - 21

=
©
| -
o
L
©
| G
(4]
n
-
C
L
@
| -
X
>
T
C
®
nd

Variational Autoencoders: Generating Data!

lovavaslaslaslanlonlonlon s
Diagonal prior on z p‘ﬁ"ﬁﬁ :E
I=> mdepe_ndent Degree of smile | -l"'“-#::: '& ;. |
atent variables \ R ;q:ﬁ. # . q;. -
- ﬁw - . qa. '

Different L‘
dimensions of z Vary z, gg§ 4 a.a, I
encode r Ay e * ‘ .
SpEEEEEEEE
o s‘

interpretable factors e

of variation | ?l!d.ﬁ .\

ddddddd

nnana EEE

«
Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014 Vary z, —

Head pose

Ranjay Krishna, Sarah Pratt Lecture 18 - 22 March 01, 2024

Variational Autoencoders: Generating Data!

)) lovadaslaslaslanlontonlon s
Diagonal prior on z :&& q
=> independent . gy
latent variables Degree of smile R zq.‘-l-‘# '

- AN .,,‘.‘&5.5 e
Different r oL
dimensions of z Vary z, , ;q.:q‘
encode r X <l
interpretable factors e e e e

of variation v .;l!-& Wﬂ 4y
\ PR B S S S e
Also good feature representation that .P hoh b o .aaa

. - - -
can be computed using q¢(z|x)! FF QQ =& 13 > o
ead pose
Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014 Vary z, —

Ranjay Krishna, Sarah Pratt Lecture 18 - 23 March 01, 2024

Variational Autoencoders: Generating Data!

Labeled Faces in the Wild
32x32 CIFAR-10

Figures copyright (L) Dirk Kingma et al. 2016; (R) Anders Larsen et al. 2017. Reproduced with permission.

Ranjay Krishna, Sarah Pratt Lecture 18 - 24 March 01, 2024

Editing images with VAEs

1. Run input data through encoder to get

a distribution over latent codes

Hz|z

Encoder network

9 (2|)
Input Data

Ranjay Krishna, Sarah Pratt

Lecture 18 - 25

March 01, 2024

Editing images with VAEs

1. Run input data through encoder to get

a distribution over latent codes
2. Sample code z from encoder output

2

Sample z from z|az ~ N(Mz|a;, Ez|:c)

/

Hz|x

Encoder network

9 (2|)
Input Data

~_

Zz|:c

b

Ranjay Krishna, Sarah Pratt

Lecture 18 - 26

March 01, 2024

Editing images with VAEs

1. Run input data through encoder to get
a distribution over latent codes

2. Sample code z from encoder output
3. Modify some dimensions of sampled zmodiﬁed
code
Z

Sample z from z|az ~ N(Mz|a;, Ez|:c)

/

/’LZIZ‘ Ez |a;
Encoder network \/
e (2|)
Input Data b

Ranjay Krishna, Sarah Pratt Lecture 18 - 27 March 01, 2024

Editing images with VAEs

M|z Zm|z

1. Run input data through encoder to get Decoder network \/

a distribution over latent codes
2. Sample code z from encoder output Do (SC Z)
3. Modify some dimensions of sampled zmodiﬁed

code
4. Run modified z through decoder to >

get a distribution over data sample

Sample z from z|az ~ N(Mz|a;, Ez|:c)

/

/’LZIZ‘ Ez |a;
Encoder network \/
e (2|)
Input Data b

Ranjay Krishna, Sarah Pratt Lecture 18 - 28 March 01, 2024

Editing images with VAEs /f\

M|z Zm|z
1. Run input data through encoder to get Decoder network
a distribution over latent codes
2. Sample code z from encoder output Pe (33 Z)
3. Modify some dimensions of sampled zmodiﬁed
code
4. Run modified z through decoder to >
get a distribution over data sample
5. Sample new data from (4) Sample z from z|x ~ N (fhy)z, X 2|z)
/’I’ZI:L‘ Ez |a;
Encoder network \/
9 (2|)
Input Data b

Ranjay Krishna, Sarah Pratt Lecture 18 - 29 March 01, 2024

"\

220002
20009229

Lecture 18 - 30

Pose (Azimuth) varied Original Reconstuction Light direction varied
R | 0

Paogd TIEETID

cepooce 29299299

\
29

Editing images with VAEs

Original Reconstuction

200000 ¢

bl
ok 4
S
ki
(b
5P
DS
— |G
Qe
De
He
e
Oe
Pl

29992999

2024

March 01,

=
©
| -
o
L
©
| G
(4]
n
-
C
L
@
| -
X
>
T
C
®
nd

Variational Autoencoders

Probabilistic spin to traditional autoencoders => allows generating data
Defines an intractable density => derive and optimize a (variational) lower bound

Pros:
- Principled approach to generative models
- Interpretable latent space.
- Allows inference of q(z|x), can be useful feature representation for other tasks

Cons:
- Maximizes lower bound of likelihood: okay, but not as good evaluation as

PixelRNN/PixelCNN
- Samples blurrier and lower quality compared to state-of-the-art (GANs)

Active areas of research:
- More flexible approximations, e.g. richer approximate posterior instead of diagonal
Gaussian, e.g., Gaussian Mixture Models (GMMs), Categorical Distributions.
- Learning disentangled representations.

Ranjay Krishna, Sarah Pratt Lecture 18 - 31 March 01, 2024

Comparing the two methods so far

Variational model
Autoregressive model - Maximize lower bound on p(data)
- Directly maximize p(data) - Generated images often blurry
- High-quality generated images - Very fast to generate images

- Slow to generate images - Learn rich latent codes
- No explicit latent codes

Ranjay Krishna, Sarah Pratt Lecture 18 - 32 March 01, 2024

Generative Al so far: Variational Autoencoders

Maximizing the likelihood lower bound

/x\

E. [logps(e®” | 2)| = Dicr(as(= | 2¥) || po(2) [P Yzl
L(zD,0,$) Decoder network \/
po(x|2)
yA
Sample z from z|x ~ N (fhz)z, 2 |z)
/’I’ZIJ: Ezlx
Encoder network V\/
q¢(z|z)
Input Data b

Ranjay Krishna, Sarah Pratt Lecture 18 - 333 March 01, 2024

Taxonomy of Generative Models
GAN

Generative models

Explicit density Implicit density

Markov Chain
GSN

Tractable density Approximate density

Fully Visible Belief Nets Diffusi
- Autoregressive .) Irusion
- NADE Variational Markov Chain
- MADE . .
_ NICE / RealNVP Variational Autoencoder Boltzmann Machine
- Glow , , _ . .
_ FijI’d Figure copyright and adapted from lan Goodfellow, Tutorial on Generative Adversarial Networks, 2017.

Ranjay Krishna, Sarah Pratt Lecture 18 - 3434 March 01, 2024

Today: implicit density
models

Ranjay Krishna, Sarah Pratt Lecture 18 - 35 March 01, 2024

Generative Adversarial
Networks (GANSs)

Ranjay Krishna, Sarah Pratt Lecture 18 - 36 March 01, 2024

All the models together

Autoregressive models define tractable density function, optimize likelihood of
training data:

n
p@(x) = Hpe(a:z-|x1, - xi—l)
1=1

VAEs define intractable density function with latent z:
po(z) = [po(eIpo(alz)dz

Cannot optimize directly, derive and optimize lower bound on likelihood instead

Ranjay Krishna, Sarah Pratt Lecture 18 - 37 March 01, 2024

So far...

Autoregressive define tractable density function, optimize likelihood of training
data:

n
p@(x) = Hpo(a:z-|x1, - xi—l)
1=1

VAEs define intractable density function with latent z:
po(z) = [po(eIpo(alz)dz

Cannot optimize directly, derive and optimize lower bound on likelihood instead

What if we give up on explicitly modeling density, and just want ability to sample?

Ranjay Krishna, Sarah Pratt Lecture 18 - 38 March 01, 2024

So far...

Autoregressive define tractable density function, optimize likelihood of training
data:

n
p@(x) = Hpe(a:dxl, ...,Q’Ji_l)
1=1

VAEs define intractable density function with latent z:
po(z) = [po(eIpo(alz)dz

Cannot optimize directly, derive and optimize lower bound on likelihood instead

What if we give up on explicitly modeling density, and just want ability to sample?
GANSs: not modeling any explicit density function!

Ranjay Krishna, Sarah Pratt Lecture 18 - 39 March 01, 2024

Taxonomy of Generative Models
GAN

Generative models

Explicit density Implicit density

Markov Chain
GSN

Tractable density Approximate density

Fully Visible Belief Nets Diffusi
- Autoregressive e] Iffusion
- NADE Variational Markov Chain
- MADE . .
_ NICE / RealNVP Variational Autoencoder Boltzmann Machine
- Glow , , _ . .
_ FijI’d Figure copyright and adapted from lan Goodfellow, Tutorial on Generative Adversarial Networks, 2017.

Ranjay Krishna, Sarah Pratt Lecture 18 - 40 March 01, 2024

Generative Adversarial Networks

Setup: Assume we have data x. drawn from distribution p . (x). Want to sample fromp__ .

Ranjay Krishna, Sarah Pratt Lecture 18 - 41 March 01, 2024

Generative Adversarial Networks

Setup: Assume we have data x. drawn from distribution p . (x). Want to sample fromp__ .

Idea: Introduce a latent variable z with simple prior p(z) (e.g. assume z is a multivariate gaussian).
Sample z ~ p(z) and pass to a Generator Network x = G(z)

Then x is a sample from the Generator distribution p,. We just need to make sure p; =p,_..!

Ranjay Krishna, Sarah Pratt Lecture 18 - 42 March 01, 2024

Generative Adversarial Networks

Setup: Assume we have data x. drawn from distribution p . (x). Want to sample fromp__ .

Idea: Introduce a latent variable z with simple prior p(z) (e.g. assume z is a multivariate gaussian).
Sample z ~ p(z) and pass to a Generator Network x = G(z)

Then x is a sample from the Generator distribution p,. We just need to make sure p; =p,_..!
Generator

Network

Train Generator Network G to convert
z into fake data x sampled from p

Ranjay Krishna, Sarah Pratt Lecture 18 - 43 March 01, 2024

Generative Adversarial Networks

Setup: Assume we have data x. drawn from distribution p . (x). Want to sample fromp__ .

Idea: Introduce a latent variable z with simple prior p(z) (e.g. assume z is a multivariate gaussian).
Sample z ~ p(z) and pass to a Generator Network x = G(z)

Then x is a sample from the Generator distribution p,. We just need to make sure p; =p,_..!
Generator

Network Discriminator
- : G 4,=7 Network
—> fake

—> D

} —> real
Train Discriminator Network D to

Real samples classify data as real or fake (1/0)

Train Generator Network G to convert
z into fake data x sampled from p
by "fooling” the discriminator D

Ranjay Krishna, Sarah Pratt Lecture 18 - 44 March 01, 2024

Generative Adversarial Networks

Setup: Assume we have data x. drawn from distribution p . (x). Want to sample fromp__ .

Idea: Introduce a latent variable z with simple prior p(z) (e.g. assume z is a multivariate gaussian).
Sample z ~ p(z) and pass to a Generator Network x = G(z)

Then x is a sample from the Generator distribution p,. We just need to make sure p; =p,_..!
Generator

Network Discriminator
= | G 4,=7 Network Jointly train G and
—> fake D. Hopefully p,

—> D converges top_, !

} —> real
Train Discriminator Network D to

Real samples classify data as real or fake (1/0)

Train Generator Network G to convert
z into fake data x sampled from p
by "fooling” the discriminator D

Ranjay Krishna, Sarah Pratt Lecture 18 - 45 March 01, 2024

Generative Adversarial Networks

Jointly train generator G and discriminator D with a minimax game

min Max (Ex~pgy,, 10 DGO + E,pisy |log (1= D(6(2))

Generator
G Discriminator
Z —> fake

—> real

Real

Ranjay Krishna, Sarah Pratt Lecture 18 - 46 March 01, 2024

Generative Adversarial Networks

Jointly train generator G and discriminator D with a minimax game

Discriminator wants
D(x) = 1 for real data

min/max (f XD gara [Tog D(x)f +E, p) [log (1 - D(G (Z)))D

D
Generator
= G Discriminator
= —> fake
—> D
} —> real

Real

Ranjay Krishna, Sarah Pratt Lecture 18 - 47 March 01, 2024

Generative Adversarial Networks

Jointly train generator G and discriminator D with a minimax game

Discriminator wants Discriminator wants
D(x) = 1 for real data D(x) = 0 for fake data
r /- N 7 7
min max (2 ~Dagarg NOED ()] + E,p() [log (1 — D((z)))])
Generator
G Discriminator
4 —> fake
— D
} —> real
Real

Ranjay Krishna, Sarah Pratt Lecture 18 - 48 March 01, 2024

Generative Adversarial Networks

Jointly train generator G and discriminator D with a minimax game

min mlt;le (Ex"’pdata [108 D(x)] + Ez~p(z) llog (1 o D((‘fj)))D

Generator
G Discriminator
- —> fake

—> real

Real

Ranjay Krishna, Sarah Pratt Lecture 18 - 49 March 01, 2024

Generative Adversarial Networks

Jointly train generator G and discriminator D with a minimax game

Train G and D using alternating gradient updates

min max (Ex~p 10t 108 D(X) | + E, [108 (1 - D(()))D

Ranjay Krishna, Sarah Pratt Lecture 18 - 50 March 01, 2024

Generative Adversarial Networks

Jointly train generator G and discriminator D with a minimax game

Train G and D using alternating gradient updates

min max (Ex~p 10t 108 D(X) | + E, [108 (1 - D(()))D

= min max V(G,D)

Ranjay Krishna, Sarah Pratt Lecture 18 - 51 March 01, 2024

Generative Adversarial Networks

Jointly train generator G and discriminator D with a minimax game

Train G and D using alternating gradient updates

min max (Ex~p 10t 108 D ()] + E, () [108 (1 — D(()))D

= min ml?x V(’D) Fortinl, .. T:
1. (Update D) D =D + ap Z—Z
2. (UpdateG) G =6 —a ?

Ranjay Krishna, Sarah Pratt Lecture 18 - 52 March 01, 2024

Generative Adversarial Networks

Jointly train generator G and discriminator D with a minimax game

Train G and D using alternating gradient updates

min max (Ex~pq,,, 1108 D0O] + Eop) [log (1 - D(6(2))))

= min ml?x V(, D) Fortinl, ..T:

1. (Update D) D = D + ap 2%
We are not minimizing any g[D/
overall loss! No training 2.(UpdateG) G =6 —a -

curves to look at!

Ranjay Krishna, Sarah Pratt Lecture 18 - 53 March 01, 2024

Generative Adversarial Networks

Jointly train generator G and discriminator D with a minimax game

min max (Ex~p 10t 108 D ()] + E, () [108 (1 — D(()))D

At start of training, generator is very bad and

discriminator can easily tell apart real/fake, so N
D(G(z)) close to 0 2
o
_2-

_4| = log(1l —D(G(2))

0.0 0.2 0.4 0.6 0.8 1.0
D(G(2))

Ranjay Krishna, Sarah Pratt Lecture 18 - March 01, 2024

Generative Adversarial Networks

Jointly train generator G and discriminator D with a minimax game

min max (Ex~pdata log D(x)] + E,-p» [log (1 — D(G (@)))D

Gradients are near 0 when G

At start of training, generator is very bad and
discriminator can easily tell apart real/fake, so
D(G(z)) close to O

Problem: Why is this a problem?

produces a bad Image

- l Gradients are high
generator produce

| = log(1l — D(G(2))

0.0 0.2 0.4 0.6 0.8

1.0

when
s good

Ranjay Krishna, Sarah Pratt Lecture 18 -

March 01, 2024

Generative Adversarial Networks

Jointly train generator G and discriminator D with a minimax game

min max (Ex~pdata log D(x)] + E,-p» [log (1 — D(G (@)))D

Gradients are near 0 when G

At start of training, generator is very bad and .|, produces a bad image
discriminator can easily tell apart real/fake, so
D(G(z)) close to 0 21 Gradients are high when
Problem: Vanishing gradients for G 0 generator produces good
How do we fix this?]
_4| = log(1l —D(G(2))
0.0 02 04 06 08 1.0

Ranjay Krishna, Sarah Pratt Lecture 18 - March 01, 2024

Generative Adversarial Networks

Jointly train generator G and discriminator D with a minimax game

min max (Ex~p 10t 108 D(X) | + E, [108 (1 - D(()))D

At start of training, generator is very bad and 41
discriminator can easily tell apart real/fake, so o
D(G(z)) close to O

Problem: Vanishing gradients for G

| — log(1 - D(G(2))
4. —log(D(G(2)))

0.0 0.2 0.4 0.6 0.8 1.0
D(G(2))

Ranjay Krishna, Sarah Pratt Lecture 18 - March 01, 2024

Generative Adversarial Networks

Jointly train generator G and discriminator D with a minimax game

min max (Ex~p 10t 108 D ()] + E, () [108 (1 — D(()))D

Gradients are high

At start of training, generator is very bad and 41
discriminator can easily tell apart real/fake, so 24 4
D(G(z)) close to 0 Gradients aref low

Problem: Vanishing gradients for G

| — log(1 - D(G(2))
4. —log(D(G(2)))

0.0 0.2 0.4 0.6 0.8 1.0
D(G(2))

Ranjay Krishna, Sarah Pratt Lecture 18 - March 01, 2024

Generative adversarial networks

Once trained, throw away the discriminator and use G to generate new images

Generator

Ranjay Krishna, Sarah Pratt Lecture 18 - 59 March 01, 2024

lan Goodfellow et al., “Generative
Adversarial Nets”, NIPS 2014

Generative Adversarial Nets
Generated samples

Nearest neighbor from training set

Figures copyright lan Goodfellow et al., 2014. Reproduced with permission.

Ranjay Krishna, Sarah Pratt Lecture 18 - 60 March 01, 2024

lan Goodfellow et al., “Generative
Adversarial Nets”, NIPS 2014

Generative Adversarial Nets
Generated samples (CIFAR-10)

g ¥
»

Nearest neighbor from training set

Figures copyright lan Goodfellow et al., 2014. Reproduced with permission.

Ranjay Krishna, Sarah Pratt Lecture 18 - 61 March 01, 2024

Generative Adversarial Nets: Convolutional Architectures

Generator G(2)

Radford et al, “Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks”, ICLR 2016

Ranjay Krishna, Sarah Pratt Lecture 18 - 62 March 01, 2024

Generative Adversarial Nets: Convolutional Architectures

Generator is an upsampling network with fractionally-strided convolutions
Discriminator is a convolutional network

Architecture guidelines for stable Deep Convolutional GANs

e Replace any pooling layers with strided convolutions (discriminator) and fractional-strided
convolutions (generator).

e Use batchnorm in both the generator and the discriminator.
e Remove fully connected hidden layers for deeper architectures.
e Use ReLU activation in generator for all layers except for the output, which uses Tanh.

e Use LeakyReLU activation in the discriminator for all layers.

Radford et al, “Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks”, ICLR 2016

Ranjay Krishna, Sarah Pratt Lecture 18 - 63 March 01, 2024

Generative Adversarial Nets: Convolutional Architectures

Samples
from the
model look
much
better!

Radford et al,
ICLR 2016

Ranjay Krishna, Sarah Pratt Lecture 18 - 64 March 01, 2024

Generative Adversarial Nets: Convolutional Architectures

between

random =5 e
points in laten = 72
space '

Radford et al,
ICLR 2016

Ranjay Krishna, Sarah Pratt Lecture 18 - 65 March 01, 2024

Generative Adversarial Nets: Interpretable Vector Math

Radford et al, ICLR 2016

Samples
from the <
model

Ranjay Krishna, Sarah Pratt Lecture 18 - 66 March 01, 2024

Generative Adversarial Nets: Interpretable Vector Math

. Radford et al, ICLR 2016
Smiling woman Neutral woman Neutral man

Samples
from the <
model

Average Z
vectors, do
arithmetic

Ranjay Krishna, Sarah Pratt Lecture 18 - 67 March 01, 2024

Generative Adversarial Nets: Interpretable Vector Math

. Radford et al, ICLR 2016
Smiling woman Neutral woman Neutral man

r >

Smiling Man

Samples
from the <
model

Average Z
vectors, do
arithmetic

Ranjay Krishna, Sarah Pratt Lecture 18 - 68 March 01, 2024

Generative Adversarial Nets: Interpretable Vector Math

Glasses man No glasses man No glasses woman Ractord otal,

Woman with glasses

Ranjay Krishna, Sarah Pratt Lecture 18 - 69 March 01, 2024

Since then: Explosion of GANs

« ” See also: https://github.com/soumith/ganhacks for tips and tricks for
The GAN Zoo trainings GANs

Context-RNN-GAN - Contextual RNN-GANs for Abstract Reasoning Diagram Generation

C-RNN-GAN - C-RNN-GAN: Continuous recurrent neural networks with adversarial training

* GAN - Generative Adversarial Networks

* 3D-GAN - Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial Modeling

CS-GAN - Improving Neural Machine Translation with Conditional Sequence Generative Adversarial Nets
CVAE-GAN - CVAE-GAN: Fine-Grained Image Generation through Asymmetric Training
CycleGAN - Unpaired Image-to-lmage Translation using Cycle-Consistent Adversarial Networks

* acGAN - Face Aging With Conditional Generative Adversarial Networks

* AC-GAN - Conditional Image Synthesis With Auxiliary Classifier GANs

* AdaGAN - AdaGAN: Boosting Generative Models

* AEGAN - Learning Inverse Mapping by Autoencoder based Generative Adversarial Nets

DTN - Unsupervised Cross-Domain Image Generation

DCGAN - Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks

. . DiscoGAN - Learning to Discover Cross-Domain Relations with Generative Adversarial Networks
* AffGAN - Amortised MAP Inference for Image Super-resolution g

s ; £ DR-GAN - Disentangled Representation Learning GAN for Pose-Invariant Face Recognition
* AL-CGAN - Learning to Generate Images of Outdoor Scenes from Attributes and Semantic Layouts

DualGAN - DualGAN: Unsupervised Dual Learning for Image-to-Image Translation
e ALl - Adversarially Learned Inference

EBGAN - Energy-based Generative Adversarial Network
* AM-GAN - Generative Adversarial Nets with Labeled Data by Activation Maximization

f-GAN - f-GAN: Training Generative Neural Samplers using Variational Divergence Minimization

« AnoGAN - Unsupervised Anomaly Detection with Generative Adversarial Networks to Guide Marker Discovery ¢ FF-GAN - Towards Large-Pose Face Frontalization in the Wild

+ ArtGAN - ArtGAN: Artwork Synthesis with Conditional Categorial GANs CAWWN:=LearningWhatancWhereito Draw)

< BEGAN.~ B2GAN: Unifted Framawerk st Generative Adversarial Netioie GeneGAlTJ - GeneGAN: Lea‘rning Object Transfiguration and Attribute Subspace from Unpaired Data
Geometric GAN - Geometric GAN

GoGAN - Gang of GANs: Generative Adversarial Networks with Maximum Margin Ranking

GP-GAN - GP-GAN: Towards Realistic High-Resolution Image Blending

IAN - Neural Photo Editing with Introspective Adversarial Networks

« Bayesian GAN - Deep and Hierarchical Implicit Models
¢ BEGAN - BEGAN: Boundary Equilibrium Generative Adversarial Networks
* BiGAN - Adversarial Feature Learning

« BS-GAN - Boundary-Seeking Generative Adversarial Networks iGAN - Generative Visual Manipulation on the Natural Image Manifold

« CGAN - Conditional Generative Adversarial Nets IcGAN - Invertible Conditional GANs for image editing

. . " . . " . . * ID-CGAN - Image De-raining Using a Conditional Generative Adversarial Network
¢ CaloGAN - CaloGAN: Simulating 3D High Energy Particle Showers in Multi-Layer Electromagnetic Calorimeters 9 e 1 .

. . . * Improved GAN - Improved Techniques for Training GANs
with Generative Adversarial Networks % § L %

o . & 2 o . . InfoGAN - InfoGAN: Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets
* CCGAN - Semi-Supervised Learning with Context-Conditional Generative Adversarial Networks

LAGAN - Learning Particle Physics by Example: Location-Aware Generative Adversarial Networks for Physics
* CatGAN - Unsupervised and Semi-supervised Learning with Categorical Generative Adversarial Networks Synthesis

LAPGAN - Deep Generative Image Models using a Laplacian Pyramid of Adversarial Networks

https://github.com/hindupuravinash/the-gan-zoo

* CoGAN - Coupled Generative Adversarial Networks

Ranjay Krishna, Sarah Pratt Lecture 18 - 70 March 01, 2024

https://github.com/soumith/ganhacks

GAN improvements: better loss functions

;.'.‘ ™ .
} . . p ~¥e
4 PR N - == 9
L
-
]

5

LSGAN, Zhu 2017. .

Ranjay Krishna, Sarah Pratt Lecture 18 - 71 March 01, 2024

GAN improvements: higher resolution

256 x 256 bedrooms 1024 x 1024 faces

Progressive GAN, Karras 2018.

Ranjay Krishna, Sarah Pratt Lecture 18 - 72 March 01, 2024

GAN transformations

Source->Target domain transfer

Input Output Input Output
:rrz_if:i:'- !

- wnter Yosemie ' Pix2pix. Isola 2017. Many examples at
CycleGAN. Zhu et al. 2017. https://phillipi.github.io/pix2pix/

Ranjay Krishna, Sarah Pratt Lecture 18 - 73 March 01, 2024

BigGAN: 512x512 images

Brock et al., 2019

Ranjay Krishna, Sarah Pratt Lecture 18 - 74 March 01, 2024

GANSs with self-attention mechanism

Goldfish

Indigo
bunting

Redshank

Saint
Bernard

Zhang et al, “Self-Attention Generative Adversarial Networks”, ICML 2019

Ranjay Krishna, Sarah Pratt Lecture 18 - 75 March 01, 2024

Controlled generation with GANs

| cloud | sky |
| tree | mountain]

Semantic Manipulation Using Segmentation Map _

Park et al, “Semantic
Image Synthesis with
Spatially-Adaptive
Normalization”, CVPR
2019

sabeuw| aping Buisn uoneziA}s

&

Ranjay Krishna, Sarah Pratt Lecture 18 - 76 March 01, 2024

Controlled generation with GANs

| cloud | sky |
tree mountain
grass

Semantic Manipulation Using Segmentation Map _

Park et al, “Semantic
Image Synthesis with
Spatially-Adaptive
Normalization”, CVPR
2019

sabeuw| aping Buisn uoneziA}s

v

a, Sarah Pratt Lecture 18 - 77 March 01, 2024

Ranjay Krishn

Controlled generation with GANs

Semantic Manipulation Using Segmentation Map

| cloud | sky |
tree mountain
grass

Park et al, “Semantic
Image Synthesis with
Spatially-Adaptive
Normalization”, CVPR
2019

sabeuw| aping Buisn uoneziA}s

&

Ranjay Krishna, Sarah Pratt Lecture 18 - March 01, 2024

Conditional GANs: StyleGAN

Y is text that describes the image you want to generate

Stride 2 16 | Stride 2

CONV 2

Karras et al, “Analyzing and Improving the Image Quality of StyleGAN”, CVPR 2020

Ranjay Krishna, Sarah Pratt Lecture 18 - 79 March 01, 2024

Conditional GANs: StyleGAN

Batch Normalization Conditional Batch Normalization
N N
1 1
Hi =Nzx"’f U =Nzxi,,-
i=1 i=1
, 1 i , Learn a separate 1 & ,
g = ﬁZ(xi,j) scale and shift of = NZ(xi,j ~ 1)
Xi;— Uj for each xiifl_ uj
Xij = different label y Xij = —T/——
of + € o? +€
,/ j
Yij =Yi%ij + B Yij =V} %ij+ B}

Karras et al, “Analyzing and Improving the Image Quality of StyleGAN”, CVPR 2020

Ranjay Krishna, Sarah Pratt Lecture 18 - 80 March 01, 2024

Karras et al, “Analyzing and Improving the Image Quality of StyleGAN”, CVPR 2020

Ranjay Krishna, Sarah Pratt Lecture 18 - 81 March 01, 2024

Scene graphs to GANs

Scene Graph
sheep = by » s*heep

boat = in standing on

Specifying exactly what kind of image you want to ¥ \
generate. ocean * b'y gra:ss *sky

behind < tree above

The explicit structure in scene graphs provides better image
generation for complex scenes.

Ranjay Krishna, Sarah Pratt Lecture 18 - 82 March 01, 2024

HYPE: Human eYe Perceptual Evaluations
hype.stanford.edu

10% 30% 50%

Lowest | 4 Highest

1 | L ==

0 == 100
3.8 10.0 40.3 50.7
WGAN-GP BEGAN ProGAN StyleGAN (ync

Zhou, Gordon, Krishna et al. HYPE: Human eYe Perceptual Evaluations, NeurlPS 2019 Figures copyright 2019. Reproduced with permission.

Ranjay Krishna, Sarah Pratt Lecture 18 - 83 March 01, 2024

https://hype.stanford.edu/

Summary: GANs

Don’t work with an explicit density function
Take game-theoretic approach: learn to generate from training distribution through 2-player

game

Pros:
- Beautiful, state-of-the-art samples!

Cons:
- Trickier / more unstable to train
- Can't solve inference queries such as p(x), p(z|x)

Active areas of research:
- Better loss functions, more stable training (Wasserstein GAN, LSGAN, many others)

- Conditional GANs, GANSs for all kinds of applications

Ranjay Krishna, Sarah Pratt Lecture 18 - 84 March 01, 2024

Summary

Autoregressive models: Variational Autoencoders Generative Adversarial
PixelRNN, Pixel CNN Networks (GANs)

Lﬂ | & | Real or Fake
Sample x|z from |z ~ N (pig|z, Xg|2) *

255

Discriminator Network

/ \
. i ’ .u'a;|z H Ea:lz ‘ r‘i
N Decoder network
)] =

sample zfrom z|x ~ N (fz)z, X2|z) Real Images
D i ™ Generator Network
Encoder network \—‘Iv] *
a4 (2|2) =
Input Data [xZr ‘
Van der Oord et al, “Conditional i o) Goodfellow et al, “Generative
image generation with pixelCNN Kingma and WeII,l’ng, Auto-encoding Adversarial Nets”, NIPS 2014
decoders”, NIPS 2016 variational bayes , ICLR 2013

Ranjay Krishna, Sarah Pratt Lecture 18 - 85 March 01, 2024

Diffusion models

Ranjay Krishna, Sarah Pratt Lecture 18 - 86 March 01, 2024

Dhariwal & Nichol. “Diffusion Models Beat Ho et al. “Cascaded Diffusion Models for High
GANs on Image Synthesis”, OpenAl 2021 Fidelity Image Generation”, Google 2021

Ranjay Krishna, Sarah Pratt Lecture 18 - 87 March 01, 2024

Text-to-Image (T21) Generation

Dall-E2 Imagen

“a teddy bear on a skateboard in times square” “A group of teddy bears in suit in a corporate
office celebrating the birthday of their friend.
There is a pizza cake on the desk.”

Ramesh et al. “Hierarchical Text-Conditional Saharia et al. “Photorealistic Text-to-Image
Image Generation with CLIP Latents” 2022 Diffusion Models with Deep Language
Understanding” 2022

Ranjay Krishna, Sarah Pratt Lecture 18 - 88 March 01, 2024

Text-to-Image (T21) Generation

Stable Diffusion

Mega thread on Twitter/X about Stable Diffusion

Rombach et al. “High-Resolution Image Synthesis with Latent Diffusion Models” 2022

Ranjay Krishna, Sarah Pratt Lecture 18 - 89 March 01, 2024

https://twitter.com/daniel_eckler/status/1572210382944538624

Application of diffusion: Image Super-resolution

Irish Setter

Saharia et al., Image Super-Resolution via Iterative Refinement, ICCV 2021 Gif on this slide is not
displayed in pdf

Ranjay Krishna, Sarah Pratt Lecture 18 - 90 March 01, 2024

But what is a diffusion model?

Ranjay Krishna, Sarah Pratt Lecture 18 - 91 March 01, 2024

So far...

Autoregressive define tractable density function, optimize likelihood of training
data:

n
p@(x) = Hpo(a:z-|a:1, - xz’—l)
1=1

VAEs define intractable density function with latent z:
po(z) = [po(eIpo(alz)dz

Cannot optimize directly, derive and optimize lower bound on likelihood instead

GANSs give up on explicitly modeling density and just learns to sample “real” data

Ranjay Krishna, Sarah Pratt Lecture 18 - 92 March 01, 2024

So far...

Autoregressive define tractable density function, optimize likelihood of training
data:

n
p@(x) = Hpo(a:da:l, - xz’—l)
1=1

VAEs define intractable density function with latent z:
po(z) = [po(eIpo(alz)dz
Cannot optimize directly, derive and optimize lower bound on likelihood instead

GANSs give up on explicitly modeling density and just learns to sample “real” data

All these methods generate data in one forward step! Why this is hard?

Ranjay Krishna, Sarah Pratt Lecture 18 - 93 March 01, 2024

Taxonomy of Generative Models
GAN

Generative models

Explicit density Implicit density

Markov Chain
GSN

Tractable density Approximate density

Fully Visible Belief Nets DiffuS]
- Autoregressive e] lfusion
- NADE Variational Markov Chain
- MADE . .
_ NICE / RealNVP Variational Autoencoder Boltzmann Machine
- Glow , , _ . .
_ FijI’d Figure copyright and adapted from lan Goodfellow, Tutorial on Generative Adversarial Networks, 2017.

Ranjay Krishna, Sarah Pratt Lecture 18 - 94 March 01, 2024

Recall VAEs

VAEs define intractable density function with latent z:
po(z) = [po(2Ipo(alz)dz

Cannot optimize directly, derive and optimize lower bound on likelihood instead:

Ranjay Krishna, Sarah Pratt Lecture 18 - 95 March 01, 2024

The lower bound we derived last lecture

log pg(2V) = E. q,(zlz) {logpg(x(i))} (pe(z'?) Does not depend on z)

Decoder network gives p,(x|z), can
compute estimate of this term through
sampling (need some trick to
differentiate through sampling).

Ranjay Krishna, Sarah Pratt

[(4)
log po(z™ | Z)pg(Z)] (Bayes’ Rule)
I po(z | 2)

(4) ()
log po(e” | z)(p)g(z) 42| @ .)] (Multiply by constant)
po(z [2)) qy(z | =)
_ . (4) (4)
log p(z? | z)} —E, [log M] +E, llog M] (Logarithms)
- po(2) po(2 | @)
log0(z® | 2)] — Dicsas(z | 6) [1po(2)) + Dici (as(z | 29) | paz | 7))

i i ;

This KL term (between Pg(z[x) intractable (saw
Gaussians for encoder and z €arlier), can’t compute this KL

prior) has nice closed-form term :(But we know KL
solution! divergence always >=0.

Lecture 18 - 9696

March 01, 2024

Two loss objectives for VAEs

log pg(zV) = E. q,(zlz) {logpg(x(i))} (pe(z'?) Does not depend on z)

[(i) |
=E; |lo Po(z |Z)(P)"<Z)] (Bayes’ Rule) Encoder:
Decoder: pe(z | =) make approximate
' B po (D | 2)po(2) qe(z | =) . posterior distribution
reconstruct E. |log oz [2) gu(z | 20) (Multiply by constant) close to prior

the input data

gpo(z'” | Z)} — [log M] +

—[E- [log20(a? |)] ~ Diculaole | oo+ Diclastz | 29) (e | 29)

£(z9.0.9) =
Tractable lower bound which we can take

gradient of and optimize! (p,(x|z) differentiable,
KL term differentiable)

] (Logarithms)

Ranjay Krishna, Sarah Pratt Lecture 18 - 9797 March 01, 2024

First loss for the encoder

E. [logps(a | 2)] —]DKL<q¢<z B Hm(z)j

L(z?,0,9)

Dkr, (N(“z|x7 EZIJJ)HN(O?I))

This equation has an analytical solution

Make the latent
variable distribution

as similar to a unit Hz|x Ez|x
normal distribution Encoder network \/
9 (2|7)
Input Data b

Ranjay Krishna, Sarah Pratt Lecture 18 - 9898 March 01, 2024

Second loss for both decoder and encoder

Maximize likelihood of original
input being reconstructed

i
E. [logpa(e? | 2)| [+ enlaolz |) | p0(2) Kz Xiz)z

L(zD,0,¢) Decoder network \/
po(x|2)

VA
Sample z from z|a7 ~ N(Mz|a;, Zz|:c)

/

/’l’ZI:B Zz |a;
Encoder network V\/
e (2|)
Input Data b

Ranjay Krishna, Sarah Pratt Lecture 18 - 9P9 March 01, 2024

VAEs for images look like this

Decoder
p(z]2)

@:@,,

q(z|z)
Encoder

- We learn 2 networks, one to encode and one to decode
- We ensure that z is similar to a unit normal noise
- To sample new images, we can sample from the unit normal and decode in 1 step

Ranjay Krishna, Sarah Pratt Lecture 18 - 100 March 01, 2024

Markovian Hierarchical VAEs

Decoder, Decoder, Decoder.
p(x]21) p(21]22) p(zr-1]27)
ofcRcRic
N T T N _7
q(z1]x) q(22]21) q(zr|2r-1)
Encoder, Encoder, Encoder

- We learn 2T networks, one to encode and one to decode
- We ensure that Z, is similar to a unit normal noise
- To sample new images, we can sample from the unit normal and decode in T step

Ranjay Krishna, Sarah Pratt Lecture 18 - 101 March 01, 2024

Markovian Hierarchical VAEs - same derivation

log p(z) = Ez, rgy(ar o) l0g o () po() is independent of z1.7
= Esi...[log p9($|z1;T)p9(Z1;T)] Bayes rule
. p9<Z1;T|$’)

Ranjay Krishna, Sarah Pratt Lecture 18 - 102 March 01, 2024

Markovian Hierarchical VAEs - same derivation

logp(@) = B sisgy (zimla) [log pe (V)] po(x) is independent of z;.7
po(z|21.7)po (21.7)
= B i [lO Bayes rule
.T[. pO(zlszU)] y

po(x|21.7)P6 (21.7) q¢(21:T|fB)]

=E,, .[log Multiplying by a constant
' pO(zl:T|x> Q¢(31;T|$)
gy (z1:7|2) q¢(21.7)
=K. .. |lo z|z1.7)| — E,, .- |lO +E, .|lo
.T[gp@(I 1 T)] .T[g Do (zlzT)] .T[g p(zl:T|x)]

Ranjay Krishna, Sarah Pratt Lecture 18 - 103 March 01, 2024

Markovian Hierarchical VAEs - same derivation

108 P(2) = Bz, gy (e1.01) 108 Do (2)] po(x) is independent of 21,7
po(x|21.7)P6 (21.7)
=E, .|lo Bayes rule
o8 Gale) ’

po(x|21.7)P6 (21.7) q¢,(z1,T|x)]
p@('zl:T|x> q(ﬁ(zl:Tlx)

=E,, . |log Multiplying by a constant

q¢(21.7|T)
—]EzlzT [logp9(x|z1!T)] -]EZ1:T [log
Do (zlzT)
Reconstruction objective maximizes the This KL term (between Pg(zIX) intrgctable but we
likelihood of data py(x|z) Gaussians for encoder and z kno(\)/v KL divergence always
prior) >=U.

Ranjay Krishna, Sarah Pratt Lecture 18 - 104 March 01, 2024

Markovian Hierarchical VAES

Keeping just the first two terms:

q¢(21:T|fL')]

logp(z) > = E;, 1 [log po(z|21.7)] — Ez, . [log
pe(21:7)

Ranjay Krishna, Sarah Pratt Lecture 18 - 105 March 01, 2024

Markovian Hierarchical VAES

Keeping just the first two terms:

logp(z) > = E,, ;[logpe(z|21.7)] — E2,.,[log q;;?;;'f;)]
p0($|zlzT)p0(zlzT)]
q¢(z1.7|T)
pe(flﬁ, Zl:T)]
Q¢(Z1:T|:L’)

— EzlzT [log

— EzlzT []‘Og

Ranjay Krishna, Sarah Pratt Lecture 18 - 106 March 01, 2024

Markovian Hierarchical VAES

Keeping just the first two terms:

q¢(21:T|~’L')]

logp(z) > = E;, 1 [log po(z|21.7)] — Ez, . [log
pe(21.7)

p0(£|21:T)p0(21:T)]
¢ (21:7|T)

po(flﬁ, Zl:T)]

Q¢(21:T|x)

— EzlzT [log

— EzlzT []‘Og

T
where the joint probability distribution is: P(2; z1.7) = p(zr)pe(@ | z1) | | Pe(zi1 | 20)
t=2

This is very similar to the autoregressive model formula

Ranjay Krishna, Sarah Pratt Lecture 18 - 107 March 01, 2024

Markovian Hierarchical VAES

Keeping just the first two terms:

q¢(21:T|~’L')]

logp(z) > = E;, 1 [log po(z|21.7)] — Ez, . [log
pe(21.7)

p0($|21:T)p0(21:T)]
¢ (21:7|T)

po(flﬁ, Zl:T)]

Q¢(21:T|x)

— EzlzT [log

— EzlzT []‘Og

where the joint probability distribution is: P(%, 21.7) = (zT)pe(wlzl)Hpe(Zt—llzt)
=2

And the encoder posterior is: 4¢(z1.7 |) = g4(21 | H% zt | ze-1)

Ranjay Krishna, Sarah Pratt Lecture 18 - 108 March 01, 2024

Markovian Hierarchical VAES

Keeping just the first two terms:

q¢(21:T|~’L')]

logp(z) > = E;, 1 [log po(z|21.7)] — Ez, . [log
pe(21.7)

p0(£|21:T)p0(21:T)]
¢ (21:7|T)

po(flﬁ, Zl:T)]

Q¢(21:T|x)

=E,, . [log Why is this a hard objective to train?

— EzlzT []‘Og

where the joint probability distribution is: ?(®, 21.7) = p(zT)pe(w|zl)Hpo(zt_1Izt)
t=2

And the encoder posterior is: 4¢(z1.7 |) = g4(21 | H% zt | ze-1)

Ranjay Krishna, Sarah Pratt Lecture 18 - 109 March 01, 2024

Markovian Hierarchical VAES

Keeping just the first two terms:

q¢(21:T|~’L')]

logp(z) > = E;, 1 [log po(z|21.7)] — Ez, . [log
pe(21.7)

Do (x|21:T)p0(21:T)]

=E,, . [log Why is this a hard objective to train?

4s(21:7]) 1. There are too many networks to learn
—E,, [l Po(z; z1=T)] 2. The objective function is expensive!
q¢(21.7|7) 3. It collapses easily!

where the joint probability distribution is: ?(®, 21.7) = p(zT)pe(w|zl)Hpo(zt_1Izt)
t=2

And the encoder posterior is: 4¢(z1.7 |) = g4(21 | H% zt | ze-1)

Ranjay Krishna, Sarah Pratt Lecture 18 - 110 March 01, 2024

Markovian Hierarchical VAEs

Decoder Decoder
:1:\21 21 ’ZQ
Zl ‘CE ZQ|Z1

Encoder1 Encoder2

Diffusion models are a special case

With a more interpretable, simpler objective.

DecoderT

p(Z’T—l \ZT)

q(2r|2zr-1)

EncoderT

Ranjay Krishna, Sarah Pratt Lecture 18 - 111

March 01,

2024

How are diffusion models different?

1. The latent dimension size is exactly equal to the
data dimension

Ranjay Krishna, Sarah Pratt Lecture 18 - 112 March 01, 2024

How are diffusion models different?

1. The latent dimension size is exactly equal to the
data dimension
2. The encoders are pre-defined and not learned.

p(x]21) p(21]22) p(2r-1l21)

Ranjay Krishna, Sarah Pratt Lecture 18 - 113 March 01, 2024

How are diffusion models different?

1. The latent dimension size is exactly equal to the data
dimension

2. The encoders are pre-defined and not learned.

3. Encoders are designed as a linear Gaussian model
conditioned on the time step: Add noise at every time step

B . O e . Sh ..

Ranjay Krishna, Sarah Pratt Lecture 18 - 114 March 01, 2024

How are diffusion models different?

4. The Gaussian parameters vary over time in such a
way that the distribution of the latent at final step T is a

standard Gaussian

p(zo|z1) p(i—1|we) P(@e|Tet1) p(xr-1|zT)
o= Rol-e
N_7 _/ N_7T D 4

q(z1]z0) q(z¢| 1) q(xy41|T) q(xr|rr-1)

Ranjay Krishna, Sarah Pratt Lecture 18 - 115 March 01, 2024

Terminology: Forward and backward process

Forward diffusion process (fixed)

Reverse denoising process (generative)

Note: reverse or backward here doesn’t mean the same thing as backpropagation

Ranjay Krishna, Sarah Pratt Lecture 18 - 116

The distribution perspective

Over time, as we add more noise sampled from a Gaussian distribution, it begins to look more like a
unit normal

Diffused Data Distributions)
Data Noise

q(%0) qx1) qx2) qxz) q(xT)

Ranjay Krishna, Sarah Pratt Lecture 18 - 117 March 01, 2024

How do we define a loss objective?

Q. What do we have to learn to generate new samples from noise?

p(zo|z1) p(i—1|we) P(@e|Tet1) p(xr-1|zT)
Dl e L (w
q(x1]zo) q(x¢|Ti-1) q(Ti41|we) q(zr|TT-1)

Ranjay Krishna, Sarah Pratt Lecture 18 - 118 March 01, 2024

How do we define a loss objective?

Q. What do we have to learn to generate new samples from noise?
A. We want to define a neural network to predict pe(wt_1 | wt)

p(zo|z1) p(i—1|we) P(@e|Tet1) p(xr-1|zT)
) . @ ® @
q(x1]zo) q(z¢|ze-1) q(Ti41|we) q(zr|TT-1)

Ranjay Krishna, Sarah Pratt Lecture 18 - 119 March 01, 2024

How do we define a loss objective?

Q. How should we train pg(®:—1 | 1) ?

p(zo|z1) p(i—1|we) P(@e|Tet1) p(xr-1|zT)
Dl e L (w
q(x1]zo) q(x¢|Ti-1) q(Ti41|we) q(zr|TT-1)

Ranjay Krishna, Sarah Pratt Lecture 18 - 120 March 01, 2024

How do we define a loss objective?

Q. How should we train pg(®:—1 | 1) ?
A. We can get it to match g(x:—1 | ¢, 20) !

p(zo|z1) p(i—1|we) P(@e|Tet1) p(xr-1|zT)
Dl e L (w
q(x1]zo) q(x¢|Ti-1) q(Ti41|we) q(zr|TT-1)

Ranjay Krishna, Sarah Pratt Lecture 18 - 121 March 01, 2024

How do we define a loss objective?

Q. How should we train pg(®:—1 | 1) ?
A. We can get it to match g(x:—1 | ¢, 20) !

Q. But why g(#®;_1 | ¢, x)and not:

q(xt—l) p(zolz1) P(@i-1|ze) T4|Te41) p(zr-i]zr)
q(xs—1|zs) @ @ @ @

q(Ti11]20) q(zr|rr-1)

”L’l‘”[‘o)

Lecture 18 - 122 March 01, 2024

Ranjay Krishna, Sarah Pratt

Ok so our loss function is:

Q. How should we train po(wt—1 | iBt) ?
A. We can get it to match g(x:—1 | ¢, 20) !

Minimize the distance between the two distributions:

arg min Dxr,(q(x¢_1 | ¢, ®0) || po(@i-1 | 1))
0

Ranjay Krishna, Sarah Pratt Lecture 18 - 123 March 01, 2024

Ok so our loss function is:

Q. How should we train po(wt—1 | iBt) ?
A. We can get it to match g(x:—1 | ¢, 20) !

Minimize the distance between the two distributions:

arg min Dxr,(q(x¢_1 | ¢, ®0) || po(@i-1 | 1))
0

Problem: How do we estimate q(x:—1 | &, ®o) ?

Ranjay Krishna, Sarah Pratt Lecture 18 - 124 March 01, 2024

The forward diffusion step

The distribution at step t is a Gaussian

g(@: | 1) = N(zi; Ve 1, (1 — a)l)

Ranjay Krishna, Sarah Pratt Lecture 18 - 125 March 01, 2024

The forward diffusion step

The distribution at step t is a Gaussian
Q(wt | ‘Bt—l) = N(mt; VOt 1, (1 - at)I)
The mean defined by x_: (@) = /a1

a, is a predefined value for each step t

Ranjay Krishna, Sarah Pratt Lecture 18 - 126 March 01, 2024

The forward diffusion step

The distribution at step t is a Gaussian

q(®s | ®i-1) = N (@45 Va1, (1 —)l
The mean defined by x_: (@) = /a1
a, is a predefined value for each step t

The covariance is independent of x_, (an assumption)

Yi(xy) = (1 — o)l

Ranjay Krishna, Sarah Pratt Lecture 18 - 127 March 01, 2024

How the forward step was designed:

The distribution at step t is a Gaussian

g(@: | 1) = N(zi; Ve 1, (1 — a)l)

pe(Te) = LT T
Zt(a)t) — (1 = at)I

So, given x_, we can sample x, using:

Tt ™~ A/OTt-1 + (1 — (Xt)é

where € ~ N (z;0,1)

Ranjay Krishna, Sarah Pratt Lecture 18 - 128 March 01, 2024

Why was it designed like this?
@y = \/oyes 1+ \/1——(1156:—1

Ranjay Krishna, Sarah Pratt Lecture 18 - 129 March 01, 2024

Why was it designed like this?

T = /e, 1+ V1 — o€
= 4/ O (1/at_1mt_2 + 4/ 1-— at—1€:_2) + /1 — ate:—l — SUbStltUtlng Xt—1

Ranjay Krishna, Sarah Pratt Lecture 18 - 130 March 01, 2024

Why was it designed like this?

;= ouxi_1+ V1 — o€l
= 4/ O (,/at_lmt_z + 41— at—1€:_2) 4+ /1 — ate:—l < — SUbStltUtlng X 4
= /i _12¢_9 + \/at — ;s 1€; o+ 11— i€ | — Opening the parentheses

Ranjay Krishna, Sarah Pratt Lecture 18 - 131 March 01, 2024

Why was it designed like this?

T = /e, 1+ V1 — o€
= 4/ O (,/at_lmt_z + 41— at—1€:_2) 4+ /1 — ate:—l < — SUbStltUtlng X 4
= /i _12¢_9 + \/at — ;s 1€; o+ 11— ai€; | | +— Opening the parentheses

We can interpret this /1 — a;e; ; as a sample from A/(0, (1 — ay)I)

We can interpret this \/a; — aza_1€;_, as a sample from N (0, (o — azas—1)I)

Ranjay Krishna, Sarah Pratt Lecture 18 - 132 March 01, 2024

Why was it designed like this?

T = /e, 1+ V1 — o€
= 4/ O (,/at_lmt_z + 41— at—1€:_2) 4+ /1 — ate:—l < — SUbStltUtlng X 4
= /i _12¢_9 + \/at — ;s 1€; o+ 11— ai€; | | +— Opening the parentheses

We can interpret this /1 — a;e; ; as a sample from A/(0, (1 — ay)I)

We can interpret this \/a; — aza_1€;_, as a sample from N (0, (o — azas—1)I)

Notice that \/a; — i 1€; 5 + /1 — ay€;_; is the sum of two Gaussian samples

Ranjay Krishna, Sarah Pratt Lecture 18 - 133 March 01, 2024

Why was it designed like this?

T = /e, 1+ V1 — o€
= 4/ O (,/at_lmt_z + 41— at—1€:_2) 4+ /1 — ate:—l < — SUbStltUtlng X 4
= /i _12¢_9 + \/at — ;s 1€; o+ 11— ai€; | | +— Opening the parentheses

We can interpret this /1 — a;e; ; as a sample from A/(0, (1 — ay)I)

We can interpret this \/a; — aza_1€;_, as a sample from N (0, (o — azas—1)I)

Notice that \/a; — i 1€; 5 + /1 — ay€;_; is the sum of two Gaussian samples

Using the property: A/ (z;0,011) + N (z;0,021) = N(=;0,4/0% + 021)

Ranjay Krishna, Sarah Pratt Lecture 18 - 134 March 01, 2024

Why was it designed like this?

T = /e, 1+ V1 — o€
= 4/ O (,/at_lmt_z + 41— at—1€:_2) 4+ /1 — ate:—l < — SUbStltUtlng X 4
= /i _12¢_9 + \/at — ;s 1€; o+ 11— ai€; | | +— Opening the parentheses

We can interpret this /1 — a;e; ; as a sample from A/(0, (1 — ay)I)

We can interpret this \/a; — aza_1€;_, as a sample from N (0, (o — azas—1)I)

Notice that \/a; — i 1€; 5 + /1 — ay€;_; is the sum of two Gaussian samples
Using the property: A/ (z;0,011) + N (z;0,021) = N(=;0,4/0% + 021)

] * * 2 2
We can rewrite \/at — oo 1€;_9 + 41— o€, as \/\/at —opoi—1 +V1—op €9

Ranjay Krishna, Sarah Pratt Lecture 18 - 135 March 01, 2024

Why was it designed like this?
& = a1+ 11— o€l
— Ja; (\/mmt_z + /1o at_1€;_2) +/1—aze;_, «—— Substituting x,
= Jagog_1®s_ 5 + /oy — azas_1€; o + /1 — aze;_, +—— Opening the parentheses

2 2 .
= Joro_1@i_9 + \/\/at —a;ap 1 +4/1—a; €_o «—— Sum of two Gaussians

Ranjay Krishna, Sarah Pratt Lecture 18 - 136 March 01, 2024

Why was it designed like this?
& = a1+ 11— o€l
— Ja; (\/mmt_z + /1o at_1€;_2) +/1—aze; , «—— Substituting x,_,
= Jagog_1®s 5 + /oy — agas_1€; o +1/1 — aze;_, «+—— Opening the parentheses

2 2 .
= Joro_1@i_9 + \/\/at —a;ap 1 +4/1—a; €_o «—— Sum of two Gaussians
= 4/ 001242 + \/at — a;a; 1+ 1 — ase;_o «—— Squaring the terms

Ranjay Krishna, Sarah Pratt Lecture 18 - 137 March 01, 2024

Why was it designed like this?

;= ouxi_1+ V1 — o€l
— \/at (\/at—lmt—Z + A/]_ — at_le;k_2) —*— A/]_ — ate:—l < SUbSt|tut|ng Xt—1
= /i _12¢_9 + \/at — a;a;_1€; o+ 11— i€ | — Opening the parentheses
2 2 .
= Joro_1@i_9 + \/\/at —a;ap 1 +4/1—a; €_o «—— Sum of two Gaussians
= 4/ 001242 + \/at — a;a; 1+ 1 — as€e;_o «—— Squaring the terms

= Vo 1@ 2 + /1 — ey 16,5 <+ Simplifying

Ranjay Krishna, Sarah Pratt Lecture 18 - 138 March 01, 2024

Why was it designed like this?

x: = ouxi_1+ V1 — o€l
— \/at (\/at—lmt—Z + LV]_ — at_le;k_2) —*— A/]_ — ate:—l < SUbSt|tut|ng Xt—1
= /i _124_9 + \/at — ;s 1€; o+ 11— ai€; | — Opening the parentheses
2 2 .
= oo 1@i_9 + \/\/at —a;a; 1 +4/1—a; €_o «—— Sum of two Gaussians
= 4/ 001242 + \/at — a;a; 1+ 1 — ase;_o «—— Squaring the terms

= oo 1€+ /1 — oy 1€, 9 Simplifying

t t
— H a;xo+ |1 — Haieo <«——— Substituting till x,
\ i=1 \ =1

Ranjay Krishna, Sarah Pratt Lecture 18 - 139 March 01, 2024

Why was it designed like this?

x: = ouxi_1+ V1 — o€l
— \/at (\/at—lmt—Z + A/]_ — at_le;k_2) —*— A/]_ — ate:—l < SUbSt|tut|ng Xt—1
= /i _12¢_9 + \/at — ;s 1€; o+ 11— i€ | — Opening the parentheses
2 2 .
= Joro_1@i_9 + \/\/at —a;ap 1 +4/1—a; €_o «—— Sum of two Gaussians
= 4/ 001242 + \/at — asa; 1+ 1 — as€e;,_o «—— Squaring the terms

= V@ 1@ 2 + /1 — ey 16,5 <+ Simplifying

t t
— H a;@o+ |1 — Haieo <«——— Substituting till x,
\ i=1 \ i=1

t
=V ;o + vV 1-— Q€ — Let a; = Hai
=1

Ranjay Krishna, Sarah Pratt Lecture 18 - 140 March 01, 2024

Why was it designed like this?

x: = ouxi_1+ V1 — o€l
= 4/ O (\/at—lmt—Z + 1/ 1— at—1€:_2) —+ 4/ 1— ate:—l < SUbSt|tUt|ng Xt—1
= /i _12¢_9 + \/at — ;s 1€; o+ 11— i€ | — Opening the parentheses
2 2 .
= Joro_1@i_9 + \/\/at —a;a; 1 +4/1—a; €_o «—— Sum of two Gaussians
= 4/ 001242 + \/at — asa; 1+ 1 — as€e;,_o «—— Squaring the terms

= Vo 1@ 2 + /1 — ey 1€,y <+ Simplifying

t t
— H a;xo+ |1 — Haieo <«——— Substituting till x,
\ i=1 \ i=1

t
=V axyg+ 11— aeq <« Let & = Hai
i=1

~ N (®s; v/ aso, (1 — a;)I) «—— x, is now a Gaussian characterized by X,

Ranjay Krishna, Sarah Pratt Lecture 18 - 141 March 01, 2024

Takeaway from the previous slides:

i ~ N (@43 v/ o, (1 — 6u)I)

We can instantly sample x, given any input data x,

Ranjay Krishna, Sarah Pratt Lecture 18 - 142 March 01, 2024

What about the reverse?

Q(wt—l \ L, il?o)

Ranjay Krishna, Sarah Pratt Lecture 18 - 143 March 01, 2024

What about the reverse?

q(xs | ®-1,%0)q(x1-1 | o) Applying Bayes rule
q(z: | o)

Q(wt—l \ wt,wo) =

Ranjay Krishna, Sarah Pratt Lecture 18 - 144 March 01, 2024

What about the reverse?

Q(mt | L1, 5130)

Q(wt—1 | 5130)

Q(wt—l \ wt,wo) =

Q(wt \ wo)

N(wt; \/a_tmt_l, (]. = Oét)I)

The first term is just a single forward diffusion process:

q(@: | £1-1) = N(2; Va1, (1 — oy)I)

Ranjay Krishna, Sarah Pratt

Lecture 18 - 145

March 01, 2024

What about the reverse?

Q(mt | wt—1,$0)|Q(€13t—1 | 330)
q(xt | o)
N(wt; \/a_tmt—la (1 - at)I)N(mt—l; a1, (1 — 5ét—l)I)

Q(wt—l \ wt,wo) =

The second term is also a Gaussian using the formula we just derived:

@y ~ N (45 1/ @, (1 — ay)I)

Ranjay Krishna, Sarah Pratt Lecture 18 - 146 March 01, 2024

What about the reverse?

q(xs | 41, %0)q(T1-1 | o)
q(z: | o)
N(zs; /ogzi—1, (1 — a) DN (ei-1; /@120, (1 — az—1)I)
N (z4; v ageg, (1 — ay)I)

Q(wt—l \ wt,wo) =

The third term is also a Gaussian using the same formula:

@y ~ N (45 1/ @, (1 — ay)I)

Ranjay Krishna, Sarah Pratt Lecture 18 - 147 March 01, 2024

What about the reverse?

Q(wt | wt—l,fBO)Q(wt—l | 330)
q(@: | o)
N(wt; \/a_tmt—la (1 - at)I)N(iBt—l; a1, (1 - @t—l)I)
N (45 Voo, (1 — a:)I)
o N (21 Vol — 1)@ + v/ a-1(1 — o) | (1—o)(1 — @-1)

I
1— & 1— &)

N - N 7
N ~

:uq(wt’wO) 2q(t)

Q(wt—l \ wt,iﬂo) =

The product of these 3 Gaussian distributions simplify to a Gaussian as well!

Let's call its mean uq(s,20) and variance 3, (¢)

Ranjay Krishna, Sarah Pratt Lecture 18 - 148 March 01, 2024

Proof (out of scope for the class)

q(x: | 21, 20)q(®:—1 | X0)
q(z: | @)
N (z; Vo1, (1 — o) DN (215 v/A_120, (1 —0u—1)T)
N (x4 /@, (1 —ay)I)

Q(mt—l | mtamO) =

x expd — (mt - \/a_ﬁBt—l)Z N (wt—l — & /at_le)Q - (mt . \/a—t$0)2] }
P 2(1 — o) 2(1 —a_1) 21 —a)

— extd — [(s — \/Etmt—l)z . (1 — + /dt_71w0)2 B (2 — \/a_twﬂ)zl }

= exp 1— oy 1 —ay_q 1 —ay

i — 2./ + x> x2 . — 2./a;_1® 12
(\/_ttt tt1)+(t1 t t)—i—C(wt,azo)

1— oy 1 —a; 4

- 2 2 _
2 /o is 1 n Ty n Ti 1 2\/Qi 124 1

1-— 't 1-— Ot 1 —O—1 1 —Q1

)

1—C¥t 1 (o7 |

s)

[Ot 1 2

-2
_(1-— 't T 1 —Q_1)mt_l (
(1 —y1)+1—o

-l —a) T

I
@
=
— N~
|
N|= N N = N = N =R T/

Proof (out of scope for the Class)

il
2[(1— o)1 —a1) 1— oy 1 —ay_q

1— 1 —a t L T -
—exp{ (67 mtz . 2(\/_ t \/Oét 1 0) 55 }

(1-a)(1—a-1) = 1— oy 1 —ay_q

l\D

_ Jae .\ ey i

1 1 — Oy 2 1-oy 1—a4 1

= €XP _5 I—a)(l—-a T, — 2 = T 1
W =Ge) /| T—a{l-ac0)

1 1 -a, e (L5 + =) (1 - @) (1 —a1)

o 2 ((1—oa)(1 —as-1)) 1 1 —ay Ti-1
\ L

— ex _l 1 w2 _9 \/a_t(]- _at—l)wt -+ vV dt_l(l — at)mo -
— <R 2 (1*0%1)(1_—5&—1) t-1 1 —ag t—1
- N(mt_l; \/a_t(l —dt—l)ﬁct + \/C_Yt_l(]. — at)il?() (]_ — at)(]_ _at—l) I)

1 — Oy ’ 1 —Q;

) o) S h 01, 2024

Let's go back to the Markovian VAE
@ @ @ @

We are ready to set up a simple intuitive loss function to train the decoder!
Given an image x:

We want to generate pg(x;_ 1 | ;) to match the Gaussian we just derived: q(T+—1 | &+, o)

Ranjay Krishna, Sarah Pratt Lecture 18 - 151 March 01, 2024

The loss function tries to match dlstrlbutlons

1111111 plar_1|zr)

Cr\ @T/\ @K\ L
\/ \j N7 N7
i1 +1|T¢ q(or|)

The loss function
arg min Dxr,(q(x¢_1 | ¢, ®0) || po(@i-1 | 1))
0

Ranjay Krishna, Sarah Pratt Lecture 18 - 152 March 01, 2024

We can model po(®i-1 | =) as a Gaussmn

+1) plar_i|zr

: @:@:@ :@

Tyl wp +1]70) q(wr|rr-

The loss function W

arg min Dxr,(q(xs—1 | ¢, o) || Po(@i-1 | 1))
0

= arg;ninDKL (N (- 15 Hgs g (1)) || N (- 15 1o, g (1)))

Ranjay Krishna, Sarah Pratt Lecture 18 - 153 March 01, 2024

We can model po(®i-1 | =) as a Gaussmn

+1) plar_i|zr

: @:@:@ :@

Tyl wp +1]70) q(wr|rr-

The loss function
arg;ninDKL(q(wt_l | @1, @) || po(@—1 | @)
= arg;ninDKL (N (- 15 gy g (1)) || N (- 15 1o, g (1)))
= argmin = (g — i}
o 202(t) L'T0 Tl

Ranjay Krishna, Sarah Pratt Lecture 18 - 154 March 01, 2024

Proof (out of scope for class)

arg min Dkr,(q(:—1 | T4, o) || Po(Ti—1 | 1))
(7]

—arg min DKL(N(iBt_l; Mg, 2q(t)) || N(wt—l; He, Z‘q(t)))
0
L[3] B -
—arg min — |log 1 —d+ tr(3,(?) lﬁq(t)) + (o — Nq)TZq(t) 1(N0 — Hg)
o 2| X
o1 _
:argemln 5 _log 1—d+d+ (g — Nq)TZq(t) 1(H9 = Nq)}
.1 ~
:arg;nm 5 _(ue — IJq)TZq(t) 1(I~‘9 - I"q)}
g 1
=argmin 2 | (kg — Ho)" (og()T) (o - “q)}
—arg min Il — gl 2
S 202(1) [11Ho = b 13

Ranjay Krishna, Sarah Pratt Lecture 18 - 155 March 01, 2024

Ok we are close to the objective:

, 1
The loss we want to minimize is argmin —— [Hﬂo - qu”ﬂ
0 20q(t)

Ranjay Krishna, Sarah Pratt Lecture 18 - 156 March 01, 2024

Ok we are close to the objective:

o 1 2
The loss we want to minimize is argmin —— [Hﬂo - Nq”z}
0 20'q(t)

From the previous slide, we got the mean from this:

N (@i s; Vor (1l — C_Yt—l)mlt + _\/ a;—1(1 — o)z | (1— at)(l__ Q1) 1)
— Ot 1— (8%

- o = 4

pq(®e,20) ()

Ranjay Krishna, Sarah Pratt Lecture 18 - 157 March 01, 2024

Ok we are close to the objective:

o 1 2
The loss we want to minimize is argmin —— [Hﬂo - Nq”z}
0 20'q(t)

From the previous slide, we got the mean from this:

o T B T V(T —agm] (1 et~
— Ot 1— (8%

NG 1 & >y

pq(®e,20) ()

So, we can write the mean to be: o (@2, o) = Var(l —apq)e + Va1 (1 — ap)o
’ 1—ay

Ranjay Krishna, Sarah Pratt Lecture 18 - 158 March 01, 2024

Ok we are close to the objective:

o 1 2
The loss we want to minimize is argmin —— [Hﬂo - Nq”z}
0 20'q(t)

From the previous slide, we got the mean from this:

N(wt—l; \/a_t(l — C_Yt—l)wlt + }/@t—l(l — at)mo | (1 — Ozt)(l_— at—l) I)
— Oy 1—ay

NG 1 & >y

pq(®e,20) ()

So, we can write the mean to be: pho (e, o) = Var(l —apq)e + Va1 (1 —)
’ 1—ay
1 1-— (o %

= Lt — €0
Vv Ot \/1 —&t\/at

Ranjay Krishna, Sarah Pratt Lecture 18 - 159 March 01, 2024

Our neural network can predict noise instead!

i | 1-— it
Ty, T = Lt — €
Mq(t, o) o t A — Gl

We can also set our predicted mean to be:

I 1 — oy s

== Ly — €9
Vv Ot t \/l—dt,/at
Why is this helpful?

po(@:,t) ()

Ranjay Krishna, Sarah Pratt Lecture 18 - 160 March 01, 2024

Our neural network can predict noise instead!

i | l—at

= T — €
HilEnn) = T

We can also set our predicted mean to be:

po(xs,t) = T A
g AT t V1— ooy

Why is this helpful? Because now our model needs to predict the noise that
was injected, which turns out to be empirically more stable of an objective

than predicting the image mean.

(wt’ t)

Lecture 18 - 161 March 01, 2024

Ranjay Krishna, Sarah Pratt

The two loss objectives are equivalent

The loss function
argeminDKL(Q(wt—1 | mt,wo) H Pe(mt—l | iBt))

1
= arg;nin 207(1) {H[Lg - uqﬂg} Instead of predicting the mean image values

q

Ranjay Krishna, Sarah Pratt Lecture 18 - 162 March 01, 2024

The two loss objectives are equivalent

The loss function
argminDKL(Q(iBt—1 | mt,wo) H Pe(mt—l | iBt))
0

2
[H

(1—oy)?

Instead of predicting the mean image values

, 1
= arg min
o 204(t)
, 1
= arg min

0 20’3(12) (1 — &t)at

A 2 The neural network can
€) — €Eglxs, t]
[H L C predict the added noise

Ranjay Krishna, Sarah Pratt

Lecture 18 - 163 March 01, 2024

Proof: (out of scope)

arg min Dk, (q(@i—1 | ¢, o) || po(@i—1 | 1))

)
=arg min Dgy, (N (@15 pg, By(t)) || N (@15 o, Zg(2)))
)
B T (I 1-a 1 1 — ?
=arg min — o(xs,t) — T + = €
0 20'q(t) i 1V Oft \/ 1— Qi+ /X 1V Qi \/1 — Qi+ /0O 9
o1 [1-a 1— ay A(t)2
=arg min Lt
0 20’3(t) i \/ 1— ézt,/at a4 1— at,/
1 (| 1-
=arg min — = (eg — eo(mt,t))
2] 20'q(t) i \/1 — Qi4/0 9
1 1— 2
—arg min L~ [Ileo — ég(xy, 1) II§]

o 20’3(1‘)) (1 — at)ozt

Ranjay Krishna, Sarah Pratt Lecture 18 - 164 March 01, 2024

The denoising architecture

> €g(x¢,1)

| R ———
o i

-

Fully-connected
Layers

Time Representatlon

Time representation: sinusoidal positional embeddings.

Ranjay Krishna, Sarah Pratt Lecture 18 - 165 March 01, 2024

How do we sample a new image?

Sample z7 ~ N (0, I)
Fort=T...1do
Predict € = pg(x;)
1 1 — oy
He—1 = \/—a_twt —

Return xg

Reverse denoising process (generative)

Ranjay Krishna, Sarah Pratt Lecture 18 - 166 March 01, 2024

How is the time step inputted:

Time representation: sinusoidal positional embeddings.

Added in using: AdaGN(h, y) = ys GroupNorm(h) + y

- his the intermediate activations of the residual block following the first
convolution in each layer,
- y=[y, y,]lis obtained from a linear projection of the timestep

Ranjay Krishna, Sarah Pratt Lecture 18 - 167 March 01, 2024

Text-conditioned generation

> €g(x¢,1)

o i

Time Representatlon

Fully -connected
Layers . .]]
Simple idea: Train the model with text

A white cat with descriptions of the image

brown ears

CLIP text encoder

Ranjay Krishna, Sarah Pratt Lecture 18 - 168 March 01, 2024

Application: panorama generation

& Generated Input Generated >

Ranjay Krishna, Sarah Pratt

Application: super-resolution

Learn a superresolution diffusion model conditioned on a low resolution image.
y is a low resolution input image, x is a high resolution output image

Exy Eenro1) Et lleo(xt,t;y) —ellp

Saharia et al., Image Super-Resolution via Iterative Refinement, 2021

Ranjay Krishna, Sarah Pratt Lecture 18 - 170 March 01, 2024

Application: super resolution

Natural Image Super-Resolution 64x64 — 256 <256

Bicubic Regression SR3 (ours) Reference

Saharia et al., Image Super-Resolution via Iterative Refinement, 2021

Ranjay Krishna, Sarah Pratt Lecture 18 - 171 March 01, 2024

Input
(guide)

Generated
images
L

T : L)
LSUN bedroom : LSUN church : CelebA

Meng et al., SDEdit: Guided Image Synthesis and Editing with Stochastic Differential Equations, ICLR 2022

Ranjay Krishna, Sarah Pratt Lecture 18 - 172 March 01, 2024

Latent diffusion models: perform diffusion
over latent VAE encodings

p(zo|z1) p(Ti-1]xs) p(@e|Te41) p(zr_1]2r)

@ @@ ® . ®
N—T T _ 7 N—T
q(x1]wo) q(xe|we-1) q(Te41]70) q(zr|Tr-1)

Images are encoded with pretrained VAE.
So x, is now a d-dimensional VAE representation.

All diffusion steps occur in d-dimensional space
Memory and compute efficient

VAE decoder

Rombach et al. High-Resolution Image Synthesis with Latent Diffusion Models ArXiv 2022

Lecture 18 - 173 March 01, 2024

Ranjay Krishna, Sarah Pratt

Stable diffusion - from Stability Al

e Open sourced diffusion model - main model used for research
e Produces 512x512 images

e UNet with 860M params

e VIiT-L text encoder with 123M params

e Fitsin 10GB VRAM - fits on most GPUs

—
[LATENT VO
DIFFUSION B &

Generative
Models!

Rombach et al. High-Resolution Image Synthesis with Latent Diffusion Models ArXiv 2022

Ranjay Krishna, Sarah Pratt Lecture 18 - 174 March 01, 2024

Imagen - Google

Combines:
- Latent diffusion model
- text conditioning
- 2 super-resolution models

To produce high quality 1024x1024
images

Saharia et al., “Photorealistic Text-to-Image
Diffusion Models with Deep Language
Understanding”, arXiv 2022.

Ranjay Krishna, Sarah Pratt

Frozen Text Encoder

“A Golden Retriever dog wearing a blue

Text checkered beret and red dotted turtleneck.”

Y

Y

Text Embedding

Text-to-Image
Diffusion Model

164 x 64 Image

\

r

256 x 256 Image

r

Super-Resolution
Diffusion Model

l

1024 x 1024 Image

Imagen examples

& o) Imagen 5) .
' A relaxed garlic with a blindfold reading a newspaper A ; ;
A dragon fruit wearing karate belt in the snow. while floating in a pool of tomato soup. bike. It is wearing sunglasses and a beach hat.

Ranjay Krishna, Sarah Pratt Lecture 18 - 176 March 01, 2024

Last week: Sora video diffusion model

https://openai.com/sora

How did they do it?
- More data (unknown data source)
- Replaced U-Net architecture with transformers

Ranjay Krishna, Sarah Pratt Lecture 18 - 177 March 01, 2024

https://openai.com/sora

Comparing the different generative models

Q. Which ones are VAEs good at?

Autoregressive GANs Diffusion
(VAEs)

Mode coverage /
diversity of
generations

Fast sampling

High quality
samples

Ranjay Krishna, Sarah Pratt Lecture 18 - 178 March 01, 2024

| | Hemsmd
Comparing the different generative 23 ~&H&E
Pl S 23 Y A

VAEs are bad at generating high quality samples -EH < .E
Autoregressive GANs Diffusion
(VAEs)

Mode coverage / "Z
diversity of —
generations

Fast sampling "Z
High quality x

samples

Ranjay Krishna, Sarah Pratt Lecture 18 - 179 March 01, 2024

Comparing the different generative models

Q. Which ones are GANs good at?

Autoregressive GANs Diffusion
(VAEs)

Mode coverage / _]

diversity of

generations

Fast sampling _]

High quality x

samples

Ranjay Krishna, Sarah Pratt Lecture 18 - 180 March 01, 2024

Comparing the different generative models

GANs suffer from mode collapse

Autoregressive GANs Diffusion
(VAESs)

Mode coverage / _] x

diversity of

generations

Fast sampling _]

High quality x

samples o

Ranjay Krishna, Sarah Pratt Lecture 18 - 181 March 01, 2024

Comparing the different generative models

Q. Which ones are Diffusion models good at?

Autoregressive GANs Diffusion
(VAESs)

Mode coverage / _] x

diversity of

generations

Fast sampling _]

High quality x

samples o

Ranjay Krishna, Sarah Pratt Lecture 18 - 182 March 01, 2024

Comparing the different generative models

Diffusion models are bad at sampling fast.

Autoregressive GANs Diffusion
(VAESs)

Mode coverage / _] x —]
diversity of

generations

Fast sampling _] x
High quality x —]
samples o

Ranjay Krishna, Sarah Pratt Lecture 18 - 183 March 01, 2024

Next: Deep Reinforcement Learning

Ranjay Krishna, Sarah Pratt Lecture 18 - 184 March 01, 2024

